WO2018025816A1 - Reflector and lighting device - Google Patents

Reflector and lighting device Download PDF

Info

Publication number
WO2018025816A1
WO2018025816A1 PCT/JP2017/027747 JP2017027747W WO2018025816A1 WO 2018025816 A1 WO2018025816 A1 WO 2018025816A1 JP 2017027747 W JP2017027747 W JP 2017027747W WO 2018025816 A1 WO2018025816 A1 WO 2018025816A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical axis
led
reflecting surface
longitudinal direction
reflector
Prior art date
Application number
PCT/JP2017/027747
Other languages
French (fr)
Japanese (ja)
Inventor
昌順 池田
晃 山中
高仁 三輪
Original Assignee
Idec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec株式会社 filed Critical Idec株式会社
Priority to JP2018531890A priority Critical patent/JP6876051B2/en
Publication of WO2018025816A1 publication Critical patent/WO2018025816A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures

Definitions

  • the present invention relates to a reflector for a lighting device and a lighting device including the reflector.
  • an LED lighting device using an LED (Light Emitting Diode) as a light source has been used.
  • an LED illumination device disclosed in JP 2013-105604 A includes a plurality of LEDs and a reflector that guides light emitted from the plurality of LEDs downward.
  • the reflector includes a plurality of independent recesses arranged in a lattice pattern, and an LED is disposed on the top of each recess recessed upward.
  • a light-shielding body that blocks a part of the light traveling from the LED toward the opening surface of the recess is disposed. Thereby, it is suppressed that the part immediately under LED feels dazzling. In other words, luminance unevenness due to the plurality of LEDs is suppressed.
  • the LED illuminating device of literature 1 since the light shielding body which shields the light from LED is provided in each recessed part, the illumination intensity of the whole LED illuminating device falls. Further, in the reflector, a plurality of concave portions corresponding to the plurality of LEDs are provided independently of each other, and thus there is a limit to suppression of luminance unevenness such as graininess of the light source by the plurality of LEDs.
  • the present invention is directed to a reflector for an illuminating device, and has an object of realizing a desired illuminance of illumination light while suppressing luminance unevenness due to a plurality of LED devices.
  • the reflector for an illuminating device is disposed around each of the plurality of LED devices on the front side in the optical axis direction from the light emitting surface of the plurality of LED devices arranged in a line, and each of the reflectors has an annular concave surface.
  • a plurality of first reflection surfaces that are at least a part, and arranged in front of the plurality of first reflection surfaces in the optical axis direction, and perpendicular to the longitudinal direction of the LED device row that is the plurality of LED devices and the optical axis direction
  • a second reflecting surface that continuously spreads in the longitudinal direction on one side of the LED device row.
  • a first reflecting surface is disposed on both sides in the width direction of each LED device, and the front side in the optical axis direction from each LED device Heading outward in the width direction as heading to.
  • the second reflecting surface goes outward in the width direction as it goes to the front side in the optical axis direction. According to the reflector, it is possible to achieve a desired illuminance of illumination light while suppressing luminance unevenness due to the plurality of LED devices.
  • the shape of the second reflecting surface in a cross section perpendicular to the longitudinal direction is constant over the entire length in the longitudinal direction.
  • an upper edge of each first reflecting surface is at least a part of an upper circumference that is a circumference, and the longitudinal directions of two LED devices adjacent in the longitudinal direction Is less than or equal to the sum of the radii in the longitudinal direction of the upper circumference of the two first reflecting surfaces corresponding to the two LED devices.
  • each first reflecting surface is at least part of an elliptical circumference that is long in the width direction.
  • each first reflecting surface is at least a part of the upper circumference that is a circumference
  • the center of the upper circumference of each first reflecting surface is: Located on the optical axis of each LED device.
  • an upper edge of each first reflecting surface is at least a part of an upper circumference that is a circumference, and the optical axis of each LED device is in the width direction,
  • the first reflecting surface is located between the center of the upper circumference and the second reflecting surface.
  • the center of the upper circumference of at least some of the plurality of first reflecting surfaces is spaced apart from the optical axis of the LED device in the longitudinal direction.
  • the plurality of first reflecting surfaces are arranged on the front side in the optical axis direction, and continuously spread in the longitudinal direction on the other side in the width direction of the LED device row.
  • the second reflective surface is further provided, and in each LED cross section, the other second reflective surface is directed outward in the width direction toward the front side in the optical axis direction.
  • the present invention is also directed to a lighting device.
  • the lighting apparatus includes any one of the reflectors described above and the plurality of LED devices.
  • FIG. 1 is a perspective view showing a reflector 3 of the lighting apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a plan view of the reflector 3.
  • 3 is a cross-sectional view of the reflector 3 taken along the line III-III in FIG. 4 is a cross-sectional view of the reflector 3 taken along the line IV-IV in FIG. 5 and 6 are plan views showing a part of the reflector 3 in an enlarged manner.
  • the structure other than the reflector 3 of the lighting device 1 is also shown, and is a cross-sectional view of the lighting device 1.
  • the external shape of case 5 of the illuminating device 1 is shown with a broken line. 3 and 4 also show a part of the configuration behind the cross section.
  • the LED device 2 of the illuminating device 1 is shown collectively.
  • the lighting device 1 is used as a lighting device in, for example, a metal processing device. As shown in FIG. 3, the lighting device 1 includes a plurality of LED (Light Emitting Diode) devices 2, a reflector 3 for the lighting device, a circuit board 4, and a case 5. The number of LED devices 2 is 48, for example. The plurality of LED devices 2 are fixed on the circuit board 4, for example. The plurality of LED devices 2 are arranged in a line. In the example illustrated in FIG. 3, the plurality of LED devices 2 are arranged linearly (that is, arranged along a virtual straight line).
  • LED Light Emitting Diode
  • the plurality of LED devices 2 arranged in a line are also referred to as “LED device row 20”.
  • the vertical direction in FIG. 2 perpendicular to the longitudinal direction is referred to as the “width direction”.
  • the optical axis direction (that is, the direction in which the optical axis faces) of the plurality of LED devices 2 is a direction perpendicular to the paper surface in FIG. 2, and the front side and the back side of the paper surface are “front side in the optical axis direction” and “light”, respectively. This is called “axial rear side”.
  • the width direction is a direction perpendicular to the longitudinal direction and the optical axis direction.
  • the reflector 3 includes a plurality of first reflection surfaces 31, a pair of second reflection surfaces 32, a pair of third reflection surfaces 33, and a frame portion 34.
  • the frame portion 34 is an outer frame that supports the plurality of first reflection surfaces 31, the pair of second reflection surfaces 32, and the pair of third reflection surfaces 33.
  • Each first reflection surface 31, each second reflection surface 32, and each third reflection surface 33 are formed by evaporating a metal such as aluminum on the surface of a resin, for example.
  • the color of each 1st reflective surface 31, each 2nd reflective surface 32, and each 3rd reflective surface 33 is silver, for example.
  • Each first reflection surface 31, each second reflection surface 32, and each third reflection surface 33 may be, for example, a metal surface of a metal member or a resin surface of a resin member.
  • the plurality of first reflecting surfaces 31 are arranged on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2.
  • the light emission surface 21 of the LED device 2 is an upper surface in FIG. 4 of the LED device 2 and is a surface through which light emitted from the LED device 2 to the outside passes.
  • a substantially circular opening 35 centered on the optical axis J1 is provided at the end of each first reflecting surface 31 on the rear side in the optical axis direction.
  • the plurality of openings 35 are arranged in the longitudinal direction while being separated from each other. The light emitted from the light emitting surface 21 of the LED device 2 is guided forward in the optical axis direction through the opening 35.
  • the number of the plurality of first reflecting surfaces 31 is the same as the number of the plurality of LED devices 2. As shown in FIG. 5, the plurality of first reflecting surfaces 31 are respectively arranged around the plurality of LED devices 2. The plurality of first reflection surfaces 31 are arranged in a line like the plurality of LED devices 2. Specifically, the plurality of first reflecting surfaces 31 are arranged in a straight line substantially parallel to the longitudinal direction. Each of the plurality of first reflecting surfaces 31 is at least a part of an annular concave surface that is substantially centered on the optical axis J1 of the corresponding LED device 2. In the example shown in FIG. 5, the first reflecting surface 31 is provided over the entire circumference of each LED device 2.
  • the pair of second reflecting surfaces 32 are arranged on the front side in the optical axis direction of the plurality of first reflecting surfaces 31.
  • One second reflecting surface 32 continuously extends in the longitudinal direction on one side of the LED device array 20 in the width direction.
  • the other second reflecting surface 32 continuously spreads in the longitudinal direction on the other side of the LED device array 20 in the width direction.
  • the pair of second reflecting surfaces 32 are arranged along the LED device row 20 substantially parallel to the longitudinal direction.
  • the length in the longitudinal direction of each second reflecting surface 32 is longer than the length in the longitudinal direction of the LED device row 20.
  • the length in the longitudinal direction of each second reflecting surface 32 is approximately the same as the length in the longitudinal direction of the plurality of first reflecting surfaces 31.
  • the shape of the pair of second reflecting surfaces 32 in a cross section perpendicular to the longitudinal direction is substantially constant over substantially the entire length in the longitudinal direction.
  • the pair of second reflecting surfaces 32 are continuous with the front ends of the plurality of first reflecting surfaces 31 in the optical axis direction.
  • the height of the pair of second reflecting surfaces 32 in the optical axis direction is larger than the height of each of the plurality of first reflecting surfaces 31 in the optical axis direction.
  • the height of each second reflecting surface 32 in the optical axis direction is not less than twice and not more than five times the maximum height of each first reflecting surface 31 in the optical axis direction.
  • the pair of second reflecting surfaces 32 are discontinuous with each other between the two LED devices 2 adjacent in the longitudinal direction.
  • the pair of third reflecting surfaces 33 are arranged on the front side in the optical axis direction of the plurality of first reflecting surfaces 31.
  • the pair of third reflection surfaces 33 are located at substantially the same position as the pair of second reflection surfaces 32 in the optical axis direction.
  • the height of the pair of third reflecting surfaces 33 in the optical axis direction is substantially the same as the height of the pair of second reflecting surfaces 32 in the optical axis direction.
  • the one third reflecting surface 33 extends in the width direction on one side of the LED device array 20 in the longitudinal direction.
  • the other third reflecting surface 33 extends in the width direction on the other side of the LED device array 20 in the longitudinal direction.
  • the pair of third reflecting surfaces 33 connects both ends of the pair of second reflecting surfaces 32 in the longitudinal direction.
  • the cross section shown in FIG. 4 is a cross section perpendicular to the longitudinal direction and including the optical axis J1 of the LED device 2, and is hereinafter referred to as “LED cross section”.
  • the first reflecting surfaces 31 are arranged on both sides in the width direction of the LED device 2 (that is, both left and right sides in FIG. 4).
  • the first reflecting surface 31 moves outward in the width direction (that is, in a direction away from the LED device 2 in the width direction) from the LED device 2 toward the front side in the optical axis direction. Head.
  • the focal position of the first reflecting surface 31 is located on the optical axis J1 of the LED device 2.
  • the pair of second reflecting surfaces 32 are directed outward in the width direction toward the front side in the optical axis direction.
  • the focal positions of the pair of second reflecting surfaces 32 are located on the optical axis J1 of the LED device 2.
  • the slope of the tangent line of the first reflecting surface 31 at the connection portion between the first reflecting surface 31 and the second reflecting surface 32 that is, the boundary between the first reflecting surface 31 and the second reflecting surface 32.
  • the slope of the tangent line of the second reflecting surface 32 is different. In the example shown in FIG.
  • the angle formed between the tangent line of the first reflecting surface 31 and the optical axis J1 in the connecting portion is larger than the angle formed between the tangent line of the second reflecting surface 32 and the optical axis J1 in the connecting portion.
  • the shape of the first reflecting surface 31 and the shape of the second reflecting surface 32 are the same as the above shape.
  • the upper edge 311 of each first reflecting surface 31 is a part of the upper circumference 312 that is a virtual circumference centered on the optical axis J1 of each LED device 2.
  • a portion of the upper circumference 312 that does not overlap with the upper edge 311 of the first reflecting surface 31 is drawn with a two-dot chain line.
  • the upper circumference 312 may be a true circle or an ellipse.
  • the upper edge 311 of each first reflecting surface 31 is a part of an elliptical circumference that is long in the width direction (that is, the vertical direction in FIG. 6) around the optical axis J1 of the LED device 2. .
  • the distance between the centers in the longitudinal direction of each of the two LED devices 2 adjacent in the longitudinal direction corresponds to the two LED devices 2 corresponding to the two LED devices 2. This is not more than the sum of the radii in the longitudinal direction of the upper circumference 312 of the first reflecting surface 31.
  • each first reflecting surface 31 is at least part of the lower circumference that is a virtual circumference centered on the optical axis J1 of each LED device 2.
  • the first reflecting surface 31 is at least a part of an annular concave surface that connects the upper circumference 312 and the lower circumference.
  • the lower circumference may be a true circle or an ellipse.
  • the lower edge 313 of each first reflecting surface 31 is the entire circumference of a perfect circle centered on the optical axis J ⁇ b> 1 of the LED device 2.
  • a partition wall 315 formed by the first reflecting surface 31 is located between each two LED devices 2 adjacent in the longitudinal direction.
  • the partition wall 315 partitions between the two openings 35 adjacent in the longitudinal direction. Between each two LED devices 2 adjacent to each other in the longitudinal direction, the height in the optical axis direction of the central portion in the width direction of the first reflecting surface 31 (that is, the height in the central portion in the width direction of the partition wall 315) is It is lower than the height in the optical axis direction of other parts of the one reflecting surface 31.
  • the upper circumference 312 of each first reflection surface 31 intersects with the upper circumference 312 and the lower edge 313 of the first reflection surface 31 adjacent in the longitudinal direction. Further, the upper circumference 312 of each first reflecting surface 31 does not include the optical axis J1 of the first reflecting surface 31 adjacent in the longitudinal direction on the inner side. Note that the upper circumference 312 of each first reflection surface 31 may not intersect the upper circumference 312 and the lower edge 313 of the first reflection surface 31 adjacent in the longitudinal direction, for example. Further, the upper circumference 312 of each first reflection surface 31 may include, for example, the optical axis J1 of the first reflection surface 31 adjacent in the longitudinal direction on the inner side.
  • the light emitted from the plurality of LED devices 2 is reflected by the plurality of first reflection surfaces 31 or directly without being reflected by the first reflection surfaces 31. Guided forward in the axial direction.
  • the light guided to the front side in the optical axis direction from the plurality of first reflection surfaces 31 is reflected by the second reflection surface 32 or directly without being reflected by the second reflection surface 32.
  • the light is guided forward and irradiated from the reflector 3 forward in the optical axis direction.
  • the reflector 3 for the lighting device 1 includes the plurality of first reflection surfaces 31 and the second reflection surfaces 32.
  • the plurality of first reflecting surfaces 31 are respectively arranged around the plurality of LED devices 2 on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2 arranged in a line.
  • Each of the plurality of first reflection surfaces 31 is at least a part of an annular concave surface.
  • the second reflecting surface 32 is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31.
  • the second reflecting surface 32 continuously extends in the longitudinal direction on one side of the LED device array 20 in the width direction perpendicular to the longitudinal direction and the optical axis direction of the LED device array 20 that is the plurality of LED devices 2.
  • the first reflecting surfaces 31 are arranged on both sides of each LED device 2 in the width direction in each LED cross section perpendicular to the longitudinal direction and including the optical axis J ⁇ b> 1 of each LED device 2. From the front toward the front side in the optical axis direction.
  • the 2nd reflective surface 32 goes to the width direction outward as it goes to the optical axis direction front side.
  • the reflector 3 by providing the plurality of first reflecting surfaces 31 respectively corresponding to the plurality of LED devices 2, the light emitted from the plurality of LED devices 2 is efficiently forward in the optical axis direction. Can guide well.
  • the second reflection surface 32 continuously spreads in the longitudinal direction along the plurality of first reflection surfaces 31, thereby allowing light from the plurality of LED devices 2 and the plurality of first reflection surfaces 31. Can be more efficiently guided forward in the optical axis direction while appropriately diffusing in the longitudinal direction.
  • luminance nonuniformity (For example, the granularity of the light source by each LED device, or generation
  • the desired illumination intensity of the illumination light by the illuminating device 1 Can be realized.
  • the height of the second reflecting surface 32 in the optical axis direction is larger than the height of each of the plurality of first reflecting surfaces 31 in the optical axis direction.
  • the shape of the second reflecting surface 32 in a cross section perpendicular to the longitudinal direction is constant over the entire length of the second reflecting surface 32 in the longitudinal direction.
  • the uniformity of light diffusion in the longitudinal direction can be improved. it can.
  • luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
  • vertical to a longitudinal direction should just be substantially constant over substantially the full length of the longitudinal direction of the 2nd reflective surface 32. FIG. Also in this case, similarly to the above, luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
  • the first reflecting surface 31 is provided over the entire circumference of each LED device 2.
  • emitted from several LED device 2 can be guide
  • the desired illuminance of the illumination light by the illumination device 1 can be easily realized.
  • each first reflecting surface 31 is a part of the upper circumference 312 that is a circumference centered on the optical axis J1 of each LED device 2, and is adjacent to each other in the longitudinal direction.
  • the distance between the centers of the two LED devices 2 in the longitudinal direction is equal to or less than the sum of the radii in the longitudinal direction of the upper circumference 312 in the two first reflecting surfaces 31 corresponding to the two LED devices 2.
  • interval of the longitudinal direction of the some LED device 2 can be made small.
  • luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
  • the reflector 3 and the illuminating device 1 can also be reduced in size.
  • each first reflecting surface 31 is not necessarily a part of the upper circumference 312 and may be the entire upper circumference 312. That is, the upper edge 311 of each first reflecting surface 31 may be at least a part of the upper circumference 312.
  • the distance between the centers of the two LED devices 2 adjacent in the longitudinal direction is the sum of the radii in the longitudinal direction of the upper circumference 312 of the two first reflecting surfaces 31 corresponding to the two LED devices 2.
  • the reflector 3 and the illuminating device 1 can also be reduced in size.
  • each first reflecting surface 31 is at least part of an elliptical circumference that is long in the width direction about the optical axis J ⁇ b> 1 of each LED device 2.
  • the reflector 3 further includes another second reflecting surface 32.
  • the other second reflection surface 32 is disposed on the front side in the optical axis direction of the plurality of first reflection surfaces 31 and continuously spreads in the longitudinal direction on the other side in the width direction of the LED device row 20.
  • the other second reflecting surface 32 is directed outward in the width direction toward the front side in the optical axis direction.
  • the reflection characteristics (for example, roughness and reflectance) of the plurality of first reflection surfaces 31, the pair of second reflection surfaces 32, and the pair of third reflection surfaces 33 are the same, but are not necessarily the same. Not necessarily.
  • the reflection characteristics of the plurality of first reflection surfaces 31 and the reflection characteristics of the second reflection surface 32 may be different.
  • the roughness of the plurality of first reflection surfaces 31 is greater than the roughness of the second reflection surface 32.
  • the reflectance of the plurality of first reflection surfaces 31 is lower than the reflectance of the second reflection surface 32.
  • the difference in reflectance may be realized, for example, by making the material of the first reflecting surface 31 different from the material of the second reflecting surface 32.
  • the color of the first reflecting surface 31 and the second reflecting surface 32 may be different from each other. It may be realized by making the color different.
  • the magnitude relationship between the roughness or reflectance of the first reflecting surface 31 and the second reflecting surface 32 may be variously changed according to the performance required for the reflector 3.
  • a diffusion plate 6 may be disposed on the front side of the reflector 3 in the optical axis direction.
  • the diffusion plate 6 is, for example, a resin plate member.
  • the diffusing plate 6 is attached to the case 5 on the front side in the optical axis direction with respect to the pair of second reflecting surfaces 32 and the pair of third reflecting surfaces 33 of the reflector 3.
  • the diffuser plate 6 is formed by the opening at the front end in the optical axis direction of the reflector 3 (that is, the front edge in the optical axis direction of the pair of second reflecting surfaces 32 and the front edge in the optical axis direction of the pair of third reflecting surfaces 33). Covers almost the entire opening.
  • the diffusion plate 6 diffuses while transmitting light from the plurality of LED devices 2 and the reflector 3. Thereby, the brightness nonuniformity by the some LED device 2 can be suppressed further.
  • the diffusing plate 6 may be provided in an illuminating device including other reflectors described later.
  • FIG. 8 is a diagram showing how the luminance unevenness is suppressed in the lighting device 1.
  • Example 1 described in the left column of FIG. 8 is the illuminating device 1 shown in FIGS.
  • Example 2 is the illuminating device 1 provided with the diffusion plate 6 shown in FIG.
  • Comparative Example 1 is an illumination device in which the reflector 3 is omitted from the illumination device 1 shown in FIGS.
  • the same number of LED devices as the lighting device 1 are similarly arranged on the circuit board.
  • Each graph in the right column of FIG. 8 shows the luminance distribution in each lighting device.
  • the horizontal axis of each graph indicates the position in the longitudinal direction of the lighting device, and the vertical axis indicates the luminance at each position in the longitudinal direction.
  • the luminance is the luminance on the LED device row 20.
  • the luminance amplitude is large. That is, in the illumination device of Comparative Example 1, there is a large difference in brightness between the position where the LED device is disposed and the position where the LED device is not disposed, and luminance unevenness due to the plurality of LED devices (for example, graininess of the light source) Is big.
  • the illuminating device 1 of Example 1 and Example 2 the brightness
  • the illuminance immediately below each LED device 2 was about 1950 lx (lux) in Example 1, about 1600 lx in Example 2, and about 430 lx in Comparative Example 1.
  • Examples 1 and 2 can be appropriately selected according to the performance (for example, the degree of luminance unevenness and illuminance) required for the lighting device 1.
  • FIG. 9 is a perspective view showing the reflector 3a.
  • FIG. 10 is a plan view of the reflector 3a.
  • FIG. 11 is a cross-sectional view of the reflector 3a taken along the line XI-XI in FIG. 12 is a cross-sectional view of the reflector 3a taken along the line XII-XII in FIG. 13 and 14 are enlarged plan views showing a part of the reflector 3a.
  • FIG. 11 also shows a structure other than the reflector 3a of the lighting device 1a, and is also a cross-sectional view of the lighting device 1a. Moreover, in FIG.
  • case 5 of the illuminating device 1a is shown with a broken line.
