JP2008098329A - Vacuum capacitor - Google Patents

Vacuum capacitor Download PDF

Info

Publication number
JP2008098329A
JP2008098329A JP2006277146A JP2006277146A JP2008098329A JP 2008098329 A JP2008098329 A JP 2008098329A JP 2006277146 A JP2006277146 A JP 2006277146A JP 2006277146 A JP2006277146 A JP 2006277146A JP 2008098329 A JP2008098329 A JP 2008098329A
Authority
JP
Japan
Prior art keywords
vacuum
movable rod
movable
electrode
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006277146A
Other languages
Japanese (ja)
Other versions
JP4894446B2 (en
Inventor
Eiichi Takahashi
栄一 高橋
Toshimasa Fukai
利眞 深井
Toru Tanimizu
徹 谷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006277146A priority Critical patent/JP4894446B2/en
Publication of JP2008098329A publication Critical patent/JP2008098329A/en
Application granted granted Critical
Publication of JP4894446B2 publication Critical patent/JP4894446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correctly set capacitance between a fixed electrode and a movable electrode to an arbitrary value, to perform desired impedance adjustment, and to miniaturize a vacuum capacitor. <P>SOLUTION: The capacitance between the fixed electrode 4 and movable electrode 5 is changed by moving a movable rod 6 extending from the movable electrode 5 of the vacuum capacitor by means of an ultrasonic motor 10. The ultrasonic motor 10 comprises: a piezoelectric ceramics member 10d that electrically oscillates by the application of a high frequency voltage; an elastic lamination member 10e that is laminated on the piezoelectric ceramics member 10d, and bends according to the oscillation of the piezoelectric ceramics member 10d; a rotor member 10g that is pressure-welded to the elastic lamination member 10e and rotates according to the bending of the elastic lamination member 10e; and an output axis 10a that rotates together with the rotor member 10g and is coupled with the movable rod 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、真空コンデンサであって、例えば半導体設備の高周波電源、大電力発信回路等の高周波機器におけるインピーダンス調整に使用される真空コンデンサに関するものである。   The present invention relates to a vacuum capacitor, for example, a vacuum capacitor used for impedance adjustment in a high-frequency device such as a high-frequency power source of a semiconductor facility or a high-power transmission circuit.

従来から、一般的な半導体設備の高周波電源や大電力発信回路等の高周波機器において、インピーダンス調整のために種々の真空コンデンサ(例えば、特許文献1)が用いられてきた。
特開平7―78729号公報 図3は、一般的な真空コンデンサ(可変形真空コンデンサ)の一例を示す概略説明図である。図3において、符号1は高耐力真空誘電体を充填するための真空容器を示すものであり、例えば少なくとも一部が絶縁性を有する筒状体2aの両端側に対し金属性(例えば、銅製)のフランジ2b,2cが設けられた真空容器本体2と、その真空容器本体2の両端側を封止(閉塞)するように設けられ外部端子としての機能を兼ねた金属性の端板3a,3b(以下、後述の固定電極側のものを固定導体、他方のものを封止端板と称する)と、から構成される。
Conventionally, various vacuum capacitors (for example, Patent Document 1) have been used for impedance adjustment in a high-frequency device such as a high-frequency power source of a general semiconductor facility or a large power transmission circuit.
FIG. 3 is a schematic explanatory view showing an example of a general vacuum capacitor (variable vacuum capacitor). In FIG. 3, reference numeral 1 denotes a vacuum container for filling a high-strength vacuum dielectric material. The vacuum vessel main body 2 provided with the flanges 2b and 2c, and the metal end plates 3a and 3b provided so as to seal (close) both ends of the vacuum vessel main body 2 and also function as external terminals (Hereinafter, the fixed electrode side described later is referred to as a fixed conductor and the other is referred to as a sealed end plate).

符号4は、内径が異なる複数の略円筒状の電極部材を同心円状に一定間隔を隔てて構成され、前記固定導体3aの真空容器1内側に設けられた固定電極を示すものである。符号5は、前記の固定電極4と同様に内径が異なる複数の略円筒状の電極部材を同心円状に一定間隔を隔てて構成され、それら各電極部材が固定電極4と非接触状態で該固定電極4に挿出入(固定電極4の各電極部材間に挿出入して互いに交叉)できるように真空容器1内側に設けられた可動電極を示すものである。この可動電極5は、前記真空容器1の軸方向に可動(固定電極4に対する挿出入の程度を調整できるように可動)する導体(以下、可動導体と称する)5aに対して設けられる。   Reference numeral 4 denotes a fixed electrode formed by concentrically arranging a plurality of substantially cylindrical electrode members having different inner diameters at regular intervals and provided inside the vacuum vessel 1 of the fixed conductor 3a. Reference numeral 5 denotes a configuration in which a plurality of substantially cylindrical electrode members having different inner diameters are concentrically spaced apart from each other in the same manner as the fixed electrode 4 and the electrode members are fixed to the fixed electrode 4 in a non-contact state. The movable electrode provided inside the vacuum vessel 1 is shown so that it can be inserted into and removed from the electrode 4 (inserted between the electrode members of the fixed electrode 4 and crossed over each other). The movable electrode 5 is provided on a conductor (hereinafter referred to as a movable conductor) 5 a that is movable in the axial direction of the vacuum vessel 1 (movable so that the degree of insertion / removal with respect to the fixed electrode 4 can be adjusted).

