JPWO2005102993A1 - Purification method of acid aqueous solution - Google Patents

Purification method of acid aqueous solution Download PDF

Info

Publication number
JPWO2005102993A1
JPWO2005102993A1 JP2006519501A JP2006519501A JPWO2005102993A1 JP WO2005102993 A1 JPWO2005102993 A1 JP WO2005102993A1 JP 2006519501 A JP2006519501 A JP 2006519501A JP 2006519501 A JP2006519501 A JP 2006519501A JP WO2005102993 A1 JPWO2005102993 A1 JP WO2005102993A1
Authority
JP
Japan
Prior art keywords
acid
aqueous solution
treated
purifying
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006519501A
Other languages
Japanese (ja)
Other versions
JP4758894B2 (en
Inventor
宏充 小林
宏充 小林
仁藤 浩久
浩久 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2006519501A priority Critical patent/JP4758894B2/en
Publication of JPWO2005102993A1 publication Critical patent/JPWO2005102993A1/en
Application granted granted Critical
Publication of JP4758894B2 publication Critical patent/JP4758894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

塩素イオンを除去するなどの余分な工程を必要とせず、かつイオン交換体(カラムを含む)の損傷を低減して、イオン交換体を繰り返し使用することができ、イオン交換体の耐用寿命を長くして製造コストを低下させることのできる、酸(A)と不純物として酸(B)とを含有する被処理水溶液を、酸(A)と酸(B)とに対して陰イオンの吸着選択性を有する陰イオン交換樹脂(C)を充填したイオン交換塔に通液させることによる酸(A)水溶液の精製方法であって、上記被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液を通液した後に、上記被処理水溶液を通液することを特徴とする酸(A)水溶液の精製方法である。It eliminates the need for extra steps such as removing chlorine ions, reduces damage to the ion exchanger (including the column), and can be used repeatedly, extending the useful life of the ion exchanger An anion adsorption selectivity for an acid (A) and an acid (B) in an aqueous solution to be treated containing an acid (A) and an acid (B) as an impurity, which can reduce the production cost. A method for purifying an acid (A) aqueous solution by passing the solution through an ion exchange column filled with an anion exchange resin (C) having an acid (A) aqueous solution having a concentration lower than that of the aqueous solution to be treated A method for purifying an acid (A) aqueous solution, wherein the aqueous solution to be treated is passed through after passing through.

Description

本発明は、酸水溶液の精製方法に関し、さらに詳しくは、イセチオン酸に代表されるヒドロキシアルカンスルホン酸や、アルカンスルホン酸などの酸水溶液に含有される硫酸などの不純物を効果的かつ効率的に除去する、これらの酸水溶液の精製方法に関する。  The present invention relates to a method for purifying an acid aqueous solution, and more specifically, effectively and efficiently removes impurities such as hydroxyalkanesulfonic acid represented by isethionic acid and sulfuric acid contained in an acid aqueous solution such as alkanesulfonic acid. The present invention relates to a method for purifying these acid aqueous solutions.

イセチオン酸に代表されるヒドロキシアルカンスルホン酸や、アルカンスルホン酸などの水溶液は、その製造過程で不純物として硫酸を含んでしまうことから、従来より上記水溶液から硫酸を除去することが求められているが、これらの酸は硫酸と物性が類似していることから蒸留などの操作では分離することが難しいため、イオン交換樹脂を用いて上記被処理水溶液から硫酸を除去することが行われており、例えば、特許文献1では塩素型塩基性陰イオン交換樹脂を用いてメタンスルホン酸水溶液中に不純物として含まれる硫酸を除去している。  Since aqueous solutions of hydroxyalkanesulfonic acid represented by isethionic acid and alkanesulfonic acid contain sulfuric acid as an impurity in the production process, it has been conventionally required to remove sulfuric acid from the aqueous solution. Since these acids are similar in physical properties to sulfuric acid, it is difficult to separate them by operations such as distillation, and therefore, sulfuric acid is removed from the aqueous solution to be treated using an ion exchange resin. In Patent Document 1, sulfuric acid contained as an impurity in an aqueous methanesulfonic acid solution is removed using a chlorine-type basic anion exchange resin.

しかしながら、この方法では塩素イオンが、得られる酸水溶液中に混入するので、ストリッピング処理などの工程を用いて上記得られた酸水溶液から塩素イオンを除去することが必要であり、また、上記得られた酸水溶液から完全に塩素イオンを除去することはできないものであった。  However, in this method, since chlorine ions are mixed in the resulting aqueous acid solution, it is necessary to remove the chlorine ions from the obtained aqueous acid solution using a step such as stripping treatment. It was impossible to completely remove chloride ions from the resulting aqueous acid solution.

一方、得られる酸水溶液中への塩素イオンの混入を避ける方法として、イオン交換樹脂としてOH型塩基性陰イオン交換樹脂を用いることが考えられるが、酸水溶液の精製にOH型塩基性陰イオン交換樹脂を用いると、該イオン交換樹脂と酸との中和熱による温度上昇を伴ってイオン交換体自身やカラムの損傷を来たし、イオン交換体(カラムを含む)の耐用寿命が短く、製造設備コストがかさみ、精製酸水溶液の工業化適性を欠くものであった。
特開2001−64249公報
On the other hand, OH type basic anion exchange resin can be used as an ion exchange resin as a method to avoid mixing chlorine ions into the resulting acid aqueous solution, but OH type basic anion exchange is used for purification of acid aqueous solution. If a resin is used, the ion exchanger itself and the column are damaged due to the temperature rise due to the heat of neutralization of the ion exchange resin and acid, and the useful life of the ion exchanger (including the column) is short, and the manufacturing equipment costs However, it was lacking in industrial suitability of the purified acid aqueous solution.
JP 2001-64249 A

従って、本発明の目的は、塩素イオンを除去するなどの余分な工程を必要とせず、かつイオン交換体(カラムを含む)の損傷を低減して、イオン交換体を繰り返し使用することができ、イオン交換体の耐用寿命を長くして製造コストを低下させることのできる、酸水溶液の精製方法を提供することにある。  Therefore, the object of the present invention is that an extra step such as removal of chlorine ions is not required, and damage to the ion exchanger (including the column) can be reduced, and the ion exchanger can be used repeatedly. An object of the present invention is to provide a method for purifying an acid aqueous solution, which can extend the useful life of an ion exchanger and reduce the production cost.

