JP2008098088A - Wide region lighting device - Google Patents

Wide region lighting device Download PDF

Info

Publication number
JP2008098088A
JP2008098088A JP2006281309A JP2006281309A JP2008098088A JP 2008098088 A JP2008098088 A JP 2008098088A JP 2006281309 A JP2006281309 A JP 2006281309A JP 2006281309 A JP2006281309 A JP 2006281309A JP 2008098088 A JP2008098088 A JP 2008098088A
Authority
JP
Japan
Prior art keywords
reflecting mirror
concave reflecting
concave
led light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006281309A
Other languages
Japanese (ja)
Inventor
Toshio Hiratsuka
利男 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIRAI KK
Original Assignee
MIRAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIRAI KK filed Critical MIRAI KK
Priority to JP2006281309A priority Critical patent/JP2008098088A/en
Publication of JP2008098088A publication Critical patent/JP2008098088A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wide region lighting device having no illumination level difference at boundary connection part of illumination light by enabling a highly efficient light distribution control with few energy loss, and enabling uniform illumination while keeping uniform illuminance in a region from a distant place to the near side. <P>SOLUTION: The wide region lighting device is provided with a substrate 23 on which a plurality of LED light sources are mounted, a first concave reflecting mirror 25 for remote illumination which is arranged with a first LED light source 21 on the substrate 23 as a bottom position and reflects the light from the first LED light source toward an illumination range and a second concave reflecting mirror 27 for near illumination which is arranged with a second LED light source 21 adjoining the first LED light source 21 as a bottom position and reflects the light from the second LED light source 21 toward the illumination range. The second concave reflecting mirror 27 has a slanted cut shape so that the height of the reflecting mirror from the substrate 23 face on the first concave reflecting mirror 25 side may be high and the height of the reflecting mirror on the opposite side to the first concave reflecting mirror 25 may be low. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、近傍領域から遠方領域にかけて照明を行う広域照明装置に関し、例えばウォールウォッシャー等に用いて好適な照明技術に関する。   The present invention relates to a wide area illumination device that performs illumination from a near area to a far area, and relates to an illumination technique suitable for use in, for example, a wall washer.

例えば商品を陳列する店舗を始め、美術館や博物館等において、陳列・展示品を間接照明するために側壁面を上方(天井面側)から下方(床面側)までほぼ同じ照度で均一に照明するための照明器具が種々提案されている。均一に照明するためには、光の拡散作用を増強して光ムラを取り除き、壁面照明の均一度を高める手法が多く採用されている。   For example, in stores such as stores that display merchandise, in order to indirectly illuminate display / exhibits in museums, etc., the side wall surface is uniformly illuminated from the upper side (ceiling side) to the lower side (floor side) with almost the same illuminance. Various lighting fixtures have been proposed. In order to illuminate uniformly, many methods are adopted to enhance the light diffusion action to remove light unevenness and increase the uniformity of wall illumination.

特許文献1に開示される壁面照明器具は、内部に光源が設けられた器具枠の前面部に、複数のルーバが間隔を置いて設けられる。このルーバは、相対的に光透過率が低くて光の照射方向を規制する反射拡散パネルと、相対的に光透過率が高くて反射拡散パネルの後方で光を拡散・減衰させる拡散減衰パネルとによって構成される。   In the wall lighting fixture disclosed in Patent Document 1, a plurality of louvers are provided at intervals on the front surface portion of a fixture frame in which a light source is provided. This louver includes a reflective diffusion panel that has a relatively low light transmittance and regulates the light irradiation direction, and a diffusion attenuation panel that has a relatively high light transmittance and diffuses and attenuates light behind the reflective diffusion panel. Consists of.

この構成によると、相対的に光透過率の低い高反射形の反射拡散パネルが特に光の照射方向を規制する役目を果たし、光透過率の高い拡散減衰パネルが、反射拡散パネルの手前で、ルーバと交差する方向の光を拡散させ、減衰させる役目を果たす。この二種類のパネルの作用の相乗効果により、ルーバ全体として光の拡散作用と、ルーバと交差する方向の光の減衰作用が増強される。   According to this configuration, the highly reflective reflection diffusion panel with a relatively low light transmittance plays a role in regulating the light irradiation direction, and the diffusion attenuation panel with a high light transmittance is in front of the reflection diffusion panel. It plays the role of diffusing and attenuating light in the direction crossing the louver. The synergistic effect of the action of the two types of panels enhances the light diffusion action and the light attenuation action in the direction intersecting the louver as a whole.

これにより、例えば天井面から側壁面を照明する場合に、側壁面の上部に対してはルーバによって光が拡散し減衰して照射されることによって帯状の影を消し、光ムラの発生を防止することができる。一方、反射拡散パネルによってストレート光が側壁面下部に導かれる。拡散減衰パネルでの光拡散作用によって各ルーバが個々に疑似光源を持つ形になるため、側壁面下部に照射される光量が実質的に増加する。この二点により、拡散減衰パネルを持たないルーバを用いる場合と比較して、側壁面下部で照度が増加することになり、側壁面上部と下部の照度の均一性を高めている。   Thus, for example, when the side wall surface is illuminated from the ceiling surface, light is diffused and attenuated by the louver to the upper part of the side wall surface, thereby eliminating the band-like shadow and preventing the occurrence of light unevenness. be able to. On the other hand, straight light is guided to the lower part of the side wall surface by the reflection diffusion panel. Since each louver has a pseudo light source by the light diffusing action in the diffusion attenuation panel, the amount of light applied to the lower portion of the side wall surface is substantially increased. Due to these two points, the illuminance increases at the lower portion of the side wall surface compared to the case of using a louver without a diffusion attenuation panel, and the uniformity of the illuminance at the upper and lower side surfaces of the side wall surface is enhanced.

また、特許文献2に開示される壁面照明装置1は、図20に示すように、点状光源3と、点状光源3の後方に所定の距離隔てて配置され、反射光線束を壁面に対して所定の角度で反射させる凹面反射鏡5と、点状光源3の前方に所定の距離隔てて凹面反射鏡5と対向・配置され、反射光線束を横切ってその反射光線束内に部分的に位置する発散レンズ7とから構成される。   Moreover, as shown in FIG. 20, the wall surface lighting device 1 disclosed in Patent Document 2 is arranged at a predetermined distance behind the point light source 3 and the point light source 3, and reflects the reflected light beam with respect to the wall surface. A concave reflecting mirror 5 that reflects at a predetermined angle, and is opposed to the concave reflecting mirror 5 at a predetermined distance in front of the point light source 3, and partially crosses the reflected light bundle and into the reflected light bundle. The diverging lens 7 is located.

この構成によると、点状光源3からの光は、凹面反射鏡5に当たって反射し、壁面に対して所定の角度をなした反射光線束R1となる。反射光線束R1のうちの所定部分は、発散レンズ7に当たらず、壁面上に照光され、壁面上に、被照光部分が形成される。発散レンズ7に照射する反射光線束R1の所定部分以外の部分は、発散レンズ7により散乱し、壁面上の上記被照光部分の以外の面に拡散光線束R2となって照光され、壁面上に、別の被照光部分が形成される。これにより、簡単な構造で壁面上に、所定方向に均整度の高い光を帯状に照光可能としている。   According to this configuration, the light from the point light source 3 strikes the concave reflecting mirror 5 and is reflected to become a reflected light beam R1 having a predetermined angle with respect to the wall surface. A predetermined portion of the reflected light bundle R1 does not hit the diverging lens 7, but is illuminated on the wall surface, and an illuminated portion is formed on the wall surface. A portion other than the predetermined portion of the reflected light beam R1 that irradiates the diverging lens 7 is scattered by the diverging lens 7, and is illuminated as a diffused light beam R2 on a surface other than the illuminated portion on the wall surface. Another illuminated portion is formed. As a result, light having a high degree of uniformity in a predetermined direction can be illuminated in a strip shape on the wall surface with a simple structure.

特開平9−27206号公報JP-A-9-27206 特開平6−68701号公報JP-A-6-68701

しかしながら、上記した従来の壁面照明装置は、いずれも光源からの直接光、或いは反射鏡からの反射光を、ルーバ及び反射拡散パネル、或いは発散レンズを通過させて配光するため、損失による照度低下が大きく、照明効率が悪いとともに、照明光の境界部分をなだらかに接続するキメ細かな配光制御が行い難く、照明光の境界接続部に段差の生じる問題があった。また、発散レンズを備える構成では、壁面以外にも拡散光が照射されることとなり、無駄な照射光が増大して照明エネルギーにロスが生じるとともに、他の照明光が存在する場合には、当該他の照明に悪影響を及ぼす場合があった。例えば、他の照明装置による照明領域の照度を過度に増加させたり、他の照明装置が色付き照明であれば、混色を発生させた。
本発明は上記状況に鑑みてなされたもので、エネルギーロスの少ない高効率な配光制御を可能とすることで、照明光境界接続部に段差の生じない広域照明装置を提供し、もって、遠方から近傍までの領域における照度を均等に保った状態での照明を可能とすることを目的とする。
However, all of the conventional wall illumination devices described above distribute the direct light from the light source or the reflected light from the reflecting mirror through the louver and the reflective diffusing panel or the diverging lens. However, the illumination efficiency is poor, and it is difficult to perform fine light distribution control that gently connects the boundary portion of the illumination light, and there is a problem that a step occurs in the boundary connection portion of the illumination light. Further, in the configuration including the diverging lens, the diffused light is irradiated in addition to the wall surface, the useless irradiation light increases and the illumination energy is lost, and when other illumination light is present, Other lighting could be adversely affected. For example, the illuminance of an illumination area by another illumination device is excessively increased, or if the other illumination device is colored illumination, color mixing is generated.
The present invention has been made in view of the above situation, and by providing highly efficient light distribution control with less energy loss, a wide-area illumination device that does not cause a step in the illumination light boundary connection portion is provided, and thus far away An object of the present invention is to enable illumination in a state where the illuminance in the region from to the vicinity is kept uniform.

本発明に係る上記目的は、下記構成により達成される。
(1) 遠方から近傍にかけての領域を照射範囲とする広域照明装置であって、
複数のLED光源が実装された基板と、
前記基板上の第一のLED光源を底部位置として配置され、該第一のLED光源からの光を前記照明範囲に向けて反射する遠方照明用の第一凹面反射鏡と、
前記第一のLED光源に隣接する第二のLED光源を底部位置として配置され、該第二のLED光源からの光を前記照明範囲に向けて反射する近傍照明用の第二凹面反射鏡と、を備え、
前記第二凹面反射鏡は、前記第一凹面反射鏡側の前記基板面からの反射鏡高さが高く、前記第一凹面反射鏡とは反対側の反射鏡高さが低くなるように斜めに切断した形状を有することを特徴とする広域照明装置。
The above object of the present invention is achieved by the following configuration.
(1) A wide-area lighting device having an irradiation range from a far field to a nearby area,
A substrate on which a plurality of LED light sources are mounted;
A first concave light reflector for distant illumination that is disposed with the first LED light source on the substrate as a bottom position and reflects light from the first LED light source toward the illumination range;
A second concave light reflecting mirror for proximity illumination that is arranged with the second LED light source adjacent to the first LED light source as a bottom position and reflects light from the second LED light source toward the illumination range; With
The second concave reflecting mirror is inclined so that the reflecting mirror height from the substrate surface on the first concave reflecting mirror side is high and the reflecting mirror height on the side opposite to the first concave reflecting mirror is low. A wide area lighting device characterized by having a cut shape.

この広域照明装置によれば、反射鏡の切断されない第一凹面反射鏡は、光軸に対称の反射面を備えることになり、LED光源からの直接光と、反射面によって反射した反射光とが略平行光となって遠方領域に照射される。一方、反射面の切断された第二凹面反射鏡は、光軸を挟み第一凹面反射鏡側の反射面では第一凹面反射鏡と同様に略平行光が照射され、光軸を挟むその反対側(外側)では反射面が傾斜して切除されていることにより、正面に進む反射光が徐々に減少されつつ、LED光源からの直接光の比率が徐々に増加されて近傍領域に対する拡散照明効果が増加する。   According to this wide area illumination device, the first concave reflecting mirror that is not cut by the reflecting mirror has a reflecting surface that is symmetrical with respect to the optical axis, and direct light from the LED light source and reflected light reflected by the reflecting surface are generated. It becomes a substantially parallel light and is irradiated to a distant area. On the other hand, the second concave reflecting mirror whose cut surface has been cut sandwiches the optical axis, and the reflecting surface on the first concave reflecting mirror side is irradiated with substantially parallel light in the same manner as the first concave reflecting mirror. On the side (outside), the reflective surface is cut off with an inclination, so that the ratio of direct light from the LED light source is gradually increased while the reflected light traveling toward the front is gradually reduced, and the diffuse illumination effect on the neighboring area Will increase.

(2) 前記第一凹面反射鏡と前記第二凹面反射鏡とを複数それぞれ直線状に配列してなる第一凹面反射鏡列と第二凹面反射鏡列とが互いに平行に複数列設けられたことを特徴とする(1)記載の広域照明装置。 (2) A plurality of first concave reflecting mirror rows and second concave reflecting mirror rows each having a plurality of the first concave reflecting mirrors and the second concave reflecting mirrors arranged in a straight line are provided in parallel with each other. (1) The wide area illumination device according to (1).

この広域照明装置によれば、第一凹面反射鏡の列と第二凹面反射鏡の列とが互いに平行に複数列設けられることで、照射可能範囲が増加し、広い面積の照明が可能となる。また、同一の照射領域で比較した場合、少数列で照射したときに比べ、多数列で照射したときの方が照度を高めることができる。さらに、多数列で照射したときの方が第二凹面反射鏡列の個々の切断傾斜勾配が緩やかとなるので、各反射鏡列による照明光境界接続部を一層目立たなくできる。   According to this wide area illuminating device, by providing a plurality of rows of first concave reflecting mirrors and rows of second concave reflecting mirrors in parallel with each other, the irradiable range is increased and a wide area illumination is possible. . In addition, when compared in the same irradiation region, the illuminance can be increased when irradiation is performed with a large number of rows compared to when irradiation is performed with a small number of rows. Furthermore, since the individual cutting inclination gradients of the second concave reflecting mirror rows become gentler when irradiation is performed in multiple rows, the illumination light boundary connection portions by the respective reflecting mirror rows can be made less noticeable.

(3) 前記第一凹面反射鏡と前記第二凹面反射鏡が相互に千鳥配置とされたことを特徴とする(2)記載の広域照明装置。 (3) The wide area illumination device according to (2), wherein the first concave reflecting mirror and the second concave reflecting mirror are arranged in a staggered manner.

この広域照明装置によれば、第一凹面反射鏡列の反射鏡同士の間に、第二凹面反射鏡列の反射鏡が近接して配置されることとなり、反射鏡列同士の離間距離が短くなって、装置のコンパクト化が可能となる。   According to this wide area illumination device, the reflecting mirrors of the second concave reflecting mirror row are arranged close to each other between the reflecting mirrors of the first concave reflecting mirror row, and the separation distance between the reflecting mirror rows is short. Thus, the apparatus can be made compact.

(4) 前記第一凹面反射鏡列に配置される各第一凹面反射鏡は、列方向の配置ピッチが前記第一凹面反射鏡の平面視円形の最大直径距離よりも短く設定されたことを特徴とする(2)又は(3)記載の広域照明装置。 (4) The first concave reflecting mirrors arranged in the first concave reflecting mirror row are set such that the arrangement pitch in the row direction is set shorter than the maximum diameter distance of the first concave reflecting mirror in a plan view circle. The wide-area lighting device according to (2) or (3), which is characterized.

この広域照明装置によれば、第一凹面反射鏡列において列方向で隣接する反射鏡同士の離間距離が短くなるので、隣接するLED光源からの光の影が小さくなり、遠方照明領域における反射鏡列方向の照度がより均一となる。   According to this wide area illuminating device, since the separation distance between the adjacent mirrors in the column direction in the first concave reflecting mirror row is shortened, the shadow of the light from the adjacent LED light source is reduced, and the reflecting mirror in the far illumination area is reduced. The illuminance in the column direction becomes more uniform.

(5) 前記第一凹面反射鏡及び前記第二凹面反射鏡がフレームパネルに保持されており、該フレームパネルの光照射側の表面が梨地状に形成されたことを特徴とする(1)〜(4)のいずれか1項記載の広域照明装置。 (5) The first concave reflecting mirror and the second concave reflecting mirror are held by a frame panel, and the light irradiation side surface of the frame panel is formed in a satin shape. The wide-area lighting device according to any one of (4).