符号6は、前記可動導体5aの背面側(固定電極4が設けられていない面側)から真空容器1の軸方向に延設(図中では真空容器1の封止端板3b側を突出するように延設)された可動ロッド(図中では中空形状の可動ロッド)を示すものであり、例えば真空容器1に設けられた(図中では封止端板3bの略中央部に固設された)軸受部材6aを介して、摺動自在(可動ロッド6の側面が軸受部材6aを摺動自在(真空容器1の軸方向に摺動自在))に支持される。   Reference numeral 6 extends in the axial direction of the vacuum vessel 1 from the back side of the movable conductor 5a (the side where the fixed electrode 4 is not provided) (in the figure, protrudes from the sealed end plate 3b side of the vacuum vessel 1). The movable rod extended in this manner (in the figure, a hollow movable rod) is shown, for example, provided in the vacuum vessel 1 (in the figure, fixed at a substantially central portion of the sealing end plate 3b). The bearing member 6a is slidably supported (the side surface of the movable rod 6 is slidable on the bearing member 6a (slidable in the axial direction of the vacuum vessel 1)).

符号7は、前記可動ロッド6を真空容器1の軸方向に移動させ、真空コンデンサにおける静電容量を調整して絶縁操作するためのロッド(以下、絶縁操作ロッドと称する)を示すものであり、その一端側(図中では雄螺子部7bが形成された側)は前記可動ロッドの一端側に螺合(図中では可動ロッドの一端側内壁に形成された雌螺子部6bに螺合)され、他端側(図中では頭部7aが形成された側)は真空コンデンサの駆動源(モータ等)が接合される。また、前記の絶縁操作ロッド7は、例えば真空容器1に設けられた(図中では封止端板3bを突出する軸受部材6aを覆うように固設された)支持体(図中では螺子受け部8aと回転トルクを低減するためのスラストベアリング8bとから成る支持体)8により回動自在に支持される。   Reference numeral 7 indicates a rod for moving the movable rod 6 in the axial direction of the vacuum vessel 1 and adjusting the electrostatic capacity of the vacuum capacitor for insulation operation (hereinafter referred to as an insulation operation rod). One end side (the side where the male screw portion 7b is formed in the drawing) is screwed to one end side of the movable rod (in the drawing, screwed to the female screw portion 6b formed on the inner wall on the one end side of the movable rod). The other end side (the side where the head portion 7a is formed in the figure) is joined with a driving source (such as a motor) of a vacuum capacitor. The insulating operating rod 7 is provided in, for example, the vacuum vessel 1 (fixed so as to cover the bearing member 6a protruding from the sealed end plate 3b in the drawing) (screw receiving in the drawing). (Supporting body comprising a portion 8a and a thrust bearing 8b for reducing the rotational torque).

符号9は軟質金属製のベローズであり、真空容器1内を気密に保持しながら可動電極5,可動導体5a,可動ロッド6が真空容器1の軸方向へ移動できるように構成され、その一端側の縁は封止端板3bの内壁側および軸受部材6aに接合され、他端側の縁は可動導体5aに接合される。なお、前記のベローズ9においては種々の形状のものが知られており、例えばベローズ9の他端側の縁を可動ロッド6の表面に接合する構造や、該ベローズ9自体を二重にした構造(例えば、ステンレス製ベローズと銅製ベローズとを組み合わせた構造)のものもある。   Reference numeral 9 denotes a soft metal bellows, which is configured such that the movable electrode 5, the movable conductor 5 a, and the movable rod 6 can move in the axial direction of the vacuum vessel 1 while keeping the inside of the vacuum vessel 1 airtight. Is joined to the inner wall side of the sealing end plate 3b and the bearing member 6a, and the other edge is joined to the movable conductor 5a. Various types of bellows 9 are known. For example, a structure in which the edge of the other end of the bellows 9 is joined to the surface of the movable rod 6, or a structure in which the bellows 9 itself is doubled. There are also (for example, a structure in which a stainless bellows and a copper bellows are combined).

以上示したように構成された真空コンデンサにおいて、モータ等の駆動源により絶縁操作ロッド7を回動することにより、その回動に伴って可動ロッド6が真空容器1の軸方向へ移動し、固定電極4と可動電極5との交叉面積が変化する。これにより、両電極4,5にそれぞれ異なる極性の電圧が印加された際には、該両電極4,5間に生じる静電容量の値が連続的に加減され、インピーダンス調整が行われるものとされている。このような真空コンデンサを用いた場合の高周波機器に対する高周波電流に関しては、固定導体3aからベローズ9および対向電極間(固定電極4と可動電極5との間)の静電容量を介し、封止端板より流れる。   In the vacuum capacitor configured as described above, when the insulating operation rod 7 is rotated by a driving source such as a motor, the movable rod 6 moves in the axial direction of the vacuum vessel 1 along with the rotation, and is fixed. The cross area of the electrode 4 and the movable electrode 5 changes. As a result, when voltages having different polarities are applied to the electrodes 4 and 5, the value of the capacitance generated between the electrodes 4 and 5 is continuously adjusted, and impedance adjustment is performed. Has been. With respect to the high-frequency current for the high-frequency device in the case of using such a vacuum capacitor, the sealed end is connected via the electrostatic capacitance between the fixed conductor 3a to the bellows 9 and the counter electrode (between the fixed electrode 4 and the movable electrode 5). It flows from the board.