本発明者らは上記に鑑み鋭意研究の結果本発明に到達した。すなわち、本発明は、酸(A)と不純物として酸(B)とを含有する被処理水溶液を、酸(A)と酸(B)とに対して陰イオンの吸着選択性を有する陰イオン交換樹脂(C)を充填したイオン交換塔に通液させることによる酸(A)水溶液の精製方法であって、上記被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液(以下単に「希薄な酸(A)水溶液」と称する)を通液した後に、上記被処理水溶液を通液することを特徴とする酸(A)水溶液の精製方法を提供する。  The present inventors have reached the present invention as a result of intensive studies in view of the above. That is, the present invention relates to an anion exchange in which an aqueous solution to be treated containing an acid (A) and an acid (B) as an impurity has an anion adsorption selectivity for the acid (A) and the acid (B). A method for purifying an acid (A) aqueous solution by passing it through an ion exchange column filled with a resin (C), wherein the acid (A) aqueous solution (hereinafter simply referred to as “dilute”) has a concentration lower than that of the aqueous solution to be treated. A method for purifying an acid (A) aqueous solution, characterized in that the aqueous solution to be treated is passed through after passing through an acid (A) aqueous solution ”.

上記本発明においては、陰イオン交換樹脂(C)が、OH型塩基性陰イオン交換樹脂であること;希薄な酸(A)水溶液の酸濃度が、30質量%以下である序と;希薄な酸(A)水溶液が、被処理水溶液を希釈したものであること;被処理水溶液が、陰イオン交換樹脂(C)に対して不純物としての酸(B)の吸着が飽和した後に、イオン交換塔から流出した液であること;希薄な酸(A)水溶液が、被処理水溶液を精製処理後にイオン交換塔に純水を通液して流出した酸(A)水溶液であること;希薄な酸(A)水溶液の通液量が、希薄な酸(A)水溶液中の酸の総量がイオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量を下回らない量であること:希薄な酸(A)水溶液の通液量が、希薄な酸(A)水溶液中の酸の総量がイオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量の当量となる量であること;希薄な酸(A)水溶液の通液、および被処理水溶液の通液をアップフローにて行うこと;酸(B)が、硫酸であり、酸(A)が、アルカンスルホン酸であること;酸(A)が、ヒドロキシアルカンスルホン酸、特にイセチオン酸であることが好ましい。  In the present invention, the anion exchange resin (C) is an OH type basic anion exchange resin; the acid concentration of the dilute acid (A) aqueous solution is 30% by mass or less; The aqueous acid (A) solution is a dilution of the aqueous solution to be treated; after the aqueous solution to be treated is saturated with the adsorption of the acid (B) as an impurity on the anion exchange resin (C), the ion exchange column The dilute acid (A) aqueous solution is the acid (A) aqueous solution that flows out by passing pure water through the ion-exchange tower after purifying the aqueous solution to be treated; the dilute acid (A) A) The flow rate of the aqueous solution is such that the total amount of acid in the dilute acid (A) aqueous solution is not less than the total ion exchange group amount of the anion exchange resin (C) in the ion exchange column: The flow rate of the acid (A) aqueous solution is less than the total amount of acid in the dilute acid (A) aqueous solution. The amount is equivalent to the total amount of ion exchange groups of the anion exchange resin (C) in the exchange tower; the dilute aqueous solution of acid (A) and the aqueous solution to be treated are passed by upflow. The acid (B) is sulfuric acid and the acid (A) is alkanesulfonic acid; the acid (A) is preferably hydroxyalkanesulfonic acid, particularly isethionic acid.

また、本発明は、イセチオン酸と不純物として硫酸とを含有する被処理水溶液を、イセチオン酸と硫酸とに対してOH型塩基性陰イオン交換樹脂を充填したイオン交換塔に通液させることによるイセチオン酸水溶液の精製方法であって、上記被処理水溶液の濃度よりも希薄な濃度のイセチオン酸水溶液を通液した後に上記被処理水溶液を通液することを特徴とするイセチオン酸水溶液の精製方法を提供する。  Further, the present invention relates to isethion by passing an aqueous solution containing isethionic acid and sulfuric acid as an impurity through an ion exchange column filled with OH type basic anion exchange resin with respect to isethionic acid and sulfuric acid. A method for purifying an aqueous acid solution, comprising: passing an aqueous solution of isethionic acid having a concentration lower than that of the aqueous solution to be treated; To do.

本発明の効果は、塩素イオンを除去するなどの余分な工程を必要とせず、かつイオン交換体(カラムを含む)の損傷を低減して、イオン交換体を繰り返し使用することができ、イオン交換体の耐用寿命を長くして製造コストを低下させることのできる、酸水溶液の精製方法を提供したことにある。  The effect of the present invention is that it does not require an extra step such as removal of chlorine ions, reduces the damage to the ion exchanger (including the column), and can be used repeatedly. The object of the present invention is to provide a method for purifying an acid aqueous solution that can extend the useful life of the body and reduce the production cost.

本発明において精製の対象となる被処理水溶液、すなわち、酸(B)を不純物として含む酸(A)水溶液は特に限定されるものではなく、被処理水溶液中に不純物として含有されている酸(B)を蒸留などの操作で除去することの難しい酸(A)水溶液であればよく、具体的には、例えば、アルカンスルホン酸やヒドロキシアルカンスルホン酸を主成分とし、さらに硫酸を含有している水溶液を挙げることができる。さらに上記被処理水溶液は、以下に説明する本発明の方法において、陰イオン交換樹脂(C)に対して不純物としての酸(B)の吸着が飽和した後に、イオン交換塔から流出した液であってもよい。  In the present invention, the aqueous solution to be treated to be purified, i.e., the acid (A) aqueous solution containing acid (B) as an impurity is not particularly limited, and the acid (B) contained as an impurity in the aqueous solution to be treated is not limited. ) May be an acid (A) aqueous solution that is difficult to remove by an operation such as distillation. Specifically, for example, an aqueous solution mainly containing alkanesulfonic acid or hydroxyalkanesulfonic acid and further containing sulfuric acid. Can be mentioned. Furthermore, in the method of the present invention described below, the aqueous solution to be treated is a liquid that has flowed out of the ion exchange column after the adsorption of the acid (B) as an impurity to the anion exchange resin (C) is saturated. May be.