  • 11 and 12 also show a part of the configuration behind the cross section.
  • the LED device 2 of the illuminating device 1a is shown collectively.
  • the reflector 3a includes a plurality of first reflecting surfaces 31a having a shape different from that of the plurality of first reflecting surfaces 31 instead of the plurality of first reflecting surfaces 31 shown in FIG.
  • the other structure of the reflector 3a is substantially the same as that of the reflector 3 shown in FIG. 1, and the same reference numerals are given to the corresponding structures in the following description.
  • the plurality of first reflecting surfaces 31a are arranged on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2.
  • the number of the plurality of first reflecting surfaces 31 a is the same as the number of the plurality of LED devices 2.
  • the plurality of first reflecting surfaces 31 a are respectively disposed around the plurality of LED devices 2.
  • Each of the plurality of first reflection surfaces 31a is a part of an annular concave surface that is substantially centered on the optical axis J1 of the corresponding LED device 2.
  • each 1st reflective surface 31a is a pair of site
  • the plurality of first reflection surfaces 31a continuously spread along the longitudinal direction on both sides in the width direction of the LED device row 20. That is, the plurality of first reflection surfaces 31a can be regarded as a pair of reflection surfaces that continuously spread in the longitudinal direction on both sides in the width direction of the LED device row 20.
  • one substantially band-shaped opening 35a extending in the longitudinal direction is provided at the end of the plurality of first reflecting surfaces 31a on the rear side in the optical axis direction.
  • a plurality of openings, each of which is a part of a substantially circular shape, provided at the end on the rear side in the optical axis direction of the plurality of first reflecting surfaces 31a are continuous in the longitudinal direction.
  • the length in the longitudinal direction of the opening 35 a is longer than the length in the longitudinal direction of the LED device row 20.
  • part corresponded to the above-mentioned partition wall 315 (refer FIG. 4) is not provided.
  • the upper edge 311a of each first reflecting surface 31a is a part of an upper circumference 312a that is a virtual circumference centered on the optical axis J1 of each LED device 2.
  • a portion of the upper circumference 312a that does not overlap with the upper edge 311a of the first reflecting surface 31a is drawn with a two-dot chain line.
  • the upper circumference 312a may be a perfect circle or an ellipse.
  • the upper edge 311 a of each first reflecting surface 31 a is a part of a true circumference around the optical axis J ⁇ b> 1 of the LED device 2.
  • the distance between the centers of the two LED devices 2 adjacent in the longitudinal direction in the longitudinal direction is the sum of the radii in the longitudinal direction of the upper circumferences 312a of the two first reflecting surfaces 31a corresponding to the two LED devices 2. It is as follows. In addition, the center-to-center distance is not more than the radius in the longitudinal direction of the upper circumference 312a of the first reflecting surface 31a.
  • each first reflecting surface 31a is at least a part of a lower circumference 316a that is a virtual circumference centered on the optical axis J1 of each LED device 2.
  • the first reflecting surface 31a is a part of an annular concave surface that connects the upper circumference 312a and the lower circumference 316a.
  • the lower circumference 316a may be a perfect circle or an ellipse.
  • the lower edge 313 a of each first reflecting surface 31 a is a part of a true circumference centering on the optical axis J ⁇ b> 1 of the LED device 2.
  • the upper circumference 312a of each first reflecting surface 31a intersects the lower edge 313a of the first reflecting surface 31a adjacent in the longitudinal direction.
  • the upper circumference 312a of each first reflection surface 31a includes the optical axis J1 of the first reflection surface 31a adjacent in the longitudinal direction on the inner side.
  • the reflector 3a shown in FIG. 9 to FIG. 13 includes a plurality of first reflecting surfaces 31a and second reflecting surfaces 32, substantially the same as the reflector 3 described above.
  • the plurality of first reflecting surfaces 31a are respectively arranged around the plurality of LED devices 2 on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2 arranged in a line.
  • Each of the plurality of first reflecting surfaces 31a is a part of an annular concave surface.
  • the second reflecting surface 32 is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31a.
  • the second reflecting surface 32 continuously extends in the longitudinal direction on one side of the LED device array 20 in the width direction perpendicular to the longitudinal direction and the optical axis direction.
  • the first reflecting surfaces 31a are arranged on both sides in the width direction of the LED devices 2, and go outward in the width direction from the LED devices 2 toward the front side in the optical axis direction.
  • the 2nd reflective surface 32 goes to the width direction outward as it goes to the optical axis direction front side.
  • the reflector 3a by providing the plurality of first reflecting surfaces 31a respectively corresponding to the plurality of LED devices 2, the light emitted from the plurality of LED devices 2 is efficiently forward in the optical axis direction. Can guide well.
  • the second reflecting surface 32 continuously spreads in the longitudinal direction along the plurality of first reflecting surfaces 31a, whereby light from the plurality of LED devices 2 and the plurality of first reflecting surfaces 31a. Can be more efficiently guided forward in the optical axis direction while appropriately diffusing in the longitudinal direction. Thereby, the desired illumination intensity of the illumination light by the illuminating device 1a is realizable, suppressing the brightness nonuniformity by the some LED device 2.
  • the plurality of first reflecting surfaces 31a continuously extend in the longitudinal direction along the LED device row 20. Thereby, the light from the plurality of LED devices 2 can be more appropriately diffused in the longitudinal direction. As a result, luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
  • FIG. 15 is a plan view showing the reflector 3b.
  • FIG. 16 is a cross-sectional view of the reflector 3b taken along the line XVI-XVI in FIG. 17 and 18 are enlarged plan views showing a part of the reflector 3b.
  • FIG. 16 also shows the structure other than the reflector 3b of the lighting device 1b.
  • FIG. 16 is also a cross-sectional view of the lighting device 1b.
  • FIG. 16 also shows a part of the configuration behind the cross section. In FIG. 16 thru
  • the reflector 3b includes a plurality of first reflecting surfaces 31b and a pair of second reflecting surfaces 32b instead of the plurality of first reflecting surfaces 31 and the pair of second reflecting surfaces 32 shown in FIG.
  • Each first reflecting surface 31b and the pair of second reflecting surfaces 32b are different in shape from each first reflecting surface 31 and the pair of second reflecting surfaces 32.
  • the number of LED devices 2 in the lighting device 1b is smaller than the number of LED devices 2 in the lighting device 1 described above.
  • the other structure of the reflector 3b and the illuminating device 1b is substantially the same as that of the reflector 3 and the illuminating device 1 described above, and the same reference numerals are given to the corresponding components in the following description.
  • the pair of second reflecting surfaces 32b of the reflector 3b is continuous with the front end in the optical axis direction of the plurality of first reflecting surfaces 31b.
  • the height of the pair of second reflection surfaces 32b in the optical axis direction is larger than the height of each of the plurality of first reflection surfaces 31b in the optical axis direction.
  • the height of each second reflecting surface 32b in the optical axis direction is not less than twice and not more than five times the maximum height of each first reflecting surface 31b in the optical axis direction.
  • the pair of second reflecting surfaces 32b are discontinuous with each other between the two LED devices 2 adjacent in the longitudinal direction.
  • the first reflecting surfaces 31 b are arranged on both sides in the width direction of the LED device 2 (that is, both the left and right sides in FIG. 16). Further, on both sides of the LED device 2 in the width direction, the first reflecting surface 31b is outward in the width direction (that is, in a direction away from the LED device 2 in the width direction) from the LED device 2 toward the front side in the optical axis direction. Head.
  • the pair of second reflecting surfaces 32b go outward in the width direction toward the front side in the optical axis direction.
  • the pair of second reflecting surfaces 32 b are asymmetrical with respect to the optical axis J1 of the LED device 2.
  • the angle formed by the left second reflective surface 32b and the optical axis J1 is smaller than the angle formed by the right second reflective surface 32b and the optical axis J1.
  • the distance in the width direction between the left second reflecting surface 32b and the optical axis J1 is the distance in the width direction between the right second reflecting surface 32b and the optical axis J1. Smaller than.
  • the center in the width direction of the pair of second reflecting surfaces 32b is located on the right side of the optical axis J1.
  • the center in the width direction of the pair of second reflecting surfaces 32b at each position in the optical axis direction is located on a straight line J2.
  • the straight line J2 is referred to as “reflection surface axis J2”.
  • the reflective surface axis J2 is inclined to the right with respect to the optical axis J1 of the LED device 2.
  • the angle formed by the reflecting surface axis J2 and the optical axis J1 is, for example, about 10 degrees.
  • the slope of the tangent line of the first reflecting surface 31b at the connection portion that is, the boundary between the first reflecting surface 31b and the second reflecting surface 32b between the first reflecting surface 31b and the second reflecting surface 32b.
  • the slope of the tangent line of the second reflecting surface 32b is different.
  • the shape of the first reflecting surface 31b and the shape of the second reflecting surface 32b are the same as the above shapes.
  • the upper edge 311 of each first reflecting surface 31b is a part of an upper circumference 312 that is a virtual circumference surrounding the optical axis J1 of each LED device 2.
  • a portion of the upper circumference 312 that does not overlap with the upper edge 311 of the first reflecting surface 31 b is drawn with a two-dot chain line.
  • the upper circumference 312 may be a true circle or an ellipse.
  • the upper edge 311 of each first reflecting surface 31 b is a part of an elliptical circumference that is long in the width direction (that is, the vertical direction in FIG. 18).
  • the distance between the centers in the longitudinal direction of each of the two LED devices 2 adjacent in the longitudinal direction corresponds to the two LED devices 2 corresponding to the two LED devices 2. This is not more than the sum of the radii in the longitudinal direction of the upper circumference 312 of the first reflecting surface 31b.
  • the center 314 of the upper circumference 312 is not located on the optical axis J1 of the LED device 2.
  • the center 314 of the upper circumference 312 is located at a position spaced apart from the optical axis J1 in the width direction.
  • the optical axis J1 of the LED device 2 is located between the center 314 of the upper circumference 312 and the left second reflecting surface 32b in FIG. 16 in the width direction.
  • the center 314 of the upper circumference 312 is located at substantially the same position in the longitudinal direction as the optical axis J1.
  • the center 314 of the upper circumference 312 is located on the LED cross section and is shifted in the width direction from the optical axis J1.
  • each first reflecting surface 31b is at least a part of a lower circumference that is a virtual circumference centered on the optical axis J1 of the LED device 2.
  • the first reflecting surface 31b is at least a part of an annular concave surface that connects the upper circumference 312 and the lower circumference.
  • the lower circumference may be a true circle or an ellipse.
  • the lower edge 313 of each first reflecting surface 31 b is the entire circumference of a perfect circle centered on the optical axis J ⁇ b> 1 of the LED device 2.
  • the center of the lower circumference of the first reflecting surface 31b and the center 314 of the upper circumference 312 are located on the reflecting surface axis J2. That is, the reflecting surface axis J2 indicates the center of the first reflecting surface 31b and the second reflecting surface 32b in the LED cross section.
  • the partition wall 315 by the 1st reflective surface 31b is located between each two LED devices 2 adjacent to a longitudinal direction.
  • the partition wall 315 partitions between the two openings 35 adjacent in the longitudinal direction.
  • the height in the optical axis direction of the central portion in the width direction of the first reflecting surface 31b (that is, the height in the central portion in the width direction of the partition wall 315) is It is lower than the height in the optical axis direction of other parts of the one reflecting surface 31b.
  • the upper circumference 312 of each first reflective surface 31b intersects the upper circumference 312 and the lower edge 313 of the first reflective surface 31b adjacent in the longitudinal direction. Further, the upper circumference 312 of each first reflection surface 31b does not include the optical axis J1 of the first reflection surface 31b adjacent in the longitudinal direction on the inner side. The upper circumference 312 of each first reflection surface 31b may not intersect the upper circumference 312 and the lower edge 313 of the first reflection surface 31b adjacent in the longitudinal direction, for example. Further, the upper circumference 312 of each first reflection surface 31b may include, for example, the optical axis J1 of the first reflection surface 31b adjacent in the longitudinal direction on the inner side.
  • the light emitted from the plurality of LED devices 2 is reflected by the plurality of first reflection surfaces 31b or directly forward in the optical axis direction without being reflected by the first reflection surfaces 31b. It is guided.
  • the light guided to the front side in the optical axis direction from the plurality of first reflecting surfaces 31b is reflected by the second reflecting surface 32b or directly without being reflected by the second reflecting surface 32b.
  • the light is guided forward and irradiated from the reflector 3b toward the front in the optical axis direction.
  • the reflection surface axis J2 indicating the center of the first reflection surface 31b and the second reflection surface 32b in the LED cross section is inclined to one side in the width direction with respect to the optical axis J1 of the LED device 2. Therefore, the light from the illuminating device 1b is irradiated with being biased toward the one side in the width direction with respect to the optical axis J1.
  • the reflector 3b for the lighting device 1b includes the plurality of first reflection surfaces 31b and the second reflection surface 32b, as with the reflector 3 described above.
  • the plurality of first reflecting surfaces 31b are respectively arranged around the plurality of LED devices 2 on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2 arranged in a line.
  • Each of the plurality of first reflecting surfaces 31b is at least a part of an annular concave surface.
  • the second reflecting surface 32b is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31b.
  • the second reflecting surface 32b continuously spreads in the longitudinal direction on one side of the LED device row 20 in the width direction perpendicular to the longitudinal direction and the optical axis direction of the LED device row 20 which is the plurality of LED devices 2.
  • the first reflecting surfaces 31b are arranged on both sides in the width direction of each LED device 2, and each LED device 2 From the front toward the front side in the optical axis direction.
  • the 2nd reflective surface 32b goes to the width direction outward as it goes to the optical axis direction front side.
  • the shape of the second reflecting surface 32b in the cross section perpendicular to the longitudinal direction is constant over the entire length of the second reflecting surface 32b in the longitudinal direction.
  • the uniformity of light diffusion in the longitudinal direction can be improved. it can.
  • luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
  • vertical to a longitudinal direction should just be substantially constant over substantially the full length of the longitudinal direction of the 2nd reflective surface 32b. Also in this case, similarly to the above, luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
  • the upper edge 311 of each first reflecting surface 31b is a part of the upper circumference 312 that is a circumference, and the distance between the centers of the two LED devices 2 adjacent in the longitudinal direction is as follows. It is less than or equal to the sum of the radii in the longitudinal direction of the upper circumference 312 in the two first reflecting surfaces 31b corresponding to the two LED devices 2. Thereby, the space
  • each first reflecting surface 31b is not necessarily a part of the upper circumference 312 and may be the entire upper circumference 312. That is, the upper edge 311 of each first reflecting surface 31b may be at least a part of the upper circumference 312.
  • the distance between the centers in the longitudinal direction of two LED devices 2 adjacent in the longitudinal direction is the sum of the radii in the longitudinal direction of the upper circumference 312 in the two first reflecting surfaces 31b corresponding to the two LED devices 2.
  • the reflector 3b and the illuminating device 1b can also be reduced in size.
  • the upper edge 311 of each first reflecting surface 31b is at least part of an elliptical circumference that is long in the width direction.
  • each first reflecting surface 31b is at least a part of the upper circumference 312 that is a circumference
  • the optical axis J1 of each LED device 2 is It is located between the center 314 of the upper circumference 312 of the first reflective surface 31b and the second reflective surface 32b.
  • the upper edge of the first reflecting surface 31 is at least a part of the upper circumference 312 that is a circumference, and the center of the upper circumference 312 of each first reflecting surface 31 is It is located on the optical axis J1 of each LED device 2.
  • the light from the several LED device 2 can be efficiently guide
  • the reflector 3b shown in FIG. 15 further includes another second reflecting surface 32b as described above.
  • the other second reflecting surface 32b is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31b, and continuously spreads in the longitudinal direction on the other side in the width direction of the LED device row 20.
  • the other second reflecting surface 32b is directed outward in the width direction toward the front side in the optical axis direction.
  • the distance in the width direction between the other second reflection surface 32b and the optical axis J1 is the width direction distance between the other second reflection surface 32b and the optical axis J1. Greater than distance.
  • the light from the several LED device 2 can be guide
  • FIG. 19 is an enlarged plan view showing a part of another preferred reflector 3c.
  • FIG. 19 shows one end of the reflector 3c in the longitudinal direction.
  • the reflector 3c has substantially the same structure as the reflector 3b except that the first reflecting surface 31c having a shape different from that of the first reflecting surface 31b is provided at both ends in the longitudinal direction.
  • the center 314 of the upper circumference 312 of the first reflecting surface 31c is not only separated in the width direction from the optical axis J1 of the LED device 2, but is also separated in the longitudinal direction from the optical axis J1. Thereby, the light from the LED device 2 can be guided forward in the optical axis direction while being biased to one side in the width direction and one side in the longitudinal direction of the illumination device 1c.
  • the center 314 of the upper circumference 312 of the first reflecting surface 31 c is closer to the end of the lighting device 1 c in the longitudinal direction than the optical axis J1 of the LED device 2. Thereby, the light from the LED device 2 can be spread toward the end in the longitudinal direction (that is, in a direction away from the central portion in the longitudinal direction of the lighting device 1c).
  • the first reflecting surface 31c in which the center 314 of the upper circumference 312 is spaced apart from the optical axis J1 in the longitudinal direction is not necessarily provided at the end in the longitudinal direction, and is provided in another part. May be. Or all the 1st reflective surfaces of reflector 3c may be the above-mentioned 1st reflective surface 31c.
  • the center 314 of the upper circumference 312 of at least some of the first reflecting surfaces 31c among the plurality of first reflecting surfaces is spaced apart from the optical axis J1 of the LED device 2 in the longitudinal direction. .
  • FIGS. 20 and 21 are a plan view and a cross-sectional view showing the reflector 3d having the angle of about 25 degrees.
  • the optical axis J1 of each LED device 2 is located between the center 314 of the upper circumference of each first reflective surface 31d and the second reflective surface 32d in the width direction.
  • the center 314 of the upper circumference of the first reflecting surface 31d and the center in the width direction of the pair of second reflecting surfaces 32b are compared to the example shown in FIG. 2 away from the second optical axis J1 in the width direction.
  • the light from the several LED device 2 can be largely biased to the one side of the width direction of the illuminating device 1d.
  • the height in the optical axis direction of the pair of second reflecting surfaces 32 may be smaller than the height in the optical axis direction of each of the plurality of first reflecting surfaces 31 and 31a. May be the same.
  • the shape of the pair of second reflecting surfaces 32 in the cross section perpendicular to the longitudinal direction does not necessarily need to be substantially constant over the entire length in the longitudinal direction, and may be changed depending on the position in the longitudinal direction.
  • a plurality of partition walls 315 (see FIG. 4) of the first reflecting surfaces 31 may be extended. Specifically, the end in the width direction of the partition wall 315 may extend upward along the second reflecting surface 32 as, for example, a substantially triangular pyramid rib.
  • the front end of the rib in the optical axis direction is located behind the front edge of the second reflecting surface 32 in the optical axis direction.
  • the second reflecting surface 32 may be provided only on one side in the width direction of the LED device array 20. The same applies to the reflectors 3b to 3d.
  • the angle formed between the tangent line of the first reflecting surface 31 and the optical axis J1 in the connecting portion between the first reflecting surface 31 and the second reflecting surface 32 is the second reflecting surface in the connecting portion.
  • the angle may be smaller than or equal to the angle formed by the tangent line 32 and the optical axis J1.
  • the angle formed by the tangent line 32 and the optical axis J1 may be the same, and one angle may be larger than the other angle. The same applies to the reflectors 3b to 3d.
  • the plurality of LED devices 2 and the plurality of first reflection surfaces 31 and 31a are not necessarily arranged linearly, but may be arranged linearly (that is, non-annular).
  • the plurality of LED devices 2 and the plurality of first reflection surfaces 31 and 31a may be arranged in an arc (that is, arranged along a virtual arcuate line that bends in the width direction or the optical axis direction). The same applies to the reflectors 3b to 3d.
  • the plurality of first reflecting surfaces 31 are arranged in one straight line, but the present invention is not limited to this.
  • two first reflecting surface rows 310 are arranged in the width direction.
  • column 310 is the some 1st reflective surface 31 (refer FIG. 4) arranged substantially parallel to a longitudinal direction.
  • the two first reflecting surface rows 310 are disposed between the pair of second reflecting surfaces 32 in the width direction.
  • two fourth reflecting surfaces 36 extending substantially parallel to the longitudinal direction are provided between the two first reflecting surface rows 310.
  • the two fourth reflecting surfaces 36 respectively oppose the pair of second reflecting surfaces 32 in the width direction.
  • the fourth reflecting surface 36 is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31 and continuously spreads in the longitudinal direction.
  • the height of the fourth reflecting surface 36 in the optical axis direction is lower than the height of the second reflecting surface 32 in the optical axis direction.
  • the front end in the optical axis direction of the fourth reflective surface 36 is on the rear side in the optical axis direction with respect to the front end in the optical axis direction of the second reflective surface 32.
  • three first reflecting surface rows 310 (that is, a plurality of first reflecting surfaces 31 arranged in the longitudinal direction) are arranged in the width direction.
  • the three first reflecting surface rows 310 are disposed between the pair of second reflecting surfaces 32 in the width direction.
  • the fourth reflecting surface 36 shown in FIG. 22 is not provided between each two first reflecting surface rows 310 adjacent in the width direction.
  • the desired illuminance of the illumination light by the illumination device can be realized while suppressing the luminance unevenness due to the plurality of LED devices 2 as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A reflector (3) is provided with a plurality of first reflective surfaces (31) and a second reflective surface (32). The plurality of first reflective surfaces (31) are each disposed around a plurality of LED devices and farther forward in the light axis direction than the light emission surface of the plurality of LED devices, which are arranged linearly. The second reflective surface (32) is disposed on the forward side of the plurality of first reflective surfaces (31) in the light axis direction. The second reflective surface (32) widens continuously in the lengthwise direction on one side of the LED device array in the width direction. In the reflector (3), the first reflective surfaces (31) are disposed on both sides of the LED cross sections in the width direction, and face outward in the width direction from the LED devices in progress toward the forward side in the light axis direction. Also, in the LED cross sections, the second reflective surface (32) faces outward in the width direction in progress toward the forward side in the light axis direction. It is thereby possible to achieve a desired illuminance of illumination light, while non-uniformity of brightness due to the plurality of LED devices is suppressed.