この広域照明装置によれば、近場の壁面などに照射された光が反射によって広域照明装置へ戻された場合であっても、フレームパネルの光照射側の表面が梨地状とされることによって、戻された反射光が拡散され、反射鏡フレームパネルが鏡面の場合に生じ易い二次反射による壁面の照度ムラ(縞模様)の発生を防止できる。   According to this wide area illuminating device, even if the light irradiated on the near wall surface is returned to the wide area illuminating device by reflection, the surface on the light irradiation side of the frame panel is made into a satin finish. The reflected light that has been returned is diffused, and it is possible to prevent the occurrence of illuminance unevenness (striped pattern) on the wall surface due to secondary reflection that is likely to occur when the reflector frame panel is a mirror surface.

(6) 前記第一凹面反射鏡が梨地状に形成された反射面を有することを特徴とする(1)〜(5)のいずれか1項記載の広域照明装置。 (6) The wide area illumination device according to any one of (1) to (5), wherein the first concave reflecting mirror has a reflecting surface formed in a satin shape.

この広域照明装置によれば、特に遠方を照明する第一凹面反射鏡の反射面が梨地状となることで、LED光源からの光が梨地状反射面によって拡散され、色ムラを生じることが防止される。   According to this wide area illuminating device, the reflection surface of the first concave reflecting mirror that illuminates far away has a satin-like shape, so that light from the LED light source is prevented from being diffused by the satin-like reflective surface and causing color unevenness. Is done.

(7) 前記第二凹面反射鏡が梨地状に形成された反射面を有することを特徴とする(1)〜(6)のいずれか1項記載の広域照明装置。 (7) The wide area illumination device according to any one of (1) to (6), wherein the second concave reflecting mirror has a reflecting surface formed in a satin shape.

この広域照明装置によれば、特に近場を照明する第二凹面反射鏡の反射面が梨地状となることで、第二凹面反射鏡の傾斜切除形状による拡散照射作用に加え、LED光源からの反射光が梨地状反射面によってさらに拡散され、近場のより均一な照明が可能となる。つまり、拡散効果が向上して、より均等な照度の照明が可能となる。   According to this wide area illuminating device, in particular, the reflecting surface of the second concave reflecting mirror that illuminates the near field has a satin-like shape, so that in addition to the diffuse irradiation action by the inclined cut shape of the second concave reflecting mirror, The reflected light is further diffused by the satin-like reflecting surface, enabling near-field more uniform illumination. That is, the diffusion effect is improved, and illumination with more uniform illuminance is possible.

(8) 前記第一凹面反射鏡及び前記第二凹面反射鏡の反射面が放物面で形成され、前記LED光源が前記放物面の焦点位置に配置されたことを特徴とする(1)〜(7)のいずれか1項記載の広域照明装置。 (8) The reflecting surfaces of the first concave reflecting mirror and the second concave reflecting mirror are formed as paraboloids, and the LED light source is disposed at a focal position of the paraboloid (1). The wide-area lighting device according to any one of to (7).

この広域照明装置によれば、LED光源からの光を放物面鏡で反射させることによって平行光化でき、特に第一凹面反射鏡による遠方の照射が高効率で可能となる。これにより、光の照射方向(近傍照射領域から遠方照射領域に向かう方向)に延びる光の帯を長く形成できる。   According to this wide area illumination device, the light from the LED light source can be collimated by reflecting it with a parabolic mirror, and in particular, it is possible to irradiate far away with the first concave reflecting mirror with high efficiency. Accordingly, a light band extending in the light irradiation direction (direction from the near irradiation region to the far irradiation region) can be formed long.

(9) 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源が、列毎に独立して光量制御可能な光量制御手段に接続されたことを特徴とする(2)〜(8)のいずれか1項記載の広域照明装置。 (9) The LED light sources corresponding to the first concave reflecting mirror row and the second concave reflecting mirror row are connected to a light quantity control means capable of independently controlling the light quantity for each row (2 The wide-area illumination device according to any one of (8) to (8).

この広域照明装置によれば、各反射鏡列におけるLED光源列の光量を適宜増減制御することで、近傍照射領域から遠方照射領域までの照明のつなぎ目(境目)部分を周囲と連続的な照度とすることができ、照度の段差による照度ムラの発生を防止できる。これにより、前記つなぎ目部分において照度差に起因する線が発生することを確実に防止できる。また、近傍照射領域から遠方照射領域にかけて徐々に照明光の照度が変化するグラデーション照明が可能となる。例えば壁面照明であれば、天井近くを明るく、床に向けて徐々に照度が下がるようなグラデーションを形成することで、美的に優れた照明光を得ることができる。   According to this wide area illumination device, by appropriately increasing or decreasing the amount of light of the LED light source array in each mirror array, the joint (border) of illumination from the near irradiation area to the far irradiation area It is possible to prevent illuminance unevenness due to illuminance steps. Thereby, it can prevent reliably that the line resulting from an illuminance difference generate | occur | produces in the said joint part. Further, gradation illumination in which the illuminance of the illumination light gradually changes from the near irradiation region to the far irradiation region is possible. For example, in the case of wall illumination, aesthetically excellent illumination light can be obtained by forming a gradation in which the vicinity of the ceiling is bright and the illuminance gradually decreases toward the floor.

(10) 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源は、列毎に発色の異なるものを含むことを特徴とする(2)〜(9)のいずれか1項記載の広域照明装置。 (10) Any one of (2) to (9), wherein each LED light source corresponding to the first concave reflecting mirror row and the second concave reflecting mirror row includes a different color for each row. The wide-area lighting device according to 1.

この広域照明装置によれば、近傍照射領域から遠方照射領域にかけて照明光の色が変化する多色照明が可能となり、美的に優れた多色ディスプレイ等が可能となる。   According to this wide area illumination device, multicolor illumination in which the color of illumination light changes from the near illumination area to the far illumination area is possible, and an aesthetically superior multicolor display or the like is possible.

(11) 前記第一凹面反射鏡、前記第二凹面反射鏡の少なくともいずれかに対して、1つの反射鏡に複数個の前記LED光源が配設されていることを特徴とする(1)〜(10)のいずれか1項記載の広域照明装置。 (11) The plurality of LED light sources are arranged in one reflecting mirror with respect to at least one of the first concave reflecting mirror and the second concave reflecting mirror. The wide area illumination device according to any one of (10).

この広域照明装置によれば、一つの反射鏡に対して複数のLED光源が設けられ、個々のLED光源が独立に発光制御されることで、グラデーションや多色がきめ細かに設定できる。また、近傍照射領域から遠方照射領域に向かう方向でのグラデーションや多色変化に加え、個々の反射鏡が並ぶ列方向に沿う方向(装置の幅方向、すなわち、遠近方向に延在する帯状照射領域の幅方向)でのグラデーションや多色変化も可能となる。   According to this wide area illuminating device, a plurality of LED light sources are provided for one reflecting mirror, and each LED light source is controlled to emit light independently, so that gradation and multiple colors can be set finely. In addition to gradation and multicolor change in the direction from the near illumination area to the far illumination area, the direction along the column direction in which the individual reflectors are arranged (the band-like illumination area extending in the width direction of the apparatus, that is, the perspective direction) Gradation and multicolor change in the width direction) is also possible.

(12) 前記第一凹面反射鏡と前記第二凹面反射鏡とが樹脂材料により一体成形されたことを特徴とする(1)〜(11)のいずれか1項記載の広域照明装置。 (12) The wide area illumination device according to any one of (1) to (11), wherein the first concave reflecting mirror and the second concave reflecting mirror are integrally formed of a resin material.

この広域照明装置によれば、成形が簡単になり、コスト低減が図られる。また、第一凹面反射鏡列と第二凹面反射鏡列のそれぞれの列における反射鏡同士、或いは列間の反射鏡同士の相対的な光軸位置を高精度に保つことができる。これにより、照度にバラツキの生じない高品質の装置が安定的に製造可能となる。   According to this wide area illumination device, molding is simplified and cost reduction is achieved. Further, the relative optical axis positions of the reflecting mirrors in the first concave reflecting mirror row and the second concave reflecting mirror row or the reflecting mirrors between the rows can be maintained with high accuracy. As a result, a high-quality device that does not vary in illuminance can be stably manufactured.

(13) 前前記第二凹面反射鏡の光軸が、前記第一凹面反射鏡の光軸に対して傾斜していることを特徴とする(1)〜(12)のいずれか1項記載の広域照明装置。 (13) The optical axis of the front second concave reflecting mirror is inclined with respect to the optical axis of the first concave reflecting mirror, according to any one of (1) to (12), Wide area lighting device.

この広域照明装置によれば、例えば、近傍照射領域に第二凹面反射鏡の光軸を傾ければ、近場をより高照度で照らすことができる。また、遠方照射領域に第二凹面反射鏡の光軸を傾ければ、遠方をより高照度で照らすことができるとともに、近場の照度を低下させることができる。なお、この場合においても、境目の照度段差は生じない。つまり、段差のない照明により遠方照射領域から近傍照射領域でなだらか且つ大きな照度差を得ることができる。   According to this wide area illuminating device, for example, if the optical axis of the second concave reflecting mirror is tilted in the vicinity irradiation region, the near field can be illuminated with higher illuminance. Further, if the optical axis of the second concave reflecting mirror is tilted to the far irradiation region, the far field can be illuminated with higher illuminance and the near field illuminance can be reduced. Even in this case, there is no illuminance step at the boundary. That is, a gentle and large illuminance difference can be obtained from the far irradiation area to the near irradiation area by illumination without a step.

(14) 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面先端部、前記第二凹面反射鏡の前記第一凹面反射鏡側の反射面先端部の少なくともいずれかに対し、前記第一凹面反射鏡から前記第二凹面反射鏡に向けた方向に沿って前記LED光源からの光を反射する側方反射機能部を設けたことを特徴とする(1)〜(13)のいずれか1項記載の広域照明装置。 (14) At least one of the reflecting surface tip portion of the first concave reflecting mirror opposite to the second concave reflecting mirror and the reflecting surface tip portion of the second concave reflecting mirror on the first concave reflecting mirror side. On the other hand, the side reflection function part which reflects the light from the said LED light source along the direction which went to said 2nd concave reflective mirror from said 1st concave reflective mirror was provided. The wide-area lighting device according to any one of the above.

この広域照明装置によれば、側方反射機能部を設けたことにより側方への反射光成分が増加する。   According to this wide area illuminating device, the side reflected light component is increased by providing the side reflection function section.

(15) 前記側方反射機能部が、前記凹面反射鏡の反射表面から該凹面反射鏡の内側に反り返る形状を有することを特徴とする(14)記載の広域照明装置。 (15) The wide-area illumination device according to (14), wherein the side reflection function unit has a shape that warps from the reflecting surface of the concave reflecting mirror to the inside of the concave reflecting mirror.

この広域照明装置によれば、内側に反り返る形状によって、LED光源からの光を積極的に側方へ反射させることができる。   According to this wide area illuminating device, the light from the LED light source can be actively reflected to the side by the shape that warps inward.

(16)前記側方反射機能部が、前記凹面反射鏡の反射表面を梨地状に形成してなることを特徴とする(14)記載の広域照明装置。 (16) The wide-area illumination device as set forth in (14), wherein the side reflection function unit is formed with a satin finish on the reflecting surface of the concave reflecting mirror.

この広域照明装置によれば、反射表面を梨地状にすることで、反射光が拡散光となって側方へ向かうようになる。   According to this wide area illuminating device, the reflection surface becomes a diffused light and goes to the side by making the reflection surface into a satin finish.

(17) 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面、及び前記第二凹面反射鏡の前記第一凹面反射鏡側とは反対側の反射面に対し、各反射面先端部に前記LED光源からの光を光照射側に向けて反射する平面鏡を延設したことを特徴とする(1)〜(16)のいずれか1項記載の広域照明装置。 (17) With respect to the reflecting surface of the first concave reflecting mirror opposite to the second concave reflecting mirror, and the reflecting surface of the second concave reflecting mirror opposite to the first concave reflecting mirror, The wide-area illumination device according to any one of (1) to (16), wherein a flat mirror that reflects light from the LED light source toward the light irradiation side is extended at a front end portion of the reflection surface.

この広域照明装置によれば、凹面反射鏡からの反射光や直接光をより平行光化することができ、一層遠くに到達させることができる。すなわち、平面鏡は第一凹面反射鏡に照射されなかったLED光源からの光を受けて、光出射側に向けて略平行化して反射する。第一凹面反射鏡は、予め定められた反射面領域を有し、平面鏡は、この反射面領域に連続して予め定められた反射面領域を有するために、第一凹面反射鏡と平面鏡とによって反射された光は、大きな光量の平行光となって遠方照射領域に照射されることになる。   According to this wide area illuminating device, the reflected light from the concave reflecting mirror and the direct light can be made more parallel and can reach farther. That is, the plane mirror receives light from the LED light source that has not been irradiated to the first concave reflecting mirror, and reflects the light by making it substantially parallel toward the light emitting side. Since the first concave reflecting mirror has a predetermined reflecting surface area, and the plane mirror has a predetermined reflecting surface area continuous with the reflecting surface area, the first concave reflecting mirror and the plane mirror are used. The reflected light becomes a large amount of parallel light and irradiates the far irradiation region.

本発明に係る広域照明装置によれば、LED光源が実装された基板に配置されLED光源からの光を反射して照射する第一凹面反射鏡と、第一凹面反射鏡に隣接して配置された第二凹面反射鏡とを備え、第二凹面反射鏡は、第一凹面反射鏡側の反射鏡高さが高く、第一凹面反射鏡と反対側の反射鏡高さが低くなるように斜めに切断した形状を有するので、第一凹面反射鏡からの反射光と直接光が遠方を照射するとともに、第二凹面反射鏡からの反射光も遠方を照射する一方、第二凹面反射鏡からの直接光が近傍領域における斜め切断方向と直交する方向に向けて拡散して照射される。これにより、エネルギーロスの少ない高効率な配光制御を行うことができ、遠方から近傍にかけての領域に対し、照度を均等に保った状態での照明が可能となる。   According to the wide area illumination device of the present invention, the first concave reflecting mirror that is disposed on the substrate on which the LED light source is mounted and reflects and emits the light from the LED light source, and the first concave reflecting mirror are disposed adjacent to the first concave reflecting mirror. The second concave reflector is inclined so that the height of the reflector on the first concave reflector side is high and the height of the reflector on the opposite side of the first concave reflector is low. Since the reflected light from the first concave reflecting mirror and the direct light irradiate far away, the reflected light from the second concave reflecting mirror also radiates far away, while from the second concave reflecting mirror. Direct light is diffused and irradiated in a direction orthogonal to the oblique cutting direction in the neighboring region. Thereby, highly efficient light distribution control with little energy loss can be performed, and illumination in a state in which the illuminance is kept uniform can be performed in a region from a distance to the vicinity.

以下、本発明に係る広域照明装置の好適な実施の形態について、図面を参照して詳細に説明する。
図1は本発明に係る広域照明装置を光出射側から見た平面図、図2は図1のA−A矢視図、図3は図1に示した広域照明装置の斜視図である。
図1〜図3に示すように、本実施の形態による広域照明装置100は、複数のLED光源21が実装された一枚の基板23と、この基板23上の第一のLED光源を底部位置として配置され、第一のLED光源からの光を照明範囲に向けて反射する遠方照明用の第一凹面反射鏡25と、第一のLED光源に隣接する第二のLED光源を底部位置として配置され、該第二のLED光源からの光を前記照明範囲に向けて反射する近傍照明用の第二凹面反射鏡27と、を備え、第二凹面反射鏡27は、第一凹面反射鏡25側の基板23面からの反射鏡高さが高く、第一凹面反射鏡25とは反対側の反射鏡高さが低くなるように斜めに切断した形状を有する。この構成により、遠方から近傍にかけての領域を均等に照射することができる。
それぞれのLED光源21には不図示の駆動部が接続され、駆動部はLED光源21に発光駆動電力を供給する。この駆動部としては、例えばフルレンジトランス等を用いることができる。駆動部は商用電源に接続し、商用電源からの電力を、直流、交流、又はパルス状の駆動電圧に変換してLED光源21に供給する。LED光源21は定電流駆動によりその輝度が設定される。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a wide area illumination device according to the invention will be described in detail with reference to the drawings.
FIG. 1 is a plan view of a wide area illumination device according to the present invention as viewed from the light emitting side, FIG. 2 is a view taken along the line AA in FIG. 1, and FIG. 3 is a perspective view of the wide area illumination device shown in FIG.
As shown in FIGS. 1 to 3, the wide area illumination device 100 according to the present embodiment has a single substrate 23 on which a plurality of LED light sources 21 are mounted, and a first LED light source on the substrate 23 at a bottom position. The first concave light reflecting mirror 25 for distant illumination that reflects the light from the first LED light source toward the illumination range, and the second LED light source adjacent to the first LED light source are disposed as the bottom position. And a second concave reflecting mirror 27 for near illumination that reflects light from the second LED light source toward the illumination range, and the second concave reflecting mirror 27 is on the first concave reflecting mirror 25 side. The reflector has a shape cut obliquely so that the height of the reflecting mirror from the surface of the substrate 23 is high and the height of the reflecting mirror on the side opposite to the first concave reflecting mirror 25 is low. With this configuration, it is possible to evenly irradiate a region from a distance to the vicinity.
A drive unit (not shown) is connected to each LED light source 21, and the drive unit supplies light emission drive power to the LED light source 21. As this driving unit, for example, a full range transformer or the like can be used. The drive unit is connected to a commercial power source, converts the power from the commercial power source into a direct current, alternating current, or pulsed drive voltage and supplies it to the LED light source 21. The brightness of the LED light source 21 is set by constant current driving.