上記のアルカンスルホン酸やヒドロキシアルカンスルホン酸水溶液は、その製造方法に起因して微量の硫酸を不純物として含有しているものであり、硫酸は、これらアルカンスルホン酸やヒドロキシアルカンスルホン酸と性質が似ており、蒸留などの操作によって当該水溶液から上記不純物としての硫酸を除去することは困難である。
従って、本発明において被処理水溶液に不純物として含まれる酸(B)としての具体例としては、例えば、硫酸を挙げることができる。
The above-mentioned alkanesulfonic acid and hydroxyalkanesulfonic acid aqueous solution contains a trace amount of sulfuric acid as an impurity due to its production method, and sulfuric acid has similar properties to these alkanesulfonic acid and hydroxyalkanesulfonic acid. It is difficult to remove sulfuric acid as the impurity from the aqueous solution by an operation such as distillation.
Accordingly, specific examples of the acid (B) contained as an impurity in the aqueous solution to be treated in the present invention include sulfuric acid.

本発明は、酸(A)と不純物として酸(B)とを含有する被処理水溶液を、酸(A)と酸(B)とに対して陰イオンの吸着選択性(すなわち、酸(A)と酸(B)とを吸着する能力が異なる)を有する陰イオン交換樹脂(C)を充填したイオン交換塔に通液させることによって、酸(A)水溶液を精製するものである。すなわち、被処理水溶液中の酸(B)の含量を著しく低減した酸(A)水溶液を得んとするものである。  In the present invention, an aqueous solution to be treated containing acid (A) and acid (B) as an impurity is treated with an anion adsorption selectivity for acid (A) and acid (B) (that is, acid (A)). The acid (A) aqueous solution is purified by passing the solution through an ion exchange column packed with an anion exchange resin (C) having a different ability to adsorb the acid (B). That is, an acid (A) aqueous solution in which the content of the acid (B) in the aqueous solution to be treated is remarkably reduced is obtained.

本発明に使用する、陰イオン交換樹脂(C)としては特に限定されるものではなく、酸(A)と酸(B)とに対して陰イオンの吸着選択性を有するものであればどのようなものであっても使用することができるが、塩素イオンを除去する工程を要しないなどの目的からOH型塩基性陰イオン交換樹脂が好ましく、例えば、OH型弱塩基性アニオン交換樹脂などを使用することができる。具体的には、例えば、ロームアンドハース社製のデュオライトA−561(商品名)、三菱化学製のダイヤイオンWA−20(商品名)、および類似の性質の市販のOH型弱塩基性アニオン交換樹脂などを好ましく使用することができる。  The anion exchange resin (C) used in the present invention is not particularly limited, and any anion exchange resin can be used as long as it has anion adsorption selectivity with respect to the acid (A) and the acid (B). OH type basic anion exchange resin is preferred for the purpose of not requiring a step of removing chlorine ions, for example, OH type weak basic anion exchange resin is used. can do. Specifically, for example, Duolite A-561 (trade name) manufactured by Rohm and Haas, Diaion WA-20 (trade name) manufactured by Mitsubishi Chemical Corporation, and a commercially available OH-type weakly basic anion having similar properties An exchange resin or the like can be preferably used.

本発明の精製方法は、イオン交換体(カラムを含む)の損傷を低減して該イオン交換体を繰り返し使用することができ、イオン交換体の耐用寿命を長くして、精製酸(A)水溶液の製造コストを低下させる観点から、上記被処理水溶液を、陰イオン交換樹脂(C)を充填したイオン交換塔に通液させるにあたり、まず希薄な酸(A)水溶液をイオン交換塔に通液した後に被処理水溶液をイオン交換塔に通液するものである。  The purification method of the present invention can reduce the damage to the ion exchanger (including the column) and can repeatedly use the ion exchanger, extend the useful life of the ion exchanger, and provide a purified acid (A) aqueous solution. From the viewpoint of lowering the production cost, first, a dilute acid (A) aqueous solution was passed through the ion exchange column when passing the treated aqueous solution through the ion exchange column filled with the anion exchange resin (C). Later, the aqueous solution to be treated is passed through an ion exchange tower.

希薄な酸(A)水溶液としては、特に限定されないが、例えば、酸(A)濃度として30質量%以下、好ましくは20質量%以下とすることがよい。30質量%を超える濃度の酸(A)水溶液であると、陰イオン交換樹脂、特にOH型塩基性陰イオン交換樹脂が酸(B)と反応して発熱したり膨張するなどの現象を起こし、イオン交換体やカラムの損傷、ひいては装置寿命を短くしてしまう。なお、酸(A)濃度は極端に薄いと産業的な精製効率を低下させるので、好ましくは5質量%以上とするのがよい。  The dilute acid (A) aqueous solution is not particularly limited. For example, the acid (A) concentration is 30% by mass or less, preferably 20% by mass or less. When the acid (A) aqueous solution has a concentration exceeding 30% by mass, an anion exchange resin, in particular, an OH type basic anion exchange resin reacts with the acid (B) to generate heat or expand, Damage to the ion exchanger and column, and thus the equipment life, will be shortened. In addition, since an industrial refinement | purification efficiency will fall when an acid (A) density | concentration is extremely thin, it is good to set it as 5 mass% or more preferably.

希薄な酸(A)水溶液としては、純粋な若しくは高純度の酸(A)水溶液であってもよいが、被処理水溶液を希釈した水溶液であってもよい。さらに希薄な酸(A)水溶液は、後述するように、被処理水溶液を精製処理後にイオン交換塔に純水を通液して流出した酸(A)水溶液であってもよい。
本発明の精製方法は、上記希薄な酸(A)水溶液をイオン交換体に通液した後、被処理水溶液をイオン交換体に通液するものである。
The dilute acid (A) aqueous solution may be a pure or high-purity acid (A) aqueous solution, or may be an aqueous solution obtained by diluting an aqueous solution to be treated. Further, as described later, the dilute acid (A) aqueous solution may be an acid (A) aqueous solution that flows out by passing pure water through an ion exchange column after purification of the aqueous solution to be treated.
In the purification method of the present invention, the dilute acid (A) aqueous solution is passed through an ion exchanger, and then the aqueous solution to be treated is passed through the ion exchanger.