しかしながら、単に図3に示すような構成の真空コンデンサの場合、可動ロッドにおける真空容器の軸方向への移動を任意の箇所で制止(例えば、モータ等による駆動を停止して可動ロッドを制止する操作)しようとしても、その可動ロッドには真空容器内に存在する真空圧により引張力(該可動ロッドを真空容器内方向(図中では矢印Yで示す方向)へ引き込む力)が作用するため、該可動ロッドの移動を速やかに制止(例えば、モータ等の出力軸の回動を瞬時に制止)することが困難であった。   However, in the case of a vacuum capacitor having a configuration as shown in FIG. 3, the movement of the movable rod in the axial direction of the vacuum vessel is restrained at an arbitrary position (for example, an operation of stopping the movable rod by stopping driving by a motor or the like) However, a tensile force (a force that pulls the movable rod in the direction toward the inside of the vacuum vessel (the direction indicated by the arrow Y in the drawing)) acts on the movable rod due to the vacuum pressure existing in the vacuum vessel. It was difficult to quickly stop the movement of the movable rod (for example, instantaneously stop the rotation of the output shaft of a motor or the like).

すなわち、前記のように可動ロッドの移動を制止しようとしても、前記の引張力に応じて可動ロッドが移動し続けてしまうことがあり、静電容量を任意の値に設定することができず、意図するものとは異なるインピーダンス調整が行われてしまう恐れがあった。   That is, even if it tries to stop the movement of the movable rod as described above, the movable rod may continue to move according to the tensile force, and the capacitance cannot be set to an arbitrary value. There is a risk that impedance adjustment different from the intended one may be performed.

そこで、前記の可動ロッドの移動を速やかに制止するため、モータ等の駆動源に対し該駆動力を瞬時に制動(例えば、モータ等の出力軸の回動を制止)するための装置(以下、制動装置と称する)を構成(例えば、モータ等の出力軸に構成)する手段が考えられているが、その制動装置により真空コンデンサの形状が大きく(例えば、モータの出力軸方向に対して大きく)なってしまい、その真空コンデンサの大型化を避けることができなかった。また、前記の制動装置の他にギア装置等も設ける(例えば、モータ等の出力軸に構成)必要があり、更に大型化する恐れがあった。   Therefore, in order to quickly stop the movement of the movable rod, a device for instantaneously braking the driving force against a driving source such as a motor (for example, stopping rotation of an output shaft of a motor or the like) Although a means for configuring the brake device (referred to as an output shaft of a motor or the like) is considered, the shape of the vacuum capacitor is large by the brake device (for example, larger than the output shaft direction of the motor). As a result, an increase in the size of the vacuum capacitor could not be avoided. In addition to the braking device, a gear device or the like needs to be provided (for example, an output shaft of a motor or the like), which may further increase the size.

本発明は前記課題に基づいてなされたものであり、固定電極と可動電極との間の静電容量を任意の値で正確に設定し、所望のインピーダンス調整を行うことができると共に、小型化(例えば、従来のように可動ロッドに関する制動装置やギヤ装置等を用いた真空コンデンサよりも小型化)を図ることが可能な真空コンデンサを提供することにある。   The present invention has been made on the basis of the above-mentioned problems, and it is possible to accurately set the capacitance between the fixed electrode and the movable electrode with an arbitrary value to perform desired impedance adjustment, and to reduce the size ( For example, it is an object of the present invention to provide a vacuum capacitor that can be reduced in size as compared with a conventional vacuum capacitor using a braking device or a gear device related to a movable rod.

本発明は、前記課題の解決を図るために、請求項1記載の発明は、少なくとも一部が絶縁性を有する筒状体の両端をそれぞれ金属部材により閉塞して形成された真空容器と、前記の真空容器内の一方の金属部材側に配置された固定電極と、前記真空容器内の他方の金属部材側で固定電極との間に静電容量を形成するように配置された可動電極と、前記可動電極の背面側から真空容器外方向に延設された可動ロッドと、前記可動電極と固定電極との間の静電容量を変化させるように可動ロッドを移動するための駆動源と、を備えた真空コンデンサであって、前記駆動源は、高周波電圧の印加によって電気振動する圧電セラミックス部材と、その圧電セラミックス部材に積層され該圧電セラミックス部材の振動に応じて撓む弾性積層部材と、前記弾性積層部材に対して圧接され該弾性積層部材の撓みによって回動するロータ部材と、前記ロータ部材と共に回動し可動ロッドに連結される出力軸と、を備えた超音波モータから成ることを特徴とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a vacuum vessel formed by closing at least part of both ends of a cylindrical body having insulating properties with metal members, A fixed electrode disposed on one metal member side in the vacuum container, and a movable electrode disposed so as to form a capacitance between the other metal member side in the vacuum container and the fixed electrode; A movable rod extending from the back side of the movable electrode to the outside of the vacuum vessel, and a drive source for moving the movable rod so as to change a capacitance between the movable electrode and the fixed electrode, The driving source includes a piezoelectric ceramic member that is electrically vibrated by application of a high-frequency voltage, an elastic laminated member that is laminated on the piezoelectric ceramic member and bends according to the vibration of the piezoelectric ceramic member, A rotor member that is in pressure contact with the elastic laminate member and rotates by bending of the elastic laminate member, and an output motor that rotates together with the rotor member and is connected to a movable rod. And

請求項2記載の発明は、前記請求項1記載の発明において、前記ロータ部材は、前記弾性積層部材に対し真空容器内の引張力により該引張力作用方向に圧接されたことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the rotor member is pressed against the elastic laminated member in a direction in which the tensile force acts by a tensile force in a vacuum vessel.