Description

リフレクタおよび照明装置Reflector and lighting device
 本発明は、照明装置用のリフレクタ、および、当該リフレクタを備える照明装置に関する。 The present invention relates to a reflector for a lighting device and a lighting device including the reflector.
 従来、LED(Light Emitting Diode)を光源とするLED照明装置が利用されている。例えば、特開2013-105604号公報(文献1)のLED照明装置は、複数のLEDと、当該複数のLEDから出射された光を下方へと導くリフレクタとを備える。リフレクタは、格子状に配列された互いに独立する複数の凹部を備え、上方に向かって凹む各凹部の頂部にLEDが配置される。各凹部内には、LEDから凹部の開口面へと向かう光の一部を遮る遮光体が配置される。これにより、LEDの直下の部分が眩しく感じられることが抑制される。換言すれば、複数のLEDによる輝度ムラが抑制される。 Conventionally, an LED lighting device using an LED (Light Emitting Diode) as a light source has been used. For example, an LED illumination device disclosed in JP 2013-105604 A (reference 1) includes a plurality of LEDs and a reflector that guides light emitted from the plurality of LEDs downward. The reflector includes a plurality of independent recesses arranged in a lattice pattern, and an LED is disposed on the top of each recess recessed upward. In each recess, a light-shielding body that blocks a part of the light traveling from the LED toward the opening surface of the recess is disposed. Thereby, it is suppressed that the part immediately under LED feels dazzling. In other words, luminance unevenness due to the plurality of LEDs is suppressed.
 ところで、文献1のLED照明装置では、各凹部内にLEDからの光を遮る遮光体が設けられるため、LED照明装置全体の照度が低下する。また、リフレクタにおいて、複数のLEDに対応する複数の凹部が互いに独立して設けられるため、複数のLEDによる光源の粒状感等の輝度ムラの抑制に限界がある。 By the way, in the LED illuminating device of literature 1, since the light shielding body which shields the light from LED is provided in each recessed part, the illumination intensity of the whole LED illuminating device falls. Further, in the reflector, a plurality of concave portions corresponding to the plurality of LEDs are provided independently of each other, and thus there is a limit to suppression of luminance unevenness such as graininess of the light source by the plurality of LEDs.
 本発明は、照明装置用のリフレクタに向けられており、複数のLEDデバイスによる輝度ムラを抑制しつつ照明光の所望の照度を実現することを目的としている。 The present invention is directed to a reflector for an illuminating device, and has an object of realizing a desired illuminance of illumination light while suppressing luminance unevenness due to a plurality of LED devices.
 本発明に係る照明装置用のリフレクタは、線状に配列された複数のLEDデバイスの光出射面よりも光軸方向前側にて前記複数のLEDデバイスの周囲にそれぞれ配置され、それぞれが環状凹面の少なくとも一部である複数の第1反射面と、前記複数の第1反射面の前記光軸方向前側に配置され、前記複数のLEDデバイスであるLEDデバイス列の長手方向および前記光軸方向に垂直な幅方向において、前記LEDデバイス列の一方側にて前記長手方向に連続して広がる第2反射面とを備える。前記長手方向に垂直、かつ、各LEDデバイスの光軸を含む各LED断面において、第1反射面が前記各LEDデバイスの前記幅方向の両側に配置され、前記各LEDデバイスから前記光軸方向前側に向かうに従って前記幅方向外方へと向かう。前記各LED断面において、前記第2反射面が前記光軸方向前側に向かうに従って前記幅方向外方へと向かう。当該リフレクタによれば、複数のLEDデバイスによる輝度ムラを抑制しつつ照明光の所望の照度を実現することができる。 The reflector for an illuminating device according to the present invention is disposed around each of the plurality of LED devices on the front side in the optical axis direction from the light emitting surface of the plurality of LED devices arranged in a line, and each of the reflectors has an annular concave surface. A plurality of first reflection surfaces that are at least a part, and arranged in front of the plurality of first reflection surfaces in the optical axis direction, and perpendicular to the longitudinal direction of the LED device row that is the plurality of LED devices and the optical axis direction And a second reflecting surface that continuously spreads in the longitudinal direction on one side of the LED device row. In each LED cross section perpendicular to the longitudinal direction and including the optical axis of each LED device, a first reflecting surface is disposed on both sides in the width direction of each LED device, and the front side in the optical axis direction from each LED device Heading outward in the width direction as heading to. In each LED cross section, the second reflecting surface goes outward in the width direction as it goes to the front side in the optical axis direction. According to the reflector, it is possible to achieve a desired illuminance of illumination light while suppressing luminance unevenness due to the plurality of LED devices.
 本発明の一の好ましい実施の形態では、前記長手方向に垂直な断面における前記第2反射面の形状が、前記長手方向の全長に亘って一定である。 In one preferred embodiment of the present invention, the shape of the second reflecting surface in a cross section perpendicular to the longitudinal direction is constant over the entire length in the longitudinal direction.
 本発明の他の好ましい実施の形態では、各第1反射面の上縁が、円周である上円周の少なくとも一部であり、前記長手方向にて隣接する2つのLEDデバイスの前記長手方向における中心間距離が、前記2つのLEDデバイスに対応する2つの第1反射面における前記上円周の前記長手方向における半径の合計以下である。 In another preferred embodiment of the present invention, an upper edge of each first reflecting surface is at least a part of an upper circumference that is a circumference, and the longitudinal directions of two LED devices adjacent in the longitudinal direction Is less than or equal to the sum of the radii in the longitudinal direction of the upper circumference of the two first reflecting surfaces corresponding to the two LED devices.
 本発明の他の好ましい実施の形態では、各第1反射面の上縁が、前記幅方向に長い楕円周の少なくとも一部である。 In another preferred embodiment of the present invention, the upper edge of each first reflecting surface is at least part of an elliptical circumference that is long in the width direction.
 本発明の他の好ましい実施の形態では、各第1反射面の上縁が、円周である上円周の少なくとも一部であり、前記各第1反射面の前記上円周の中心は、前記各LEDデバイスの前記光軸上に位置する。 In another preferred embodiment of the present invention, the upper edge of each first reflecting surface is at least a part of the upper circumference that is a circumference, and the center of the upper circumference of each first reflecting surface is: Located on the optical axis of each LED device.
 本発明の他の好ましい実施の形態では、各第1反射面の上縁が、円周である上円周の少なくとも一部であり、前記各LEDデバイスの前記光軸は、前記幅方向において、前記各第1反射面の前記上円周の中心と前記第2反射面との間に位置する。 In another preferred embodiment of the present invention, an upper edge of each first reflecting surface is at least a part of an upper circumference that is a circumference, and the optical axis of each LED device is in the width direction, The first reflecting surface is located between the center of the upper circumference and the second reflecting surface.
 より好ましくは、前記複数の第1反射面のうち少なくとも一部の第1反射面の上円周の中心は、LEDデバイスの光軸から前記長手方向に離間している。 More preferably, the center of the upper circumference of at least some of the plurality of first reflecting surfaces is spaced apart from the optical axis of the LED device in the longitudinal direction.
 本発明の他の好ましい実施の形態では、前記複数の第1反射面の前記光軸方向前側に配置され、前記LEDデバイス列の前記幅方向の他方側にて前記長手方向に連続して広がる他の第2反射面をさらに備え、前記各LED断面において、前記他の第2反射面が前記光軸方向前側に向かうに従って前記幅方向外方へと向かう。 In another preferred embodiment of the present invention, the plurality of first reflecting surfaces are arranged on the front side in the optical axis direction, and continuously spread in the longitudinal direction on the other side in the width direction of the LED device row. The second reflective surface is further provided, and in each LED cross section, the other second reflective surface is directed outward in the width direction toward the front side in the optical axis direction.
 本発明は、照明装置にも向けられている。当該照明装置は、上述のいずれかのリフレクタと、前記複数のLEDデバイスとを備える。 The present invention is also directed to a lighting device. The lighting apparatus includes any one of the reflectors described above and the plurality of LED devices.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above object and other objects, features, aspects, and advantages will become apparent from the following detailed description of the present invention with reference to the accompanying drawings.
第1の実施の形態に係る照明装置のリフレクタを示す斜視図である。It is a perspective view which shows the reflector of the illuminating device which concerns on 1st Embodiment. リフレクタの平面図である。It is a top view of a reflector. 照明装置の断面図である。It is sectional drawing of an illuminating device. リフレクタの断面図である。It is sectional drawing of a reflector. リフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of reflector. リフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of reflector. 他の好ましい照明装置の断面図である。It is sectional drawing of another preferable illuminating device. 照明装置の輝度分布を示す図である。It is a figure which shows the luminance distribution of an illuminating device. 第2の実施の形態に係る照明装置のリフレクタを示す斜視図である。It is a perspective view which shows the reflector of the illuminating device which concerns on 2nd Embodiment. リフレクタの平面図である。It is a top view of a reflector. 照明装置の断面図である。It is sectional drawing of an illuminating device. リフレクタの断面図である。It is sectional drawing of a reflector. リフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of reflector. リフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of reflector. 第3の実施の形態に係る照明装置のリフレクタを示す平面図である。It is a top view which shows the reflector of the illuminating device which concerns on 3rd Embodiment. リフレクタの断面図である。It is sectional drawing of a reflector. リフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of reflector. リフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of reflector. 他の好ましいリフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of other preferable reflector. 他の好ましいリフレクタを示す平面図である。It is a top view which shows another preferable reflector. リフレクタの断面図である。It is sectional drawing of a reflector. 他の好ましいリフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of other preferable reflector. 他の好ましいリフレクタの一部を拡大して示す平面図である。It is a top view which expands and shows a part of other preferable reflector.
 図1は、本発明の第1の実施の形態に係る照明装置のリフレクタ3を示す斜視図である。図2は、リフレクタ3の平面図である。図3は、リフレクタ3を図2中のIII-IIIの位置にて切断した断面図である。図4は、リフレクタ3を図2中のIV-IVの位置にて切断した断面図である。図5および図6は、リフレクタ3の一部を拡大して示す平面図である。図3では、照明装置1のリフレクタ3以外の構造も併せて示しており、照明装置1の断面図でもある。また、図3では、照明装置1のケース5の外形を破線にて示す。図3および図4では、断面よりも奥の構成の一部も併せて示す。図4ないし図6では、照明装置1のLEDデバイス2を併せて示す。 FIG. 1 is a perspective view showing a reflector 3 of the lighting apparatus according to the first embodiment of the present invention. FIG. 2 is a plan view of the reflector 3. 3 is a cross-sectional view of the reflector 3 taken along the line III-III in FIG. 4 is a cross-sectional view of the reflector 3 taken along the line IV-IV in FIG. 5 and 6 are plan views showing a part of the reflector 3 in an enlarged manner. In FIG. 3, the structure other than the reflector 3 of the lighting device 1 is also shown, and is a cross-sectional view of the lighting device 1. Moreover, in FIG. 3, the external shape of case 5 of the illuminating device 1 is shown with a broken line. 3 and 4 also show a part of the configuration behind the cross section. In FIG. 4 thru | or 6, the LED device 2 of the illuminating device 1 is shown collectively.
 照明装置1は、例えば、金属加工装置等における照明装置として利用される。図3に示すように、照明装置1は、複数のLED(Light Emitting Diode)デバイス2と、照明装置用のリフレクタ3と、回路基板4と、ケース5とを備える。複数のLEDデバイス2の数は、例えば、48個である。複数のLEDデバイス2は、例えば、回路基板4上に固定される。複数のLEDデバイス2は、線状に配列される。図3に示す例では、複数のLEDデバイス2は、直線状に配列(すなわち、仮想的な直線に沿って配列)される。 The lighting device 1 is used as a lighting device in, for example, a metal processing device. As shown in FIG. 3, the lighting device 1 includes a plurality of LED (Light Emitting Diode) devices 2, a reflector 3 for the lighting device, a circuit board 4, and a case 5. The number of LED devices 2 is 48, for example. The plurality of LED devices 2 are fixed on the circuit board 4, for example. The plurality of LED devices 2 are arranged in a line. In the example illustrated in FIG. 3, the plurality of LED devices 2 are arranged linearly (that is, arranged along a virtual straight line).
 以下の説明では、線状に配列される複数のLEDデバイス2を「LEDデバイス列20」とも呼ぶ。また、LEDデバイス列20が延びる図3中の左右方向を「長手方向」と呼ぶ。また、長手方向に垂直な図2中の上下方向を「幅方向」と呼ぶ。複数のLEDデバイス2の光軸方向(すなわち、光軸が向く方向)は、図2中において紙面に垂直な方向であり、紙面の手前側および奥側をそれぞれ「光軸方向前側」および「光軸方向後側」と呼ぶ。上記幅方向は、長手方向および光軸方向に垂直な方向である。 In the following description, the plurality of LED devices 2 arranged in a line are also referred to as “LED device row 20”. Moreover, the left-right direction in FIG. The vertical direction in FIG. 2 perpendicular to the longitudinal direction is referred to as the “width direction”. The optical axis direction (that is, the direction in which the optical axis faces) of the plurality of LED devices 2 is a direction perpendicular to the paper surface in FIG. 2, and the front side and the back side of the paper surface are “front side in the optical axis direction” and “light”, respectively. This is called “axial rear side”. The width direction is a direction perpendicular to the longitudinal direction and the optical axis direction.
 図1ないし図5に示すように、リフレクタ3は、複数の第1反射面31と、一対の第2反射面32と、一対の第3反射面33と、フレーム部34とを備える。フレーム部34は、複数の第1反射面31、一対の第2反射面32および一対の第3反射面33を支持する外枠である。各第1反射面31、各第2反射面32および各第3反射面33は、例えば、樹脂の表面にアルミニウム等の金属を蒸着することにより形成される。各第1反射面31、各第2反射面32および各第3反射面33の色は、例えば銀色である。各第1反射面31、各第2反射面32および各第3反射面33は、例えば、金属製の部材の金属表面であってもよく、樹脂製の部材の樹脂表面であってもよい。 As shown in FIGS. 1 to 5, the reflector 3 includes a plurality of first reflection surfaces 31, a pair of second reflection surfaces 32, a pair of third reflection surfaces 33, and a frame portion 34. The frame portion 34 is an outer frame that supports the plurality of first reflection surfaces 31, the pair of second reflection surfaces 32, and the pair of third reflection surfaces 33. Each first reflection surface 31, each second reflection surface 32, and each third reflection surface 33 are formed by evaporating a metal such as aluminum on the surface of a resin, for example. The color of each 1st reflective surface 31, each 2nd reflective surface 32, and each 3rd reflective surface 33 is silver, for example. Each first reflection surface 31, each second reflection surface 32, and each third reflection surface 33 may be, for example, a metal surface of a metal member or a resin surface of a resin member.
 図4に示すように、複数の第1反射面31は、複数のLEDデバイス2の光出射面21よりも光軸方向前側に配置される。LEDデバイス2の光出射面21とは、LEDデバイス2の図4中における上側の面であり、LEDデバイス2から外部へと出射される光が通過する面である。各第1反射面31の光軸方向後側の端部には、光軸J1を中心とする略円形の開口35が設けられる。図1ないし図5に示すように、複数の開口35は、互いに離間しつつ長手方向に配列される。LEDデバイス2の光出射面21から出射された光は、開口35を介して光軸方向前方へと導かれる。 As shown in FIG. 4, the plurality of first reflecting surfaces 31 are arranged on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2. The light emission surface 21 of the LED device 2 is an upper surface in FIG. 4 of the LED device 2 and is a surface through which light emitted from the LED device 2 to the outside passes. A substantially circular opening 35 centered on the optical axis J1 is provided at the end of each first reflecting surface 31 on the rear side in the optical axis direction. As shown in FIGS. 1 to 5, the plurality of openings 35 are arranged in the longitudinal direction while being separated from each other. The light emitted from the light emitting surface 21 of the LED device 2 is guided forward in the optical axis direction through the opening 35.
 複数の第1反射面31の数は、複数のLEDデバイス2の数と同じである。複数の第1反射面31は、図5に示すように、複数のLEDデバイス2の周囲にそれぞれ配置される。複数の第1反射面31は、複数のLEDデバイス2と同様に、線状に配列される。具体的には、複数の第1反射面31は、長手方向に略平行に直線状に配列される。複数の第1反射面31のそれぞれは、対応するLEDデバイス2の光軸J1を略中心とする環状の凹面の少なくとも一部である。図5に示す例では、各LEDデバイス2の周囲の全周に亘って第1反射面31が設けられる。 The number of the plurality of first reflecting surfaces 31 is the same as the number of the plurality of LED devices 2. As shown in FIG. 5, the plurality of first reflecting surfaces 31 are respectively arranged around the plurality of LED devices 2. The plurality of first reflection surfaces 31 are arranged in a line like the plurality of LED devices 2. Specifically, the plurality of first reflecting surfaces 31 are arranged in a straight line substantially parallel to the longitudinal direction. Each of the plurality of first reflecting surfaces 31 is at least a part of an annular concave surface that is substantially centered on the optical axis J1 of the corresponding LED device 2. In the example shown in FIG. 5, the first reflecting surface 31 is provided over the entire circumference of each LED device 2.
 一対の第2反射面32は、複数の第1反射面31の光軸方向前側に配置される。一の第2反射面32は、幅方向においてLEDデバイス列20の一方側にて長手方向に連続して広がる。他の第2反射面32は、幅方向においてLEDデバイス列20の他方側にて長手方向に連続して広がる。すなわち、一対の第2反射面32は、長手方向に略平行なLEDデバイス列20に沿って配置される。各第2反射面32の長手方向の長さは、LEDデバイス列20の長手方向の長さよりも長い。各第2反射面32の長手方向の長さは、複数の第1反射面31の長手方向の長さとおよそ同じである。長手方向に垂直な断面における一対の第2反射面32の形状は、長手方向の実質的に全長に亘って略一定である。 The pair of second reflecting surfaces 32 are arranged on the front side in the optical axis direction of the plurality of first reflecting surfaces 31. One second reflecting surface 32 continuously extends in the longitudinal direction on one side of the LED device array 20 in the width direction. The other second reflecting surface 32 continuously spreads in the longitudinal direction on the other side of the LED device array 20 in the width direction. In other words, the pair of second reflecting surfaces 32 are arranged along the LED device row 20 substantially parallel to the longitudinal direction. The length in the longitudinal direction of each second reflecting surface 32 is longer than the length in the longitudinal direction of the LED device row 20. The length in the longitudinal direction of each second reflecting surface 32 is approximately the same as the length in the longitudinal direction of the plurality of first reflecting surfaces 31. The shape of the pair of second reflecting surfaces 32 in a cross section perpendicular to the longitudinal direction is substantially constant over substantially the entire length in the longitudinal direction.
 一対の第2反射面32は、複数の第1反射面31の光軸方向前端に連続する。一対の第2反射面32の光軸方向の高さは、複数の第1反射面31のそれぞれの光軸方向の高さよりも大きい。例えば、各第2反射面32の光軸方向の高さは、各第1反射面31の光軸方向の最大高さの2倍以上かつ5倍以下である。長手方向にて隣接する各2つのLEDデバイス2の間では、一方の第2反射面32と他方の第2反射面32とが接することはない。換言すれば、長手方向にて隣接する各2つのLEDデバイス2の間では、一対の第2反射面32が互いに非連続である。 The pair of second reflecting surfaces 32 are continuous with the front ends of the plurality of first reflecting surfaces 31 in the optical axis direction. The height of the pair of second reflecting surfaces 32 in the optical axis direction is larger than the height of each of the plurality of first reflecting surfaces 31 in the optical axis direction. For example, the height of each second reflecting surface 32 in the optical axis direction is not less than twice and not more than five times the maximum height of each first reflecting surface 31 in the optical axis direction. Between each two LED devices 2 adjacent in the longitudinal direction, the one second reflecting surface 32 and the other second reflecting surface 32 do not contact each other. In other words, the pair of second reflecting surfaces 32 are discontinuous with each other between the two LED devices 2 adjacent in the longitudinal direction.
 一対の第3反射面33は、複数の第1反射面31の光軸方向前側に配置される。一対の第3反射面33は、光軸方向において、一対の第2反射面32と略同じ位置に位置する。一対の第3反射面33の光軸方向の高さは、一対の第2反射面32の光軸方向の高さと略同じである。一の第3反射面33は、長手方向においてLEDデバイス列20の一方側にて幅方向に広がる。他の第3反射面33は、長手方向においてLEDデバイス列20の他方側にて幅方向に広がる。一対の第3反射面33は、一対の第2反射面32の長手方向の両端部を接続する。 The pair of third reflecting surfaces 33 are arranged on the front side in the optical axis direction of the plurality of first reflecting surfaces 31. The pair of third reflection surfaces 33 are located at substantially the same position as the pair of second reflection surfaces 32 in the optical axis direction. The height of the pair of third reflecting surfaces 33 in the optical axis direction is substantially the same as the height of the pair of second reflecting surfaces 32 in the optical axis direction. The one third reflecting surface 33 extends in the width direction on one side of the LED device array 20 in the longitudinal direction. The other third reflecting surface 33 extends in the width direction on the other side of the LED device array 20 in the longitudinal direction. The pair of third reflecting surfaces 33 connects both ends of the pair of second reflecting surfaces 32 in the longitudinal direction.
 図4に示す断面は、長手方向に垂直、かつ、LEDデバイス2の光軸J1を含む断面であり、以下、「LED断面」という。図4に示すように、LED断面では、第1反射面31がLEDデバイス2の幅方向の両側(すなわち、図4中の左右両側)に配置される。また、LEDデバイス2の幅方向の両側において、第1反射面31は、LEDデバイス2から光軸方向前側に向かうに従って、幅方向外方(すなわち、LEDデバイス2から幅方向に離れる方向)へと向かう。LED断面では、第1反射面31の焦点位置は、LEDデバイス2の光軸J1上に位置する。 The cross section shown in FIG. 4 is a cross section perpendicular to the longitudinal direction and including the optical axis J1 of the LED device 2, and is hereinafter referred to as “LED cross section”. As shown in FIG. 4, in the LED cross section, the first reflecting surfaces 31 are arranged on both sides in the width direction of the LED device 2 (that is, both left and right sides in FIG. 4). In addition, on both sides of the LED device 2 in the width direction, the first reflecting surface 31 moves outward in the width direction (that is, in a direction away from the LED device 2 in the width direction) from the LED device 2 toward the front side in the optical axis direction. Head. In the LED cross section, the focal position of the first reflecting surface 31 is located on the optical axis J1 of the LED device 2.
 LED断面では、一対の第2反射面32が、光軸方向前側に向かうに従って幅方向外方へと向かう。LED断面では、一対の第2反射面32の焦点位置は、LEDデバイス2の光軸J1上に位置する。LED断面では、例えば、第1反射面31と第2反射面32との接続部(すなわち、第1反射面31と第2反射面32との境界)における第1反射面31の接線の傾きと、第2反射面32の接線の傾きとが異なる。図4に示す例では、当該接続部における第1反射面31の接線と光軸J1との成す角度は、当該接続部における第2反射面32の接線と光軸J1との成す角度よりも大きい。他のLEDデバイス2に対応するLED断面においても、第1反射面31の形状および第2反射面32の形状は、上記形状と同様である。 In the LED cross section, the pair of second reflecting surfaces 32 are directed outward in the width direction toward the front side in the optical axis direction. In the LED cross section, the focal positions of the pair of second reflecting surfaces 32 are located on the optical axis J1 of the LED device 2. In the LED cross section, for example, the slope of the tangent line of the first reflecting surface 31 at the connection portion between the first reflecting surface 31 and the second reflecting surface 32 (that is, the boundary between the first reflecting surface 31 and the second reflecting surface 32). The slope of the tangent line of the second reflecting surface 32 is different. In the example shown in FIG. 4, the angle formed between the tangent line of the first reflecting surface 31 and the optical axis J1 in the connecting portion is larger than the angle formed between the tangent line of the second reflecting surface 32 and the optical axis J1 in the connecting portion. . Also in the LED cross sections corresponding to the other LED devices 2, the shape of the first reflecting surface 31 and the shape of the second reflecting surface 32 are the same as the above shape.