ここで、本発明における酸(A)水溶液の精製の機構について説明する。なお、酸(A)としてヒドロキシアルカンスルホン酸であるイセチオン酸を、酸(B)として硫酸を例にとり、被処理水溶液として微量の硫酸を含有するイセチオン酸水溶液を、そして希薄な酸(A)水溶液として該被処理水溶液の希釈液を例にとって説明するが、本発明はこれらの例に限定されるものではない。  Here, the mechanism of the purification of the acid (A) aqueous solution in the present invention will be described. In this case, isethionic acid which is hydroxyalkanesulfonic acid is used as acid (A), sulfuric acid is used as acid (B), isethionic acid aqueous solution containing a trace amount of sulfuric acid as aqueous solution to be treated, and dilute acid (A) aqueous solution. As an example, the diluted solution of the aqueous solution to be treated will be described, but the present invention is not limited to these examples.

最初に上記希薄なイセチオン酸水溶液を、陰イオンの吸着選択性を有する陰イオン交換樹脂(C)を充填したイオン交換塔に通液すると、硫酸とイセチオン酸では硫酸の方が陰イオン交換樹脂による吸着選択性が高いので、イオン交換塔内の導入口側に近い方の陰イオン交換樹脂のイオン交換基から順に硫酸で置換されていく。硫酸は不純物でありその量は少ないことと、イオン交換塔内での移動速度は硫酸よりイセチオン酸の方が速いので、導入口付近のイオン交換基を除いてそれ以降、イオン交換塔の流出口までのイオン交換基は全てイセチオン酸にて置換される。  When the dilute isethionic acid aqueous solution is first passed through an ion exchange column packed with an anion exchange resin (C) having anion adsorption selectivity, sulfuric acid is more dependent on the anion exchange resin in sulfuric acid and isethionic acid. Since the adsorption selectivity is high, it is substituted with sulfuric acid in order from the ion exchange group of the anion exchange resin closer to the inlet side in the ion exchange column. Since sulfuric acid is an impurity and its amount is small, and isethionic acid is faster in the ion exchange column than sulfuric acid, except for the ion exchange groups near the inlet, the ion exchange column outlet All ion exchange groups up to are substituted with isethionic acid.

この際、希薄な酸(A)水溶液の通液量が、希薄な酸(A)水溶液中の酸(A)の総量がイオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量を下回ると、イオン交換塔の流出口側に未置換のイオン交換基が残存することとなり、後から通液される被処理水溶液中の硫酸との反応によってイオン交換体などが損傷を受けることがあるので、好ましくは、希薄な酸(A)水溶液の通液量を、希薄な酸(A)水溶液中の酸(A)の総量が、イオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量を下回らない量にするのがよい。なお、産業的な精製効率を考慮して許容される範囲内であれば、酸(A)の総量が多少総イオン交換基量を下回っても差し支えなく、このような範囲が上記好ましい範囲に含まれることは言うまでもない。  At this time, the flow rate of the dilute acid (A) aqueous solution is such that the total amount of the acid (A) in the dilute acid (A) aqueous solution is the total ion exchange group amount of the anion exchange resin (C) in the ion exchange column. Below the ion exchange tower, an unsubstituted ion exchange group remains on the outlet side of the ion exchange tower, and the ion exchanger and the like may be damaged by the reaction with sulfuric acid in the aqueous solution to be treated later. Therefore, preferably, the flow rate of the dilute acid (A) aqueous solution is set so that the total amount of the acid (A) in the dilute acid (A) aqueous solution is the total amount of the anion exchange resin (C) in the ion exchange tower. The amount should not be less than the amount of ion exchange groups. It should be noted that the total amount of acid (A) may be slightly less than the total amount of ion exchange groups within the allowable range in consideration of industrial purification efficiency, and such a range is included in the above preferable range. Needless to say.

また、希薄なイセチオン酸水溶液を大量に通液して希薄なイセチオン酸水溶液中のイセチオン酸の総量が、イオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量を超えると、希薄なイセチオン酸水溶液がそのままイオン交換塔外に流出されてイセチオン酸水溶液の工業的な精製効率を低下させ、また、不純物として含有される硫酸によって置換されるイオン交換樹脂の量も増加するので、より好ましくは、希薄な酸(A)水溶液の通液量を、希薄な酸(A)水溶液中の酸の総量が、イオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量に対して当量となる量にするのがよい。なお、イセチオン酸の産業的な精製効率を考慮して許容される範囲内であれば、上記イセチオン酸が多少当量を超えても差し支えなく、このような範囲が上記好ましい範囲に含まれることは言うまでもない。  Further, when a large amount of dilute isethionic acid aqueous solution is passed through and the total amount of isethionic acid in the dilute isethionic acid aqueous solution exceeds the total ion exchange group amount of the anion exchange resin (C) in the ion exchange tower, As the isethionic acid aqueous solution flows out of the ion exchange tower as it is, the industrial purification efficiency of the isethionic acid aqueous solution is lowered, and the amount of ion exchange resin substituted by sulfuric acid contained as an impurity also increases. Preferably, the flow rate of the dilute acid (A) aqueous solution is such that the total amount of the acid in the dilute acid (A) aqueous solution is relative to the total ion exchange group amount of the anion exchange resin (C) in the ion exchange column. It is better to make it an equivalent amount. It should be noted that the isethionic acid may be slightly over the equivalent as long as it is within the allowable range in consideration of the industrial purification efficiency of isethionic acid, and it goes without saying that such a range is included in the preferred range. Yes.

このように希薄なイセチオン酸水溶液を通液することにより、陰イオン交換樹脂は一旦イセチオン酸によって置換されるので、その後に被処理水溶液を通液しても陰イオン交換樹脂などが損傷を受けることは殆どないものである。  By passing the dilute isethionic acid aqueous solution in this way, the anion exchange resin is once replaced by isethionic acid, so that the anion exchange resin is damaged even if the aqueous solution to be treated is subsequently passed. Is almost nonexistent.