請求項3記載の発明は、前記請求項1記載の発明において、前記ロータ部材は、前記弾性積層部材に対し付勢部材により引張力反作用側に圧接されたことを特徴とする。   A third aspect of the invention is characterized in that, in the first aspect of the invention, the rotor member is pressed against the elastic laminate member by a biasing member on a tensile force reaction side.

本発明のような真空コンデンサによれば、超音波モータの出力軸と共に回動するロータ部材が弾性積層部材に圧接されているため、超音波モータ自体の駆動力を無くすと、前記弾性積層部材とロータ部材との間の摩擦力により、ロータ部材,出力軸,可動ロッドの移動が制止される。   According to the vacuum capacitor as in the present invention, since the rotor member that rotates together with the output shaft of the ultrasonic motor is pressed against the elastic laminated member, if the driving force of the ultrasonic motor itself is eliminated, the elastic laminated member and The frictional force between the rotor member and the rotor member restrains the movement of the rotor member, the output shaft, and the movable rod.

以上示したように本発明によれば、従来の真空コンデンサのように可動ロッドの制動装置やギア装置等を用いなくとも、固定電極と可動電極との間の静電容量を任意の値で正確に設定し、所望のインピーダンス調整を行うことができると共に、その真空コンデンサの小型化を図ることができ、例えば半導体設備の高周波電源、大電力発信回路等の高周波機器におけるインピーダンス調整に係る技術分野において貢献することが可能となる。   As described above, according to the present invention, the capacitance between the fixed electrode and the movable electrode can be accurately set to an arbitrary value without using a movable rod braking device or gear device as in the conventional vacuum capacitor. In a technical field related to impedance adjustment in a high-frequency device such as a high-frequency power source of a semiconductor facility or a high-power transmission circuit, for example, the vacuum capacitor can be miniaturized. It is possible to contribute.

以下、本発明に実施の形態における真空コンデンサを図面等に基づいて詳細に説明する。   Hereinafter, a vacuum capacitor according to an embodiment of the present invention will be described in detail with reference to the drawings.

本実施の形態では、真空容器内に配置された固定電極と、前記固定電極との間に静電容量を形成するように配置された可動電極と、その可動電極の背面より真空容器外に延びる可動ロッドとを備えた真空コンデンサであって、前記可動ロッドを移動させるための駆動源として超音波モータを適用し、可動電極と固定電極との間の静電容量を任意の値で正確に設定することを特徴とする。   In the present embodiment, the fixed electrode disposed in the vacuum container, the movable electrode disposed so as to form a capacitance between the fixed electrode, and the back surface of the movable electrode extend outside the vacuum container. A vacuum capacitor equipped with a movable rod, and an ultrasonic motor is applied as a drive source for moving the movable rod, and the capacitance between the movable electrode and the fixed electrode is accurately set at an arbitrary value. It is characterized by doing.

前記の超音波モータには、高周波電圧の印加によって電気振動する圧電セラミックス部材と、その圧電セラミックス部材に積層され該圧電セラミックス部材の振動に応じて撓む弾性積層部材と、前記弾性積層部材に対して圧接され該弾性積層部材の撓みによって回動するロータ部材と、前記ロータ部材と共に回動し可動ロッドに連結される出力軸と、から構成されたものを適用する。   The ultrasonic motor includes a piezoelectric ceramic member that vibrates electrically upon application of a high-frequency voltage, an elastic laminated member that is laminated on the piezoelectric ceramic member and bends according to the vibration of the piezoelectric ceramic member, and the elastic laminated member. A rotor member that is pressed and rotated by bending of the elastic laminated member, and an output shaft that rotates together with the rotor member and is connected to a movable rod is applied.

[実施例1]
図1は、本実施の形態における真空コンデンサの一例を示す概略説明図である。なお、図3に示したものと同様なものについては、同一符号等を用いて詳細な説明を適宜省略する。
[Example 1]
FIG. 1 is a schematic explanatory view showing an example of a vacuum capacitor in the present embodiment. Note that the same components as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.

図1の真空コンデンサにおいて、符号10は超音波モータを示すものであり、例えば真空容器1の一端側に固設された支持部材(図中では封止端板3bに固設された支持部材)11に固定され、該超音波モータ10の出力軸10aは連結手段7cを介して絶縁操作ロッド7の一端側に連結(図中では頭部7aに連結)される。   In the vacuum capacitor shown in FIG. 1, reference numeral 10 denotes an ultrasonic motor. For example, a support member fixed to one end side of the vacuum vessel 1 (a support member fixed to the sealing end plate 3b in the figure). 11, the output shaft 10a of the ultrasonic motor 10 is connected to one end side of the insulating operating rod 7 (connected to the head 7a in the drawing) via the connecting means 7c.