多数個のLED光源21は、基台である基板23上に第一のLED光源の列と第二のLED光源の列に沿って直線的に配設される。この基板23は、遠方照明用の第一凹面反射鏡25及び近傍照明用の第二凹面反射鏡27を一体成形してなる反射鏡フレームパネル29に、係合爪31等の係合手段によって一体に係着される。本構成のように、多列のLED光源21が一枚の基板に実装されることで、複数枚の基板に実装して組み合わせる場合と比較して、LED光源21の光学的な位置精度を正確にすることができる。なお、図2中、32は透明カバーを表す。   The multiple LED light sources 21 are linearly arranged along the first LED light source row and the second LED light source row on the substrate 23 which is a base. This substrate 23 is integrated with a reflector frame panel 29 formed by integrally forming a first concave reflecting mirror 25 for distant illumination and a second concave reflecting mirror 27 for near illumination by engaging means such as an engaging claw 31. Being attached to. As in this configuration, the multi-row LED light sources 21 are mounted on a single substrate, so that the optical positional accuracy of the LED light sources 21 is more accurate than in the case of mounting and combining on a plurality of substrates. Can be. In FIG. 2, 32 represents a transparent cover.

LED光源21は、青色発光ダイオードと、この青色発光ダイオードからの青色光を黄色光に変換する蛍光体とを有する。これにより、LED光源21では、青色発光ダイオードから出射された青色光が、蛍光体に吸収されると、蛍光体が波長のより短い黄色光を発し、この黄色光と吸収されなかった青色光とが混ざって、出射光が白色光となる。上記構成の他にも、青色発光ダイオードからの青色光を受けて赤色発光する蛍光体と緑色発光する蛍光体とを有する構成であってもよい。また、紫外線発光ダイオードからの紫外光を受けて赤色、緑色、青色発光する蛍光体を有する構成であってもよい。紫外線発光ダイオードは、青色発光ダイオードと比較して約2倍の発光効率であり、経済的に優れ、より高輝度の照明装置を構築できる。   The LED light source 21 includes a blue light emitting diode and a phosphor that converts blue light from the blue light emitting diode into yellow light. Thus, in the LED light source 21, when the blue light emitted from the blue light emitting diode is absorbed by the phosphor, the phosphor emits yellow light having a shorter wavelength, and the yellow light and the blue light that has not been absorbed. Are mixed, and the emitted light becomes white light. In addition to the above configuration, the configuration may include a phosphor that emits red light by receiving blue light from a blue light emitting diode and a phosphor that emits green light. Moreover, the structure which has the fluorescent substance which receives the ultraviolet light from an ultraviolet light emitting diode and light-emits red, green, and blue may be sufficient. The ultraviolet light emitting diode has a luminous efficiency approximately twice that of the blue light emitting diode, is economically superior, and can construct a lighting device with higher brightness.

第一凹面反射鏡25は、光出射側が解放側となる放物面からなる反射面(放物面鏡)25aを複数個(本実施形態においては合計17個)形成している。一方、第二凹面反射鏡27は、第一凹面反射鏡25と同様の放物面鏡25aを、所定の傾斜角度で切除した放物面鏡27aを同数形成している。第二凹面反射鏡27は、図2に示すように、第一凹面反射鏡25側の反射鏡高さh1が高く、第一凹面反射鏡25と反対側の反射鏡高さh2が低くなるように斜めに切断した形状を有する。なお、切断面は、直線状であっても曲線状であってもよい。また、「切断」すすることなく、例えば透明材料で第二凹面反射鏡を形成して、反射鏡面以外の部分は透明体とする構成にしてもよい。   The first concave reflecting mirror 25 is formed with a plurality of reflecting surfaces (parabolic mirrors) 25a (a total of 17 in this embodiment) that are parabolic surfaces whose light emitting side is the releasing side. On the other hand, the second concave reflecting mirror 27 is formed with the same number of parabolic mirrors 27a obtained by excising a parabolic mirror 25a similar to the first concave reflecting mirror 25 at a predetermined inclination angle. As shown in FIG. 2, the second concave reflecting mirror 27 has a high reflecting mirror height h1 on the first concave reflecting mirror 25 side and a low reflecting mirror height h2 on the opposite side to the first concave reflecting mirror 25. It has the shape cut | disconnected diagonally. The cut surface may be linear or curved. Further, the second concave reflecting mirror may be formed of, for example, a transparent material without being “cut”, and a portion other than the reflecting mirror surface may be a transparent body.

図4は凹面反射鏡の切断形状と照度との相関を表した説明図である。
凹面反射鏡は、光出射開放面Aが光軸Axと垂直である場合、LED光源21からの光が放物面鏡に反射されることで、図4(a)に示すように、大きな光量で光軸Axに沿う略平行光となって照射される。一方、斜め切断面の傾斜角度がθ1、θ2と大きくなるに伴って、光出射開放面B、光出射開放面Cによる側方開放面積が徐々に増加する。これにより、放物面鏡には入射せずに、図4(b),(c)に示すように、LED光源21から直接的に側方開放面から出射される拡散光が増加するようになっている。
FIG. 4 is an explanatory diagram showing the correlation between the cut shape of the concave reflecting mirror and the illuminance.
When the light emitting / opening surface A is perpendicular to the optical axis Ax, the concave reflecting mirror reflects light from the LED light source 21 to the parabolic mirror, and as shown in FIG. And is irradiated as substantially parallel light along the optical axis Ax. On the other hand, as the inclination angles of the oblique cut surfaces increase to θ1 and θ2, the side opening areas by the light emission opening surface B and the light emission opening surface C gradually increase. As a result, as shown in FIGS. 4B and 4C, the diffused light emitted from the LED light source 21 directly from the side open surface is increased without entering the parabolic mirror. It has become.

また、第一凹面反射鏡25及び第二凹面反射鏡27では、LED光源21が放物面鏡25a、放物面鏡27aの焦点位置に配置されている。LED光源21からの光を放物面鏡25a、放物面鏡27aで反射させることによって平行光化でき、特に第一凹面反射鏡25での遠方の照射が可能となる。これにより、光の照射方向(近傍照射領域から遠方照射領域に向かう方向)に延びる光の帯を長く形成できるようにしている。   In the first concave reflecting mirror 25 and the second concave reflecting mirror 27, the LED light source 21 is disposed at the focal position of the parabolic mirror 25a and the parabolic mirror 27a. By collimating the light from the LED light source 21 with the parabolic mirror 25a and the parabolic mirror 27a, the light can be collimated. In particular, the first concave reflecting mirror 25 can irradiate far away. This makes it possible to form a long band of light extending in the light irradiation direction (the direction from the near irradiation region to the far irradiation region).

図5は反射鏡フレームパネルの拡大斜視図である。
第一凹面反射鏡25及び第二凹面反射鏡27の凹面部を開口させる反射鏡フレームパネル29の表面29aは、梨地状に形成される。梨地状の表面29aによって反射された光は、巨視的に見れば鏡面反射となるが、微視的に見れば拡散して反射される。
FIG. 5 is an enlarged perspective view of the reflector frame panel.
The surface 29a of the reflector frame panel 29 that opens the concave portions of the first concave reflector 25 and the second concave reflector 27 is formed in a satin shape. The light reflected by the satin-like surface 29a is specularly reflected when viewed macroscopically, but diffused and reflected when viewed microscopically.

反射鏡フレームパネル29の表面を梨地状に表面処理することで、近場の壁面などに照射された光が反射によって広域照明装置100へ戻された場合であっても、反射鏡フレームパネル29の梨地状表面29aによって拡散反射され、表面29aが鏡面の場合に発生し易い二次反射による壁面の照度ムラ(縞模様)が防止できるようになっている。   By treating the surface of the reflector frame panel 29 with a satin finish, even if the light irradiated to the near wall surface or the like is returned to the wide area illumination device 100 by reflection, the reflector frame panel 29 Illumination unevenness (striped pattern) on the wall surface due to secondary reflection that is diffusely reflected by the matte surface 29a and easily occurs when the surface 29a is a mirror surface can be prevented.

放物面鏡25aの反射面に施されるコーティング加工面としては、例えばスパッタリングメッキによる仕上げが挙げられる。スパッタリングメッキの工程は、専用プライマーによるベースコートの塗布、真空中でのアルミ蒸着、アルミ蒸着面へのウレタンクリアーコートからなる。したがって、反射鏡フレームパネル表面29aの被コーティング面を、ザラザラな所謂シボ仕上げとすることにより、スパッタリングメッキ後に梨地状に形成できる。   Examples of the coating surface to be applied to the reflecting surface of the parabolic mirror 25a include finishing by sputtering plating. The sputtering plating process consists of applying a base coat with a dedicated primer, vapor-depositing aluminum in a vacuum, and urethane clear coating on the aluminum vapor-deposited surface. Therefore, the coated surface of the reflector frame panel surface 29a can be formed into a satin finish after sputtering plating by making it a so-called rough finish.

また、第二凹面反射鏡27の放物面鏡27aも梨地状に形成されることが望ましい。特に近場を照明する第二凹面反射鏡27の放物面鏡27aが梨地状となることで、第二凹面反射鏡27の傾斜切除形状による拡散照射作用に加え、LED光源21からの反射光が梨地状放物面鏡27aによってさらに拡散され、近場のより均一な照明が可能となる。つまり、拡散効果が向上して、より均等な照度の照明が可能となる。   Further, it is desirable that the parabolic mirror 27a of the second concave reflecting mirror 27 is also formed in a satin shape. In particular, the parabolic mirror 27a of the second concave reflecting mirror 27 that illuminates the near field has a satin shape, so that the reflected light from the LED light source 21 is added in addition to the diffuse irradiation action by the inclined cut shape of the second concave reflecting mirror 27. Is further diffused by the satin-like parabolic mirror 27a, enabling more uniform illumination in the near field. That is, the diffusion effect is improved, and illumination with more uniform illuminance is possible.

広域照明装置100は、複数の第一凹面反射鏡25又は第二凹面反射鏡27を直線状に配列してなる列状の第一凹面反射鏡列33と第二凹面反射鏡列35とが、平行な任意の列数で設けられている。本実施の形態では、第一凹面反射鏡列33と第二凹面反射鏡列35とが1列ずつの合計2列で構成されている。このような多列構成とすることにより、照射可能範囲が増加し、広い面積の照明が可能となる。また、同一の照射領域で比較した場合、少数列で照射したときに比べ、多数列で照射したときの方が、照度を高めることができる。さらに、多数列で照射したときの方が、第二凹面反射鏡列35の個々の切断傾斜勾配が緩やかとなるので、各反射鏡列による照明光境界接続部を一層目立たなくできる。   The wide area illumination device 100 includes a first concave reflecting mirror row 33 and a second concave reflecting mirror row 35 that are formed by arranging a plurality of first concave reflecting mirrors 25 or second concave reflecting mirrors 27 in a straight line. It is provided with any number of parallel columns. In the present embodiment, the first concave reflecting mirror row 33 and the second concave reflecting mirror row 35 are constituted by a total of two rows. By adopting such a multi-row configuration, the irradiable range is increased, and illumination over a wide area is possible. Further, when compared in the same irradiation region, it is possible to increase the illuminance when irradiation is performed with a large number of rows compared to when irradiation is performed with a small number of rows. Further, when the multiple rows are irradiated, the individual inclined slopes of the second concave reflecting mirror row 35 become gentler, so that the illumination light boundary connecting portion by each reflecting mirror row can be made less noticeable.

また、広域照明装置100では、列方向に配置されるそれぞれの第一凹面反射鏡25は、列方向の配置ピッチPが第一凹面反射鏡25の平面視円形の最大直径距離Dよりも短く設定されている。このような構成とすることにより、第一凹面反射鏡列33において、列方向で隣接する放物面鏡25a同士の離間距離が短くなるので、隣接するLED光源21からの光の影が小さくなり、遠方照明領域における反射鏡列方向の照度がより均一となる。さらに照明装置自体を小型化することができる。   Further, in the wide area illumination device 100, the first concave reflecting mirrors 25 arranged in the column direction are set so that the arrangement pitch P in the column direction is shorter than the maximum diameter distance D of the first concave reflecting mirror 25 in a plan view. Has been. With such a configuration, in the first concave reflecting mirror row 33, the separation distance between the parabolic mirrors 25a adjacent in the row direction is shortened, so that the shadow of light from the adjacent LED light sources 21 is reduced. The illuminance in the direction of the reflecting mirror in the far illumination area becomes more uniform. Furthermore, the lighting device itself can be reduced in size.

さらに、第一凹面反射鏡25の第二凹面反射鏡27とは反対側の反射面、及び第二凹面反射鏡27の第一凹面反射鏡25側とは反対側の反射面に対し、各反射面先端部にLED光源21からの光を光照射側に向けて反射する平面鏡37が設けられている。この平面鏡37が延設されることにより、放物面鏡25aからの反射光や、LED光源21からの直接光をより平行光化することができ、一層遠くに到達させることができる。すなわち、平面鏡37は、第一凹面反射鏡25や第二凹面反射鏡27に照射されなかったLED光源21からの光を受けて、光出射側に向けて集光させながら反射する。第一凹面反射鏡25は、予め定められた反射面領域を有し、平面鏡37は、この反射面領域に連続する予め定められた反射面領域を有する。このため、第一凹面反射鏡25と平面鏡37とによって反射された光は、光量を増大させた平行光となって遠方照射領域に照射されることになる。また、第二凹面反射鏡27についても同様である。   Further, each reflection is performed on the reflecting surface of the first concave reflecting mirror 25 on the side opposite to the second concave reflecting mirror 27 and the reflecting surface on the opposite side of the second concave reflecting mirror 27 from the first concave reflecting mirror 25 side. A flat mirror 37 that reflects light from the LED light source 21 toward the light irradiation side is provided at the front end of the surface. By extending the plane mirror 37, the reflected light from the parabolic mirror 25a and the direct light from the LED light source 21 can be made more parallel and can reach farther. That is, the plane mirror 37 receives light from the LED light source 21 that has not been irradiated to the first concave reflecting mirror 25 and the second concave reflecting mirror 27, and reflects the light while condensing it toward the light emitting side. The first concave reflecting mirror 25 has a predetermined reflecting surface region, and the plane mirror 37 has a predetermined reflecting surface region continuous with the reflecting surface region. For this reason, the light reflected by the first concave reflecting mirror 25 and the plane mirror 37 is irradiated to the far irradiation region as parallel light with an increased amount of light. The same applies to the second concave reflecting mirror 27.

第一凹面反射鏡25、第二凹面反射鏡27、平面鏡37を有する反射鏡フレームパネル29は、樹脂材料により一体成形される。これにより、製造が簡単になり、コスト低減が図られる。また、第一凹面反射鏡列33と第二凹面反射鏡列35のそれぞれの列における反射鏡同士、或いは列間の反射鏡同士の相対的な光軸位置を高精度に保つことができる。この結果、照度にバラツキの生じない高品質の広域照明装置100が安定的に製造可能となる。   The reflector frame panel 29 having the first concave reflector 25, the second concave reflector 27, and the plane mirror 37 is integrally formed of a resin material. This simplifies manufacturing and reduces costs. Further, the relative optical axis positions of the reflecting mirrors in the first concave reflecting mirror row 33 and the second concave reflecting mirror row 35 or the reflecting mirrors between the rows can be maintained with high accuracy. As a result, it is possible to stably manufacture a high-quality wide-area lighting device 100 that does not vary in illuminance.