次に、この状態のイオン交換塔に被処理水溶液としての硫酸を含むイセチオン酸水溶液を通液する。なお、被処理水溶液のイセチオン酸の濃度は、上記の通り既に陰イオン交換樹脂は一旦イセチオン酸によって置換されているので、特に限定されるものではなく、希薄なイセチオン酸水溶液でも高濃度イセチオン酸水溶液でもよいが、産業的な精製効率の観点から高濃度イセチオン酸水溶液を用いることが好ましく、具体的には、30質量%を超える濃度であることが好ましく、より好ましくは40質量%以上がよい。被処理水溶液のイセチオン酸濃度の上限は特にないが、極端に高濃度であると産業的な精製効率を低下させるので、好ましくは60質量%以下がよい。  Next, an isethionic acid aqueous solution containing sulfuric acid as an aqueous solution to be treated is passed through the ion exchange tower in this state. The concentration of isethionic acid in the aqueous solution to be treated is not particularly limited because the anion exchange resin has already been replaced with isethionic acid as described above, and a dilute isethionic acid aqueous solution or a high-concentration isethionic acid aqueous solution is not particularly limited. However, it is preferable to use a high-concentration isethionic acid aqueous solution from the viewpoint of industrial purification efficiency. Specifically, the concentration is preferably more than 30% by mass, and more preferably 40% by mass or more. The upper limit of the isethionic acid concentration of the aqueous solution to be treated is not particularly limited, but if it is extremely high, industrial purification efficiency is lowered, so 60% by mass or less is preferable.

被処理水溶液としてのイセチオン酸水溶液をイオン交換塔に通液すると、移動速度の速いイセチオン酸がイオン交換塔の流出口に先に到達する(この時点は、例えば、流出液のpHを測定してpH3以下になることを確認するなどして知ることができる)ので、ここから流出液を採取すれば硫酸含量の極めて少ない精製イセチオン酸水溶液を得ることができる。  When the isethionic acid aqueous solution as the aqueous solution to be treated is passed through the ion exchange tower, the isethionic acid having a high moving speed reaches the outlet of the ion exchange tower first (at this time, for example, by measuring the pH of the effluent. Therefore, it is possible to obtain a purified isethionic acid aqueous solution having a very low sulfuric acid content by collecting the effluent.

イオン交換樹脂のイオン交換基は、被処理水溶液である硫酸を含有するイセチオン酸水溶液を通液していくに従って、イオン交換塔の導入口側から流出口側に向けて順次、イオン交換樹脂に吸着されているイセチオン酸が硫酸により置換されていくので、全てのイオン交換基が硫酸に置換された時点でイセチオン酸水溶液の採取を停止すればよい。なお、この時点は、随時採取液を分析して硫酸濃度を分析すれば知ることができ、条件を整えて再現性を担保すれば予備実験することにより、被処理水溶液中の硫酸濃度を分析し、被処理水溶液の通液量をカウントすることにより、採取停止時点を知ることもできる。
採取を停止したイオン交換樹脂は、公知の方法で、例えば、水酸化ナトリウム水溶液を通液するなどして再生して上記操作を繰り返し行うことができる。
なお、本発明の精製方法において、イオン交換塔への被処理水溶液の通液は、イオン交換体などの損傷をより低減する観点から、アップフロー(上向流)で行うことが好ましい。
The ion exchange groups of the ion exchange resin are sequentially adsorbed on the ion exchange resin from the inlet side to the outlet side of the ion exchange tower as the solution of isethionic acid containing sulfuric acid, which is the aqueous solution to be treated, is passed. Since the isethionic acid is replaced by sulfuric acid, the collection of the isethionic acid aqueous solution may be stopped when all the ion exchange groups are replaced by sulfuric acid. This time can be determined by analyzing the collected liquid at any time and analyzing the sulfuric acid concentration, and analyzing the sulfuric acid concentration in the aqueous solution to be treated by conducting preliminary experiments if conditions are maintained and reproducibility is ensured. The sampling stop time can also be known by counting the flow rate of the aqueous solution to be treated.
The ion exchange resin whose collection has been stopped can be regenerated by a known method, for example, by passing an aqueous sodium hydroxide solution, and the above operation can be repeated.
In the purification method of the present invention, the flow of the aqueous solution to be treated to the ion exchange tower is preferably performed by upflow (upward flow) from the viewpoint of further reducing damage to the ion exchanger and the like.

以下に本発明の実施例を挙げて本発明をさらに説明するが本発明はこれらに限定されるものではない。
[実施例1]
容積31.4L(内径20cm、高さ1m)の塩化ビニル樹脂製の塔にOH型弱塩基性陰イオン交換樹脂(ロームアンドハース製、商品名:デュオライトA−561)を25.5L仕込み、イオン交換塔を構成した。被処理水溶液としてイセチオン酸濃度46質量%、硫酸濃度1.6質量%の水溶液を用意し、この被処理水溶液を純水で2倍に希釈した水溶液を希釈イセチオン酸水溶液とした。
The present invention will be further described below with reference to examples of the present invention, but the present invention is not limited thereto.
[Example 1]
25.5L of OH-type weakly basic anion exchange resin (Rohm and Haas, trade name: Duolite A-561) is charged in a vinyl chloride resin tower having a volume of 31.4L (inner diameter 20 cm, height 1 m). An ion exchange tower was constructed. An aqueous solution having an isethionic acid concentration of 46% by mass and a sulfuric acid concentration of 1.6% by mass was prepared as an aqueous solution to be treated, and an aqueous solution obtained by diluting the aqueous solution to be treated with pure water twice was used as a diluted isethionic acid aqueous solution.

上記希釈イセチオン酸水溶液24.5Lを上記イオン交換塔にアップフローで通液(11L/hr)し、次いで上記被処理水溶液をアップフローで通液(16L/hr)した。塔からの流出液のpHを測定し、pH3未満となったところで流出液を採取し、分析したところイセチオン酸濃度が44質量%で、硫酸濃度が0.0034質量%である精製(高純度)イセチオン酸水溶液を80kg得た。  24.5 L of the diluted isethionic acid aqueous solution was passed through the ion exchange tower by upflow (11 L / hr), and then the aqueous solution to be treated was passed through by upflow (16 L / hr). The pH of the effluent from the tower was measured, and the effluent was collected when the pH was less than 3, and analyzed to find that the isethionic acid concentration was 44% by mass and the sulfuric acid concentration was 0.0034% by mass (high purity). 80 kg of isethionic acid aqueous solution was obtained.