前記超音波モータ10は、支持部材11に固定され出力軸10a用の貫通孔10bを有するステータ部材10cと、前記出力軸10aの外周側を覆うリング状で前記ステータ部材10cに設けられる圧電セラミックス部材10dと、前記圧電セラミックス部材10dと同様のリング状で表面(後述のロータ部材が圧接される側の面)に略櫛歯状の溝が形成され該圧電セラミックス部材10d上(図中では、圧電セラミックス部材10dにおいて、引張力の作用方向とは逆方向側(以下、引張力反作用側と称する))に積層される部材(以下、弾性積層部材と称する)10eと、付勢部材(図中では出力軸10aに設けられ、引張力の作用方向と同一方向に付勢する板バネ)10fの付勢力(図中では、引張力と同一方向に作用し、後述する摩擦力が引張力に対抗し得る程度となるような大きさの付勢力)によって前記弾性積層部材10eに圧接され出力軸10aと共に回動するロータ部材10gと、から構成されている。   The ultrasonic motor 10 includes a stator member 10c that is fixed to the support member 11 and has a through hole 10b for the output shaft 10a, and a piezoelectric ceramic member that is provided on the stator member 10c in a ring shape that covers the outer peripheral side of the output shaft 10a. 10d and a ring shape similar to that of the piezoelectric ceramic member 10d, and a substantially comb-like groove is formed on the surface (the surface on which the rotor member described later is pressed), and the piezoelectric ceramic member 10d (in the drawing, piezoelectric) In the ceramic member 10d, a member (hereinafter referred to as an elastic laminated member) 10e laminated on a side opposite to the direction in which the tensile force acts (hereinafter referred to as a tensile force reaction side) 10e, and a biasing member (in the drawing) An urging force of a leaf spring 10f provided in the output shaft 10a and urged in the same direction as the acting direction of the tensile force (in the drawing, acts in the same direction as the tensile force, and will be described later. And the rotor member 10g to rotate along with Pressed output shaft 10a to the elastic laminate member 10e by the biasing force of the tensile sized such that the extent that may be against the force of) power, and a.

前記支持部材11は、封止端板3bに固設される支持板11aと、その支持板11aにおいて前記出力軸10aの外周側に設けられた(図中では複数個設けられた)支持柱11bと、その支持柱11bを介して前記支持板11aに固定(図中では取付板11cの外周側よりボルトを支持柱11bに貫通させて支持板11aに螺合)され前記超音波モータ10を取付けるための取付板11cと、から構成されている。   The support member 11 includes a support plate 11a fixed to the sealing end plate 3b, and a support column 11b provided on the support plate 11a on the outer peripheral side of the output shaft 10a (a plurality of support pillars 11b are provided in the drawing). And fixed to the support plate 11a via the support column 11b (in the drawing, a bolt is passed through the support column 11b from the outer peripheral side of the mounting plate 11c and screwed to the support plate 11a), and the ultrasonic motor 10 is attached. And a mounting plate 11c.

前記のように構成された超音波モータ10において、まず圧電セラミックス部材10dに対して高周波電圧を印加すると、その圧電セラミックス部材10d自体が電歪現象により電気振動する。この際、弾性積層部材10eが前記の電気振動力に応じて出力軸10a方向に撓み、その撓みによる進行波が該弾性積層部材10eの周方向に沿って移動し、その進行波の移動に伴って前記のロータ部材10gおよび出力軸10aが回動する。これにより、前記の出力軸10aに連結されている絶縁操作ロッド7が回動(出力軸10aと共に回動)し、その絶縁操作ロッド7の一端部側に螺合されている可動ロッド6が軸方向へ移動(すなわち、可動電極5が移動)して固定電極4と可動電極5との間の静電容量が変化する。   In the ultrasonic motor 10 configured as described above, when a high frequency voltage is first applied to the piezoelectric ceramic member 10d, the piezoelectric ceramic member 10d itself vibrates electrically due to an electrostriction phenomenon. At this time, the elastic laminated member 10e bends in the direction of the output shaft 10a according to the electric vibration force, and a traveling wave due to the bending moves along the circumferential direction of the elastic laminated member 10e. Thus, the rotor member 10g and the output shaft 10a rotate. As a result, the insulating operation rod 7 connected to the output shaft 10a rotates (rotates together with the output shaft 10a), and the movable rod 6 screwed to one end portion of the insulating operation rod 7 has the shaft. The capacitance between the fixed electrode 4 and the movable electrode 5 is changed by moving in the direction (that is, the movable electrode 5 is moved).

前記のように静電容量を変化させた後、前記の圧電セラミックス部材10dに対する高周波電圧の印加を止めて超音波モータ10自体の駆動力を無くすと、前記弾性積層部材10eと該弾性積層部材10eに圧接されているロータ部材10gとの間の摩擦力(付勢部材10fの付勢力に伴う摩擦力)により、ロータ部材10g,出力軸10a,絶縁操作ロッド7の回動と共に可動ロッド6の移動が制止される。   After changing the capacitance as described above, when the application of the high frequency voltage to the piezoelectric ceramic member 10d is stopped and the driving force of the ultrasonic motor 10 itself is removed, the elastic laminated member 10e and the elastic laminated member 10e are removed. The movable rod 6 is moved along with the rotation of the rotor member 10g, the output shaft 10a, and the insulating operation rod 7 by the frictional force between the rotor member 10g and the rotor member 10g pressed against the rotor member 10g (frictional force accompanying the biasing force of the biasing member 10f). Is stopped.