図6は第一凹面反射鏡及び第二凹面反射鏡の配光パターンを表した説明図である。
上記の構成を備えた広域照明装置100では、反射面の切断されない第一凹面反射鏡25は、図6(a)に示すように、光軸Axに対称の放物面鏡25aを備えることになり、LED光源21からの直接光と、反射面によって反射した反射光とが略平行光となって遠方領域に照射される。一方、反射面の切断された第二凹面反射鏡27は、図6(b)に示すように、光軸Axを挟み第一凹面反射鏡25側の反射面では第一凹面反射鏡25と同様に略平行光が照射され、光軸Axを挟むその反対側では反射面が傾斜して切除されていることにより、反射光が徐々に減少されつつ、LED光源21からの直接光の比率が徐々に増加される。これに加え、梨地による拡散反射光も切除部から照射される。その結果、第二凹面反射鏡27によれば、大局的な出射方位を固定しつつ、遠方への光量を維持しながら近方への拡散光量を確保している。したがって、単に周囲に均等に拡散光を放射する構成とは異なり、照明のエネルギーロスを抑えることができる。
FIG. 6 is an explanatory diagram showing light distribution patterns of the first concave reflecting mirror and the second concave reflecting mirror.
In the wide area illumination device 100 having the above-described configuration, the first concave reflecting mirror 25 whose reflecting surface is not cut is provided with a parabolic mirror 25a symmetrical to the optical axis Ax, as shown in FIG. Thus, the direct light from the LED light source 21 and the reflected light reflected by the reflecting surface become substantially parallel light and irradiate the far region. On the other hand, as shown in FIG. 6B, the second concave reflecting mirror 27 whose reflecting surface is cut is similar to the first concave reflecting mirror 25 on the reflecting surface on the first concave reflecting mirror 25 side with the optical axis Ax interposed therebetween. Is irradiated with substantially parallel light, and on the opposite side across the optical axis Ax, the reflective surface is inclined and cut away, so that the ratio of direct light from the LED light source 21 is gradually reduced while the reflected light is gradually reduced. Will be increased. In addition to this, diffuse reflected light from the satin is also irradiated from the excision part. As a result, according to the second concave reflecting mirror 27, the diffuse light quantity to the near side is ensured while maintaining the light quantity to the far side while fixing the global emission direction. Therefore, unlike the configuration in which diffused light is radiated evenly around, the energy loss of illumination can be suppressed.

図7は壁面照明として用いられた場合の広域照明装置の照明領域を表した側面図、図8は図7の壁面に形成される照明領域の正面図である。
広域照明装置100は、例えば壁面照明として用いられることで、第一凹面反射鏡25による略平行光となった照射光で遠方領域E1が照射され、第二凹面反射鏡27による直接光の比率が徐々に増加された拡散反射光で近傍領域E2が照射される。そして、遠方領域E1と近傍領域E2との境目領域E3は、照度の段差がなく繋がる。これにより、図8に示すように、遠方から近傍にかけての領域Eに対し、照度を均等に保った状態での照明が可能となる。
FIG. 7 is a side view showing an illumination area of the wide area illumination device when used as wall illumination, and FIG. 8 is a front view of the illumination area formed on the wall surface of FIG.
The wide area illumination device 100 is used as wall illumination, for example, so that the distant region E1 is irradiated with the irradiation light that has become substantially parallel light by the first concave reflecting mirror 25, and the ratio of direct light by the second concave reflecting mirror 27 is increased. The neighboring region E2 is irradiated with the gradually increased diffuse reflection light. The boundary region E3 between the far region E1 and the nearby region E2 is connected without a step difference in illuminance. As a result, as shown in FIG. 8, illumination in a state in which the illuminance is kept uniform can be performed for the region E from the distant to the vicinity.

図9は図1に示した広域照明装置が用いられたドーム状天井の側面図である。
また、広域照明装置100は、ドーム状の天井面39を均一な照度で照明する場合にも好適に用いることができる。ドーム状の天井面39の場合、図示のように、ドーム周端部に広域照明装置100を複数設置する。それぞれの広域照明装置100は、天井付近(遠方領域E1)を照射する第一凹面反射鏡25、その外側(ドームの中心側)に配置され側壁面(近傍領域E2)を照射する第二凹面反射鏡27とを有する。これにより、湾曲天井面の途中部分に照明装置を追加したり、湾曲天井面の途中部分から照明光を照射する照明装置を追加することなく、直径方向両端のみに配置した広域照明装置100で、ドーム状天井面39を均一照度で照明することが可能となる。
FIG. 9 is a side view of a dome-shaped ceiling in which the wide area illumination device shown in FIG. 1 is used.
The wide area illumination device 100 can also be suitably used when illuminating the dome-shaped ceiling surface 39 with uniform illuminance. In the case of the dome-shaped ceiling surface 39, as shown in the drawing, a plurality of wide area lighting devices 100 are installed at the peripheral edge of the dome. Each wide-area illumination device 100 includes a first concave reflecting mirror 25 that irradiates the vicinity of the ceiling (distant area E1), and a second concave reflection that is disposed on the outer side (center side of the dome) and irradiates the side wall surface (near area E2). And a mirror 27. Thereby, without adding a lighting device to the middle part of the curved ceiling surface or adding a lighting device that irradiates illumination light from the middle part of the curved ceiling surface, the wide-area lighting device 100 arranged only at both ends in the diameter direction, It becomes possible to illuminate the dome-shaped ceiling surface 39 with uniform illuminance.

以上のように、上記構成による広域照明装置100によれば、LED光源21が実装された基板23に配置されLED光源21からの光を反射して照射する第一凹面反射鏡25と、第一凹面反射鏡25に隣接して配置された第二凹面反射鏡27とを備え、第二凹面反射鏡27は、第一凹面反射鏡25側の反射鏡高さh1が高く、第一凹面反射鏡25と反対側の反射鏡高さh2が低くなるように斜めに切断した形状を有するので、第一凹面反射鏡25からの反射光と直接光が遠方領域E1を照射するとともに、第二凹面反射鏡27からの反射光も遠方領域E1を照射する一方、第二凹面反射鏡27からの直接光が近傍領域E2における斜め切断方向と直交する方向に向けて拡散して照射される。これにより、ルーバやレンズを透過しないエネルギーロスの少ない高効率な配光制御を行うことができ、遠方から近傍にかけての領域Eに対して、照度を均等に保った状態での照明が可能となる。   As described above, according to the wide area illumination device 100 configured as described above, the first concave reflecting mirror 25 that is disposed on the substrate 23 on which the LED light source 21 is mounted and reflects and emits the light from the LED light source 21, and the first And a second concave reflecting mirror 27 disposed adjacent to the concave reflecting mirror 25. The second concave reflecting mirror 27 has a high reflecting mirror height h1 on the first concave reflecting mirror 25 side, and the first concave reflecting mirror. Since the reflecting mirror height h2 on the side opposite to that of the mirror 25 is obliquely cut so that the reflected light and the direct light from the first concave reflecting mirror 25 irradiate the far region E1, the second concave reflecting Reflected light from the mirror 27 also irradiates the far region E1, while direct light from the second concave reflecting mirror 27 is diffused and irradiated in a direction perpendicular to the oblique cutting direction in the near region E2. As a result, highly efficient light distribution control with little energy loss that does not pass through the louver or lens can be performed, and illumination in a state in which the illuminance is kept uniform can be performed for the region E from the distant to the vicinity. .

図10は第一凹面反射鏡と第二凹面反射鏡列が千鳥配置された変形例1の平面図である。
なお、第一凹面反射鏡25及び第二凹面反射鏡27は、千鳥配置としても良い。千鳥配置とした構成によれば、第一凹面反射鏡列33の放物面鏡25a同士の間に、第二凹面反射鏡列35の放物面鏡27aが近接して配置されることとなり、反射鏡列同士の離間距離Lが短くなって、広域照明装置100の光源密度を向上でき、コンパクト化が可能となる。
FIG. 10 is a plan view of Modification 1 in which a first concave reflecting mirror and a second concave reflecting mirror array are arranged in a staggered manner.
The first concave reflecting mirror 25 and the second concave reflecting mirror 27 may be staggered. According to the configuration of the staggered arrangement, the parabolic mirror 27a of the second concave reflecting mirror row 35 is disposed close to between the parabolic mirrors 25a of the first concave reflecting mirror row 33, The separation distance L between the mirror rows is shortened, the light source density of the wide area illumination device 100 can be improved, and the size can be reduced.

次に、本発明に係る広域照明装置の第2の実施の形態を説明する。
図11は反射鏡列が複数列設けられた第2の実施の形態による広域照明装置の断面図、図12は図11に示した広域照明装置に接続される光量制御手段を含む電気系のブロック図、図13は光量制御手段によって制御される駆動部の一例としての回路図である。
この実施の形態による広域照明装置200は、一列の第一凹面反射鏡25と、他の二列の第二凹面反射鏡27A,27Bに対応する各LED光源列が、列毎に独立して光量制御可能な光量制御手段(制御部)41に接続されている。
Next, a second embodiment of the wide area illumination device according to the present invention will be described.
FIG. 11 is a cross-sectional view of a wide area illumination device according to the second embodiment in which a plurality of mirror rows are provided, and FIG. 12 is an electric system block including a light amount control unit connected to the wide area illumination device shown in FIG. FIG. 13 and FIG. 13 are circuit diagrams as an example of a drive unit controlled by the light amount control means.
In the wide area illumination device 200 according to this embodiment, each row of LED light sources corresponding to one row of first concave reflecting mirrors 25 and the other two rows of second concave reflecting mirrors 27A and 27B is independent of each other. It is connected to a controllable light amount control means (control unit) 41.

制御部41は、直流電源部43が接続され、照明パターン記憶部45からの制御データを読み込むことで、それぞれの第一凹面反射鏡25、第二凹面反射鏡27A,27Bに対応する駆動部47a,47b,47cへ駆動制御信号を送出する。   The control unit 41 is connected to the DC power supply unit 43, and reads control data from the illumination pattern storage unit 45, thereby driving units 47a corresponding to the first concave reflecting mirror 25 and the second concave reflecting mirrors 27A and 27B, respectively. , 47b, 47c, drive control signals are sent.

駆動部47a,47b,47cは、LED光源21の定電流パルス幅制御駆動回路として構成されている。図13に示すように、例えば、駆動部47aにおいて、51,53は抵抗、55,57はトランジスタ、59はツェナーダイオード、61はパルス発生回路である。なお、図13においては、駆動部47c以降は駆動部47a,47bと同様であるので、その記載は省略している。   The drive units 47a, 47b, 47c are configured as a constant current pulse width control drive circuit of the LED light source 21. As shown in FIG. 13, for example, in the drive unit 47a, 51 and 53 are resistors, 55 and 57 are transistors, 59 is a Zener diode, and 61 is a pulse generation circuit. In FIG. 13, the drive section 47c and the subsequent sections are the same as the drive sections 47a and 47b, and thus description thereof is omitted.

この駆動部47aでは、直流電源部43に抵抗51,53、トランジスタ55、ツェナーダイオード59で構成される定電流回路63,63をLED光源21と直列に接続し、LED光源21を発光させる。トランジスタ55のベース電圧はツェナーダイオード59のツェナー電圧にクランプされ、ツェナー電圧をV、トランジスタ59のベース・エミッタ間電圧をVbeとすると、抵抗51の電圧はV−Vbeとなり、抵抗51を流れる電流は抵抗51の抵抗値をR4とすれば(V−Vbe)/R4で与えられる。ツェナー電圧V、ベース・エミッタ間電圧Vbeを一定とすれば、抵抗51の電流は(V−Vbe)/R4となり一定になる。すなわち、直流電圧V或いはLED光源21の電圧降下が変化しても、LED光源21の電流が一定になるようにトランジスタ55のコレクタ−エミッタ間電圧が変化する。 In the drive unit 47 a, constant current circuits 63 and 63 including resistors 51 and 53, a transistor 55, and a Zener diode 59 are connected to the DC light source unit 43 in series with the LED light source 21 to cause the LED light source 21 to emit light. The base voltage of the transistor 55 is clamped to the Zener voltage of the Zener diode 59. When the Zener voltage is V z and the base-emitter voltage of the transistor 59 is V be , the voltage of the resistor 51 is V z −V be , and the resistor 51 Is given by (V z −V be ) / R 4, where R 4 is the resistance value of the resistor 51. If the zener voltage V z and the base-emitter voltage V be are constant, the current of the resistor 51 becomes (V z −V be ) / R4 and becomes constant. That is, even if the DC voltage V 0 or the voltage drop of the LED light source 21 changes, the collector-emitter voltage of the transistor 55 changes so that the current of the LED light source 21 becomes constant.

ツェナーダイオード59と並列にトランジスタ57が接続され、トランジスタ57のベースにはパルス発生器61が接続されている。トランジスタ57はパルス発生器61からのパルス電圧でオンするとツェナーダイオード59は短絡されるので、トランジスタ55のベース電流は0となり、トランジスタ55はオフとなる。すなわち、LED光源21の電流は遮断されるので消灯する。パルス発生器61からのパルス電圧がなくなると、トランジスタ57はオフとなるのでトランジスタ55のベースには電流が流れ、定電流回路63はLED光源21に定電流を供給しLED光源21を点灯させる。ここで、パルス発生器61からのパルス電圧の有りの時間と無しの時間の比を制御すること、すなわち、パルス幅制御することで、LED光源21の輝度を、駆動電流を変えることなく調整することができる。   A transistor 57 is connected in parallel with the Zener diode 59, and a pulse generator 61 is connected to the base of the transistor 57. When the transistor 57 is turned on by the pulse voltage from the pulse generator 61, the Zener diode 59 is short-circuited, so that the base current of the transistor 55 is 0 and the transistor 55 is turned off. That is, since the current of the LED light source 21 is cut off, it is turned off. When the pulse voltage from the pulse generator 61 disappears, the transistor 57 is turned off, so that a current flows through the base of the transistor 55, and the constant current circuit 63 supplies a constant current to the LED light source 21 to turn on the LED light source 21. Here, the luminance of the LED light source 21 is adjusted without changing the drive current by controlling the ratio of the time with and without the pulse voltage from the pulse generator 61, that is, by controlling the pulse width. be able to.

トランジスタ55がオフとなるとLED光源21の電圧降下は期待できないので、トランジスタ55には電源電圧が印加されることになる。電源電圧が140Vである場合はトランジスタ55の耐圧は200V以上が必要になる。   Since the voltage drop of the LED light source 21 cannot be expected when the transistor 55 is turned off, the power supply voltage is applied to the transistor 55. When the power supply voltage is 140V, the withstand voltage of the transistor 55 needs to be 200V or more.

広域照明装置200では、制御部41によって各反射鏡列におけるLED光源21の光量を適宜増減制御することで、近傍照射領域から遠方照射領域までの照明のつなぎ目(境目)部分を連続的な照度とすることができ、照度の段差による照度ムラの発生を防止できる。これにより、境目において照度差に起因する線が発生することを確実に防止できる。上記のLED光源21の光量制御は、前述の2列構成の第1実施形態の広域照明装置100に対しても同様に適用可能である。   In the wide area illumination device 200, the control unit 41 appropriately controls increase / decrease of the light amount of the LED light source 21 in each mirror array, so that the joint (border) of illumination from the near irradiation region to the far irradiation region can be set as continuous illuminance. It is possible to prevent illuminance unevenness due to illuminance steps. Thereby, it can prevent reliably that the line resulting from an illuminance difference arises in a boundary. The above-described light amount control of the LED light source 21 can be similarly applied to the wide area illumination device 100 of the first embodiment having the above-described two-row configuration.