 図6に示すように、各第1反射面31の上縁311は、各LEDデバイス2の光軸J1を中心とする仮想的な円周である上円周312の一部である。図6では、上円周312のうち第1反射面31の上縁311と重ならない部位を二点鎖線にて描いている。上円周312は、真円の円周であってもよく、楕円の円周であってもよい。図6に示す例では、各第1反射面31の上縁311は、LEDデバイス2の光軸J1を中心として幅方向(すなわち、図6中の上下方向)に長い楕円周の一部である。長手方向にて隣接する各2つのLEDデバイス2の長手方向における中心間距離(すなわち、長手方向に隣接する2つの光軸J1間の距離)は、当該各2つのLEDデバイス2に対応する2つの第1反射面31の上円周312の長手方向における半径の合計以下である。 As shown in FIG. 6, the upper edge 311 of each first reflecting surface 31 is a part of the upper circumference 312 that is a virtual circumference centered on the optical axis J1 of each LED device 2. In FIG. 6, a portion of the upper circumference 312 that does not overlap with the upper edge 311 of the first reflecting surface 31 is drawn with a two-dot chain line. The upper circumference 312 may be a true circle or an ellipse. In the example shown in FIG. 6, the upper edge 311 of each first reflecting surface 31 is a part of an elliptical circumference that is long in the width direction (that is, the vertical direction in FIG. 6) around the optical axis J1 of the LED device 2. . The distance between the centers in the longitudinal direction of each of the two LED devices 2 adjacent in the longitudinal direction (that is, the distance between the two optical axes J1 adjacent in the longitudinal direction) corresponds to the two LED devices 2 corresponding to the two LED devices 2. This is not more than the sum of the radii in the longitudinal direction of the upper circumference 312 of the first reflecting surface 31.
 各第1反射面31の下縁313は、各LEDデバイス2の光軸J1を中心とする仮想的な円周である下円周の少なくとも一部である。第1反射面31は、上円周312と当該下円周とを繋ぐ環状凹面の少なくとも一部である。下円周は、真円の円周であってもよく、楕円の円周であってもよい。図6に示す例では、各第1反射面31の下縁313は、LEDデバイス2の光軸J1を中心とする真円の円周全体である。長手方向に隣接する各2つのLEDデバイス2の間には、図4に示すように、第1反射面31による仕切り壁315が位置する。仕切り壁315は、長手方向に隣接する2つの開口35の間を仕切る。長手方向に隣接する各2つのLEDデバイス2の間では、第1反射面31の幅方向中央部の光軸方向の高さ(すなわち、仕切り壁315の幅方向中央部の高さ)が、第1反射面31の他の部位の光軸方向の高さよりも低い。 The lower edge 313 of each first reflecting surface 31 is at least part of the lower circumference that is a virtual circumference centered on the optical axis J1 of each LED device 2. The first reflecting surface 31 is at least a part of an annular concave surface that connects the upper circumference 312 and the lower circumference. The lower circumference may be a true circle or an ellipse. In the example shown in FIG. 6, the lower edge 313 of each first reflecting surface 31 is the entire circumference of a perfect circle centered on the optical axis J <b> 1 of the LED device 2. As shown in FIG. 4, a partition wall 315 formed by the first reflecting surface 31 is located between each two LED devices 2 adjacent in the longitudinal direction. The partition wall 315 partitions between the two openings 35 adjacent in the longitudinal direction. Between each two LED devices 2 adjacent to each other in the longitudinal direction, the height in the optical axis direction of the central portion in the width direction of the first reflecting surface 31 (that is, the height in the central portion in the width direction of the partition wall 315) is It is lower than the height in the optical axis direction of other parts of the one reflecting surface 31.
 図6に示す例では、各第1反射面31の上円周312は、長手方向に隣接する第1反射面31の上円周312および下縁313と交差する。また、各第1反射面31の上円周312は、長手方向に隣接する第1反射面31の光軸J1を内側に含まない。なお、各第1反射面31の上円周312は、例えば、長手方向に隣接する第1反射面31の上円周312および下縁313と交差しなくてもよい。また、各第1反射面31の上円周312は、例えば、長手方向に隣接する第1反射面31の光軸J1を内側に含んでもよい。 In the example shown in FIG. 6, the upper circumference 312 of each first reflection surface 31 intersects with the upper circumference 312 and the lower edge 313 of the first reflection surface 31 adjacent in the longitudinal direction. Further, the upper circumference 312 of each first reflecting surface 31 does not include the optical axis J1 of the first reflecting surface 31 adjacent in the longitudinal direction on the inner side. Note that the upper circumference 312 of each first reflection surface 31 may not intersect the upper circumference 312 and the lower edge 313 of the first reflection surface 31 adjacent in the longitudinal direction, for example. Further, the upper circumference 312 of each first reflection surface 31 may include, for example, the optical axis J1 of the first reflection surface 31 adjacent in the longitudinal direction on the inner side.
 図3に示す照明装置1では、複数のLEDデバイス2から出射された光は、複数の第1反射面31により反射されて、あるいは、第1反射面31に反射されることなく直接的に光軸方向前方へと導かれる。複数の第1反射面31よりも光軸方向前側へと導かれた光は、第2反射面32により反射されて、あるいは、第2反射面32に反射されることなく直接的に光軸方向前方へと導かれ、リフレクタ3から光軸方向前方に向けて照射される。 In the illumination device 1 shown in FIG. 3, the light emitted from the plurality of LED devices 2 is reflected by the plurality of first reflection surfaces 31 or directly without being reflected by the first reflection surfaces 31. Guided forward in the axial direction. The light guided to the front side in the optical axis direction from the plurality of first reflection surfaces 31 is reflected by the second reflection surface 32 or directly without being reflected by the second reflection surface 32. The light is guided forward and irradiated from the reflector 3 forward in the optical axis direction.
 以上に説明したように、照明装置1用のリフレクタ3は、複数の第1反射面31と、第2反射面32とを備える。複数の第1反射面31は、線状に配列された複数のLEDデバイス2の光出射面21よりも光軸方向前側にて複数のLEDデバイス2の周囲にそれぞれ配置される。複数の第1反射面31のそれぞれは、環状凹面の少なくとも一部である。第2反射面32は、複数の第1反射面31の光軸方向前側に配置される。第2反射面32は、複数のLEDデバイス2であるLEDデバイス列20の長手方向および光軸方向に垂直な幅方向において、LEDデバイス列20の一方側にて長手方向に連続して広がる。リフレクタ3では、当該長手方向に垂直、かつ、各LEDデバイス2の光軸J1を含む各LED断面において、第1反射面31が各LEDデバイス2の幅方向の両側に配置され、各LEDデバイス2から光軸方向前側に向かうに従って幅方向外方へと向かう。また、各LED断面において、第2反射面32が、光軸方向前側に向かうに従って幅方向外方へと向かう。 As described above, the reflector 3 for the lighting device 1 includes the plurality of first reflection surfaces 31 and the second reflection surfaces 32. The plurality of first reflecting surfaces 31 are respectively arranged around the plurality of LED devices 2 on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2 arranged in a line. Each of the plurality of first reflection surfaces 31 is at least a part of an annular concave surface. The second reflecting surface 32 is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31. The second reflecting surface 32 continuously extends in the longitudinal direction on one side of the LED device array 20 in the width direction perpendicular to the longitudinal direction and the optical axis direction of the LED device array 20 that is the plurality of LED devices 2. In the reflector 3, the first reflecting surfaces 31 are arranged on both sides of each LED device 2 in the width direction in each LED cross section perpendicular to the longitudinal direction and including the optical axis J <b> 1 of each LED device 2. From the front toward the front side in the optical axis direction. Moreover, in each LED cross section, the 2nd reflective surface 32 goes to the width direction outward as it goes to the optical axis direction front side.
 このように、リフレクタ3では、複数のLEDデバイス2にそれぞれ対応する上述の複数の第1反射面31を設けることにより、複数のLEDデバイス2から出射される光を、光軸方向前方へと効率良く導くことができる。また、上述のように、第2反射面32が、複数の第1反射面31に沿って長手方向に連続して広がることにより、複数のLEDデバイス2および複数の第1反射面31からの光を、長手方向に適切に拡散しつつさらに効率良く光軸方向前方へと導くことができる。これにより、複数のLEDデバイス2による輝度ムラ(例えば、各LEDデバイスによる光源の粒状感、または、各LEDデバイスに対応する輝線の発生)を抑制しつつ、照明装置1による照明光の所望の照度を実現することができる。 As described above, in the reflector 3, by providing the plurality of first reflecting surfaces 31 respectively corresponding to the plurality of LED devices 2, the light emitted from the plurality of LED devices 2 is efficiently forward in the optical axis direction. Can guide well. In addition, as described above, the second reflection surface 32 continuously spreads in the longitudinal direction along the plurality of first reflection surfaces 31, thereby allowing light from the plurality of LED devices 2 and the plurality of first reflection surfaces 31. Can be more efficiently guided forward in the optical axis direction while appropriately diffusing in the longitudinal direction. Thereby, the brightness | luminance nonuniformity (For example, the granularity of the light source by each LED device, or generation | occurrence | production of the bright line corresponding to each LED device) by several LED devices 2 is suppressed, The desired illumination intensity of the illumination light by the illuminating device 1 Can be realized.
 上述のように、第2反射面32の光軸方向の高さは、複数の第1反射面31のそれぞれの光軸方向の高さよりも大きい。これにより、複数のLEDデバイス2および複数の第1反射面31からの光を、長手方向にさらに適切に拡散しつつ効率良く光軸方向前方へと導くことができる。その結果、上述の輝度ムラの抑制と所望照度の実現とを、より好適に両立することができる。 As described above, the height of the second reflecting surface 32 in the optical axis direction is larger than the height of each of the plurality of first reflecting surfaces 31 in the optical axis direction. Thereby, the light from the plurality of LED devices 2 and the plurality of first reflecting surfaces 31 can be efficiently guided forward in the optical axis direction while further appropriately diffusing in the longitudinal direction. As a result, the above-described suppression of luminance unevenness and realization of the desired illuminance can be more suitably achieved.
 リフレクタ3では、長手方向に垂直な断面における第2反射面32の形状は、第2反射面32の長手方向の全長に亘って一定である。これにより、複数のLEDデバイス2および複数の第1反射面31から第2反射面32に導かれた光を長手方向に拡散させる際に、長手方向における光の拡散の均一性を向上することができる。その結果、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。なお、長手方向に垂直な断面における第2反射面32の形状は、第2反射面32の長手方向の実質的に全長に亘って実質的に一定であればよい。この場合も、上記と同様に、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。 In the reflector 3, the shape of the second reflecting surface 32 in a cross section perpendicular to the longitudinal direction is constant over the entire length of the second reflecting surface 32 in the longitudinal direction. Thereby, when the light guided from the plurality of LED devices 2 and the plurality of first reflecting surfaces 31 to the second reflecting surface 32 is diffused in the longitudinal direction, the uniformity of light diffusion in the longitudinal direction can be improved. it can. As a result, luminance unevenness due to the plurality of LED devices 2 can be further suppressed. In addition, the shape of the 2nd reflective surface 32 in a cross section perpendicular | vertical to a longitudinal direction should just be substantially constant over substantially the full length of the longitudinal direction of the 2nd reflective surface 32. FIG. Also in this case, similarly to the above, luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
 リフレクタ3では、各LEDデバイス2の周囲の全周に亘って第1反射面31が設けられる。これにより、複数のLEDデバイス2から出射される光を、光軸方向前方へとさらに効率良く導くことができる。その結果、照明装置1による照明光の所望の照度を容易に実現することができる。 In the reflector 3, the first reflecting surface 31 is provided over the entire circumference of each LED device 2. Thereby, the light radiate | emitted from several LED device 2 can be guide | induced more efficiently to the optical axis direction front. As a result, the desired illuminance of the illumination light by the illumination device 1 can be easily realized.
 上述のように、各第1反射面31の上縁311は、各LEDデバイス2の光軸J1を中心とする円周である上円周312の一部であり、長手方向にて隣接する2つのLEDデバイス2の長手方向における中心間距離は、当該2つのLEDデバイス2に対応する2つの第1反射面31における上円周312の長手方向における半径の合計以下である。これにより、複数のLEDデバイス2の長手方向の間隔を小さくすることができる。その結果、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。また、リフレクタ3および照明装置1を小型化することもできる。 As described above, the upper edge 311 of each first reflecting surface 31 is a part of the upper circumference 312 that is a circumference centered on the optical axis J1 of each LED device 2, and is adjacent to each other in the longitudinal direction. The distance between the centers of the two LED devices 2 in the longitudinal direction is equal to or less than the sum of the radii in the longitudinal direction of the upper circumference 312 in the two first reflecting surfaces 31 corresponding to the two LED devices 2. Thereby, the space | interval of the longitudinal direction of the some LED device 2 can be made small. As a result, luminance unevenness due to the plurality of LED devices 2 can be further suppressed. Moreover, the reflector 3 and the illuminating device 1 can also be reduced in size.
 なお、各第1反射面31の上縁311は、必ずしも上円周312の一部である必要はなく、上円周312全体であってもよい。すなわち、各第1反射面31の上縁311は、上円周312の少なくとも一部であればよい。そして、長手方向にて隣接する2つのLEDデバイス2の長手方向における中心間距離が、当該2つのLEDデバイス2に対応する2つの第1反射面31における上円周312の長手方向における半径の合計以下であることにより、上記と同様に、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。また、リフレクタ3および照明装置1を小型化することもできる。 Note that the upper edge 311 of each first reflecting surface 31 is not necessarily a part of the upper circumference 312 and may be the entire upper circumference 312. That is, the upper edge 311 of each first reflecting surface 31 may be at least a part of the upper circumference 312. The distance between the centers of the two LED devices 2 adjacent in the longitudinal direction is the sum of the radii in the longitudinal direction of the upper circumference 312 of the two first reflecting surfaces 31 corresponding to the two LED devices 2. By being below, the brightness nonuniformity by the some LED device 2 can be suppressed further similarly to the above. Moreover, the reflector 3 and the illuminating device 1 can also be reduced in size.
 リフレクタ3では、各第1反射面31の上縁311が、各LEDデバイス2の光軸J1を中心として幅方向に長い楕円周の少なくとも一部である。これにより、各LEDデバイス2からの光の幅方向への広がりを大きくすることができる。その結果、照明装置1からの照明光の長手方向への広がりと、幅方向への広がりとの差を小さくすることができる。 In the reflector 3, the upper edge 311 of each first reflecting surface 31 is at least part of an elliptical circumference that is long in the width direction about the optical axis J <b> 1 of each LED device 2. Thereby, the spread to the width direction of the light from each LED device 2 can be enlarged. As a result, the difference between the spread in the longitudinal direction of the illumination light from the illumination device 1 and the spread in the width direction can be reduced.
 上述のように、リフレクタ3は、他の第2反射面32をさらに備える。当該他の第2反射面32は、複数の第1反射面31の光軸方向前側に配置され、LEDデバイス列20の幅方向の他方側にて長手方向に連続して広がる。各LED断面において、当該他の第2反射面32は、光軸方向前側に向かうに従って幅方向外方へと向かう。これにより、複数のLEDデバイス2および複数の第1反射面31からの光を、長手方向にさらに適切に拡散しつつ、より一層効率良く光軸方向前方へと導くことができる。その結果、複数のLEDデバイス2による輝度ムラをより一層抑制しつつ、照明装置1による照明光の所望の照度を容易に実現することができる。 As described above, the reflector 3 further includes another second reflecting surface 32. The other second reflection surface 32 is disposed on the front side in the optical axis direction of the plurality of first reflection surfaces 31 and continuously spreads in the longitudinal direction on the other side in the width direction of the LED device row 20. In each LED cross section, the other second reflecting surface 32 is directed outward in the width direction toward the front side in the optical axis direction. Thereby, the light from the plurality of LED devices 2 and the plurality of first reflecting surfaces 31 can be more efficiently guided forward in the optical axis direction while further appropriately diffusing in the longitudinal direction. As a result, it is possible to easily realize a desired illuminance of illumination light by the illumination device 1 while further suppressing luminance unevenness due to the plurality of LED devices 2.
 上述の例では、複数の第1反射面31、一対の第2反射面32、および、一対の第3反射面33の反射特性(例えば、粗度および反射率)は同じであるが、必ずしも同じでなくてもよい。例えば、複数の第1反射面31の反射特性と、第2反射面32の反射特性とは異なっていてもよい。具体的には、例えば、複数の第1反射面31の粗度が、第2反射面32の粗度よりも大きい。これにより、各LEDデバイス2の収差による色ムラを抑制することができる。また、例えば、複数の第1反射面31の反射率が、第2反射面32の反射率よりも低い。これにより、上記と同様に、各LEDデバイス2の収差による色ムラを抑制することができる。当該反射率の違いは、例えば、第1反射面31の材料と第2反射面32の材料とを異ならせることにより実現されてもよく、第1反射面31の色と第2反射面32の色とを異ならせることにより実現されてもよい。第1反射面31および第2反射面32の粗度または反射率の大小関係は、リフレクタ3に求められる性能に合わせて、様々に変更されてよい。 In the above-described example, the reflection characteristics (for example, roughness and reflectance) of the plurality of first reflection surfaces 31, the pair of second reflection surfaces 32, and the pair of third reflection surfaces 33 are the same, but are not necessarily the same. Not necessarily. For example, the reflection characteristics of the plurality of first reflection surfaces 31 and the reflection characteristics of the second reflection surface 32 may be different. Specifically, for example, the roughness of the plurality of first reflection surfaces 31 is greater than the roughness of the second reflection surface 32. Thereby, the color nonuniformity by the aberration of each LED device 2 can be suppressed. For example, the reflectance of the plurality of first reflection surfaces 31 is lower than the reflectance of the second reflection surface 32. Thereby, the color nonuniformity by the aberration of each LED device 2 can be suppressed similarly to the above. The difference in reflectance may be realized, for example, by making the material of the first reflecting surface 31 different from the material of the second reflecting surface 32. The color of the first reflecting surface 31 and the second reflecting surface 32 may be different from each other. It may be realized by making the color different. The magnitude relationship between the roughness or reflectance of the first reflecting surface 31 and the second reflecting surface 32 may be variously changed according to the performance required for the reflector 3.
 照明装置1では、図7に示すように、リフレクタ3の光軸方向前側に拡散板6が配置されてもよい。拡散板6は、例えば、樹脂製の板状部材である。拡散板6は、リフレクタ3の一対の第2反射面32および一対の第3反射面33よりも光軸方向前側にてケース5に取り付けられる。拡散板6は、リフレクタ3の光軸方向前端の開口(すなわち、一対の第2反射面32の光軸方向前縁、および、一対の第3反射面33の光軸方向前縁により形成される開口)の略全体を覆う。拡散板6は、複数のLEDデバイス2およびリフレクタ3からの光を透過させつつ拡散する。これにより、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。拡散板6は、後述する他のリフレクタを備える照明装置に設けられてもよい。 In the illumination device 1, as shown in FIG. 7, a diffusion plate 6 may be disposed on the front side of the reflector 3 in the optical axis direction. The diffusion plate 6 is, for example, a resin plate member. The diffusing plate 6 is attached to the case 5 on the front side in the optical axis direction with respect to the pair of second reflecting surfaces 32 and the pair of third reflecting surfaces 33 of the reflector 3. The diffuser plate 6 is formed by the opening at the front end in the optical axis direction of the reflector 3 (that is, the front edge in the optical axis direction of the pair of second reflecting surfaces 32 and the front edge in the optical axis direction of the pair of third reflecting surfaces 33). Covers almost the entire opening. The diffusion plate 6 diffuses while transmitting light from the plurality of LED devices 2 and the reflector 3. Thereby, the brightness nonuniformity by the some LED device 2 can be suppressed further. The diffusing plate 6 may be provided in an illuminating device including other reflectors described later.
 図8は、照明装置1における上記輝度ムラの抑制の様子を示す図である。図8の左欄に記載の実施例1は、図1ないし図6に示す照明装置1である。実施例2は、図7に示す拡散板6が設けられた照明装置1である。比較例1は、図1ないし図6に示す照明装置1からレフレクタ3を省略した照明装置である。比較例1の照明装置は、回路基板上に照明装置1と同数のLEDデバイスが、同様に配置されている。図8の右欄の各グラフは、各照明装置における輝度分布を示す。各グラフの横軸は、照明装置の長手方向の位置を示し、縦軸は、長手方向の各位置における輝度を示す。当該輝度は、LEDデバイス列20上における輝度である。 FIG. 8 is a diagram showing how the luminance unevenness is suppressed in the lighting device 1. Example 1 described in the left column of FIG. 8 is the illuminating device 1 shown in FIGS. Example 2 is the illuminating device 1 provided with the diffusion plate 6 shown in FIG. Comparative Example 1 is an illumination device in which the reflector 3 is omitted from the illumination device 1 shown in FIGS. In the lighting device of Comparative Example 1, the same number of LED devices as the lighting device 1 are similarly arranged on the circuit board. Each graph in the right column of FIG. 8 shows the luminance distribution in each lighting device. The horizontal axis of each graph indicates the position in the longitudinal direction of the lighting device, and the vertical axis indicates the luminance at each position in the longitudinal direction. The luminance is the luminance on the LED device row 20.
 比較例1の照明装置では、輝度の振幅が大きい。すなわち、比較例1の照明装置では、LEDデバイスが配置される位置と、LEDデバイスが配置されていない位置とで、明暗差が大きく、複数のLEDデバイスによる輝度ムラ(例えば、光源の粒状感)が大きい。これに対し、実施例1および実施例2の照明装置1では、輝度の振幅が低減され、複数のLEDデバイス2による輝度ムラが抑制されている。また、図8において実施例1と実施例2とを比較すると、実施例2では実施例1よりも輝度ムラがさらに抑制されている。一方、各LEDデバイス2の直下照度(すなわち、単位面積あたりに入射する光の量)は、実施例1で約1950lx(ルクス)、実施例2で約1600lx、比較例1で約430lxであった。実施例1および実施例2は、照明装置1に求められる性能(例えば、輝度ムラの程度および照度)に合わせて適宜選択することができる。 In the lighting device of Comparative Example 1, the luminance amplitude is large. That is, in the illumination device of Comparative Example 1, there is a large difference in brightness between the position where the LED device is disposed and the position where the LED device is not disposed, and luminance unevenness due to the plurality of LED devices (for example, graininess of the light source) Is big. On the other hand, in the illuminating device 1 of Example 1 and Example 2, the brightness | luminance amplitude is reduced and the brightness nonuniformity by the some LED device 2 is suppressed. Further, when Example 1 and Example 2 are compared in FIG. 8, luminance unevenness is further suppressed in Example 2 than in Example 1. On the other hand, the illuminance immediately below each LED device 2 (that is, the amount of light incident per unit area) was about 1950 lx (lux) in Example 1, about 1600 lx in Example 2, and about 430 lx in Comparative Example 1. . Examples 1 and 2 can be appropriately selected according to the performance (for example, the degree of luminance unevenness and illuminance) required for the lighting device 1.
 次に、第2の実施の形態に係る照明装置のリフレクタ3aについて説明する。図9は、リフレクタ3aを示す斜視図である。図10は、リフレクタ3aの平面図である。図11は、リフレクタ3aを図10中のXI-XIの位置にて切断した断面図である。図12は、リフレクタ3aを図10中のXII-XIIの位置にて切断した断面図である。図13および図14は、リフレクタ3aの一部を拡大して示す平面図である。図11では、照明装置1aのリフレクタ3a以外の構造も併せて示しており、照明装置1aの断面図でもある。また、図11では、照明装置1aのケース5の外形を破線にて示す。図11および図12では、断面よりも奥の構成の一部も併せて示す。図12ないし図14では、照明装置1aのLEDデバイス2を併せて示す。 Next, the reflector 3a of the illumination device according to the second embodiment will be described. FIG. 9 is a perspective view showing the reflector 3a. FIG. 10 is a plan view of the reflector 3a. FIG. 11 is a cross-sectional view of the reflector 3a taken along the line XI-XI in FIG. 12 is a cross-sectional view of the reflector 3a taken along the line XII-XII in FIG. 13 and 14 are enlarged plan views showing a part of the reflector 3a. FIG. 11 also shows a structure other than the reflector 3a of the lighting device 1a, and is also a cross-sectional view of the lighting device 1a. Moreover, in FIG. 11, the external shape of case 5 of the illuminating device 1a is shown with a broken line. 11 and 12 also show a part of the configuration behind the cross section. In FIG. 12 thru | or FIG. 14, the LED device 2 of the illuminating device 1a is shown collectively.
 リフレクタ3aは、図1に示す複数の第1反射面31に代えて、複数の第1反射面31とは形状が異なる複数の第1反射面31aを備える。リフレクタ3aのその他の構成は、図1に示すリフレクタ3と略同様であり、以下の説明では、対応する構成に同符号を付す。 The reflector 3a includes a plurality of first reflecting surfaces 31a having a shape different from that of the plurality of first reflecting surfaces 31 instead of the plurality of first reflecting surfaces 31 shown in FIG. The other structure of the reflector 3a is substantially the same as that of the reflector 3 shown in FIG. 1, and the same reference numerals are given to the corresponding structures in the following description.