すなわち、弾性積層部材10eとロータ部材10gとの間には付勢部材10fの付勢力に伴う摩擦力が常に存在しているため、たとえ真空容器1内に引張力が存在していても(および、従来技術のように超音波モータ10用の制動装置やギア装置等を用いなくとも)、前記のように移動していた可動ロッド6は、圧電セラミックス部材10dに対する高周波電圧の印加を停止した後、速やかに制止される。   That is, since there is always a frictional force accompanying the biasing force of the biasing member 10f between the elastic laminated member 10e and the rotor member 10g, even if there is a tensile force in the vacuum vessel 1 (and The movable rod 6 that has moved as described above does not use the high-frequency voltage applied to the piezoelectric ceramic member 10d (even without using a braking device or gear device for the ultrasonic motor 10 as in the prior art). , Quickly stopped.

したがって、本実施例のように真空コンデンサを構成することにより、従来のように制動装置やギア装置等を用いた真空コンデンサと比較して、小型化を図ることができると共に、静電容量の調整をより正確に行うことが可能となる。   Therefore, by configuring the vacuum capacitor as in this embodiment, the size can be reduced and the capacitance can be adjusted as compared with the conventional vacuum capacitor using a braking device or a gear device. Can be performed more accurately.

なお、本実施例では、真空容器1内の引張力Yの作用方向と付勢部材10fの付勢力Yの作用方向とが同一であるため、その付勢部材10fを用いなくとも引張力Yによって弾性積層部材10eとロータ部材10gとの間に十分な摩擦力が生じるのであれば、本実施例と同様に静電容量の調整をより正確に行うことが可能となると共に、より小型化(付勢部材10fを省略して小型化)を図ることも可能となる。   In the present embodiment, the direction of action of the tensile force Y in the vacuum vessel 1 is the same as the direction of action of the urging force Y of the urging member 10f, so that the tensile force Y can be used without using the urging member 10f. If a sufficient frictional force is generated between the elastic laminated member 10e and the rotor member 10g, the capacitance can be adjusted more accurately in the same manner as in this embodiment, and the size can be further reduced (attached). It is also possible to reduce the size by omitting the force member 10f.

[実施例2]
図2は、本実施の形態における真空コンデンサの他の例を示す概略説明図である。なお、図1に示したものと同様なものについては、同一符号等を用いて詳細な説明を適宜省略する。
[Example 2]
FIG. 2 is a schematic explanatory view showing another example of the vacuum capacitor in the present embodiment. In addition, about the thing similar to what was shown in FIG. 1, detailed description is abbreviate | omitted suitably using the same code | symbol.

図2の真空コンデンサにおいては、図1と同様の構成の超音波モータ10が支持部材11内に位置し、弾性積層部材10eが圧電セラミックス部材10dよりも引張力Yの作用方向側に配置され、付勢部材(図中では出力軸10aに設けられた板バネ)10fの付勢力(図中では、引張力反作用側に作用し、その引張力Yに対抗し得る程度となる大きさの付勢力)によってロータ部材10gが前記の弾性積層部材10eに対して圧接される。   In the vacuum capacitor of FIG. 2, the ultrasonic motor 10 having the same configuration as that of FIG. 1 is located in the support member 11, and the elastic laminated member 10e is disposed on the side of the tensile force Y acting direction than the piezoelectric ceramic member 10d. The urging force of the urging member (the leaf spring provided on the output shaft 10a in the drawing) 10f (the urging force that acts on the reaction side of the tensile force in the drawing and can resist the tensile force Y) ), The rotor member 10g is pressed against the elastic laminated member 10e.

このように構成された真空コンデンサによれば、実施例1と同様に、まず圧電セラミックス部材10dに対して高周波電圧を印加することにより、その圧電セラミックス部材10d自体の電歪現象により弾性積層部材10eが撓み、その撓みによりロータ部材10g,出力軸10a,絶縁操作ロッド7が回動すると共に可動ロッド6が移動して、固定電極4と可動電極5との間の静電容量が変化する。   According to the vacuum capacitor thus configured, as in the first embodiment, first, by applying a high frequency voltage to the piezoelectric ceramic member 10d, the elastic laminated member 10e is caused by the electrostriction phenomenon of the piezoelectric ceramic member 10d itself. The rotor member 10g, the output shaft 10a, and the insulating operation rod 7 rotate and the movable rod 6 moves due to the deflection, and the electrostatic capacitance between the fixed electrode 4 and the movable electrode 5 changes.

また、前記のように静電容量を変化させた後においても、実施例1と同様に、前記の圧電セラミックス部材10dに対する高周波電圧の印加を止めて超音波モータ10自体の駆動力を無くすと、前記弾性積層部材10eとロータ部材10gとの間の摩擦力(付勢部材10fの付勢力に伴う摩擦力)により、ロータ部材10g,出力軸10a,絶縁操作ロッド7の回動と共に可動ロッド6の移動が制止される。   Further, even after changing the capacitance as described above, as in Example 1, when the application of the high frequency voltage to the piezoelectric ceramic member 10d is stopped and the driving force of the ultrasonic motor 10 itself is eliminated, Due to the frictional force between the elastic laminated member 10e and the rotor member 10g (the frictional force accompanying the urging force of the urging member 10f), the rotor member 10g, the output shaft 10a, the insulating operation rod 7 and the movable rod 6 are rotated. Movement is stopped.