図14は図11に示した広域照明装置によって照明されたグラデーション照明領域を表す模式図である。
第一凹面反射鏡25、第二凹面反射鏡27A,27Bに対応する各LED光源21列を、列毎に異なる照度で設定することにより、図14に示すように、近傍領域E2から遠方領域E1にかけて徐々に照明光の照度が変化するグラデーション照明65が可能となる。例えば壁面照明であれば、天井近くを明るく、床に向けて徐々に照度が下がるようなグラデーションを形成することで、美的に優れた照明光を得ることができる。
FIG. 14 is a schematic diagram showing a gradation illumination area illuminated by the wide area illumination device shown in FIG.
By setting the LED light source 21 columns corresponding to the first concave reflecting mirror 25 and the second concave reflecting mirrors 27A and 27B at different illuminances for each column, as shown in FIG. Gradation illumination 65 in which the illuminance of the illumination light gradually changes is possible. For example, in the case of wall illumination, aesthetically excellent illumination light can be obtained by forming a gradation in which the vicinity of the ceiling is bright and the illuminance gradually decreases toward the floor.

また、第一凹面反射鏡25、第二凹面反射鏡27A,27Bに対応する各LED光源21列は、列毎に異なる照度(明・暗・明や、暗・明・暗等)を、時系列的に変化させるものであってもよい。この場合には、照明する対象物の位置に応じて、照度を明るめ、暗めの任意に設定することができ、また、その照度に変化を持たせることで、照明空間におけるムード作り等に寄与できる。さらに、照明する対象物が自動的に入れ替わる等の変化がある場合に、被照明物の種類に応じた照度での照明を簡単に行うことができる。   Further, each LED light source 21 row corresponding to the first concave reflecting mirror 25 and the second concave reflecting mirror 27A, 27B has different illuminance (bright / dark / bright, dark / bright / dark, etc.) for each row. It may be changed in series. In this case, depending on the position of the object to be illuminated, the illuminance can be arbitrarily set to be darker or darker, and by changing the illuminance, it is possible to contribute to mood creation in the illumination space. . Furthermore, when there is a change such as an object to be illuminated automatically switched, illumination with illuminance corresponding to the type of the object to be illuminated can be easily performed.

図15は図11に示した広域照明装置によって照明された色違い照明領域を表す模式図である。
さらに、広域照明装置200は、制御部41により、第一凹面反射鏡25及び第二凹面反射鏡27A,27Bに対応する各LED光源21を、列毎に発色が異なるように制御してもよい。これにより、近傍領域E2から遠方領域E1にかけて照明光の色が変化する多色照明領域C1,C2,C3の形成が可能となり、美的に優れた多色ディスプレイ等が可能となる。この場合、各色照明領域C1,C2,C3の境目は、混色して色が連続的に変化する。
何れの場合も、被照明対象物が近傍から遠方にかけて存在する場合に、単一の広域照明装置200により遠近双方の領域を境目なく同時に、しかも視覚的な作用を醸しながら照らすことができる。
FIG. 15 is a schematic diagram showing different color illumination areas illuminated by the wide area illumination device shown in FIG.
Further, the wide-area illumination device 200 may control the LED light sources 21 corresponding to the first concave reflecting mirror 25 and the second concave reflecting mirrors 27A and 27B by the control unit 41 so that the colors are different for each column. . As a result, it is possible to form the multicolor illumination areas C1, C2, and C3 in which the color of the illumination light changes from the near area E2 to the far area E1, and an aesthetically excellent multicolor display or the like becomes possible. In this case, the boundary between the color illumination areas C1, C2, and C3 is mixed and the color continuously changes.
In either case, when an object to be illuminated exists from the vicinity to the distance, the single wide area illumination device 200 can illuminate both the distance and the near area at the same time and with a visual effect.

図16は凹面反射鏡に複数のLED光源を備えた変形例2の説明図である。
本変形例における広域照明装置は、複数のLED光源21を第一凹面反射鏡25と第二凹面反射鏡27の放物面焦点位置にそれぞれブロック状に配置している。ブロック内には、例えば縦横3個ずつの合計9個のLED光源21が基板23上に実装されている。つまり、一つの反射鏡に対して複数のLED光源21を設けた構成としている。本例では第一凹面反射鏡25と第二凹面反射鏡27がそれぞれ単一の構成であるが、これに限らず、複数の反射鏡が配列されたものとしてもよい。また、本構成では、基本的に全LED光源21が同時点灯されるように制御するが、各ブロックで照度を変化させる制御を行うことでもよい。また、個々のLED光源21が独立に発光制御されることでもよい。その場合には、グラデーションがきめ細かに設定でき、また、個々のLED光源21に複数の発光色の光源を用いれば、多色の照明光をきめ細かに設定できる。さらに、第一凹面反射鏡25と第二凹面反射鏡27のそれぞれ単一の反射面の構成である本広域照明装置を複数個配置することで、近傍照射領域から遠方照射領域に向かう方向でのグラデーションや多色変化に加え、個々の反射鏡が並ぶ列方向に沿う方向(装置の幅方向、すなわち、遠近方向に延在する帯状照射領域の幅方向)でのグラデーションや多色変化も可能となる。
FIG. 16 is an explanatory diagram of Modification 2 in which a concave reflecting mirror is provided with a plurality of LED light sources.
In the wide area illumination device according to this modification, a plurality of LED light sources 21 are arranged in blocks at the paraboloid focal positions of the first concave reflecting mirror 25 and the second concave reflecting mirror 27, respectively. For example, a total of nine LED light sources 21, for example, three vertically and three horizontally, are mounted on the substrate 23 in the block. That is, it is set as the structure which provided the some LED light source 21 with respect to one reflective mirror. In this example, the first concave reflecting mirror 25 and the second concave reflecting mirror 27 have a single configuration, but the present invention is not limited to this, and a plurality of reflecting mirrors may be arranged. Further, in this configuration, basically, the control is performed so that all the LED light sources 21 are turned on simultaneously, but it is also possible to perform control for changing the illuminance in each block. Alternatively, each LED light source 21 may be controlled to emit light independently. In that case, gradation can be set finely, and if a light source of a plurality of emission colors is used for each LED light source 21, multicolor illumination light can be set finely. Furthermore, by arranging a plurality of the wide area illumination devices, each having a single reflecting surface configuration of the first concave reflecting mirror 25 and the second concave reflecting mirror 27, in the direction from the near irradiation region to the far irradiation region. In addition to gradation and multi-color change, gradation and multi-color change are also possible in the direction along the row direction of the individual reflectors (the width direction of the device, that is, the width direction of the belt-like irradiation area extending in the perspective direction). Become.

図17は第一凹面反射鏡に対し第二凹面反射鏡の光軸を傾けた変形例3の断面図である。
本変形例における第二凹面反射鏡27の光軸Ax1は、第一凹面反射鏡25の光軸Ax2に対して所定の角度θだけ傾斜させている。例えば、近傍照射領域に第二凹面反射鏡27の光軸Ax2を傾ければ、近傍照射領域をより高照度で照らすことができる。また、遠方照射領域に第二凹面反射鏡27の光軸Ax2を傾ければ、遠方をより高照度で照らすことができるとともに、近傍照射領域を低照度で照らせるようになる。なお、この場合においても、遠方と近傍の境目の照度段差は生じない。つまり、段差のない照明により遠方照射領域から近傍照射領域でなだらか且つ大きな照度差を得ることができる。
FIG. 17 is a cross-sectional view of Modification 3 in which the optical axis of the second concave reflecting mirror is inclined with respect to the first concave reflecting mirror.
The optical axis Ax1 of the second concave reflecting mirror 27 in this modification is inclined by a predetermined angle θ with respect to the optical axis Ax2 of the first concave reflecting mirror 25. For example, if the optical axis Ax2 of the second concave reflecting mirror 27 is inclined to the vicinity irradiation area, the vicinity irradiation area can be illuminated with higher illuminance. Further, if the optical axis Ax2 of the second concave reflecting mirror 27 is inclined to the far irradiation area, the far area can be illuminated with higher illuminance, and the near irradiation area can be illuminated with low illuminance. Even in this case, there is no illuminance step at the boundary between the distant and the neighboring areas. That is, a gentle and large illuminance difference can be obtained from the far irradiation area to the near irradiation area by illumination without a step.

図18は第一凹面反射鏡と第二凹面反射鏡の端部に最近傍領域に向けて反射する反り返り部を設けた変形例4の断面図である。
第一凹面反射鏡25は、第二凹面反射鏡27側とは反対側の外側高さh3は最大高さとなり、第二凹面反射鏡27側の内側高さh4が、外側高さh3より低く形成されている。第二凹面反射鏡27は、第一凹面反射鏡25側の内側高さh4が、反対側の外側高さh5より高く形成され、h3>h4>h5の関係を有している。
FIG. 18 is a cross-sectional view of Modification 4 in which warped portions that reflect toward the nearest region are provided at the ends of the first concave reflecting mirror and the second concave reflecting mirror.
In the first concave reflecting mirror 25, the outer height h3 on the opposite side to the second concave reflecting mirror 27 side is the maximum height, and the inner height h4 on the second concave reflecting mirror 27 side is lower than the outer height h3. Is formed. The second concave reflecting mirror 27 is formed such that the inner height h4 on the first concave reflecting mirror 25 side is higher than the outer height h5 on the opposite side, and has a relationship of h3>h4> h5.

そして、第一凹面反射鏡25の外側先端部と、第二凹面反射鏡27の内側先端部には、最近傍領域に向けて反射する高さHa、Hbの側方反射機能部としての反り返り部25b,27bを形成している。反り返り部25ba,27bは、各凹面反射鏡の放物線カーブから外れたオーバーハング状の曲面(あるいは平面であってもよい)であり、凹面反射鏡の内側に反り返るものとなっている。反り返り部25b、27bの反射面は梨地状にされている。この反り返り部25b,27bは、反射鏡先端から幅Ha,Hbの範囲で形成されたものであり、最近傍領域への反射光量に応じてその範囲が任意に設定される。   Further, the outer front end portion of the first concave reflecting mirror 25 and the inner front end portion of the second concave reflecting mirror 27 are warped portions as side reflecting function portions having heights Ha and Hb that are reflected toward the nearest region. 25b and 27b are formed. The curved portions 25ba and 27b are overhang-shaped curved surfaces (or may be flat surfaces) deviating from the parabolic curves of the concave reflecting mirrors, and warp inside the concave reflecting mirrors. The reflection surfaces of the warped portions 25b and 27b are made into a satin finish. The warped portions 25b and 27b are formed in the range of the widths Ha and Hb from the tip of the reflecting mirror, and the range is arbitrarily set according to the amount of light reflected to the nearest region.

LED光源21からの出射光が反り返り部25bに入射すると、反り返り部25bからの反射光Lは、高さを低く形成された第二凹面反射鏡27をかすめて最近傍領域に照射される。反り返り部27bからの反射光Lも同様に、高さh5の反射鏡をかすめて最近傍領域に照射される。 When light emitted from the LED light source 21 is incident on the warp portion 25b, the reflected light L A from the warp portion 25b is recently grazing second concave reflecting mirror 27 which is formed lower height irradiating near region. Similarly, the reflected light L B from the warp portion 27b, is recently brushed reflector height h5 irradiating near region.

これにより、図7に示した近傍領域E2よりさらに近傍位置にある最近傍領域E4に対しても照明光で照らすことができ、照明範囲をより広範囲に設定できる。また、最近傍領域に向けて確実に照明光を当てることができるため、本広域照明装置を壁面近くに設置する必要がなくなり、壁面から離間した位置に設置することも可能となる。このため、設置自由度が向上すると共に、より遠方を十分な照度で照らすことができる。
そして、反り返り部25b,27bの形状や表面処理を適宜変更することで、最近傍領域E4の照度を調整することができ、さらに、遠方領域E1と近傍領域E2との境目E3の照度も調整することができる。
Thereby, it is possible to illuminate the nearest region E4 located nearer than the neighborhood region E2 shown in FIG. 7 with illumination light, and the illumination range can be set to a wider range. Moreover, since illumination light can be reliably applied toward the nearest region, it is not necessary to install the wide area illumination device near the wall surface, and it is possible to install the wide area illumination device at a position separated from the wall surface. For this reason, the degree of freedom of installation is improved, and a distant place can be illuminated with sufficient illuminance.
And the illumination intensity of the nearest field E4 can be adjusted by changing suitably the shape and surface treatment of the curvature parts 25b and 27b, and also the illumination intensity of the boundary E3 between the far field E1 and the neighborhood field E2 is also adjusted. be able to.

なお、反り返り部25b,27bは、いずれか一方にのみ設けてもよく、また、放物面としたまま単に高さH、Hの領域を梨地状に形成することでもよい。いずれの場合も、拡散光が最近傍領域に当たり、前記同様の効果を得ることができる。 It should be noted that the warped portions 25b and 27b may be provided only in one of them, or the regions of heights H A and H B may be simply formed in a satin shape with a paraboloid. In either case, the diffused light hits the nearest region, and the same effect as described above can be obtained.

以上説明した広域照明装置は、上述のように単列で配置することに限らず、図19に示すように、第一凹面反射鏡25側を背合わせとして並列に複数組み合わせて配置する構成としてもよい。この場合には、背合わせした各広域照明装置を1つのユニットとして構成し、所望の設置場所に配設することで、遠方から近傍まで広い範囲にわたって均等な照度で照明することができる。図示例はあくまで一例であり、組み合わせる照明装置の数や向き等は、照明する環境条件に応じて任意に設定できる。   The wide-area illumination device described above is not limited to being arranged in a single row as described above, and as shown in FIG. Good. In this case, each of the back-to-back wide area illumination devices is configured as one unit and disposed at a desired installation location, so that illumination can be performed with a uniform illuminance over a wide range from a distance to the vicinity. The illustrated example is merely an example, and the number and orientation of the lighting devices to be combined can be arbitrarily set according to the environmental conditions of lighting.

さらに、本発明に係る広域照明装置においては、LED光源の種類に応じて第一凹面反射鏡25と第二凹面反射鏡27の表面性状を変更することが望ましい。
LED光源が青色発光ダイオードと黄色発光蛍光体との組み合わせ、及び、青色発光ダイオードと赤色・緑色発光蛍光体との組み合わせである場合には、第一凹面反射鏡25と第二凹面反射鏡27の表面を梨地状にすることが好ましく、これにより、LED光源単体(反射板なし)の照度と比較して4倍以上の照度が確保できる。
一方、LED光源が紫外線発光ダイオードと赤色・緑色・青色発光蛍光体との組み合わせである場合には、第一凹面反射鏡25の表面を鏡面、第二凹面反射鏡27の表面を梨地状にすることが好ましい。これにより、特に第一凹面反射鏡25によって約20倍の照度アップが図られて、かつ出射する照明光に色ムラを生じさせることがない。
Furthermore, in the wide area illumination device according to the present invention, it is desirable to change the surface properties of the first concave reflecting mirror 25 and the second concave reflecting mirror 27 in accordance with the type of the LED light source.
When the LED light source is a combination of a blue light emitting diode and a yellow light emitting phosphor, and a combination of a blue light emitting diode and a red / green light emitting phosphor, the first concave reflecting mirror 25 and the second concave reflecting mirror 27 are provided. It is preferable to make the surface a satin finish, and thereby, it is possible to secure an illuminance of 4 times or more as compared with the illuminance of the LED light source alone (no reflector).
On the other hand, when the LED light source is a combination of an ultraviolet light emitting diode and a red / green / blue light emitting phosphor, the surface of the first concave reflecting mirror 25 is mirror-finished and the surface of the second concave reflecting mirror 27 is matte. It is preferable. Thereby, the illuminance is increased by about 20 times by the first concave reflecting mirror 25 in particular, and color unevenness does not occur in the emitted illumination light.