その後、ダウンフロー(下向流)で純水を通液してイオン交換塔内のイセチオン酸水溶液の残液を洗い流した。次いで、1.5N水酸化ナトリウム水溶液をダウンフローで通液(60L/hr)して、イオン交換樹脂のイオン交換基をOH型に戻し、ダウンフローで流出液が中性になるまで純水を通液(60L/hr)してイオン交換樹脂を再生した。  Thereafter, pure water was passed through the downflow (downward flow) to wash away the remaining solution of the isethionic acid aqueous solution in the ion exchange tower. Next, 1.5N sodium hydroxide aqueous solution was passed through the down flow (60 L / hr) to return the ion exchange groups of the ion exchange resin to OH type, and purified water was added until the effluent became neutral by the down flow. The ion exchange resin was regenerated by passing liquid (60 L / hr).

その後、上記の操作を同様に繰り返し、不純物である硫酸濃度が極めて低い高純度のイセチオン酸水溶液の製造を続けたところ、75バッチ目でもイセチオン酸濃度および硫酸濃度は殆ど変化が無く、高純度イセチオン酸水溶液も75kg得られ、イオン交換樹脂の損傷による高純度イセチオン酸水溶液の回収率の低下は10%未満であった。  Thereafter, the above operation was repeated in the same manner, and the production of a high-purity isethionic acid aqueous solution having a very low concentration of sulfuric acid as an impurity was continued. As a result, even in the 75th batch, the isethionic acid concentration and the sulfuric acid concentration remained almost unchanged. 75 kg of an acid aqueous solution was also obtained, and the reduction in the recovery rate of the high purity isethionic acid aqueous solution due to the damage of the ion exchange resin was less than 10%.

[実施例2]
実施例1と同様にして80kgの精製イセチオン酸水溶液(a)を得た後、さらに上記被処理水溶液をイオン交換塔に通液したところ、被処理水溶液を合計で144L通液した時点で、流出液の組成が通液前の被処理水溶液と同じ組成になることが確認され、この間にイセチオン酸濃度46質量%で硫酸濃度0.95質量%のイセチオン酸水溶液(b)78kgが得られた。その後、純水18Lをダウンフローでイオン交換塔に通液(16L/hr)したところ、イセチオン酸濃度46質量%で硫酸濃度1.6質量%のイセチオン酸水溶液(c)22kgが得られ、さらに純水25Lをダウンフローで通液(16L/hr)したところ、イセチオン酸濃度25質量%で硫酸濃度0.8質量%の希薄なイセチオン酸水溶液(d)28kgを得た。
[Example 2]
After obtaining 80 kg of purified isethionic acid aqueous solution (a) in the same manner as in Example 1, the above aqueous solution to be treated was further passed through an ion exchange tower. It was confirmed that the composition of the liquid was the same as that of the aqueous solution to be treated before passing through, and 78 kg of isethionic acid aqueous solution (b) having an isethionic acid concentration of 46% by mass and a sulfuric acid concentration of 0.95% by mass was obtained. Thereafter, 18 L of pure water was passed through the ion exchange tower by downflow (16 L / hr), whereby an isethionic acid aqueous solution (c) 22 kg having an isethionic acid concentration of 46% by mass and a sulfuric acid concentration of 1.6% by mass was obtained. When 25 L of pure water was passed through the down flow (16 L / hr), 28 kg of a diluted isethionic acid aqueous solution (d) having an isethionic acid concentration of 25 mass% and a sulfuric acid concentration of 0.8 mass% was obtained.

ここまでの操作においてイオン交換塔に通液した全イセチオン酸量と上記(a)〜(d)に含まれるイセチオン酸量からイセチオン酸の回収率を算出したところ99質量%であった。その後1.5N水酸化ナトリウム水溶液をダウンフローでイオン交換塔に通液(60L/hr)してイオン交換樹脂のイオン交換基をOH型に戻し、ダウンフローで流出液が中性になるまで純水を通液(60L/hr)してイオン交換樹脂を再生した。  When the recovery rate of isethionic acid was calculated from the total amount of isethionic acid passed through the ion exchange tower in the above operation and the amount of isethionic acid contained in the above (a) to (d), it was 99% by mass. Then, 1.5N sodium hydroxide aqueous solution was passed through the ion exchange tower by downflow (60 L / hr) to return the ion exchange group of the ion exchange resin to the OH type, and purified by downflow until the effluent became neutral. The ion exchange resin was regenerated by passing water (60 L / hr).

続いて、2回目の操作として、上記操作で得られた(b)〜(d)および上記被処理水溶液を用い、(d)、(b)、(c)および被処理水溶液の順序でイオン交換塔に通液して上記と同様の操作を行なったところ、イセチオン酸濃度が45質量%で硫酸濃度が0.020質量%のイセチオン酸水溶液(e)100kg、イセチオン酸濃度が46質量%で硫酸濃度が0.95質量%のイセチオン酸水溶液(f)78kgが得られ、さらに純水をイオン交換塔に通液してイセチオン酸濃度が46質量%で硫酸濃度が1.6質量%のイセチオン酸水溶液(g)22kgと、イセチオン酸濃度が23質量%で硫酸濃度が0.810質量%の希薄なイセチオン酸水溶液(h)28kgを得た。また、イセチオン酸の回収率は99質量%であった。  Subsequently, as the second operation, (b) to (d) obtained in the above operation and the aqueous solution to be treated were used, and ion exchange was performed in the order of (d), (b), (c) and the aqueous solution to be treated. The liquid was passed through the column and the same operation as described above was carried out. As a result, 100 kg of an isethionic acid aqueous solution (e) having an isethionic acid concentration of 45 mass% and a sulfuric acid concentration of 0.020 mass%, and an isethionic acid concentration of 46 mass% 78 kg of isethionic acid aqueous solution (f) having a concentration of 0.95% by mass is obtained, and pure water is further passed through an ion exchange column to obtain 46% by mass of isethionic acid and 1.6% by mass of sulfuric acid. 22 kg of an aqueous solution (g) and 28 kg of a dilute isethionic acid aqueous solution (h) having an isethionic acid concentration of 23% by mass and a sulfuric acid concentration of 0.810% by mass were obtained. The recovery of isethionic acid was 99% by mass.