 図12に示すように、リフレクタ3aでは、複数の第1反射面31aは、複数のLEDデバイス2の光出射面21よりも光軸方向前側に配置される。複数の第1反射面31aの数は、複数のLEDデバイス2の数と同じである。複数の第1反射面31aは、図13に示すように、複数のLEDデバイス2の周囲にそれぞれ配置される。複数の第1反射面31aのそれぞれは、対応するLEDデバイス2の光軸J1を略中心とする環状の凹面の一部である。具体的には、各第1反射面31aは、当該環状の凹面のうち、LEDデバイス2の幅方向の両側に位置する一対の部位である。複数の第1反射面31aは、LEDデバイス列20の幅方向の両側において、長手方向に沿って連続して広がる。すなわち、複数の第1反射面31aは、LEDデバイス列20の幅方向の両側において、それぞれが長手方向に連続して広がる一対の反射面と捉えることもできる。 As shown in FIG. 12, in the reflector 3a, the plurality of first reflecting surfaces 31a are arranged on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2. The number of the plurality of first reflecting surfaces 31 a is the same as the number of the plurality of LED devices 2. As shown in FIG. 13, the plurality of first reflecting surfaces 31 a are respectively disposed around the plurality of LED devices 2. Each of the plurality of first reflection surfaces 31a is a part of an annular concave surface that is substantially centered on the optical axis J1 of the corresponding LED device 2. Specifically, each 1st reflective surface 31a is a pair of site | part located in the both sides of the width direction of the LED device 2 among the said annular concave surfaces. The plurality of first reflection surfaces 31a continuously spread along the longitudinal direction on both sides in the width direction of the LED device row 20. That is, the plurality of first reflection surfaces 31a can be regarded as a pair of reflection surfaces that continuously spread in the longitudinal direction on both sides in the width direction of the LED device row 20.
 図10ないし図13に示すように、複数の第1反射面31aの光軸方向後側の端部には、長手方向に延びる略帯状の1つの開口35aが設けられる。開口35aは、複数の第1反射面31aの光軸方向後側の端部にそれぞれ設けられた略円形の一部である複数の開口が、長手方向に連続したものである。開口35aの長手方向の長さは、LEDデバイス列20の長手方向の長さよりも長い。リフレクタ3aでは、上述の仕切り壁315(図4参照)に相当する部位は設けられない。 As shown in FIG. 10 to FIG. 13, one substantially band-shaped opening 35a extending in the longitudinal direction is provided at the end of the plurality of first reflecting surfaces 31a on the rear side in the optical axis direction. In the opening 35a, a plurality of openings, each of which is a part of a substantially circular shape, provided at the end on the rear side in the optical axis direction of the plurality of first reflecting surfaces 31a are continuous in the longitudinal direction. The length in the longitudinal direction of the opening 35 a is longer than the length in the longitudinal direction of the LED device row 20. In the reflector 3a, the site | part corresponded to the above-mentioned partition wall 315 (refer FIG. 4) is not provided.
 図14に示すように、各第1反射面31aの上縁311aは、各LEDデバイス2の光軸J1を中心とする仮想的な円周である上円周312aの一部である。図14では、上円周312aのうち第1反射面31aの上縁311aと重ならない部位を二点鎖線にて描いている。上円周312aは、真円の円周であってもよく、楕円の円周であってもよい。図14に示す例では、各第1反射面31aの上縁311aは、LEDデバイス2の光軸J1を中心とする真円周の一部である。長手方向にて隣接する各2つのLEDデバイス2の長手方向における中心間距離は、当該各2つのLEDデバイス2に対応する2つの第1反射面31aの上円周312aの長手方向における半径の合計以下である。また、当該中心間距離は、第1反射面31aの上円周312aの長手方向における半径以下でもある。 As shown in FIG. 14, the upper edge 311a of each first reflecting surface 31a is a part of an upper circumference 312a that is a virtual circumference centered on the optical axis J1 of each LED device 2. In FIG. 14, a portion of the upper circumference 312a that does not overlap with the upper edge 311a of the first reflecting surface 31a is drawn with a two-dot chain line. The upper circumference 312a may be a perfect circle or an ellipse. In the example shown in FIG. 14, the upper edge 311 a of each first reflecting surface 31 a is a part of a true circumference around the optical axis J <b> 1 of the LED device 2. The distance between the centers of the two LED devices 2 adjacent in the longitudinal direction in the longitudinal direction is the sum of the radii in the longitudinal direction of the upper circumferences 312a of the two first reflecting surfaces 31a corresponding to the two LED devices 2. It is as follows. In addition, the center-to-center distance is not more than the radius in the longitudinal direction of the upper circumference 312a of the first reflecting surface 31a.
 各第1反射面31aの下縁313aは、各LEDデバイス2の光軸J1を中心とする仮想的な円周である下円周316aの少なくとも一部である。第1反射面31aは、上円周312aと当該下円周316aとを繋ぐ環状凹面の一部である。下円周316aは、真円の円周であってもよく、楕円の円周であってもよい。図14に示す例では、各第1反射面31aの下縁313aは、LEDデバイス2の光軸J1を中心とする真円周の一部である。各第1反射面31aの上円周312aは、長手方向に隣接する第1反射面31aの下縁313aと交差する。また、各第1反射面31aの上円周312aは、長手方向に隣接する第1反射面31aの光軸J1を内側に含む。 The lower edge 313a of each first reflecting surface 31a is at least a part of a lower circumference 316a that is a virtual circumference centered on the optical axis J1 of each LED device 2. The first reflecting surface 31a is a part of an annular concave surface that connects the upper circumference 312a and the lower circumference 316a. The lower circumference 316a may be a perfect circle or an ellipse. In the example shown in FIG. 14, the lower edge 313 a of each first reflecting surface 31 a is a part of a true circumference centering on the optical axis J <b> 1 of the LED device 2. The upper circumference 312a of each first reflecting surface 31a intersects the lower edge 313a of the first reflecting surface 31a adjacent in the longitudinal direction. The upper circumference 312a of each first reflection surface 31a includes the optical axis J1 of the first reflection surface 31a adjacent in the longitudinal direction on the inner side.
 図9ないし図13に示すリフレクタ3aは、上述のリフレクタ3と略同様に、複数の第1反射面31aと、第2反射面32とを備える。複数の第1反射面31aは、線状に配列された複数のLEDデバイス2の光出射面21よりも光軸方向前側にて複数のLEDデバイス2の周囲にそれぞれ配置される。複数の第1反射面31aのそれぞれは、環状凹面の一部である。第2反射面32は、複数の第1反射面31aの光軸方向前側に配置される。第2反射面32は、長手方向および光軸方向に垂直な幅方向において、LEDデバイス列20の一方側にて長手方向に連続して広がる。リフレクタ3aでは、各LED断面において、第1反射面31aが各LEDデバイス2の幅方向の両側に配置され、各LEDデバイス2から光軸方向前側に向かうに従って幅方向外方へと向かう。また、各LED断面において、第2反射面32が、光軸方向前側に向かうに従って幅方向外方へと向かう。 The reflector 3a shown in FIG. 9 to FIG. 13 includes a plurality of first reflecting surfaces 31a and second reflecting surfaces 32, substantially the same as the reflector 3 described above. The plurality of first reflecting surfaces 31a are respectively arranged around the plurality of LED devices 2 on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2 arranged in a line. Each of the plurality of first reflecting surfaces 31a is a part of an annular concave surface. The second reflecting surface 32 is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31a. The second reflecting surface 32 continuously extends in the longitudinal direction on one side of the LED device array 20 in the width direction perpendicular to the longitudinal direction and the optical axis direction. In the reflector 3a, in each LED cross section, the first reflecting surfaces 31a are arranged on both sides in the width direction of the LED devices 2, and go outward in the width direction from the LED devices 2 toward the front side in the optical axis direction. Moreover, in each LED cross section, the 2nd reflective surface 32 goes to the width direction outward as it goes to the optical axis direction front side.
 このように、リフレクタ3aでは、複数のLEDデバイス2にそれぞれ対応する上述の複数の第1反射面31aを設けることにより、複数のLEDデバイス2から出射される光を、光軸方向前方へと効率良く導くことができる。また、上述のように、第2反射面32が、複数の第1反射面31aに沿って長手方向に連続して広がることにより、複数のLEDデバイス2および複数の第1反射面31aからの光を、長手方向に適切に拡散しつつさらに効率良く光軸方向前方へと導くことができる。これにより、複数のLEDデバイス2による輝度ムラを抑制しつつ、照明装置1aによる照明光の所望の照度を実現することができる。 As described above, in the reflector 3a, by providing the plurality of first reflecting surfaces 31a respectively corresponding to the plurality of LED devices 2, the light emitted from the plurality of LED devices 2 is efficiently forward in the optical axis direction. Can guide well. In addition, as described above, the second reflecting surface 32 continuously spreads in the longitudinal direction along the plurality of first reflecting surfaces 31a, whereby light from the plurality of LED devices 2 and the plurality of first reflecting surfaces 31a. Can be more efficiently guided forward in the optical axis direction while appropriately diffusing in the longitudinal direction. Thereby, the desired illumination intensity of the illumination light by the illuminating device 1a is realizable, suppressing the brightness nonuniformity by the some LED device 2. FIG.
 また、リフレクタ3aでは、複数の第1反射面31aが、LEDデバイス列20に沿って長手方向に連続して広がる。これにより、複数のLEDデバイス2からの光を、長手方向にさらに適切に拡散することができる。その結果、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。 Further, in the reflector 3a, the plurality of first reflecting surfaces 31a continuously extend in the longitudinal direction along the LED device row 20. Thereby, the light from the plurality of LED devices 2 can be more appropriately diffused in the longitudinal direction. As a result, luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
 次に、第3の実施の形態に係る照明装置のリフレクタ3bについて説明する。図15は、リフレクタ3bを示す平面図である。図16は、リフレクタ3bを図15中のXVI-XVIの位置にて切断した断面図である。図17および図18は、リフレクタ3bの一部を拡大して示す平面図である。図16では、照明装置1bのリフレクタ3b以外の構造も併せて示している。図16は、照明装置1bの断面図でもある。図16では、断面よりも奥の構成の一部も併せて示す。図16ないし図18では、照明装置1bのLEDデバイス2を併せて示す。 Next, the reflector 3b of the illumination device according to the third embodiment will be described. FIG. 15 is a plan view showing the reflector 3b. FIG. 16 is a cross-sectional view of the reflector 3b taken along the line XVI-XVI in FIG. 17 and 18 are enlarged plan views showing a part of the reflector 3b. FIG. 16 also shows the structure other than the reflector 3b of the lighting device 1b. FIG. 16 is also a cross-sectional view of the lighting device 1b. FIG. 16 also shows a part of the configuration behind the cross section. In FIG. 16 thru | or FIG. 18, LED device 2 of the illuminating device 1b is shown collectively.
 リフレクタ3bは、図1に示す複数の第1反射面31および一対の第2反射面32に代えて、複数の第1反射面31bおよび一対の第2反射面32bを備える。各第1反射面31bおよび一対の第2反射面32bは、各第1反射面31および一対の第2反射面32と形状が異なる。また、照明装置1bのLEDデバイス2の数は、上述の照明装置1のLEDデバイス2の数よりも少ない。リフレクタ3bおよび照明装置1bのその他の構成は、上述のリフレクタ3および照明装置1と略同様であり、以下の説明では、対応する構成に同符号を付す。 The reflector 3b includes a plurality of first reflecting surfaces 31b and a pair of second reflecting surfaces 32b instead of the plurality of first reflecting surfaces 31 and the pair of second reflecting surfaces 32 shown in FIG. Each first reflecting surface 31b and the pair of second reflecting surfaces 32b are different in shape from each first reflecting surface 31 and the pair of second reflecting surfaces 32. Further, the number of LED devices 2 in the lighting device 1b is smaller than the number of LED devices 2 in the lighting device 1 described above. The other structure of the reflector 3b and the illuminating device 1b is substantially the same as that of the reflector 3 and the illuminating device 1 described above, and the same reference numerals are given to the corresponding components in the following description.
 リフレクタ3bの一対の第2反射面32bは、複数の第1反射面31bの光軸方向前端に連続する。一対の第2反射面32bの光軸方向の高さは、複数の第1反射面31bのそれぞれの光軸方向の高さよりも大きい。例えば、各第2反射面32bの光軸方向の高さは、各第1反射面31bの光軸方向の最大高さの2倍以上かつ5倍以下である。長手方向にて隣接する各2つのLEDデバイス2の間では、一方の第2反射面32bと他方の第2反射面32bとが接することはない。換言すれば、長手方向にて隣接する各2つのLEDデバイス2の間では、一対の第2反射面32bが互いに非連続である。 The pair of second reflecting surfaces 32b of the reflector 3b is continuous with the front end in the optical axis direction of the plurality of first reflecting surfaces 31b. The height of the pair of second reflection surfaces 32b in the optical axis direction is larger than the height of each of the plurality of first reflection surfaces 31b in the optical axis direction. For example, the height of each second reflecting surface 32b in the optical axis direction is not less than twice and not more than five times the maximum height of each first reflecting surface 31b in the optical axis direction. Between each two LED devices 2 adjacent in the longitudinal direction, one second reflecting surface 32b and the other second reflecting surface 32b do not contact each other. In other words, the pair of second reflecting surfaces 32b are discontinuous with each other between the two LED devices 2 adjacent in the longitudinal direction.
 図16に示すように、LED断面では、第1反射面31bがLEDデバイス2の幅方向の両側(すなわち、図16中の左右両側)に配置される。また、LEDデバイス2の幅方向の両側において、第1反射面31bは、LEDデバイス2から光軸方向前側に向かうに従って、幅方向外方(すなわち、LEDデバイス2から幅方向に離れる方向)へと向かう。 As shown in FIG. 16, in the LED cross section, the first reflecting surfaces 31 b are arranged on both sides in the width direction of the LED device 2 (that is, both the left and right sides in FIG. 16). Further, on both sides of the LED device 2 in the width direction, the first reflecting surface 31b is outward in the width direction (that is, in a direction away from the LED device 2 in the width direction) from the LED device 2 toward the front side in the optical axis direction. Head.
 LED断面では、一対の第2反射面32bが、光軸方向前側に向かうに従って幅方向外方へと向かう。一対の第2反射面32bは、LEDデバイス2の光軸J1に対して、左右非対称である。図16に示す例では、光軸方向の各位置において、左側の第2反射面32bと光軸J1との成す角度は、右側の第2反射面32bと光軸J1との成す角度よりも小さい。また、光軸方向の各位置において、左側の第2反射面32bと光軸J1との間の幅方向の距離は、右側の第2反射面32bと光軸J1との間の幅方向の距離よりも小さい。換言すれば、光軸方向の各位置において、一対の第2反射面32bの幅方向の中央は、光軸J1よりも右側に位置する。図16に例示するLED断面では、光軸方向の各位置における一対の第2反射面32bの幅方向の中央は、直線J2上に位置する。以下の説明では、直線J2を「反射面軸J2」と呼ぶ。反射面軸J2は、LEDデバイス2の光軸J1に対して右側に傾斜している。反射面軸J2と光軸J1との成す角度は、例えば、約10度である。 In the LED cross section, the pair of second reflecting surfaces 32b go outward in the width direction toward the front side in the optical axis direction. The pair of second reflecting surfaces 32 b are asymmetrical with respect to the optical axis J1 of the LED device 2. In the example shown in FIG. 16, at each position in the optical axis direction, the angle formed by the left second reflective surface 32b and the optical axis J1 is smaller than the angle formed by the right second reflective surface 32b and the optical axis J1. . At each position in the optical axis direction, the distance in the width direction between the left second reflecting surface 32b and the optical axis J1 is the distance in the width direction between the right second reflecting surface 32b and the optical axis J1. Smaller than. In other words, at each position in the optical axis direction, the center in the width direction of the pair of second reflecting surfaces 32b is located on the right side of the optical axis J1. In the LED cross section illustrated in FIG. 16, the center in the width direction of the pair of second reflecting surfaces 32b at each position in the optical axis direction is located on a straight line J2. In the following description, the straight line J2 is referred to as “reflection surface axis J2”. The reflective surface axis J2 is inclined to the right with respect to the optical axis J1 of the LED device 2. The angle formed by the reflecting surface axis J2 and the optical axis J1 is, for example, about 10 degrees.
 LED断面では、例えば、第1反射面31bと第2反射面32bとの接続部(すなわち、第1反射面31bと第2反射面32bとの境界)における第1反射面31bの接線の傾きと、第2反射面32bの接線の傾きとが異なる。他のLEDデバイス2に対応するLED断面においても、第1反射面31bの形状および第2反射面32bの形状は、上記形状と同様である。 In the LED cross section, for example, the slope of the tangent line of the first reflecting surface 31b at the connection portion (that is, the boundary between the first reflecting surface 31b and the second reflecting surface 32b) between the first reflecting surface 31b and the second reflecting surface 32b. The slope of the tangent line of the second reflecting surface 32b is different. Also in the LED cross sections corresponding to the other LED devices 2, the shape of the first reflecting surface 31b and the shape of the second reflecting surface 32b are the same as the above shapes.
 図18に示すように、各第1反射面31bの上縁311は、各LEDデバイス2の光軸J1の周囲を囲む仮想的な円周である上円周312の一部である。図18では、上円周312のうち第1反射面31bの上縁311と重ならない部位を二点鎖線にて描いている。上円周312は、真円の円周であってもよく、楕円の円周であってもよい。図18に示す例では、各第1反射面31bの上縁311は、幅方向(すなわち、図18中の上下方向)に長い楕円周の一部である。長手方向にて隣接する各2つのLEDデバイス2の長手方向における中心間距離(すなわち、長手方向に隣接する2つの光軸J1間の距離)は、当該各2つのLEDデバイス2に対応する2つの第1反射面31bの上円周312の長手方向における半径の合計以下である。 As shown in FIG. 18, the upper edge 311 of each first reflecting surface 31b is a part of an upper circumference 312 that is a virtual circumference surrounding the optical axis J1 of each LED device 2. In FIG. 18, a portion of the upper circumference 312 that does not overlap with the upper edge 311 of the first reflecting surface 31 b is drawn with a two-dot chain line. The upper circumference 312 may be a true circle or an ellipse. In the example illustrated in FIG. 18, the upper edge 311 of each first reflecting surface 31 b is a part of an elliptical circumference that is long in the width direction (that is, the vertical direction in FIG. 18). The distance between the centers in the longitudinal direction of each of the two LED devices 2 adjacent in the longitudinal direction (that is, the distance between the two optical axes J1 adjacent in the longitudinal direction) corresponds to the two LED devices 2 corresponding to the two LED devices 2. This is not more than the sum of the radii in the longitudinal direction of the upper circumference 312 of the first reflecting surface 31b.
 各第1反射面31bにおいて、上円周312の中心314は、LEDデバイス2の光軸J1上に位置していない。上円周312の中心314は、光軸J1から幅方向に離間した位置に位置する。換言すれば、LEDデバイス2の光軸J1は、幅方向において、上円周312の中心314と、図16中の左側の第2反射面32bとの間に位置する。図18に示す例では、上円周312の中心314は、光軸J1と長手方向の略同じ位置に位置する。換言すれば、上円周312の中心314は、LED断面に位置し、光軸J1から幅方向にずれている。 In each first reflecting surface 31b, the center 314 of the upper circumference 312 is not located on the optical axis J1 of the LED device 2. The center 314 of the upper circumference 312 is located at a position spaced apart from the optical axis J1 in the width direction. In other words, the optical axis J1 of the LED device 2 is located between the center 314 of the upper circumference 312 and the left second reflecting surface 32b in FIG. 16 in the width direction. In the example shown in FIG. 18, the center 314 of the upper circumference 312 is located at substantially the same position in the longitudinal direction as the optical axis J1. In other words, the center 314 of the upper circumference 312 is located on the LED cross section and is shifted in the width direction from the optical axis J1.
 各第1反射面31bの下縁313は、LEDデバイス2の光軸J1を略中心とする仮想的な円周である下円周の少なくとも一部である。第1反射面31bは、上円周312と当該下円周とを繋ぐ環状凹面の少なくとも一部である。下円周は、真円の円周であってもよく、楕円の円周であってもよい。図17および図18に示す例では、各第1反射面31bの下縁313は、LEDデバイス2の光軸J1を中心とする真円の円周全体である。LED断面において、第1反射面31bの下円周の中心、および、上円周312の中心314は、上述の反射面軸J2上に位置する。すなわち、反射面軸J2は、LED断面における第1反射面31bおよび第2反射面32bの中心を示す。 The lower edge 313 of each first reflecting surface 31b is at least a part of a lower circumference that is a virtual circumference centered on the optical axis J1 of the LED device 2. The first reflecting surface 31b is at least a part of an annular concave surface that connects the upper circumference 312 and the lower circumference. The lower circumference may be a true circle or an ellipse. In the example shown in FIGS. 17 and 18, the lower edge 313 of each first reflecting surface 31 b is the entire circumference of a perfect circle centered on the optical axis J <b> 1 of the LED device 2. In the LED cross section, the center of the lower circumference of the first reflecting surface 31b and the center 314 of the upper circumference 312 are located on the reflecting surface axis J2. That is, the reflecting surface axis J2 indicates the center of the first reflecting surface 31b and the second reflecting surface 32b in the LED cross section.
 長手方向に隣接する各2つのLEDデバイス2の間には、図16に示すように、第1反射面31bによる仕切り壁315が位置する。仕切り壁315は、長手方向に隣接する2つの開口35の間を仕切る。長手方向に隣接する各2つのLEDデバイス2の間では、第1反射面31bの幅方向中央部の光軸方向の高さ(すなわち、仕切り壁315の幅方向中央部の高さ)が、第1反射面31bの他の部位の光軸方向の高さよりも低い。 As shown in FIG. 16, the partition wall 315 by the 1st reflective surface 31b is located between each two LED devices 2 adjacent to a longitudinal direction. The partition wall 315 partitions between the two openings 35 adjacent in the longitudinal direction. Between each two LED devices 2 adjacent to each other in the longitudinal direction, the height in the optical axis direction of the central portion in the width direction of the first reflecting surface 31b (that is, the height in the central portion in the width direction of the partition wall 315) is It is lower than the height in the optical axis direction of other parts of the one reflecting surface 31b.
 図18に示す例では、各第1反射面31bの上円周312は、長手方向に隣接する第1反射面31bの上円周312および下縁313と交差する。また、各第1反射面31bの上円周312は、長手方向に隣接する第1反射面31bの光軸J1を内側に含まない。なお、各第1反射面31bの上円周312は、例えば、長手方向に隣接する第1反射面31bの上円周312および下縁313と交差しなくてもよい。また、各第1反射面31bの上円周312は、例えば、長手方向に隣接する第1反射面31bの光軸J1を内側に含んでもよい。 In the example shown in FIG. 18, the upper circumference 312 of each first reflective surface 31b intersects the upper circumference 312 and the lower edge 313 of the first reflective surface 31b adjacent in the longitudinal direction. Further, the upper circumference 312 of each first reflection surface 31b does not include the optical axis J1 of the first reflection surface 31b adjacent in the longitudinal direction on the inner side. The upper circumference 312 of each first reflection surface 31b may not intersect the upper circumference 312 and the lower edge 313 of the first reflection surface 31b adjacent in the longitudinal direction, for example. Further, the upper circumference 312 of each first reflection surface 31b may include, for example, the optical axis J1 of the first reflection surface 31b adjacent in the longitudinal direction on the inner side.
 照明装置1bでは、複数のLEDデバイス2から出射された光は、複数の第1反射面31bにより反射されて、あるいは、第1反射面31bに反射されることなく直接的に光軸方向前方へと導かれる。複数の第1反射面31bよりも光軸方向前側へと導かれた光は、第2反射面32bにより反射されて、あるいは、第2反射面32bに反射されることなく直接的に光軸方向前方へと導かれ、リフレクタ3bから光軸方向前方に向けて照射される。上述のように、リフレクタ3bでは、LED断面において第1反射面31bおよび第2反射面32bの中心を示す反射面軸J2が、LEDデバイス2の光軸J1に対して幅方向の一方に傾斜しているため、照明装置1bからの光は、光軸J1に対して幅方向の当該一方側へと偏って照射される。 In the lighting device 1b, the light emitted from the plurality of LED devices 2 is reflected by the plurality of first reflection surfaces 31b or directly forward in the optical axis direction without being reflected by the first reflection surfaces 31b. It is guided. The light guided to the front side in the optical axis direction from the plurality of first reflecting surfaces 31b is reflected by the second reflecting surface 32b or directly without being reflected by the second reflecting surface 32b. The light is guided forward and irradiated from the reflector 3b toward the front in the optical axis direction. As described above, in the reflector 3b, the reflection surface axis J2 indicating the center of the first reflection surface 31b and the second reflection surface 32b in the LED cross section is inclined to one side in the width direction with respect to the optical axis J1 of the LED device 2. Therefore, the light from the illuminating device 1b is irradiated with being biased toward the one side in the width direction with respect to the optical axis J1.