図1は本発明に係る広域照明装置を光出射側から見た平面図である。FIG. 1 is a plan view of a wide area illumination device according to the present invention as seen from the light exit side. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 図1に示した広域照明装置の斜視図である。It is a perspective view of the wide area illuminating device shown in FIG. 凹面反射鏡の切断形状と照度との相関を表した説明図である。It is explanatory drawing showing the correlation with the cut shape of a concave reflective mirror, and illumination intensity. 反射鏡フレームパネルの拡大斜視図である。It is an expansion perspective view of a reflector frame panel. 第一凹面反射鏡及び第二凹面反射鏡の配光パターンを表した説明図である。It is explanatory drawing showing the light distribution pattern of the 1st concave reflecting mirror and the 2nd concave reflecting mirror. 壁面照明として用いられた場合の広域照明装置の照明領域を表した側面図である。It is a side view showing the illumination area of the wide-area illumination device when used as wall illumination. 図7の壁面に形成される照明領域の正面図である。It is a front view of the illumination area | region formed in the wall surface of FIG. 図1に示した広域照明装置が用いられたドーム状天井の側面図である。It is a side view of the dome shaped ceiling in which the wide area illuminating device shown in FIG. 1 was used. 第一凹面反射鏡と第二凹面反射鏡列が千鳥配置された変形例1の平面図である。It is a top view of the modification 1 with which the 1st concave reflecting mirror and the 2nd concave reflecting mirror row | line | column are arrange | positioned in zigzag. 反射鏡列が複数列設けられた第2の実施の形態による広域照明装置の断面図である。It is sectional drawing of the wide area illuminating device by 2nd Embodiment in which the reflective mirror row | line | column was provided with two or more rows. 図11に示した広域照明装置に接続される光量制御手段を含む電気系のブロック図である。It is a block diagram of an electric system including the light quantity control means connected to the wide area illumination device shown in FIG. 光量制御手段によって制御される駆動部の回路図である。It is a circuit diagram of the drive part controlled by a light quantity control means. 図11に示した広域照明装置によって照明されたグラデーション照明領域を表す模式図である。It is a schematic diagram showing the gradation illumination area | region illuminated with the wide area illuminating device shown in FIG. 図11に示した広域照明装置によって照明された色違い照明領域を表す模式図である。It is a schematic diagram showing the different color illumination area illuminated with the wide area illuminating device shown in FIG. 凹面反射鏡に複数のLED光源を備えた変形例2の説明図である。It is explanatory drawing of the modification 2 provided with the several LED light source in the concave reflecting mirror. 第一凹面反射鏡に対し第二凹面反射鏡の光軸を傾けた変形例3の断面図である。It is sectional drawing of the modification 3 which inclined the optical axis of the 2nd concave reflective mirror with respect to the 1st concave reflective mirror. 第一凹面反射鏡と第二凹面反射鏡の端部に最近傍領域に向けて反射する反り返り部を設けた変形例4の断面図である。It is sectional drawing of the modification 4 which provided the curvature part which reflects toward the nearest region in the edge part of a 1st concave reflective mirror and a 2nd concave reflective mirror. 第一凹面反射鏡側を背合わせとして並列に複数組み合わせて配置する構成例を示す模式図である。It is a schematic diagram which shows the structural example arrange | positioned combining in parallel by making the 1st concave reflective mirror side back-to-back. 従来の照明装置の模式図である。It is a schematic diagram of the conventional illuminating device.

符号の説明Explanation of symbols

21 LED光源
23 基板
25 第一凹面反射鏡
25a,27a 放物面鏡
27 第二凹面反射鏡
29 反射鏡フレームパネル
33 第一凹面反射鏡列
35 第二凹面反射鏡列
37 平面鏡
41 制御部(光量制御手段)
100,200 広域照明装置
Ax1 第一凹面反射鏡の光軸
Ax2 第二凹面反射鏡の光軸
D 直径距離
h1 第一凹面反射鏡側の反射鏡高さ
h2 第一凹面反射鏡と反対側の反射鏡高さ
P 列方向の配置ピッチ
21 LED light source 23 substrate 25 first concave reflecting mirror 25a, 27a parabolic mirror 27 second concave reflecting mirror 29 reflecting mirror frame panel 33 first concave reflecting mirror array 35 second concave reflecting mirror array 37 plane mirror 41 control unit (light quantity) Control means)
100,200 Wide-area illumination device Ax1 Optical axis of the first concave reflecting mirror Ax2 Optical axis of the second concave reflecting mirror D Diameter distance h1 Reflector height on the first concave reflecting mirror side h2 Reflection on the opposite side of the first concave reflecting mirror Mirror height P Arrangement pitch in the row direction

本発明に係る上記目的は、下記構成により達成される。
(1) 遠方から近傍にかけての領域を照射範囲とする広域照明装置であって、
複数のLED光源が実装された基板と、
前記基板上の第一のLED光源を底部位置として配置され、該第一のLED光源からの光を前記照明範囲に向けて反射する遠方照明用の第一凹面反射鏡と、
前記第一のLED光源に隣接する第二のLED光源を底部位置として配置され、該第二のLED光源からの光を前記照明範囲に向けて反射する近傍照明用の第二凹面反射鏡と、を備え、
前記第一凹面反射鏡を直線状に複数配列してなる第一凹面反射鏡列と、前記第二凹面反射鏡を直線状に複数配列してなる第二凹面反射鏡列とが互いに平行に設けられ、
前記第一凹面反射鏡列に配置される各第一凹面反射鏡は、列方向の配置ピッチを前記第一凹面反射鏡の平面視円形の最大直径距離よりも短く設定して、隣接する前記第一凹面反射鏡の凹面同士が重なった部分を終端縁とし、
前記第二凹面反射鏡は、前記第一凹面反射鏡側の前記基板面からの反射鏡高さが高く、前記第一凹面反射鏡とは反対側の反射鏡高さが低くなるように斜めに切断した形状を有することを特徴とする広域照明装置。
The above object of the present invention is achieved by the following configuration.
(1) A wide-area lighting device having an irradiation range from a far field to a nearby area,
A substrate on which a plurality of LED light sources are mounted;
A first concave light reflector for distant illumination that is disposed with the first LED light source on the substrate as a bottom position and reflects light from the first LED light source toward the illumination range;
A second concave light reflecting mirror for proximity illumination that is arranged with the second LED light source adjacent to the first LED light source as a bottom position and reflects light from the second LED light source toward the illumination range; With
A first concave reflecting mirror array in which a plurality of first concave reflecting mirrors are arranged in a straight line and a second concave reflecting mirror array in which a plurality of second concave reflecting mirrors are arranged in a straight line are provided in parallel to each other. And
Each first concave reflecting mirror arranged in the first concave reflecting mirror row has an arrangement pitch in the row direction set shorter than the maximum diameter distance of the circular shape in plan view of the first concave reflecting mirror. The part where the concave surfaces of the concave mirrors overlap is the end edge,
The second concave reflecting mirror is inclined so that the reflecting mirror height from the substrate surface on the first concave reflecting mirror side is high and the reflecting mirror height on the side opposite to the first concave reflecting mirror is low. A wide area lighting device characterized by having a cut shape.

この広域照明装置によれば、反射鏡の切断されない第一凹面反射鏡は、光軸に対称の反射面を備えることになり、LED光源からの直接光と、反射面によって反射した反射光とが略平行光となって遠方領域に照射される。一方、反射面の切断された第二凹面反射鏡は、光軸を挟み第一凹面反射鏡側の反射面では第一凹面反射鏡と同様に略平行光が照射され、光軸を挟むその反対側(外側)では反射面が傾斜して切除されていることにより、正面に進む反射光が徐々に減少されつつ、LED光源からの直接光の比率が徐々に増加されて近傍領域に対する拡散照明効果が増加する。
また、第一凹面反射鏡の列と第二凹面反射鏡の列とが互いに平行に複数列設けられることで、照射可能範囲が増加し、広い面積の照明が可能となる。また、同一の照射領域で比較した場合、少数列で照射したときに比べ、多数列で照射したときの方が照度を高めることができる。さらに、多数列で照射したときの方が第二凹面反射鏡列の個々の切断傾斜勾配が緩やかとなるので、各反射鏡列による照明光境界接続部を一層目立たなくできる。
また、第一凹面反射鏡列において列方向で隣接する反射鏡同士の離間距離が短くなるので、隣接するLED光源からの光の影が小さくなり、遠方照明領域における反射鏡列方向の照度がより均一となる。
According to this wide area illumination device, the first concave reflecting mirror that is not cut by the reflecting mirror has a reflecting surface that is symmetrical with respect to the optical axis, and direct light from the LED light source and reflected light reflected by the reflecting surface are generated. It becomes a substantially parallel light and is irradiated to a distant area. On the other hand, the second concave reflecting mirror whose cut surface has been cut sandwiches the optical axis, and the reflecting surface on the first concave reflecting mirror side is irradiated with substantially parallel light in the same manner as the first concave reflecting mirror. On the side (outside), the reflective surface is cut off with an inclination, so that the ratio of direct light from the LED light source is gradually increased while the reflected light traveling toward the front is gradually reduced, and the diffuse illumination effect on the neighboring area Will increase.
Further, by providing a plurality of rows of the first concave reflecting mirror and the second concave reflecting mirror in parallel with each other, the irradiable range is increased, and a wide area illumination is possible. In addition, when compared in the same irradiation region, the illuminance can be increased when irradiation is performed with a large number of rows compared to when irradiation is performed with a small number of rows. Furthermore, since the individual cutting inclination gradients of the second concave reflecting mirror rows become gentler when irradiation is performed in multiple rows, the illumination light boundary connection portions by the respective reflecting mirror rows can be made less noticeable.
In addition, since the separation distance between the reflecting mirrors adjacent in the row direction in the first concave reflecting mirror row is shortened, the shadow of the light from the adjacent LED light source is reduced, and the illuminance in the reflecting mirror row direction in the far illumination area is further increased. It becomes uniform.

) 前記第一凹面反射鏡と前記第二凹面反射鏡が相互に千鳥配置とされたことを特徴とする()記載の広域照明装置。 ( 2 ) The wide-area illumination device according to ( 1 ), wherein the first concave reflecting mirror and the second concave reflecting mirror are arranged in a staggered manner.

) 前記第一凹面反射鏡及び前記第二凹面反射鏡がフレームパネルに保持されており、該フレームパネルの光照射側の表面が梨地状に形成されたことを特徴とする(1)または(2)記載の広域照明装置。 ( 3 ) The first concave reflecting mirror and the second concave reflecting mirror are held by a frame panel, and the light irradiation side surface of the frame panel is formed in a satin finish (1) or (2) The wide area illumination device according to the description.

) 前記第一凹面反射鏡が梨地状に形成された反射面を有することを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 4 ) The wide area illumination device according to any one of (1) to ( 3 ), wherein the first concave reflecting mirror has a reflecting surface formed in a satin shape.

) 前記第二凹面反射鏡が梨地状に形成された反射面を有することを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 5 ) The wide area illumination device according to any one of (1) to ( 4 ), wherein the second concave reflecting mirror has a reflecting surface formed in a satin shape.

) 前記第一凹面反射鏡及び前記第二凹面反射鏡の反射面が放物面で形成され、前記LED光源が前記放物面の焦点位置に配置されたことを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 6 ) The reflecting surfaces of the first concave reflecting mirror and the second concave reflecting mirror are formed as paraboloids, and the LED light source is disposed at a focal position of the paraboloid (1). The wide-area lighting device according to any one of to ( 5 ).

) 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源が、列毎に独立して光量制御可能な光量制御手段に接続されたことを特徴とする()〜()のいずれか1項記載の広域照明装置。 (7) Each LED light source corresponding to the first concave reflecting mirror columns and the second concave reflecting mirror columns, characterized in that connected to the light intensity controllable light quantity control means independently for each column (1 )-( 6 ) Any one of the wide area illuminating device.

) 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源は、列毎に発色の異なるものを含むことを特徴とする()〜()のいずれか1項記載の広域照明装置。 ( 8 ) Each of the LED light sources corresponding to the first concave reflecting mirror row and the second concave reflecting mirror row includes one having a different color for each row, ( 1 ) to ( 7 ) The wide-area lighting device according to 1.

) 前記第一凹面反射鏡、前記第二凹面反射鏡の少なくともいずれかに対して、1つの反射鏡に複数個の前記LED光源が配設されていることを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 9 ) A plurality of the LED light sources are disposed in one reflecting mirror with respect to at least one of the first concave reflecting mirror and the second concave reflecting mirror. ( 8 ) The wide-area illumination device according to any one of ( 8 ).

10) 前記第一凹面反射鏡と前記第二凹面反射鏡とが樹脂材料により一体成形されたことを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 10 ) The wide area illumination device according to any one of (1) to ( 9 ), wherein the first concave reflecting mirror and the second concave reflecting mirror are integrally formed of a resin material.

11) 前前記第二凹面反射鏡の光軸が、前記第一凹面反射鏡の光軸に対して傾斜していることを特徴とする(1)〜(10)のいずれか1項記載の広域照明装置。 ( 11 ) The optical axis of the second concave reflecting mirror in front is inclined with respect to the optical axis of the first concave reflecting mirror, according to any one of (1) to ( 10 ). Wide area lighting device.

12) 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面先端部、前記第二凹面反射鏡の前記第一凹面反射鏡側の反射面先端部の少なくともいずれかに対し、前記第一凹面反射鏡から前記第二凹面反射鏡に向けた方向に沿って前記LED光源からの光を反射する側方反射機能部を設けたことを特徴とする(1)〜(11)のいずれか1項記載の広域照明装置。 ( 12 ) At least one of the reflecting surface tip of the first concave reflecting mirror opposite to the second concave reflecting mirror and the reflecting surface tip of the second concave reflecting mirror on the first concave reflecting mirror side. On the other hand, (1) to ( 11 ) are characterized in that a side reflection function part for reflecting light from the LED light source is provided along a direction from the first concave reflecting mirror toward the second concave reflecting mirror. The wide-area illumination device according to any one of the above.

13前記側方反射機能部が、前記第一および第二凹面反射鏡の反射表面からそれぞれの凹面反射鏡の内側に反り返る反り返り部を有することを特徴とする12)記載の広域照明装置。 ( 13 ) The wide-area illuminating device according to ( 12 ) , wherein the side reflecting functional unit has a warped portion that warps from the reflecting surfaces of the first and second concave reflecting mirrors to the inside of each concave reflecting mirror. .

14前記反り返り部の反射表面が、梨地状に形成されたことを特徴とする13)記載の広域照明装置。 ( 14 ) The wide-area illumination device according to ( 13 ), wherein the reflective surface of the warped portion is formed in a satin finish .

15) 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面、及び前記第二凹面反射鏡の前記第一凹面反射鏡側とは反対側の反射面に対し、各反射面先端部に前記LED光源からの光を光照射側に向けて反射する平面鏡を延設したことを特徴とする(1)〜(14)のいずれか1項記載の広域照明装置。 ( 15 ) With respect to the reflecting surface on the opposite side of the first concave reflecting mirror from the second concave reflecting mirror, and the reflecting surface on the opposite side of the second concave reflecting mirror from the first concave reflecting mirror side, The wide-area illumination device according to any one of (1) to ( 14 ), wherein a flat mirror that reflects light from the LED light source toward the light irradiation side is extended at a front end portion of the reflection surface.

本発明に係る広域照明装置によれば、LED光源が実装された基板に配置されLED光源からの光を反射して照射する第一凹面反射鏡と、第一凹面反射鏡に隣接して配置された第二凹面反射鏡とを備え、第二凹面反射鏡は、第一凹面反射鏡側の反射鏡高さが高く、第一凹面反射鏡と反対側の反射鏡高さが低くなるように斜めに切断した形状を有するので、第一凹面反射鏡からの反射光と直接光が遠方を照射するとともに、第二凹面反射鏡からの反射光も遠方を照射する一方、第二凹面反射鏡からの直接光が近傍領域における斜め切断方向と直交する方向に向けて拡散して照射される。そして、第一凹面反射鏡列において列方向で隣接する反射鏡同士の離間距離が短くなるので、隣接するLED光源からの光の影が小さくなり、遠方照明領域における反射鏡列方向の照度がより均一となる。これにより、エネルギーロスの少ない高効率な配光制御を行うことができ、遠方から近傍にかけての領域に対し、照度を均等に保った状態での照明が可能となる。 According to the wide area illumination device of the present invention, the first concave reflecting mirror that is disposed on the substrate on which the LED light source is mounted and reflects and emits the light from the LED light source, and the first concave reflecting mirror are disposed adjacent to the first concave reflecting mirror. The second concave reflector is inclined so that the height of the reflector on the first concave reflector side is high and the height of the reflector on the opposite side of the first concave reflector is low. Since the reflected light from the first concave reflecting mirror and the direct light irradiate far away, the reflected light from the second concave reflecting mirror also radiates far away, while from the second concave reflecting mirror. Direct light is diffused and irradiated in a direction orthogonal to the oblique cutting direction in the neighboring region. And since the separation distance between the adjacent mirrors in the column direction in the first concave reflecting mirror row becomes shorter, the shadow of the light from the adjacent LED light source becomes smaller, and the illuminance in the direction of the reflecting mirror in the far illumination region becomes more It becomes uniform. Thereby, highly efficient light distribution control with little energy loss can be performed, and illumination in a state in which the illuminance is kept uniform can be performed in a region from a distance to the vicinity.

本発明に係る上記目的は、下記構成により達成される。
(1) 遠方から近傍にかけての領域を照射範囲とする壁面照明用の広域照明装置であって、
複数のLED光源が実装された基板と、
前記基板上の第一のLED光源を底部位置として配置され、該第一のLED光源からの光を前記遠方の照明範囲に向けて反射する遠方照明用の第一凹面反射鏡と、
前記第一のLED光源に隣接する第二のLED光源を底部位置として配置され、該第二のLED光源からの光を前記近傍の照明範囲に向けて反射する近傍照明用の第二凹面反射鏡と、を備え、
前記第一凹面反射鏡を直線状に複数配列してなる第一凹面反射鏡列と、前記第二凹面反射鏡を直線状に複数配列してなる第二凹面反射鏡列とが互いに平行に設けられ、
前記第一凹面反射鏡列に配置される各第一凹面反射鏡は、列方向の配置ピッチを前記第一凹面反射鏡の平面視円形の最大直径距離よりも短く設定して、隣接する前記第一凹面反射鏡の凹面同士が重なった部分を終端縁とし、
前記第二凹面反射鏡は、前記第一凹面反射鏡側の前記基板面からの反射鏡高さが高く、前記第一凹面反射鏡とは反対側の反射鏡高さが低くなるように斜めに切断した形状を有し
前記壁面に、該壁面側から前記第二凹面反射鏡列、前記第一凹面反射鏡列がこの順で配置されたことを特徴とする広域照明装置。
(2) 遠方から近傍にかけての領域を照射範囲とするドーム状天井面照明用の広域照明装置であって、
複数のLED光源が実装された基板と、
前記基板上の第一のLED光源を底部位置として配置され、該第一のLED光源からの光を前記遠方の照明範囲に向けて反射する遠方照明用の第一凹面反射鏡と、
前記第一のLED光源に隣接する第二のLED光源を底部位置として配置され、該第二のLED光源からの光を前記近傍の照明範囲に向けて反射する近傍照明用の第二凹面反射鏡と、を備え、
前記第一凹面反射鏡を直線状に複数配列してなる第一凹面反射鏡列と、前記第二凹面反射鏡を直線状に複数配列してなる第二凹面反射鏡列とが互いに平行に設けられ、
前記第一凹面反射鏡列に配置される各第一凹面反射鏡は、列方向の配置ピッチを前記第一凹面反射鏡の平面視円形の最大直径距離よりも短く設定して、隣接する前記第一凹面反射鏡の凹面同士が重なった部分を終端縁とし、
前記第二凹面反射鏡は、前記第一凹面反射鏡側の前記基板面からの反射鏡高さが高く、前記第一凹面反射鏡とは反対側の反射鏡高さが低くなるように斜めに切断した形状を有し
前記ドームの周端部に、該周端部側から前記第二凹面反射鏡列、前記第一凹面反射鏡列がこの順で配置されたことを特徴とする広域照明装置。
The above object of the present invention is achieved by the following configuration.
(1) A wide-area lighting device for wall lighting in which an area from far to near is an irradiation range,
A substrate on which a plurality of LED light sources are mounted;
A first concave light reflector for distant illumination that is disposed with the first LED light source on the substrate as a bottom position and reflects light from the first LED light source toward the far illumination range;
A second concave light reflector for near illumination that is arranged with the second LED light source adjacent to the first LED light source as a bottom position and reflects light from the second LED light source toward the illumination range in the vicinity. And comprising
A first concave reflecting mirror array in which a plurality of first concave reflecting mirrors are arranged in a straight line and a second concave reflecting mirror array in which a plurality of second concave reflecting mirrors are arranged in a straight line are provided in parallel to each other. And
Each first concave reflecting mirror arranged in the first concave reflecting mirror row has an arrangement pitch in the row direction set shorter than the maximum diameter distance of the circular shape in plan view of the first concave reflecting mirror. The part where the concave surfaces of the concave mirrors overlap is the end edge,
The second concave reflecting mirror is inclined so that the reflecting mirror height from the substrate surface on the first concave reflecting mirror side is high and the reflecting mirror height on the side opposite to the first concave reflecting mirror is low. Having a cut shape ,
The wide area illumination device, wherein the second concave reflecting mirror array and the first concave reflecting mirror array are arranged on the wall surface in this order from the wall surface side .
(2) A wide-area illumination device for dome-shaped ceiling surface illumination with an irradiation range from a distance to the vicinity,
A substrate on which a plurality of LED light sources are mounted;
A first concave light reflector for distant illumination that is disposed with the first LED light source on the substrate as a bottom position and reflects light from the first LED light source toward the far illumination range;
A second concave light reflector for near illumination that is arranged with the second LED light source adjacent to the first LED light source as a bottom position and reflects light from the second LED light source toward the illumination range in the vicinity. And comprising
A first concave reflecting mirror array in which a plurality of first concave reflecting mirrors are arranged in a straight line and a second concave reflecting mirror array in which a plurality of second concave reflecting mirrors are arranged in a straight line are provided in parallel to each other. And
Each first concave reflecting mirror arranged in the first concave reflecting mirror row has an arrangement pitch in the row direction set shorter than the maximum diameter distance of the circular shape in plan view of the first concave reflecting mirror. The part where the concave surfaces of the concave mirrors overlap is the end edge,
The second concave reflecting mirror is inclined so that the reflecting mirror height from the substrate surface on the first concave reflecting mirror side is high and the reflecting mirror height on the side opposite to the first concave reflecting mirror is low. Having a cut shape ,
The wide area illumination device, wherein the second concave reflecting mirror array and the first concave reflecting mirror array are arranged in this order from the peripheral end side to the peripheral end of the dome .

この広域照明装置によれば、反射鏡の切断されない第一凹面反射鏡は、光軸に対称の反射面を備えることになり、LED光源からの直接光と、反射面によって反射した反射光とが略平行光となって遠方領域に照射される。一方、反射面の切断された第二凹面反射鏡は、光軸を挟み第一凹面反射鏡側の反射面では第一凹面反射鏡と同様に略平行光が照射され、光軸を挟むその反対側(外側)では反射面が傾斜して切除されていることにより、正面に進む反射光が徐々に減少されつつ、LED光源からの直接光の比率が徐々に増加されて近傍領域に対する拡散照明効果が増加する。
また、第一凹面反射鏡の列と第二凹面反射鏡の列とが互いに平行に複数列設けられることで、照射可能範囲が増加し、広い面積の照明が可能となる。また、同一の照射領域で比較した場合、少数列で照射したときに比べ、多数列で照射したときの方が照度を高めることができる。さらに、多数列で照射したときの方が第二凹面反射鏡列の個々の切断傾斜勾配が緩やかとなるので、各反射鏡列による照明光境界接続部を一層目立たなくできる。
また、第一凹面反射鏡列において列方向で隣接する反射鏡同士の離間距離が短くなるので、隣接するLED光源からの光の影が小さくなり、遠方照明領域における反射鏡列方向の照度がより均一となる。
According to this wide area illumination device, the first concave reflecting mirror that is not cut by the reflecting mirror has a reflecting surface that is symmetrical with respect to the optical axis, and direct light from the LED light source and reflected light reflected by the reflecting surface are generated. It becomes a substantially parallel light and is irradiated to a distant area. On the other hand, the second concave reflecting mirror whose cut surface has been cut sandwiches the optical axis, and the reflecting surface on the first concave reflecting mirror side is irradiated with substantially parallel light in the same manner as the first concave reflecting mirror. On the side (outside), the reflective surface is cut off with an inclination, so that the ratio of direct light from the LED light source is gradually increased while the reflected light traveling toward the front is gradually reduced, and the diffuse illumination effect on the neighboring area Will increase.
Further, by providing a plurality of rows of the first concave reflecting mirror and the second concave reflecting mirror in parallel with each other, the irradiable range is increased, and a wide area illumination is possible. In addition, when compared in the same irradiation region, the illuminance can be increased when irradiation is performed with a large number of rows compared to when irradiation is performed with a small number of rows. Furthermore, since the individual cutting inclination gradients of the second concave reflecting mirror rows become gentler when irradiation is performed in multiple rows, the illumination light boundary connection portions by the respective reflecting mirror rows can be made less noticeable.
In addition, since the separation distance between the reflecting mirrors adjacent in the row direction in the first concave reflecting mirror row is shortened, the shadow of the light from the adjacent LED light source is reduced, and the illuminance in the reflecting mirror row direction in the far illumination area is further increased. It becomes uniform.

) 前記第一凹面反射鏡と前記第二凹面反射鏡が相互に千鳥配置とされたことを特徴とする(1)または(2)記載の広域照明装置。 ( 3 ) The wide area illumination device according to (1) or (2 ), wherein the first concave reflecting mirror and the second concave reflecting mirror are arranged in a staggered manner.

) 前記第一凹面反射鏡及び前記第二凹面反射鏡がフレームパネルに保持されており、該フレームパネルの光照射側の表面が梨地状に形成されたことを特徴とする(1)〜(3)のいずれか1項記載の広域照明装置。 (4) the first concave reflecting mirror and the second concave reflecting mirror is held in the frame panel, the surface of the light irradiation side of the frame panel is characterized in that it is formed in a textured (1) - The wide-area lighting device according to any one of (3) .

) 前記第一凹面反射鏡が梨地状に形成された反射面を有することを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 5 ) The wide-area illumination device according to any one of (1) to ( 4 ), wherein the first concave reflecting mirror has a reflecting surface formed in a satin shape.

) 前記第二凹面反射鏡が梨地状に形成された反射面を有することを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 6 ) The wide area illumination device according to any one of (1) to ( 5 ), wherein the second concave reflecting mirror has a reflecting surface formed in a satin shape.

) 前記第一凹面反射鏡及び前記第二凹面反射鏡の反射面が放物面で形成され、前記LED光源が前記放物面の焦点位置に配置されたことを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 7 ) The reflecting surfaces of the first concave reflecting mirror and the second concave reflecting mirror are formed as paraboloids, and the LED light source is disposed at a focal position of the paraboloid (1). The wide-area lighting device according to any one of to ( 6 ).

) 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源が、列毎に独立して光量制御可能な光量制御手段に接続されたことを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 8 ) The LED light sources corresponding to the first concave reflecting mirror row and the second concave reflecting mirror row are connected to a light amount control means capable of independently controlling the light amount for each row (1) )-( 7 ) The wide area illuminating device of any one of ( 7 ).

) 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源は、列毎に発色の異なるものを含むことを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 9 ) Any one of (1) to ( 8 ), wherein each LED light source corresponding to the first concave reflecting mirror row and the second concave reflecting mirror row includes a different color for each row. The wide-area lighting device according to 1.

10) 前記第一凹面反射鏡、前記第二凹面反射鏡の少なくともいずれかに対して、1つの反射鏡に複数個の前記LED光源が配設されていることを特徴とする(1)〜()のいずれか1項記載の広域照明装置。 ( 10 ) The plurality of LED light sources are arranged in one reflecting mirror with respect to at least one of the first concave reflecting mirror and the second concave reflecting mirror. ( 9 ) The wide-area illumination device according to any one of ( 9 ).

11) 前記第一凹面反射鏡と前記第二凹面反射鏡とが樹脂材料により一体成形されたことを特徴とする(1)〜(10)のいずれか1項記載の広域照明装置。 ( 11 ) The wide area illumination device according to any one of (1) to ( 10 ), wherein the first concave reflecting mirror and the second concave reflecting mirror are integrally formed of a resin material.

12) 前前記第二凹面反射鏡の光軸が、前記第一凹面反射鏡の光軸に対して傾斜していることを特徴とする(1)〜(11)のいずれか1項記載の広域照明装置。 ( 12 ) The optical axis of the second concave reflecting mirror in front is inclined with respect to the optical axis of the first concave reflecting mirror, according to any one of (1) to ( 11 ). Wide area lighting device.

13) 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面先端部、前記第二凹面反射鏡の前記第一凹面反射鏡側の反射面先端部の少なくともいずれかに対し、前記第一凹面反射鏡から前記第二凹面反射鏡に向けた方向に沿って前記LED光源からの光を反射する側方反射機能部を設けたことを特徴とする(1)〜(12)のいずれか1項記載の広域照明装置。 ( 13 ) At least one of the tip of the reflecting surface on the side opposite to the second concave reflecting mirror of the first concave reflecting mirror and the tip of the reflecting surface on the first concave reflecting mirror side of the second concave reflecting mirror. On the other hand, (1)-( 12 ) provided with the side reflection function part which reflects the light from the said LED light source along the direction which went to said 2nd concave reflecting mirror from said 1st concave reflecting mirror. The wide-area illumination device according to any one of the above.

14) 前記側方反射機能部が、前記第一および第二凹面反射鏡の反射表面からそれぞれの凹面反射鏡の内側に反り返る反り返り部を有することを特徴とする(13)記載の広域照明装置。 ( 14 ) The wide-area illuminating device according to ( 13 ), wherein the side reflecting functional unit has a warped portion that warps from the reflecting surfaces of the first and second concave reflecting mirrors to the inside of each concave reflecting mirror. .

15) 前記反り返り部の反射表面が、梨地状に形成されたことを特徴とする(14)記載の広域照明装置。 ( 15 ) The wide-area illumination device according to ( 14 ), wherein the reflective surface of the warped portion is formed in a satin finish.

16) 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面、及び前記第二凹面反射鏡の前記第一凹面反射鏡側とは反対側の反射面に対し、各反射面先端部に前記LED光源からの光を光照射側に向けて反射する平面鏡を延設したことを特徴とする(1)〜(15)のいずれか1項記載の広域照明装置。 ( 16 ) For the reflecting surface of the first concave reflecting mirror opposite to the second concave reflecting mirror and the reflecting surface of the second concave reflecting mirror opposite to the first concave reflecting mirror, The wide-area illumination device according to any one of (1) to ( 15 ), wherein a flat mirror that reflects light from the LED light source toward the light irradiation side is extended at a front end portion of the reflection surface.

本発明に係る広域照明装置によれば、LED光源が実装された基板に配置されLED光源からの光を反射して照射する第一凹面反射鏡と、第一凹面反射鏡に隣接して配置された第二凹面反射鏡とを備え、第二凹面反射鏡は、第一凹面反射鏡側の反射鏡高さが高く、第一凹面反射鏡と反対側の反射鏡高さが低くなるように斜めに切断した形状を有するので、第一凹面反射鏡からの反射光と直接光が遠方を照射するとともに、第二凹面反射鏡からの反射光も遠方を照射する一方、第二凹面反射鏡からの直接光が近傍領域における斜め切断方向と直交する方向に向けて拡散して照射される。そして、第一凹面反射鏡列において列方向で隣接する反射鏡同士の離間距離が短くなるので、隣接するLED光源からの光の影が小さくなり、遠方照明領域における反射鏡列方向の照度がより均一となる。これにより、エネルギーロスの少ない高効率な配光制御を行うことができ、壁面やドーム状天井面を遠方から近傍にかけての領域に対し、照度を均等に保った状態での照明が可能となる。 According to the wide area illumination device of the present invention, the first concave reflecting mirror that is disposed on the substrate on which the LED light source is mounted and reflects and emits the light from the LED light source, and the first concave reflecting mirror are disposed adjacent to the first concave reflecting mirror. The second concave reflector is inclined so that the height of the reflector on the first concave reflector side is high and the height of the reflector on the opposite side of the first concave reflector is low. Since the reflected light from the first concave reflecting mirror and the direct light irradiate far away, the reflected light from the second concave reflecting mirror also radiates far away, while from the second concave reflecting mirror. Direct light is diffused and irradiated in a direction orthogonal to the oblique cutting direction in the neighboring region. And since the separation distance between the adjacent mirrors in the column direction in the first concave reflecting mirror row becomes shorter, the shadow of the light from the adjacent LED light source becomes smaller, and the illuminance in the direction of the reflecting mirror in the far illumination region becomes more It becomes uniform. Thereby, highly efficient light distribution control with little energy loss can be performed, and illumination in a state in which the illuminance is kept uniform can be performed on the region of the wall surface and the dome-shaped ceiling surface from the distant to the vicinity.