すなわち、弾性積層部材10eとロータ部材10gとの間には付勢部材10fの付勢力に伴う摩擦力が常に存在しているため、たとえ真空容器1内に引張力Yが存在していても(および、従来技術のように超音波モータ10用の制動装置やギア装置等を用いなくとも)、前記のように移動していた可動ロッド6は、圧電セラミックス部材10dに対する高周波電圧の印加を停止した後、速やかに制止される。   That is, the frictional force accompanying the urging force of the urging member 10f always exists between the elastic laminated member 10e and the rotor member 10g, so even if the tensile force Y exists in the vacuum vessel 1 ( In addition, the movable rod 6 that has moved as described above has stopped applying the high-frequency voltage to the piezoelectric ceramic member 10d without using a braking device or gear device for the ultrasonic motor 10 as in the prior art. Later, it is stopped immediately.

したがって、本実施例のように真空コンデンサを構成することにより、実施例1と同様に真空コンデンサの小型化を図ることができると共に、静電容量の調整をより正確に行うことが可能となる。また、図2に示すように、付勢部材10fの付勢力が引張力反作用側に作用する真空コンデンサの場合には、その引張力Yに対抗するために必要な付勢力は図1に示した真空コンデンサの場合よりも小さくできるため、より小型化した容量の超音波モータ10を適用することが可能となる。さらに、超音波モータ10自体が支持部材11内に収納されているため、図1に示した真空コンデンサよりも外的要因(例えば、真空コンデンサ外周側からの衝撃等)による損傷等を抑制することが可能となる。   Therefore, by configuring the vacuum capacitor as in the present embodiment, the vacuum capacitor can be reduced in size as in the first embodiment, and the capacitance can be adjusted more accurately. Further, as shown in FIG. 2, in the case of a vacuum capacitor in which the urging force of the urging member 10f acts on the tensile force reaction side, the urging force necessary to counter the tensile force Y is shown in FIG. Since it can be made smaller than in the case of a vacuum capacitor, it is possible to apply the ultrasonic motor 10 having a smaller capacity. Furthermore, since the ultrasonic motor 10 itself is housed in the support member 11, damage due to external factors (for example, impact from the outer periphery of the vacuum capacitor) is suppressed more than the vacuum capacitor shown in FIG. Is possible.

なお、本実施例のように支持部材11内に超音波モータ10が位置する構造においても、実施例1と同様に圧電セラミックス部材10dに対し該圧電セラミックス部材10dにおける引張力反作用側から弾性積層部材10e,ロータ部材10gが積層された構成で、付勢部材10fを用いなくとも引張力Yによって弾性積層部材10eとロータ部材10gとの間に十分な摩擦力が生じる場合には、本実施例と同様に静電容量の調整をより正確に行うことが可能となると共に、より小型化(付勢部材10fを省略して小型化)を図ることも可能となる。   Even in the structure in which the ultrasonic motor 10 is located in the support member 11 as in the present embodiment, the elastic laminated member from the tensile force reaction side of the piezoelectric ceramic member 10d with respect to the piezoelectric ceramic member 10d as in the first embodiment. 10e and the rotor member 10g are laminated, and a sufficient frictional force is generated between the elastic laminated member 10e and the rotor member 10g by the tensile force Y without using the biasing member 10f. Similarly, the capacitance can be adjusted more accurately, and further downsizing (downsizing by omitting the biasing member 10f) can be achieved.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、超音波モータによる可動ロッドの移動に応じて固定電極と可動電極との間の静電容量を変化させることができる構造であれば、固定電極,可動電極,可動ロッド,絶縁操作ロッド,支持部材等はそれぞれ種々の形状のものを適用することができると共に、適宜省略(例えば、支持部材や絶縁操作ロッド等を適宜省略)しても良い。   For example, if the capacitance between the fixed electrode and the movable electrode can be changed according to the movement of the movable rod by the ultrasonic motor, the fixed electrode, the movable electrode, the movable rod, the insulating operation rod, the support The members and the like can be applied in various shapes, and may be omitted as appropriate (for example, the support member and the insulating operation rod are omitted as appropriate).

本実施の形態における真空コンデンサの一例を示す概略説明図。Schematic explanatory drawing which shows an example of the vacuum capacitor in this Embodiment. 本実施の形態における真空コンデンサの他の例を示す概略説明図。Schematic explanatory drawing which shows the other example of the vacuum capacitor in this Embodiment. 一般的な真空コンデンサの概略説明図。Schematic explanatory drawing of a general vacuum capacitor.

符号の説明Explanation of symbols

1…真空容器
2…真空容器本体
3a,3b…端板
4…固定電極
5…可動電極
6…可動ロッド
7…絶縁操作ロッド
8…支持体
9…ベローズ
10…超音波モータ
10a…出力軸
10b…貫通孔
10c…ステータ部材
10d…セラミックス部材
10e…弾性積層部材
10f…付勢部材
10g…ロータ部材
11…支持部材
DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Vacuum container main body 3a, 3b ... End plate 4 ... Fixed electrode 5 ... Movable electrode 6 ... Movable rod 7 ... Insulation operation rod 8 ... Support body 9 ... Bellows 10 ... Ultrasonic motor 10a ... Output shaft 10b ... Through hole 10c ... Stator member 10d ... Ceramics member 10e ... Elastic laminated member 10f ... Biasing member 10g ... Rotor member 11 ... Support member

Claims (3)