その後、上記と同様にイオン交換樹脂の再生を行なった後、2回目と同様の操作を10回繰り返したところ、2回目と同様にイセチオン水溶液(e)〜(h)が得られ、また、イセチオン酸回収率は全て99質量%であった。  Thereafter, after the ion exchange resin was regenerated in the same manner as described above, the same operation as the second time was repeated 10 times to obtain isethion aqueous solutions (e) to (h) as in the second time. The acid recovery rate was 99% by mass.

〔比較例1〕
希薄なイセチオン酸の通液を行わずに、最初から被処理水溶液を通液した他は実施例1と同様に行ったところ、イオン交換樹脂の発熱と膨張によりイオン交換塔に亀裂を生じ、被処理水溶液の精製処理を行うことができなかった。
[Comparative Example 1]
The same procedure as in Example 1 was conducted except that the dilute isethionic acid was not passed through, but the aqueous solution to be treated was passed through from the beginning. The treatment aqueous solution could not be purified.

本発明によれば、塩素イオンを除去するなどの余分な工程を必要とせず、かつイオン交換体(カラムを含む)の損傷を低減して、イオン交換体を繰り返し使用することができ、イオン交換体の耐用寿命を長くして製造コストを低下させることのできる、酸水溶液の精製方法を提供することができる。  According to the present invention, the ion exchanger can be used repeatedly without requiring an extra step such as removing chlorine ions and reducing damage to the ion exchanger (including the column). It is possible to provide a method for purifying an aqueous acid solution that can extend the useful life of the body and reduce the production cost.

Claims (14)

酸(A)と不純物として酸(B)とを含有する被処理水溶液を、酸(A)と酸(B)とに対して陰イオンの吸着選択性を有する陰イオン交換樹脂(C)を充填したイオン交換塔に通液させることによる酸(A)水溶液の精製方法であって、上記被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液を通液した後に、上記被処理水溶液を通液することを特徴とする酸(A)水溶液の精製方法。An aqueous solution to be treated containing acid (A) and acid (B) as an impurity is filled with an anion exchange resin (C) having anion adsorption selectivity for acid (A) and acid (B). A method for purifying an acid (A) aqueous solution by passing the solution through an ion exchange tower, wherein after passing an acid (A) aqueous solution having a concentration lower than that of the aqueous solution to be treated, the aqueous solution to be treated is passed through. A method for purifying an acid (A) aqueous solution characterized by passing the solution. 陰イオン交換樹脂(C)が、OH型塩基性陰イオン交換樹脂である請求項1に記載の酸(A)水溶液の精製方法。The method for purifying an acid (A) aqueous solution according to claim 1, wherein the anion exchange resin (C) is an OH type basic anion exchange resin. 被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液の酸濃度が、30質量%以下である請求項1または2に記載の酸(A)水溶液の精製方法。The method for purifying an acid (A) aqueous solution according to claim 1 or 2, wherein the acid concentration of the acid (A) aqueous solution having a concentration lower than that of the aqueous solution to be treated is 30% by mass or less. 被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液が、被処理水溶液を希釈したものである請求項1〜3の何れか1項に記載の酸(A)水溶液の精製方法。The method for purifying an acid (A) aqueous solution according to any one of claims 1 to 3, wherein the acid (A) aqueous solution having a concentration lower than that of the aqueous solution to be treated is obtained by diluting the aqueous solution to be treated. 被処理水溶液が、陰イオン交換樹脂(C)に対して不純物としての酸(B)の吸着が飽和した後に、イオン交換塔から流出した液である請求項1〜3の何れか1項に記載の酸(A)水溶液の精製方法。The aqueous solution to be treated is a liquid that has flowed out of the ion exchange column after the adsorption of the acid (B) as an impurity is saturated with respect to the anion exchange resin (C). A method for purifying an acid (A) aqueous solution. 被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液が、被処理水溶液を精製処理後にイオン交換塔に純水を通液して流出した酸(A)水溶液である請求項1〜3の何れか1項に記載の酸(A)水溶液の精製方法。The acid (A) aqueous solution having a concentration less dilute than the concentration of the aqueous solution to be treated is an acid (A) aqueous solution that flows out by passing pure water through the ion exchange column after the purification of the aqueous solution to be treated. The method for purifying an acid (A) aqueous solution according to any one of the above. 被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液の通液量が、希薄な酸(A)水溶液中の酸の総量がイオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量を下回らない量である請求項1〜4の何れか1項に記載の酸(A)水溶液の精製方法。The flow rate of the acid (A) aqueous solution having a concentration lower than that of the aqueous solution to be treated is such that the total amount of acid in the dilute acid (A) aqueous solution is the total ion of the anion exchange resin (C) in the ion exchange column. The method for purifying an acid (A) aqueous solution according to any one of claims 1 to 4, wherein the amount is not less than the amount of exchange groups. 被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液の通液量が、希薄な酸(A)水溶液中の酸の総量がイオン交換塔内の陰イオン交換樹脂(C)の総イオン交換基量の当量となる量である請求項1〜4の何れか1項に記載の酸(A)水溶液の精製方法。The flow rate of the acid (A) aqueous solution having a concentration lower than that of the aqueous solution to be treated is such that the total amount of acid in the dilute acid (A) aqueous solution is the total ion of the anion exchange resin (C) in the ion exchange column. The method for purifying an acid (A) aqueous solution according to any one of claims 1 to 4, wherein the amount is equivalent to an exchange group amount. 被処理水溶液の濃度よりも希薄な濃度の酸(A)水溶液の通液、および被処理水溶液の通液をアップフローにて行う請求項1〜8の何れか1項に記載の酸(A)水溶液の精製方法。The acid (A) according to any one of claims 1 to 8, wherein the acid (A) aqueous solution having a concentration lower than that of the aqueous solution to be treated is passed and the aqueous solution to be treated is passed by upflow. Purification method of aqueous solution. 酸(B)が、硫酸である請求項1〜9の何れか1項に記載の酸(A)水溶液の精製方法。The method for purifying an acid (A) aqueous solution according to any one of claims 1 to 9, wherein the acid (B) is sulfuric acid. 酸(A)が、アルカンスルホン酸である請求項1〜10の何れか1項に記載の酸(A)水溶液の精製方法。The method for purifying an acid (A) aqueous solution according to any one of claims 1 to 10, wherein the acid (A) is an alkanesulfonic acid. 酸(A)が、ヒドロキシアルカンスルホン酸である請求項1〜10の何れか1項に記載の酸(A)水溶液の精製方法。The method for purifying an acid (A) aqueous solution according to any one of claims 1 to 10, wherein the acid (A) is hydroxyalkanesulfonic acid. 酸(A)が、イセチオン酸である請求項12に記載の酸(A)水溶液の精製方法。The method for purifying an acid (A) aqueous solution according to claim 12, wherein the acid (A) is isethionic acid. イセチオン酸と不純物として硫酸とを含有する被処理水溶液を、イセチオン酸と硫酸とに対してOH型塩基性陰イオン交換樹脂を充填したイオン交換塔に通液させることによるイセチオン酸水溶液の精製方法であって、上記被処理水溶液の濃度よりも希薄な濃度のイセチオン酸水溶液を通液した後に上記被処理水溶液を通液することを特徴とするイセチオン酸水溶液の精製方法。In the purification method of an aqueous solution of isethionic acid, an aqueous solution containing isethionic acid and sulfuric acid as an impurity is passed through an ion exchange column packed with OH type basic anion exchange resin with respect to isethionic acid and sulfuric acid. A method for purifying an aqueous solution of isethionic acid, comprising passing an aqueous solution of isethionic acid having a concentration lower than that of the aqueous solution to be treated, and then passing the aqueous solution to be treated.
JP2006519501A 2004-04-22 2005-04-21 Purification method of acid aqueous solution Active JP4758894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006519501A JP4758894B2 (en) 2004-04-22 2005-04-21 Purification method of acid aqueous solution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004126828 2004-04-22
JP2004126828 2004-04-22
JP2006519501A JP4758894B2 (en) 2004-04-22 2005-04-21 Purification method of acid aqueous solution
PCT/JP2005/007612 WO2005102993A1 (en) 2004-04-22 2005-04-21 Process for purification of aqueous acid solutions

Publications (2)

Publication Number Publication Date
JPWO2005102993A1 true JPWO2005102993A1 (en) 2007-08-16
JP4758894B2 JP4758894B2 (en) 2011-08-31

Family

ID=35196903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006519501A Active JP4758894B2 (en) 2004-04-22 2005-04-21 Purification method of acid aqueous solution

Country Status (3)

Country Link
JP (1) JP4758894B2 (en)
CN (1) CN100577641C (en)
WO (1) WO2005102993A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399342B (en) * 2007-04-25 2013-06-21 Tokuyama Corp Process for the preparation of waste liquid containing tetraalkylammonium ion
JP5672333B2 (en) * 2013-04-25 2015-02-18 栗田工業株式会社 Operation method of regenerative ion exchanger
KR102203041B1 (en) * 2014-06-10 2021-01-13 쿠리타 고교 가부시키가이샤 Operating method for regeneration type ion exchange device
TWI648224B (en) * 2014-06-13 2019-01-21 日商栗田工業股份有限公司 Operation method of regenerative ion exchange device
JP6421021B2 (en) * 2014-11-25 2018-11-07 オルガノ株式会社 Method and apparatus for purification of high concentration sulfate solution
CN110776419B (en) * 2019-11-14 2020-07-28 郑州工程技术学院 Green and clean production process for preparing dibutyl phthalate
CN113045459B (en) * 2021-03-31 2022-08-09 潜江永安药业股份有限公司 Method for removing sulfate radical in isethionate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041571A1 (en) * 1990-12-22 1992-06-25 Basf Ag METHOD FOR RELEASING ORGANIC SULPHONIC ACIDS
JPH06184088A (en) * 1992-12-22 1994-07-05 Mitsui Toatsu Chem Inc Method for purifying taurine by ion exchange resin
JP3981430B2 (en) * 1997-01-20 2007-09-26 株式会社Adeka Process for producing pure alkanesulfonic acid
FR2796941B1 (en) * 1999-07-27 2001-09-14 Atofina PURIFICATION OF ALKANESULFONIC ACIDS

Also Published As

Publication number Publication date
JP4758894B2 (en) 2011-08-31
CN100577641C (en) 2010-01-06
CN1805925A (en) 2006-07-19
WO2005102993A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
JP4758894B2 (en) Purification method of acid aqueous solution
JP5096907B2 (en) Ester purification method
CN103080070B (en) Process for producing tetraalkylammonium salt, and process for producing tetraalkylammonium hydroxide using same as raw material
CN110436482A (en) A kind of method of high potassium/sodium in removal ammonium chloride mother liquor
CN101804969A (en) Low-carbon environment friendly production method for extra high-purity H2O2
JP2020001955A (en) Method for producing refined chloride
JP2010229017A (en) Method for producing high-purity ammonium paratungstate
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
JP3171058B2 (en) Hydrogen peroxide water purification method
CN108349741B (en) Method for producing purified silicic acid aqueous solution
JP5808221B2 (en) Method for producing tetraalkylammonium salt solution
JP3724247B2 (en) Method for purifying hydrogen peroxide water
JPH08232026A (en) Method for refining scandium
CN108017504A (en) The method of purification of n-hexane
JP4124071B2 (en) Purification method of nickel chloride aqueous solution
CN1312101C (en) Acetic acid refining method for improving acetic acid potassium permanganate test time
JP5369440B2 (en) Method for producing high-purity alkali metal carbonate aqueous solution and continuous production method for high-purity alkali metal carbonate aqueous solution
CN109173340A (en) A method of the adsorbing and removing chlorine from strongly acidic solution
JP7194934B2 (en) Method for recovering silver in copper electrolyte
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution
JPH0848507A (en) Method of refining concentrated phoshoric acid
JP2009167050A (en) Method for producing high purity alkali metal carbonate aqueous solution
JP4773313B2 (en) Method for producing ferrous chloride liquid
CN110078035B (en) Method for removing sulfur in yellow phosphorus
JP4436183B2 (en) Iodine ion removal process and electrolysis process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3