 以上に説明したように、照明装置1b用のリフレクタ3bは、上述のリフレクタ3と同様に、複数の第1反射面31bと、第2反射面32bとを備える。複数の第1反射面31bは、線状に配列された複数のLEDデバイス2の光出射面21よりも光軸方向前側にて複数のLEDデバイス2の周囲にそれぞれ配置される。複数の第1反射面31bのそれぞれは、環状凹面の少なくとも一部である。第2反射面32bは、複数の第1反射面31bの光軸方向前側に配置される。第2反射面32bは、複数のLEDデバイス2であるLEDデバイス列20の長手方向および光軸方向に垂直な幅方向において、LEDデバイス列20の一方側にて長手方向に連続して広がる。リフレクタ3bでは、当該長手方向に垂直、かつ、各LEDデバイス2の光軸J1を含む各LED断面において、第1反射面31bが各LEDデバイス2の幅方向の両側に配置され、各LEDデバイス2から光軸方向前側に向かうに従って幅方向外方へと向かう。また、各LED断面において、第2反射面32bが、光軸方向前側に向かうに従って幅方向外方へと向かう。これにより、上述のリフレクタ3と同様に、複数のLEDデバイス2による輝度ムラを抑制しつつ、照明装置1bによる照明光の所望の照度を実現することができる。 As described above, the reflector 3b for the lighting device 1b includes the plurality of first reflection surfaces 31b and the second reflection surface 32b, as with the reflector 3 described above. The plurality of first reflecting surfaces 31b are respectively arranged around the plurality of LED devices 2 on the front side in the optical axis direction with respect to the light emitting surfaces 21 of the plurality of LED devices 2 arranged in a line. Each of the plurality of first reflecting surfaces 31b is at least a part of an annular concave surface. The second reflecting surface 32b is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31b. The second reflecting surface 32b continuously spreads in the longitudinal direction on one side of the LED device row 20 in the width direction perpendicular to the longitudinal direction and the optical axis direction of the LED device row 20 which is the plurality of LED devices 2. In the reflector 3b, in each LED cross section perpendicular to the longitudinal direction and including the optical axis J1 of each LED device 2, the first reflecting surfaces 31b are arranged on both sides in the width direction of each LED device 2, and each LED device 2 From the front toward the front side in the optical axis direction. Moreover, in each LED cross section, the 2nd reflective surface 32b goes to the width direction outward as it goes to the optical axis direction front side. Thereby, like the above-mentioned reflector 3, the desired illumination intensity of the illumination light by the illuminating device 1b is realizable, suppressing the brightness nonuniformity by the some LED device 2. FIG.
 リフレクタ3bでは、長手方向に垂直な断面における第2反射面32bの形状は、第2反射面32bの長手方向の全長に亘って一定である。これにより、複数のLEDデバイス2および複数の第1反射面31bから第2反射面32bに導かれた光を長手方向に拡散させる際に、長手方向における光の拡散の均一性を向上することができる。その結果、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。なお、長手方向に垂直な断面における第2反射面32bの形状は、第2反射面32bの長手方向の実質的に全長に亘って実質的に一定であればよい。この場合も、上記と同様に、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。 In the reflector 3b, the shape of the second reflecting surface 32b in the cross section perpendicular to the longitudinal direction is constant over the entire length of the second reflecting surface 32b in the longitudinal direction. Thereby, when diffusing the light guided from the plurality of LED devices 2 and the plurality of first reflecting surfaces 31b to the second reflecting surface 32b in the longitudinal direction, the uniformity of light diffusion in the longitudinal direction can be improved. it can. As a result, luminance unevenness due to the plurality of LED devices 2 can be further suppressed. In addition, the shape of the 2nd reflective surface 32b in a cross section perpendicular | vertical to a longitudinal direction should just be substantially constant over substantially the full length of the longitudinal direction of the 2nd reflective surface 32b. Also in this case, similarly to the above, luminance unevenness due to the plurality of LED devices 2 can be further suppressed.
 リフレクタ3bでは、各第1反射面31bの上縁311は、円周である上円周312の一部であり、長手方向にて隣接する2つのLEDデバイス2の長手方向における中心間距離は、当該2つのLEDデバイス2に対応する2つの第1反射面31bにおける上円周312の長手方向における半径の合計以下である。これにより、複数のLEDデバイス2の長手方向の間隔を小さくすることができる。その結果、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。また、リフレクタ3bおよび照明装置1bを小型化することもできる。 In the reflector 3b, the upper edge 311 of each first reflecting surface 31b is a part of the upper circumference 312 that is a circumference, and the distance between the centers of the two LED devices 2 adjacent in the longitudinal direction is as follows. It is less than or equal to the sum of the radii in the longitudinal direction of the upper circumference 312 in the two first reflecting surfaces 31b corresponding to the two LED devices 2. Thereby, the space | interval of the longitudinal direction of the some LED device 2 can be made small. As a result, luminance unevenness due to the plurality of LED devices 2 can be further suppressed. Moreover, the reflector 3b and the illuminating device 1b can also be reduced in size.
 なお、各第1反射面31bの上縁311は、必ずしも上円周312の一部である必要はなく、上円周312全体であってもよい。すなわち、各第1反射面31bの上縁311は、上円周312の少なくとも一部であればよい。そして、長手方向にて隣接する2つのLEDデバイス2の長手方向における中心間距離が、当該2つのLEDデバイス2に対応する2つの第1反射面31bにおける上円周312の長手方向における半径の合計以下であることにより、上記と同様に、複数のLEDデバイス2による輝度ムラを、より一層抑制することができる。また、リフレクタ3bおよび照明装置1bを小型化することもできる。 It should be noted that the upper edge 311 of each first reflecting surface 31b is not necessarily a part of the upper circumference 312 and may be the entire upper circumference 312. That is, the upper edge 311 of each first reflecting surface 31b may be at least a part of the upper circumference 312. The distance between the centers in the longitudinal direction of two LED devices 2 adjacent in the longitudinal direction is the sum of the radii in the longitudinal direction of the upper circumference 312 in the two first reflecting surfaces 31b corresponding to the two LED devices 2. By being below, the brightness nonuniformity by the some LED device 2 can be suppressed further similarly to the above. Moreover, the reflector 3b and the illuminating device 1b can also be reduced in size.
 リフレクタ3bでは、各第1反射面31bの上縁311が、幅方向に長い楕円周の少なくとも一部である。これにより、各LEDデバイス2からの光の幅方向への広がりを大きくすることができる。その結果、照明装置1bからの照明光の長手方向への広がりと、幅方向への広がりとの差を小さくすることができる。 In the reflector 3b, the upper edge 311 of each first reflecting surface 31b is at least part of an elliptical circumference that is long in the width direction. Thereby, the spread to the width direction of the light from each LED device 2 can be enlarged. As a result, the difference between the spread in the longitudinal direction of the illumination light from the illumination device 1b and the spread in the width direction can be reduced.
 リフレクタ3bでは、上述のように、各第1反射面31bの上縁が、円周である上円周312の少なくとも一部であり、各LEDデバイス2の光軸J1は、幅方向において、各第1反射面31bの上円周312の中心314と第2反射面32bとの間に位置する。これにより、複数のLEDデバイス2からの光を、照明装置1bの幅方向の片側に偏らせつつ、光軸方向前方へと導くことができる。その結果、照明装置1bが設けられる金属加工装置等において、照明装置1bの配置の自由度を向上することができる。 In the reflector 3b, as described above, the upper edge of each first reflecting surface 31b is at least a part of the upper circumference 312 that is a circumference, and the optical axis J1 of each LED device 2 is It is located between the center 314 of the upper circumference 312 of the first reflective surface 31b and the second reflective surface 32b. Thereby, the light from the several LED device 2 can be guide | induced to the optical axis direction front, biasing to the one side of the width direction of the illuminating device 1b. As a result, in a metal processing apparatus or the like provided with the lighting device 1b, the degree of freedom of arrangement of the lighting device 1b can be improved.
 一方、図1に示すリフレクタ3では、第1反射面31の上縁が、円周である上円周312の少なくとも一部であり、各第1反射面31の上円周312の中心は、各LEDデバイス2の光軸J1上に位置する。これにより、複数のLEDデバイス2からの光を、光軸方向に略平行な方向に効率良く導くことができる。 On the other hand, in the reflector 3 shown in FIG. 1, the upper edge of the first reflecting surface 31 is at least a part of the upper circumference 312 that is a circumference, and the center of the upper circumference 312 of each first reflecting surface 31 is It is located on the optical axis J1 of each LED device 2. Thereby, the light from the several LED device 2 can be efficiently guide | induced to the direction substantially parallel to an optical axis direction.
 図15に示すリフレクタ3bは、上述のように、他の第2反射面32bをさらに備える。当該他の第2反射面32bは、複数の第1反射面31bの光軸方向前側に配置され、LEDデバイス列20の幅方向の他方側にて長手方向に連続して広がる。各LED断面において、当該他の第2反射面32bは、光軸方向前側に向かうに従って幅方向外方へと向かう。これにより、複数のLEDデバイス2および複数の第1反射面31bからの光を、長手方向にさらに適切に拡散しつつ、より一層効率良く光軸方向前方へと導くことができる。その結果、複数のLEDデバイス2による輝度ムラをより一層抑制しつつ、照明装置1bによる照明光の所望の照度を容易に実現することができる。 The reflector 3b shown in FIG. 15 further includes another second reflecting surface 32b as described above. The other second reflecting surface 32b is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31b, and continuously spreads in the longitudinal direction on the other side in the width direction of the LED device row 20. In each LED cross section, the other second reflecting surface 32b is directed outward in the width direction toward the front side in the optical axis direction. Thereby, the light from the plurality of LED devices 2 and the plurality of first reflecting surfaces 31b can be more efficiently guided forward in the optical axis direction while further appropriately diffusing in the longitudinal direction. As a result, it is possible to easily achieve the desired illuminance of the illumination light by the illumination device 1b while further suppressing uneven brightness due to the plurality of LED devices 2.
 リフレクタ3bでは、各LED断面において、上記他の第2反射面32bと光軸J1との間の幅方向の距離が、もう1つの第2反射面32bと光軸J1との間の幅方向の距離よりも大きい。これにより、複数のLEDデバイス2からの光を、照明装置1bの幅方向の片側に好適に偏らせつつ、光軸方向前方へと導くことができる。 In the reflector 3b, in each LED cross section, the distance in the width direction between the other second reflection surface 32b and the optical axis J1 is the width direction distance between the other second reflection surface 32b and the optical axis J1. Greater than distance. Thereby, the light from the several LED device 2 can be guide | induced to an optical axis direction front, biasing suitably to the one side of the width direction of the illuminating device 1b.
 図19は、他の好ましいリフレクタ3cをの一部を拡大して示す平面図である。図19では、リフレクタ3cの長手方向の一方の端部を示す。リフレクタ3cでは、長手方向の両端部において、上述の第1反射面31bと形状が異なる第1反射面31cが設けられる点を除き、リフレクタ3bと略同様の構造を有する。 FIG. 19 is an enlarged plan view showing a part of another preferred reflector 3c. FIG. 19 shows one end of the reflector 3c in the longitudinal direction. The reflector 3c has substantially the same structure as the reflector 3b except that the first reflecting surface 31c having a shape different from that of the first reflecting surface 31b is provided at both ends in the longitudinal direction.
 第1反射面31cの上円周312の中心314は、LEDデバイス2の光軸J1から幅方向に離間しているのみならず、光軸J1から長手方向にも離間している。これにより、LEDデバイス2からの光を、照明装置1cの幅方向の片側および長手方向の片側に偏らせつつ、光軸方向前方へと導くことができる。図19に示す例では、第1反射面31cの上円周312の中心314は、LEDデバイス2の光軸J1よりも、照明装置1cの長手方向の端部に近い。これにより、LEDデバイス2からの光を、長手方向の端部側へと(すなわち、照明装置1cの長手方向中央部から離れる方向へと)広げることができる。 The center 314 of the upper circumference 312 of the first reflecting surface 31c is not only separated in the width direction from the optical axis J1 of the LED device 2, but is also separated in the longitudinal direction from the optical axis J1. Thereby, the light from the LED device 2 can be guided forward in the optical axis direction while being biased to one side in the width direction and one side in the longitudinal direction of the illumination device 1c. In the example shown in FIG. 19, the center 314 of the upper circumference 312 of the first reflecting surface 31 c is closer to the end of the lighting device 1 c in the longitudinal direction than the optical axis J1 of the LED device 2. Thereby, the light from the LED device 2 can be spread toward the end in the longitudinal direction (that is, in a direction away from the central portion in the longitudinal direction of the lighting device 1c).
 なお、リフレクタ3cでは、上円周312の中心314が光軸J1から長手方向に離間している第1反射面31cは、必ずしも長手方向の端部に設けられる必要はなく、他の部位に設けられてもよい。あるいは、リフレクタ3cの全ての第1反射面が、上述の第1反射面31cであってもよい。換言すれば、リフレクタ3cでは、複数の第1反射面のうち少なくとも一部の第1反射面31cの上円周312の中心314が、LEDデバイス2の光軸J1から長手方向に離間している。これにより、上記と同様に、LEDデバイス2からの光を、照明装置1cの幅方向の片側および長手方向の片側に偏らせつつ、光軸方向前方へと導くことができる。 In the reflector 3c, the first reflecting surface 31c in which the center 314 of the upper circumference 312 is spaced apart from the optical axis J1 in the longitudinal direction is not necessarily provided at the end in the longitudinal direction, and is provided in another part. May be. Or all the 1st reflective surfaces of reflector 3c may be the above-mentioned 1st reflective surface 31c. In other words, in the reflector 3c, the center 314 of the upper circumference 312 of at least some of the first reflecting surfaces 31c among the plurality of first reflecting surfaces is spaced apart from the optical axis J1 of the LED device 2 in the longitudinal direction. . Thereby, similarly to the above, the light from the LED device 2 can be guided forward in the optical axis direction while being biased to one side in the width direction and one side in the longitudinal direction of the lighting device 1c.
 図15ないし図18に例示するリフレクタ3bでは、反射面軸J2と光軸J1との成す角度は約10度であるが、当該角度は様々に変更されてよい。例えば、図20および図21は、当該角度が約25度であるリフレクタ3dを示す平面図および断面図である。リフレクタ3dでは、各LEDデバイス2の光軸J1は、幅方向において、各第1反射面31dの上円周の中心314と、第2反射面32dとの間に位置する。これにより、上記と同様に、複数のLEDデバイス2からの光を、照明装置1dの幅方向の片側に偏らせつつ、光軸方向前方へと導くことができる。その結果、照明装置1dが設けられる金属加工装置等において、照明装置1dの配置の自由度を向上することができる。 In the reflector 3b illustrated in FIGS. 15 to 18, the angle formed by the reflection surface axis J2 and the optical axis J1 is about 10 degrees, but the angle may be variously changed. For example, FIGS. 20 and 21 are a plan view and a cross-sectional view showing the reflector 3d having the angle of about 25 degrees. In the reflector 3d, the optical axis J1 of each LED device 2 is located between the center 314 of the upper circumference of each first reflective surface 31d and the second reflective surface 32d in the width direction. Thereby, similarly to the above, the light from the plurality of LED devices 2 can be guided forward in the optical axis direction while being biased to one side in the width direction of the illumination device 1d. As a result, in a metal processing apparatus or the like provided with the lighting device 1d, the degree of freedom of arrangement of the lighting device 1d can be improved.
 また、リフレクタ3dでは、LED断面において、第1反射面31dの上円周の中心314、および、一対の第2反射面32bの幅方向の中央が、図16に示す例に比べて、LEDデバイス2の光軸J1から幅方向に大きく離間する。これにより、複数のLEDデバイス2からの光を、照明装置1dの幅方向の片側に大きく偏らせることができる。 Further, in the reflector 3d, in the LED cross section, the center 314 of the upper circumference of the first reflecting surface 31d and the center in the width direction of the pair of second reflecting surfaces 32b are compared to the example shown in FIG. 2 away from the second optical axis J1 in the width direction. Thereby, the light from the several LED device 2 can be largely biased to the one side of the width direction of the illuminating device 1d.
 上述の照明装置1,1a~1dおよびリフレクタ3,3a~3dでは、様々な変更が可能である。 Various changes can be made in the above-described lighting devices 1, 1a to 1d and reflectors 3, 3a to 3d.
 例えば、リフレクタ3,3aでは、一対の第2反射面32の光軸方向の高さは、複数の第1反射面31,31aのそれぞれの光軸方向の高さよりも小さくてもよく、当該高さと同じであってもよい。また、長手方向に垂直な断面における一対の第2反射面32の形状は、必ずしも、長手方向の全長に亘って実質的に一定である必要はなく、長手方向の位置によって変更されてもよい。各第2反射面32上には、複数の第1反射面31の仕切り壁315(図4参照)が延設されていてもよい。具体的には、仕切り壁315の幅方向の端部が、例えば略三角錐状のリブとして第2反射面32に沿って上方へと延びていてもよい。この場合、当該リブの光軸方向前端は、第2反射面32の光軸方向前縁よりも後側に位置する。さらに、第2反射面32は、LEDデバイス列20の幅方向の一方側のみに設けられてもよい。リフレクタ3b~3dにおいても同様である。 For example, in the reflectors 3 and 3a, the height in the optical axis direction of the pair of second reflecting surfaces 32 may be smaller than the height in the optical axis direction of each of the plurality of first reflecting surfaces 31 and 31a. May be the same. Further, the shape of the pair of second reflecting surfaces 32 in the cross section perpendicular to the longitudinal direction does not necessarily need to be substantially constant over the entire length in the longitudinal direction, and may be changed depending on the position in the longitudinal direction. On each of the second reflecting surfaces 32, a plurality of partition walls 315 (see FIG. 4) of the first reflecting surfaces 31 may be extended. Specifically, the end in the width direction of the partition wall 315 may extend upward along the second reflecting surface 32 as, for example, a substantially triangular pyramid rib. In this case, the front end of the rib in the optical axis direction is located behind the front edge of the second reflecting surface 32 in the optical axis direction. Further, the second reflecting surface 32 may be provided only on one side in the width direction of the LED device array 20. The same applies to the reflectors 3b to 3d.
 リフレクタ3のLED断面では、例えば、第1反射面31と第2反射面32との接続部における第1反射面31の接線と光軸J1との成す角度は、当該接続部における第2反射面32の接線と光軸J1との成す角度よりも小さくてもよく、当該角度と同じであってもよい。また、リフレクタ3aのLED断面では、第1反射面31aと第2反射面32との接続部における第1反射面31aの接線と光軸J1との成す角度と、当該接続部における第2反射面32の接線と光軸J1との成す角度とは、同じであってもよく、一方の角度が他方の角度よりも大きくてもよい。リフレクタ3b~3dにおいても同様である。 In the LED cross section of the reflector 3, for example, the angle formed between the tangent line of the first reflecting surface 31 and the optical axis J1 in the connecting portion between the first reflecting surface 31 and the second reflecting surface 32 is the second reflecting surface in the connecting portion. The angle may be smaller than or equal to the angle formed by the tangent line 32 and the optical axis J1. Further, in the LED cross section of the reflector 3a, the angle formed between the tangent line of the first reflecting surface 31a and the optical axis J1 in the connecting portion between the first reflecting surface 31a and the second reflecting surface 32, and the second reflecting surface in the connecting portion. The angle formed by the tangent line 32 and the optical axis J1 may be the same, and one angle may be larger than the other angle. The same applies to the reflectors 3b to 3d.
 リフレクタ3,3aでは、複数のLEDデバイス2および複数の第1反射面31,31aは、必ずしも直線状に配列される必要はなく、線状(すなわち、非環状)に配列されていればよい。例えば、複数のLEDデバイス2および複数の第1反射面31,31aは、弧状に配列(すなわち、幅方向または光軸方向に屈曲する仮想的な弧状の線に沿って配列)されてもよい。リフレクタ3b~3dにおいても同様である。 In the reflectors 3 and 3a, the plurality of LED devices 2 and the plurality of first reflection surfaces 31 and 31a are not necessarily arranged linearly, but may be arranged linearly (that is, non-annular). For example, the plurality of LED devices 2 and the plurality of first reflection surfaces 31 and 31a may be arranged in an arc (that is, arranged along a virtual arcuate line that bends in the width direction or the optical axis direction). The same applies to the reflectors 3b to 3d.
 上述のリフレクタ3,3aでは、複数の第1反射面31は1つの直線状に配列されているが、これには限定されない。例えば、図22に示すリフレクタ3eでは、2つの第1反射面列310が幅方向に並ぶ。第1反射面列310は、長手方向に略平行に配列される複数の第1反射面31(図4参照)である。2つの第1反射面列310は、幅方向において一対の第2反射面32の間に配置される。リフレクタ3eでは、2つの第1反射面列310の間に、長手方向に略平行に延びる2つの第4反射面36が設けられる。2つの第4反射面36は、それぞれ一対の第2反射面32と幅方向に対向する。第4反射面36は、複数の第1反射面31の光軸方向前側に配置され、長手方向に連続して広がる。第4反射面36の光軸方向の高さは、第2反射面32の光軸方向の高さよりも低い。換言すれば、第4反射面36の光軸方向前端は、第2反射面32の光軸方向前端よりも光軸方向において後側である。 In the reflectors 3 and 3a described above, the plurality of first reflecting surfaces 31 are arranged in one straight line, but the present invention is not limited to this. For example, in the reflector 3e shown in FIG. 22, two first reflecting surface rows 310 are arranged in the width direction. The 1st reflective surface row | line | column 310 is the some 1st reflective surface 31 (refer FIG. 4) arranged substantially parallel to a longitudinal direction. The two first reflecting surface rows 310 are disposed between the pair of second reflecting surfaces 32 in the width direction. In the reflector 3e, two fourth reflecting surfaces 36 extending substantially parallel to the longitudinal direction are provided between the two first reflecting surface rows 310. The two fourth reflecting surfaces 36 respectively oppose the pair of second reflecting surfaces 32 in the width direction. The fourth reflecting surface 36 is disposed on the front side in the optical axis direction of the plurality of first reflecting surfaces 31 and continuously spreads in the longitudinal direction. The height of the fourth reflecting surface 36 in the optical axis direction is lower than the height of the second reflecting surface 32 in the optical axis direction. In other words, the front end in the optical axis direction of the fourth reflective surface 36 is on the rear side in the optical axis direction with respect to the front end in the optical axis direction of the second reflective surface 32.
 また、図23に示すリフレクタ3fでは、3つの第1反射面列310(すなわち、長手方向に配列された複数の第1反射面31)が幅方向に並ぶ。3つの第1反射面列310は、幅方向において一対の第2反射面32の間に配置される。幅方向に隣接する各2つの第1反射面列310の間には、図22に示す第4反射面36は設けられていない。図22および図23に示すリフレクタ3e,3fにおいても、上述と同様に、複数のLEDデバイス2による輝度ムラを抑制しつつ、照明装置による照明光の所望の照度を実現することができる。 Further, in the reflector 3f shown in FIG. 23, three first reflecting surface rows 310 (that is, a plurality of first reflecting surfaces 31 arranged in the longitudinal direction) are arranged in the width direction. The three first reflecting surface rows 310 are disposed between the pair of second reflecting surfaces 32 in the width direction. The fourth reflecting surface 36 shown in FIG. 22 is not provided between each two first reflecting surface rows 310 adjacent in the width direction. Also in the reflectors 3e and 3f shown in FIGS. 22 and 23, the desired illuminance of the illumination light by the illumination device can be realized while suppressing the luminance unevenness due to the plurality of LED devices 2 as described above.
 図15に示すリフレクタ3bでは、複数の第1反射面のうち、一部の第1反射面31bの上円周312の中心314のみが、LED断面においてLEDデバイス2の光軸J1から幅方向に離間していてもよい。リフレクタ3c,3dにおいても同様である。 In the reflector 3b shown in FIG. 15, only the center 314 of the upper circumference 312 of some of the first reflecting surfaces 31b among the plurality of first reflecting surfaces is in the width direction from the optical axis J1 of the LED device 2 in the LED cross section. It may be separated. The same applies to the reflectors 3c and 3d.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.
 1,1a~1d  照明装置
 2  LEDデバイス
 3,3a~3f  リフレクタ
 20  LEDデバイス列
 21  光出射面
 31,31a~31d  第1反射面
 32,32b,32d  第2反射面
 311,311a  (第1反射面の)上縁
 312,312a  上円周
 J1  光軸
DESCRIPTION OF SYMBOLS 1,1a-1d Illuminating device 2 LED device 3,3a-3f Reflector 20 LED device row | line | column 21 Light-emitting surface 31,31a-31d 1st reflective surface 32,32b, 32d 2nd reflective surface 311,311a (1st reflective surface ) Upper edge 312, 312a Upper circumference J1 Optical axis

Claims (9)

  1.  照明装置用のリフレクタであって、
     線状に配列された複数のLEDデバイスの光出射面よりも光軸方向前側にて前記複数のLEDデバイスの周囲にそれぞれ配置され、それぞれが環状凹面の少なくとも一部である複数の第1反射面と、
     前記複数の第1反射面の前記光軸方向前側に配置され、前記複数のLEDデバイスであるLEDデバイス列の長手方向および前記光軸方向に垂直な幅方向において、前記LEDデバイス列の一方側にて前記長手方向に連続して広がる第2反射面と、
    を備え、
     前記長手方向に垂直、かつ、各LEDデバイスの光軸を含む各LED断面において、第1反射面が前記各LEDデバイスの前記幅方向の両側に配置され、前記各LEDデバイスから前記光軸方向前側に向かうに従って前記幅方向外方へと向かい、
     前記各LED断面において、前記第2反射面が前記光軸方向前側に向かうに従って前記幅方向外方へと向かう。
    A reflector for a lighting device,
    A plurality of first reflecting surfaces which are respectively arranged around the plurality of LED devices on the front side in the optical axis direction from the light emitting surfaces of the plurality of LED devices arranged in a line, each being at least a part of an annular concave surface When,
    In the longitudinal direction of the LED device row, which is the plurality of LED devices, and in the width direction perpendicular to the optical axis direction, arranged on the one side of the LED device row. A second reflecting surface continuously spreading in the longitudinal direction,
    With
    In each LED cross section perpendicular to the longitudinal direction and including the optical axis of each LED device, a first reflecting surface is disposed on both sides in the width direction of each LED device, and the front side in the optical axis direction from each LED device Toward the outside in the width direction as
    In each LED cross section, the second reflecting surface goes outward in the width direction as it goes to the front side in the optical axis direction.
  2.  請求項1に記載のリフレクタであって、
     前記長手方向に垂直な断面における前記第2反射面の形状が、前記長手方向の全長に亘って一定である。
    The reflector according to claim 1,
    The shape of the second reflecting surface in a cross section perpendicular to the longitudinal direction is constant over the entire length in the longitudinal direction.
  3.  請求項1または2に記載のリフレクタであって、
     各第1反射面の上縁が、円周である上円周の少なくとも一部であり、
     前記長手方向にて隣接する2つのLEDデバイスの前記長手方向における中心間距離が、前記2つのLEDデバイスに対応する2つの第1反射面における前記上円周の前記長手方向における半径の合計以下である。
    The reflector according to claim 1 or 2,
    The upper edge of each first reflecting surface is at least part of the upper circumference that is the circumference,
    The distance between the centers of the two LED devices adjacent in the longitudinal direction in the longitudinal direction is equal to or less than the sum of the radii in the longitudinal direction of the upper circumference in the two first reflecting surfaces corresponding to the two LED devices. is there.
  4.  請求項1ないし3のいずれか1つに記載のリフレクタであって、
     各第1反射面の上縁が、前記幅方向に長い楕円周の少なくとも一部である。
    The reflector according to any one of claims 1 to 3,
    The upper edge of each first reflecting surface is at least part of an elliptical circumference that is long in the width direction.
  5.  請求項1ないし4のいずれか1つに記載のリフレクタであって、
     各第1反射面の上縁が、円周である上円周の少なくとも一部であり、
     前記各第1反射面の前記上円周の中心は、前記各LEDデバイスの前記光軸上に位置する。
    The reflector according to any one of claims 1 to 4, comprising:
    The upper edge of each first reflecting surface is at least part of the upper circumference that is the circumference,
    The center of the upper circumference of each first reflective surface is located on the optical axis of each LED device.
  6.  請求項1ないし4のいずれか1つに記載のリフレクタであって、
     各第1反射面の上縁が、円周である上円周の少なくとも一部であり、
     前記各LEDデバイスの前記光軸は、前記幅方向において、前記各第1反射面の前記上円周の中心と前記第2反射面との間に位置する。
    The reflector according to any one of claims 1 to 4, comprising:
    The upper edge of each first reflecting surface is at least part of the upper circumference that is the circumference,
    The optical axis of each LED device is located between the center of the upper circumference of each first reflective surface and the second reflective surface in the width direction.
  7.  請求項6に記載のリフレクタであって、
     前記複数の第1反射面のうち少なくとも一部の第1反射面の上円周の中心は、LEDデバイスの光軸から前記長手方向に離間している。
    The reflector according to claim 6,
    The center of the upper circumference of at least some of the plurality of first reflecting surfaces is spaced from the optical axis of the LED device in the longitudinal direction.
  8.  請求項1ないし7のいずれか1つに記載のリフレクタであって、
     前記複数の第1反射面の前記光軸方向前側に配置され、前記LEDデバイス列の前記幅方向の他方側にて前記長手方向に連続して広がる他の第2反射面をさらに備え、
     前記各LED断面において、前記他の第2反射面が前記光軸方向前側に向かうに従って前記幅方向外方へと向かう。
    The reflector according to any one of claims 1 to 7,
    Further comprising another second reflecting surface arranged on the front side in the optical axis direction of the plurality of first reflecting surfaces and continuously spreading in the longitudinal direction on the other side in the width direction of the LED device row,
    In each LED cross section, the other second reflecting surface goes outward in the width direction as it goes to the front side in the optical axis direction.
  9.  照明装置であって、
     請求項1ないし8のいずれか1つに記載のリフレクタと、
     前記複数のLEDデバイスと、
    を備える。
    A lighting device,
    A reflector according to any one of claims 1 to 8;
    The plurality of LED devices;
    Is provided.
PCT/JP2017/027747 2016-08-01 2017-07-31 Reflector and lighting device WO2018025816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531890A JP6876051B2 (en) 2016-08-01 2017-07-31 Reflector and lighting equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016151191 2016-08-01
JP2016-151191 2016-08-01

Publications (1)

Publication Number Publication Date
WO2018025816A1 true WO2018025816A1 (en) 2018-02-08

Family

ID=61073774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027747 WO2018025816A1 (en) 2016-08-01 2017-07-31 Reflector and lighting device

Country Status (2)

Country Link
JP (2) JP6876051B2 (en)
WO (1) WO2018025816A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059422A1 (en) * 2004-11-30 2006-06-08 Kabushikikaisha Mirai Illumination unit and illumination apparatus
JP2008098088A (en) * 2006-10-16 2008-04-24 Mirai:Kk Wide region lighting device
JP2011171236A (en) * 2010-02-22 2011-09-01 Panasonic Electric Works Co Ltd Luminaire
JP2012230762A (en) * 2011-04-25 2012-11-22 Panasonic Corp Lighting fixture
JP2014203684A (en) * 2013-04-05 2014-10-27 アイリスオーヤマ株式会社 Led illumination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059422A1 (en) * 2004-11-30 2006-06-08 Kabushikikaisha Mirai Illumination unit and illumination apparatus
JP2008098088A (en) * 2006-10-16 2008-04-24 Mirai:Kk Wide region lighting device
JP2011171236A (en) * 2010-02-22 2011-09-01 Panasonic Electric Works Co Ltd Luminaire
JP2012230762A (en) * 2011-04-25 2012-11-22 Panasonic Corp Lighting fixture
JP2014203684A (en) * 2013-04-05 2014-10-27 アイリスオーヤマ株式会社 Led illumination device

Also Published As

Publication number Publication date
JPWO2018025816A1 (en) 2019-05-30
JP2020170720A (en) 2020-10-15
JP6876051B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP6180527B2 (en) Headlight illuminator
US7866837B2 (en) Skew light illumination lens device
JP4290601B2 (en) Vehicle lamp unit and vehicle lamp
JP5342334B2 (en) Vehicle lighting
US10174902B2 (en) Vehicle lighting fixture
JP6733545B2 (en) Light bulb type light source device
US10203081B2 (en) Lighting device and headlight for vehicle
JP2013228738A (en) Lens and light source module including the same
JP2009184501A (en) License plate lamp
US9903554B2 (en) Vehicle lighting fixture
US20160377250A1 (en) Vehicle lighting fixture
US20120320580A1 (en) Light-guiding cover and illumination device having the same
US10677406B2 (en) Vehicular lamp
JP5527529B2 (en) Lighting device
JP2014211983A (en) Vehicular lighting tool unit
JP2020061266A (en) Vehicular light guiding body and vehicular lighting tool
JP5783940B2 (en) LED lamp
WO2018025816A1 (en) Reflector and lighting device
JP6183650B2 (en) Vehicle headlamp
JP2013137980A (en) Vehicular lighting lamp
JP6678524B2 (en) Lighting equipment
JP2018194566A (en) Diffusion lens and light-emitting device
JP2016018893A (en) Light-emitting device
JP7424254B2 (en) floodlight
JP2018190558A (en) Lighting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531890

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836921

Country of ref document: EP

Kind code of ref document: A1