Claims (17)

遠方から近傍にかけての領域を照射範囲とする広域照明装置であって、
複数のLED光源が実装された基板と、
前記基板上の第一のLED光源を底部位置として配置され、該第一のLED光源からの光を前記照明範囲に向けて反射する遠方照明用の第一凹面反射鏡と、
前記第一のLED光源に隣接する第二のLED光源を底部位置として配置され、該第二のLED光源からの光を前記照明範囲に向けて反射する近傍照明用の第二凹面反射鏡と、を備え、
前記第二凹面反射鏡は、前記第一凹面反射鏡側の前記基板面からの反射鏡高さが高く、前記第一凹面反射鏡とは反対側の反射鏡高さが低くなるように斜めに切断した形状を有することを特徴とする広域照明装置。
It is a wide area illumination device having an irradiation range from a distant area to a nearby area,
A substrate on which a plurality of LED light sources are mounted;
A first concave light reflector for distant illumination that is disposed with the first LED light source on the substrate as a bottom position and reflects light from the first LED light source toward the illumination range;
A second concave light reflecting mirror for proximity illumination that is arranged with the second LED light source adjacent to the first LED light source as a bottom position and reflects light from the second LED light source toward the illumination range; With
The second concave reflecting mirror is inclined so that the reflecting mirror height from the substrate surface on the first concave reflecting mirror side is high and the reflecting mirror height on the side opposite to the first concave reflecting mirror is low. A wide area lighting device characterized by having a cut shape.
前記第一凹面反射鏡と前記第二凹面反射鏡とを複数それぞれ直線状に配列してなる第一凹面反射鏡列と第二凹面反射鏡列とが互いに平行に複数列設けられたことを特徴とする請求項1記載の広域照明装置。   A plurality of first concave reflecting mirror rows and second concave reflecting mirror rows each having a plurality of first concave reflecting mirrors and second concave reflecting mirrors arranged in a straight line are provided in parallel to each other. The wide area illumination device according to claim 1. 前記第一凹面反射鏡と前記第二凹面反射鏡が相互に千鳥配置とされたことを特徴とする請求項2記載の広域照明装置。   3. The wide area illumination device according to claim 2, wherein the first concave reflecting mirror and the second concave reflecting mirror are arranged in a staggered manner. 前記第一凹面反射鏡列に配置される各第一凹面反射鏡は、列方向の配置ピッチが前記第一凹面反射鏡の平面視円形の最大直径距離よりも短く設定されたことを特徴とする請求項2又は請求項3記載の広域照明装置。   Each of the first concave reflecting mirrors arranged in the first concave reflecting mirror row has an arrangement pitch in the row direction set to be shorter than a maximum diameter distance in a circular shape in plan view of the first concave reflecting mirror. The wide area illumination device according to claim 2 or claim 3. 前記第一凹面反射鏡及び前記第二凹面反射鏡がフレームパネルに保持されており、該フレームパネルの光照射側の表面が梨地状に形成されたことを特徴とする請求項1〜請求項4のいずれか1項記載の広域照明装置。   5. The first concave reflecting mirror and the second concave reflecting mirror are held by a frame panel, and the light irradiation side surface of the frame panel is formed in a satin shape. The wide-area illumination device according to any one of the above. 前記第一凹面反射鏡が梨地状に形成された反射面を有することを特徴とする請求項1〜請求項5のいずれか1項記載の広域照明装置。   The wide-area illumination device according to claim 1, wherein the first concave reflecting mirror has a reflecting surface formed in a satin shape. 前記第二凹面反射鏡が梨地状に形成された反射面を有することを特徴とする請求項1〜請求項6のいずれか1項記載の広域照明装置。   The wide-area illumination device according to claim 1, wherein the second concave reflecting mirror has a reflecting surface formed in a satin shape. 前記第一凹面反射鏡及び前記第二凹面反射鏡の反射面が放物面で形成され、前記LED光源が前記放物面の焦点位置に配置されたことを特徴とする請求項1〜請求項7のいずれか1項記載の広域照明装置。   The reflecting surfaces of the first concave reflecting mirror and the second concave reflecting mirror are formed as paraboloids, and the LED light source is disposed at a focal position of the paraboloid. The wide-area lighting device according to any one of 7. 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源が、列毎に独立して光量制御可能な光量制御手段に接続されたことを特徴とする請求項2〜請求項8のいずれか1項記載の広域照明装置。   The LED light sources corresponding to the first concave reflecting mirror row and the second concave reflecting mirror row are connected to a light amount control means capable of independently controlling the light amount for each row. Item 9. The wide area illumination device according to any one of Items 8 to 9. 前記第一凹面反射鏡列及び前記第二凹面反射鏡列に対応する各LED光源は、列毎に発色の異なるものを含むことを特徴とする請求項2〜請求項9のいずれか1項記載の広域照明装置。   10. The LED light source corresponding to the first concave reflecting mirror row and the second concave reflecting mirror row includes one having a different color for each row. 10. Wide area lighting device. 前記第一凹面反射鏡、前記第二凹面反射鏡の少なくともいずれかに対して、1つの反射鏡に複数個の前記LED光源が配設されていることを特徴とする請求項1〜請求項10のいずれか1項記載の広域照明装置。   11. The plurality of LED light sources are disposed in one reflecting mirror with respect to at least one of the first concave reflecting mirror and the second concave reflecting mirror. The wide-area illumination device according to any one of the above. 前記第一凹面反射鏡と前記第二凹面反射鏡とが樹脂材料により一体成形されたことを特徴とする請求項1〜請求項11のいずれか1項記載の広域照明装置。   The wide area illumination device according to any one of claims 1 to 11, wherein the first concave reflecting mirror and the second concave reflecting mirror are integrally formed of a resin material. 前記第二凹面反射鏡の光軸が、前記第一凹面反射鏡の光軸に対して傾斜していることを特徴とする請求項1〜請求項12のいずれか1項記載の広域照明装置。   The wide-area illumination device according to any one of claims 1 to 12, wherein an optical axis of the second concave reflecting mirror is inclined with respect to an optical axis of the first concave reflecting mirror. 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面先端部、前記第二凹面反射鏡の前記第一凹面反射鏡側の反射面先端部の少なくともいずれかに対し、前記第一凹面反射鏡から前記第二凹面反射鏡に向けた方向に沿って前記LED光源からの光を反射する側方反射機能部を設けたことを特徴とする請求項1〜請求項13のいずれか1項記載の広域照明装置。   With respect to at least one of the reflecting surface tip of the first concave reflecting mirror on the side opposite to the second concave reflecting mirror and the reflecting surface tip of the second concave reflecting mirror on the first concave reflecting mirror side, The side reflection function part which reflects the light from the said LED light source along the direction which went to the said 2nd concave reflective mirror from the 1st concave reflective mirror was provided, The any of Claims 1-13 characterized by the above-mentioned. The wide-area lighting device according to claim 1. 前記側方反射機能部が、前記凹面反射鏡の反射表面から該凹面反射鏡の内側に反り返る形状を有することを特徴とする請求項14記載の広域照明装置。   15. The wide-area illumination device according to claim 14, wherein the side reflection function unit has a shape that warps from the reflecting surface of the concave reflecting mirror to the inside of the concave reflecting mirror. 前記側方反射機能部が、前記凹面反射鏡の反射表面を梨地状に形成してなることを特徴とする請求項14記載の広域照明装置。   The wide-area illumination device according to claim 14, wherein the side reflection function unit is formed by forming a reflective surface of the concave reflecting mirror in a satin finish. 前記第一凹面反射鏡の前記第二凹面反射鏡とは反対側の反射面、及び前記第二凹面反射鏡の前記第一凹面反射鏡側とは反対側の反射面に対し、各反射面先端部に前記LED光源からの光を光照射側に向けて反射する平面鏡を延設したことを特徴とする請求項1〜請求項16のいずれか1項記載の広域照明装置。   The tip of each reflecting surface with respect to the reflecting surface of the first concave reflecting mirror opposite to the second concave reflecting mirror and the reflecting surface of the second concave reflecting mirror opposite to the first concave reflecting mirror side The wide area illuminating device according to any one of claims 1 to 16, wherein a flat mirror that reflects light from the LED light source toward a light irradiation side is extended in a part.
JP2006281309A 2006-10-16 2006-10-16 Wide region lighting device Pending JP2008098088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281309A JP2008098088A (en) 2006-10-16 2006-10-16 Wide region lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281309A JP2008098088A (en) 2006-10-16 2006-10-16 Wide region lighting device

Publications (1)

Publication Number Publication Date
JP2008098088A true JP2008098088A (en) 2008-04-24

Family

ID=39380708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281309A Pending JP2008098088A (en) 2006-10-16 2006-10-16 Wide region lighting device

Country Status (1)

Country Link
JP (1) JP2008098088A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153104A1 (en) * 2007-06-12 2008-12-18 Miraikankyokaihatsukenkyujo Kabushikikaisha Desk lighting device
JP2009279133A (en) * 2008-05-21 2009-12-03 Sanyo Electric Co Ltd Showcase
JP2010199010A (en) * 2009-02-27 2010-09-09 Mitsubishi Electric Corp Substrate module, reflecting plate, lighting module, and luminaire
JP2010218847A (en) * 2009-03-16 2010-09-30 Showa Denko Kk Lighting device
JP2011527091A (en) * 2008-07-02 2011-10-20 スノヴィア エナジー テクノロジーズ, インコーポレイテッド Optical unit with light output pattern synthesized from multiple light sources
JP2011528158A (en) * 2008-07-17 2011-11-10 ベガ ガンテンブリンク−レヒテン コマンディトゲゼルシャフト lighting equipment
JP2012069357A (en) * 2010-09-22 2012-04-05 Panasonic Corp Lighting system for condominium
JP2012129064A (en) * 2010-12-15 2012-07-05 Panasonic Corp Lighting fixture
KR101184832B1 (en) 2010-07-14 2012-09-20 주식회사 에코필 The composited module mounting structure and circuit structure with connecting and writhing
JP2013182710A (en) * 2012-02-29 2013-09-12 Iris Ohyama Inc Led unit, lighting unit and led lighting device
JP2014222679A (en) * 2014-09-03 2014-11-27 株式会社アイ・ライティング・システム Led lighting fixture and led
JP2015097157A (en) * 2013-11-15 2015-05-21 株式会社青井黒板製作所 Board illumination device
WO2015125557A1 (en) * 2014-02-19 2015-08-27 コニカミノルタ株式会社 Illumination device
JP2017201625A (en) * 2016-04-28 2017-11-09 株式会社遠藤照明 Illumination device, reflector, and reflector set
WO2018025816A1 (en) * 2016-08-01 2018-02-08 Idec株式会社 Reflector and lighting device
WO2019180815A1 (en) * 2018-03-20 2019-09-26 株式会社 芝川製作所 Led lighting device and plant culture shelf
JP2020027697A (en) * 2018-08-09 2020-02-20 株式会社アイ・ライティング・システム Illumination device
JP2020161245A (en) * 2019-03-25 2020-10-01 東芝ライテック株式会社 Reflector and lighting device
US11143384B2 (en) 2018-03-20 2021-10-12 Shibakawa Manufacturing Co., Ltd. LED lighting device and plant cultivation shelf

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566313U (en) * 1978-10-31 1980-05-07
JPS5578585U (en) * 1978-11-28 1980-05-30
JPS6252804A (en) * 1985-08-30 1987-03-07 松下電器産業株式会社 Lighting fixture
JPS63901A (en) * 1986-06-18 1988-01-05 株式会社小糸製作所 Lighting apparatus
JPH04106043U (en) * 1991-02-25 1992-09-11 日本板硝子株式会社 Automobile stop lamp
JP2003281910A (en) * 2002-03-26 2003-10-03 Matsushita Electric Works Ltd Luminaire
JP3787148B1 (en) * 2005-09-06 2006-06-21 株式会社未来 Lighting unit and lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566313U (en) * 1978-10-31 1980-05-07
JPS5578585U (en) * 1978-11-28 1980-05-30
JPS6252804A (en) * 1985-08-30 1987-03-07 松下電器産業株式会社 Lighting fixture
JPS63901A (en) * 1986-06-18 1988-01-05 株式会社小糸製作所 Lighting apparatus
JPH04106043U (en) * 1991-02-25 1992-09-11 日本板硝子株式会社 Automobile stop lamp
JP2003281910A (en) * 2002-03-26 2003-10-03 Matsushita Electric Works Ltd Luminaire
JP3787148B1 (en) * 2005-09-06 2006-06-21 株式会社未来 Lighting unit and lighting device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153104A1 (en) * 2007-06-12 2008-12-18 Miraikankyokaihatsukenkyujo Kabushikikaisha Desk lighting device
JP2009279133A (en) * 2008-05-21 2009-12-03 Sanyo Electric Co Ltd Showcase
JP2011527091A (en) * 2008-07-02 2011-10-20 スノヴィア エナジー テクノロジーズ, インコーポレイテッド Optical unit with light output pattern synthesized from multiple light sources
JP2011528158A (en) * 2008-07-17 2011-11-10 ベガ ガンテンブリンク−レヒテン コマンディトゲゼルシャフト lighting equipment
JP2010199010A (en) * 2009-02-27 2010-09-09 Mitsubishi Electric Corp Substrate module, reflecting plate, lighting module, and luminaire
JP2010218847A (en) * 2009-03-16 2010-09-30 Showa Denko Kk Lighting device
KR101184832B1 (en) 2010-07-14 2012-09-20 주식회사 에코필 The composited module mounting structure and circuit structure with connecting and writhing
JP2012069357A (en) * 2010-09-22 2012-04-05 Panasonic Corp Lighting system for condominium
JP2012129064A (en) * 2010-12-15 2012-07-05 Panasonic Corp Lighting fixture
JP2013182710A (en) * 2012-02-29 2013-09-12 Iris Ohyama Inc Led unit, lighting unit and led lighting device
JP2015097157A (en) * 2013-11-15 2015-05-21 株式会社青井黒板製作所 Board illumination device
WO2015125557A1 (en) * 2014-02-19 2015-08-27 コニカミノルタ株式会社 Illumination device
JP2014222679A (en) * 2014-09-03 2014-11-27 株式会社アイ・ライティング・システム Led lighting fixture and led
JP2017201625A (en) * 2016-04-28 2017-11-09 株式会社遠藤照明 Illumination device, reflector, and reflector set
WO2018025816A1 (en) * 2016-08-01 2018-02-08 Idec株式会社 Reflector and lighting device
JPWO2018025816A1 (en) * 2016-08-01 2019-05-30 Idec株式会社 Reflector and lighting device
JP2020170720A (en) * 2016-08-01 2020-10-15 Idec株式会社 Reflector and illuminator
WO2019180815A1 (en) * 2018-03-20 2019-09-26 株式会社 芝川製作所 Led lighting device and plant culture shelf
US11143384B2 (en) 2018-03-20 2021-10-12 Shibakawa Manufacturing Co., Ltd. LED lighting device and plant cultivation shelf
JP2020027697A (en) * 2018-08-09 2020-02-20 株式会社アイ・ライティング・システム Illumination device
JP7116625B2 (en) 2018-08-09 2022-08-10 株式会社アイ・ライティング・システム Stadium floodlight
JP2020161245A (en) * 2019-03-25 2020-10-01 東芝ライテック株式会社 Reflector and lighting device

Similar Documents

Publication Publication Date Title
JP2008098088A (en) Wide region lighting device
JP4018744B1 (en) Lighting device
US8231259B2 (en) Luminaire having separate lamps for direct lighting and indirect lighting
JP3787148B1 (en) Lighting unit and lighting device
US7182480B2 (en) System and method for manipulating illumination created by an array of light emitting devices
US7222998B2 (en) Device for illuminating license plate
US8104929B2 (en) Outdoor lighting fixture using LEDs
EP3181994A1 (en) Vehicle headlight
JP6207514B2 (en) Split beam luminaire and illumination system
US20080210953A1 (en) Luminaire with a Plurality of Light-Emitting Diodes in Decentralized Arrangement
US20100124064A1 (en) Lighting device including translucent cover for diffusing light from light source
WO2006059422A1 (en) Illumination unit and illumination apparatus
BR102015021381A2 (en) lighting system, and method of manufacturing a light covering having a network of optical elements
JP2009087596A (en) Reflector, lighting device, and lighting module
JP2008078015A (en) Luminaire
JP2009087595A (en) Lighting module, light source unit, and lighting device
CA2881470A1 (en) Virtual surface indirect radiating luminaire
US10359167B2 (en) Vehicular lighting
US10514144B2 (en) Vehicle lamp
WO2021025028A1 (en) Vehicle lamp
US8360605B2 (en) LED luminaire
JP2009117194A (en) Light cover and light apparatus
JP5588217B2 (en) Lighting device
JP2015002157A (en) Horizon light
JP4061334B2 (en) Lighting cover and lighting fixture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507