少なくとも一部が絶縁性を有する筒状体の両端をそれぞれ金属部材により閉塞して形成された真空容器と、
前記の真空容器内の一方の金属部材側に配置された固定電極と、
前記真空容器内の他方の金属部材側で固定電極との間に静電容量を形成するように配置された可動電極と、
前記可動電極の背面側から真空容器外方向に延設された可動ロッドと、
前記可動電極と固定電極との間の静電容量を変化させるように可動ロッドを移動するための駆動源と、を備えた真空コンデンサであって、
前記駆動源は、高周波電圧の印加によって電気振動する圧電セラミックス部材と、
その圧電セラミックス部材に積層され該圧電セラミックス部材の振動に応じて撓む弾性積層部材と、
前記弾性積層部材に対して圧接され該弾性積層部材の撓みによって回動するロータ部材と、
前記ロータ部材と共に回動し可動ロッドに連結される出力軸と、を備えた超音波モータから成ることを特徴とする真空コンデンサ。
A vacuum vessel formed by closing both ends of a cylindrical body having at least a part of insulation with a metal member;
A fixed electrode disposed on one metal member side in the vacuum vessel;
A movable electrode arranged to form a capacitance between the other metal member in the vacuum vessel and the fixed electrode;
A movable rod extending from the back side of the movable electrode to the outside of the vacuum vessel;
A vacuum source comprising a drive source for moving the movable rod to change the capacitance between the movable electrode and the fixed electrode,
The drive source includes a piezoelectric ceramic member that vibrates electrically when a high-frequency voltage is applied;
An elastic laminated member that is laminated on the piezoelectric ceramic member and bends according to the vibration of the piezoelectric ceramic member;
A rotor member pressed against the elastic laminated member and rotated by bending of the elastic laminated member;
A vacuum capacitor comprising an ultrasonic motor having an output shaft that rotates together with the rotor member and is connected to a movable rod.
前記ロータ部材は、前記弾性積層部材に対し真空容器内の引張力により該引張力作用方向に圧接されたことを特徴とする請求項1記載の真空コンデンサ。   2. The vacuum capacitor according to claim 1, wherein the rotor member is pressed against the elastic laminated member in a direction in which the tensile force acts by a tensile force in a vacuum vessel. 前記ロータ部材は、前記弾性積層部材に対し付勢部材により引張力反作用側に圧接されたことを特徴とする請求項1記載の真空コンデンサ。   2. The vacuum capacitor according to claim 1, wherein the rotor member is pressed against the elastic laminate member on the side opposite to the tensile force reaction by a biasing member.
JP2006277146A 2006-10-11 2006-10-11 Vacuum capacitor Expired - Fee Related JP4894446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277146A JP4894446B2 (en) 2006-10-11 2006-10-11 Vacuum capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277146A JP4894446B2 (en) 2006-10-11 2006-10-11 Vacuum capacitor

Publications (2)

Publication Number Publication Date
JP2008098329A true JP2008098329A (en) 2008-04-24
JP4894446B2 JP4894446B2 (en) 2012-03-14

Family

ID=39380876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277146A Expired - Fee Related JP4894446B2 (en) 2006-10-11 2006-10-11 Vacuum capacitor

Country Status (1)

Country Link
JP (1) JP4894446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806985A (en) * 2018-06-29 2018-11-13 中国电力科学研究院有限公司 A kind of high stability and precision adjustable condenser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156808A (en) * 1985-12-28 1987-07-11 日立マクセル株式会社 Variable capacitor with supersonic motor
JPH09219342A (en) * 1996-02-09 1997-08-19 Meidensha Corp Vacuum capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156808A (en) * 1985-12-28 1987-07-11 日立マクセル株式会社 Variable capacitor with supersonic motor
JPH09219342A (en) * 1996-02-09 1997-08-19 Meidensha Corp Vacuum capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806985A (en) * 2018-06-29 2018-11-13 中国电力科学研究院有限公司 A kind of high stability and precision adjustable condenser
CN108806985B (en) * 2018-06-29 2021-12-17 中国电力科学研究院有限公司 High-stability precise adjustable capacitor

Also Published As

Publication number Publication date
JP4894446B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4117306B2 (en) Piezoelectric ultrasonic motor drive device
EP3005385B1 (en) Vacuum variable capacitor
JPH01502384A (en) piezoelectric motor
JP5343322B2 (en) Drive device for vibration actuator, lens barrel and camera
JP5157915B2 (en) Vibration actuator, lens barrel, camera
JP4827441B2 (en) Vibration wave actuator
JP4894446B2 (en) Vacuum capacitor
EP2270893B1 (en) Ultrasonic motor
JP5459192B2 (en) Vibration wave motor, lens barrel and camera
JP4692211B2 (en) Vacuum capacitor
JP5049523B2 (en) Vibration wave drive
EP1381092B1 (en) Vibration type drive unit
KR100974440B1 (en) Vibrator for ultrasonic motor
TW201030783A (en) Vacuum capacitor
US20140077658A1 (en) Piezoelectric motor with efficient transfer of energy
JP5417838B2 (en) Vacuum capacitor
JPH06189569A (en) Ultrasonic motor
JP2001115972A (en) Roller-type pump
EP3005386B1 (en) Vacuum variable capacitor
JPH05344759A (en) Ultrasonic motor
JP2008253077A (en) Vibration actuator, lens barrel and camera
JP5417825B2 (en) Vacuum capacitor
JPS62247769A (en) Ultrasonic motor
JP3902955B2 (en) Vibration body and vibration wave drive device
JP3566696B2 (en) Vibration wave drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees