JP2008096067A - Control method for plasma melting furnace - Google Patents

Control method for plasma melting furnace Download PDF

Info

Publication number
JP2008096067A
JP2008096067A JP2006280439A JP2006280439A JP2008096067A JP 2008096067 A JP2008096067 A JP 2008096067A JP 2006280439 A JP2006280439 A JP 2006280439A JP 2006280439 A JP2006280439 A JP 2006280439A JP 2008096067 A JP2008096067 A JP 2008096067A
Authority
JP
Japan
Prior art keywords
ash
supply amount
melting furnace
upper electrode
ash supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280439A
Other languages
Japanese (ja)
Other versions
JP5007094B2 (en
Inventor
Koutarou Katou
考太郎 加藤
Yoshihito Kurauchi
良仁 蔵内
Kichiji Matsuda
吉司 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2006280439A priority Critical patent/JP5007094B2/en
Publication of JP2008096067A publication Critical patent/JP2008096067A/en
Application granted granted Critical
Publication of JP5007094B2 publication Critical patent/JP5007094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain reasonable balance between electric power and an ash supply amount, and to prevent side arcs from being generated by excessive increase of voltage in regard to a control method for a plasma melting furnace used in a melting process of incineration residues (incinerated ash and fly ash) discharged from an incinerator or the like. <P>SOLUTION: When there is property change of ash or excess and deficiency of the ash supply amount that can not be judged in a short period of time, by regarding an internal gas temperature changed by these factors as an object to be controlled, the electric power or the ash supply amount is adjusted. The object to be controlled may be a radiation amount of a melting furnace gas layer part, or an front end position of an upper electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ごみ焼却炉などから排出される焼却残渣(焼却灰や飛灰)を溶融処理する際に用いられるプラズマ溶融炉の制御方法の改良に関するものである。   The present invention relates to an improvement in a control method of a plasma melting furnace used when melting incineration residues (incineration ash and fly ash) discharged from a waste incinerator or the like.

従来、この種のプラズマ溶融炉の制御方法としては、例えば特許文献1に記載されたものや特許文献2に記載されたものが知られている。   Conventionally, as a method for controlling this type of plasma melting furnace, for example, the method described in Patent Document 1 and the method described in Patent Document 2 are known.

前者のものは、プラズマ溶融炉への電力供給量又は灰供給量は、予め設定された電力供給量(又は灰供給量)に応じた灰供給量(又は電気供給量)が演算される。電力は、(電力)=(電圧)×(電流)であり、電圧は、電力に応じた予め設定された電圧が演算され、プラズマ溶融炉の上部電極位置の制御値となる。電流は、(電流)=(電力)÷(電圧)により演算され、直流電源装置で制御される。電圧は、過去の運転実績や安定した運転状態で決定されるものであり、灰供給量は、灰の嵩比重等からの計算値や冷間での実測値から灰供給装置の回転数が決定される。
後者のものは、上部電極の先端を赤外線カメラの映像で認識し、上部電極の先端部のプラズマアーク長を一定とする様に上部電極位置の制御を行い、電流は、灰処理量に応じて計算されている。従って、電圧は、上部電極と下部電極間の電気抵抗値によって、(電圧)=(電流)×(電気抵抗値)の関係から一義的に決定される。
何れの方法に於ても、溶融温度の測定結果に依って電力や電流が補正調整される。
In the former case, the power supply amount or the ash supply amount to the plasma melting furnace is calculated as an ash supply amount (or an electric supply amount) corresponding to a preset power supply amount (or ash supply amount). The power is (power) = (voltage) × (current), and the voltage is a preset voltage corresponding to the power, and becomes a control value for the position of the upper electrode of the plasma melting furnace. The current is calculated by (current) = (power) / (voltage) and is controlled by the DC power supply device. The voltage is determined based on past operating results and stable operating conditions, and the ash supply amount is determined from the calculated value from the bulk specific gravity of the ash and the actual measured value in the cold. Is done.
In the latter, the tip of the upper electrode is recognized by an infrared camera image, and the position of the upper electrode is controlled so that the plasma arc length of the tip of the upper electrode is constant. Has been calculated. Therefore, the voltage is uniquely determined from the relationship of (voltage) = (current) × (electric resistance value) by the electric resistance value between the upper electrode and the lower electrode.
In any method, the power and current are corrected and adjusted according to the measurement result of the melting temperature.

ところが、前者の方法では、電圧は、(電圧)=(電流)×(電気抵抗値)で計算されるため、上部電極位置を上下することによって電気抵抗値すなわち電圧を調整している(図1)。電圧は、運転実績や安定した運転状態で決定された値であるが、溶融炉の運転状態(処理する灰の性状変化や灰供給量の設定値と実際の相違による過不足など)によって適正な電圧が異なる。灰の性状変化や灰供給量の設定値と実際の相違などは短時間では判断できないため、適正な電圧で運転することが困難であった。すなわち、溶融した灰(溶湯)の性状による電気抵抗値や灰供給量の過不足によって、上部電極下の溶湯部の電気抵抗値が変化するため、上部電極先端位置が過度に高くなったり、逆に溶湯に深く沈んだりする場合があった。
後者の方法では、プラズマアーク長を一定としているため、溶融した灰(溶湯)の性状による電気抵抗値変化や灰供給量の過不足によって、上部電極下の溶湯部の電気抵抗値が変化し、(電圧)=(電流)×(電気抵抗値)の関係により、過度に電圧が高くなったり、低くなったりする。特に、電圧が高くなる場合には、上部電極の貫通部等でサイドアークが発生し易くなり(図3参照)、炉体の損傷を引き起こす可能性があった。
However, in the former method, since the voltage is calculated by (voltage) = (current) × (electric resistance value), the electric resistance value, that is, the voltage is adjusted by moving the upper electrode position up and down (FIG. 1). ). The voltage is a value determined based on actual operation and stable operating conditions. However, the voltage is appropriate depending on the operating conditions of the melting furnace (changes in the properties of the ash to be processed, excess or deficiency due to actual differences in the set value of the ash supply amount, etc.) The voltage is different. It was difficult to operate at an appropriate voltage because changes in ash properties and actual differences from the set value of the ash supply amount cannot be judged in a short time. In other words, the electrical resistance value due to the properties of the molten ash (molten metal) and the excess or shortage of the ash supply amount change the electrical resistance value of the molten metal part under the upper electrode. In some cases, it was deeply submerged in the molten metal.
In the latter method, since the plasma arc length is constant, the electric resistance value of the molten metal part under the upper electrode changes due to the change in the electric resistance value due to the properties of the molten ash (molten metal) and the excess or shortage of the ash supply amount. Depending on the relationship of (voltage) = (current) × (electric resistance value), the voltage becomes excessively high or low. In particular, when the voltage is high, a side arc is likely to be generated at the penetrating portion of the upper electrode (see FIG. 3), which may cause damage to the furnace body.

特開2004−251520号公報JP 2004-251520 A 特開2002−81634号公報JP 2002-81634 A

要するに、従来の何れのものも、溶融した灰(溶湯)の性状による電気抵抗値や灰供給量の過不足によって、上部電極下の溶湯部の電気抵抗値が変化するため、適正な電力と灰供給量のバランスを保つことができなかった。   In short, all of the conventional ones change the electric resistance value due to the properties of the molten ash (molten metal) and the ash supply amount, so that the electric resistance value of the molten metal part under the upper electrode changes. The supply balance could not be maintained.

本発明は、叙上の問題点に鑑み、これを解消する為に創案されたもので、その課題とする処は、適正な電力と灰供給量のバランスを保つことができるプラズマ溶融炉の制御方法を提供するにある。   The present invention was devised in view of the above-mentioned problems, and was devised to solve this problem. The subject of the present invention is control of a plasma melting furnace capable of maintaining a balance between an appropriate electric power and an ash supply amount. Is in providing a way.

本発明のプラズマ溶融炉の制御方法は、基本的には、電力と灰供給量のバランスを適正値とするために、炉内ガス温度を制御対象として、電力又は灰供給量を調整する様にした事に特徴が存する。   The control method of the plasma melting furnace of the present invention basically adjusts the power or ash supply amount with the furnace gas temperature as the control target in order to set the balance between the power and the ash supply amount to an appropriate value. There is a feature in doing.

プラズマ溶融炉を運転中に於て、灰の性状変化や灰供給量の過不足があった場合、これらが要因で炉内ガス温度が変化するので、この炉内ガス温度を制御対象とすることで、短時間で灰の性状変化や灰供給量の過不足が判断でき、これに基づき電力又は灰供給量を調整して電力と灰供給量のバランスを適正値にすることができる。   When operating the plasma melting furnace, if there is a change in ash properties or excess or deficiency in the amount of ash supplied, the gas temperature in the furnace changes due to these factors. Thus, it is possible to determine the change in the ash properties and the excess or deficiency of the ash supply amount in a short time, and adjust the power or the ash supply amount based on this to make the balance between the power and the ash supply amount appropriate.

制御対象は、炉内ガス温度だけでなく、炉体ガス層部の放熱量や上部電極の先端位置にしたり、あるいはこれらのうちの複数を組合わせても良い。この様にすれば、前記と同様に、電力又は灰供給量を調整して電力と灰供給量のバランスを適正値とすることができる。   The control target is not only the gas temperature in the furnace, but also the amount of heat released from the furnace body gas layer, the tip position of the upper electrode, or a combination of these. If it does in this way, like the above, electric power or ash supply amount can be adjusted, and the balance of electric power and ash supply amount can be made into an appropriate value.

本発明に依れば、次の様な優れた効果を奏する事ができる。
(1) 短時間では判断できない灰の性状変化や灰供給量の過不足があった場合に、これらが要因で変化する炉内ガス温度を制御対象とすることで、適正な電力と灰供給量のバランスを保つことができる。
(2) 上部電極の先端位置を適正な位置とすることができるので、上部電極の先端位置が過度に高くなったり、逆に溶湯に深く沈んだりすることを防止できる。
(3) 電圧を適正な値にすることができるので、過度に電圧が高くなったり、低くなったりすることがなくなり、とりわけ電圧が高くなってサイドアークが発生する危険がなくなる。
According to the present invention, the following excellent effects can be achieved.
(1) When there is a change in ash properties that cannot be determined in a short period of time or an excess or deficiency in the amount of ash supplied, the appropriate gas and ash supply amount can be controlled by controlling the furnace gas temperature that changes due to these factors. Can keep the balance.
(2) Since the tip position of the upper electrode can be set to an appropriate position, it is possible to prevent the tip position of the upper electrode from becoming excessively high or conversely sinking deeply into the molten metal.
(3) Since the voltage can be set to an appropriate value, the voltage does not become excessively high or low, and there is no danger that a side arc will occur due to the high voltage.

以下、本発明の実施の形態を、図面に基づいて説明する。
図1は、本発明の実施に使用するプラズマ溶融炉を示す概要図。図2は、図1の要部拡大図。図3は、図1のプラズマ溶融炉の電気回路図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing a plasma melting furnace used for carrying out the present invention. FIG. 2 is an enlarged view of a main part of FIG. FIG. 3 is an electric circuit diagram of the plasma melting furnace of FIG.

図1に於て、プラズマ溶融炉1は、都市ごみや産業廃棄物等のごみ焼却炉から排出された焼却灰や飛灰等の被溶融物を溶融処理するものであり、耐火物等により形成された炉本体2と、炉本体2の天井部を昇降可能に貫設された上部電極(主電極)3と、炉本体2の底部に配設された導電性耐火物製の下部電極(炉底電極)4と、陰極が上部電極3に接続されると共に陽極が集電板5を介して下部電極4に接続される直流電源装置6と、上部電極3を昇降自在に支持する電極昇降装置7と、被溶融物(焼却灰や飛灰)を供給するための被溶融物供給装置8と、溶融スラグと溶融メタルから成る溶湯9と、溶湯9が溢流して流出される流出口10と、炉本体2内の炉内ガス温度を検出する温度検出手段11と、温度検出手段11からの検出信号に基づき直流電源装置6や電極昇降装置7や被溶融物供給装置8を制御するための制御装置12等から構成されている。
温度検出手段11は、炉本体2に設けられて炉内ガス温度を検出し得る熱電対等が用いられる。
Referring to FIG. 1, a plasma melting furnace 1 is for melting a molten material such as incineration ash and fly ash discharged from a garbage incinerator such as municipal waste or industrial waste, and is formed of a refractory or the like. The furnace body 2, the upper electrode (main electrode) 3 penetrating the ceiling of the furnace body 2, and the lower electrode (furnace) made of conductive refractory disposed at the bottom of the furnace body 2 Bottom electrode) 4, a DC power supply device 6 whose cathode is connected to the upper electrode 3 and whose anode is connected to the lower electrode 4 via the current collector plate 5, and an electrode lifting device which supports the upper electrode 3 in a freely movable manner 7, a melt supply device 8 for supplying melt (incinerated ash and fly ash), a molten metal 9 made of molten slag and molten metal, and an outlet 10 through which the molten metal 9 overflows and flows out , Temperature detection means 11 for detecting the gas temperature in the furnace body 2 and the detection signal from the temperature detection means 11 And a control unit 12 or the like for controlling the DC power supply 6 and the electrode lifting device 7 and the melt feeder 8 based.
The temperature detection means 11 is a thermocouple or the like that is provided in the furnace body 2 and can detect the gas temperature in the furnace.

図2に於て、炉本体2は、鉄部13と耐火物14とから成っており、鉄部13の外側には、絶縁物15を介して上部電極3を昇降可能にシールするためのシール装置16が設けられている。上部電極3には、直流電源装置6へ向かう電流Iが流れており、上部電極3から炉本体2の鉄部13へ短絡して流れるサイドアーク17も表描してある。   In FIG. 2, the furnace body 2 includes an iron part 13 and a refractory 14, and a seal for sealing the upper electrode 3 so as to be movable up and down via an insulator 15 on the outside of the iron part 13. A device 16 is provided. A current I directed to the DC power supply device 6 flows through the upper electrode 3, and a side arc 17 that flows from the upper electrode 3 to the iron portion 13 of the furnace body 2 is also depicted.

図3に於て、Vは投入電圧、Iは投入電流、Raはアーク抵抗(プラズマアークの電気抵抗値)、Rmは溶湯抵抗(溶湯の電気抵抗値)を示している。   In FIG. 3, V is a charging voltage, I is a charging current, Ra is an arc resistance (electric resistance value of plasma arc), and Rm is a molten metal resistance (electric resistance value of the molten metal).

図4は、本発明のプラズマ溶融炉の制御方法を示すフローチャートであり、次の要領で制御される。
(1) 予め設定された灰供給量と電力との関係から灰供給量(電力量)に応じた電力量(灰供給量)が設定され、プラズマ溶融炉1の運転が行われる。つまり、設定された電力から予め決められた電圧と電流が演算され、電圧は上部電極3の位置の上下により制御が行われると共に、電流は直流電源装置6により制御が行われる(ステップS1)。
(2) 処理する灰の性状が変化した場合、成分変化によって溶湯の電気抵抗値が変化する、或は嵩比重の変化により灰供給量設定値と相違が生じて実際の灰供給量が過不足となる(ステップS2)。
(2) このことにより、上部電極3下の溶湯の電気抵抗値Rmが増減する(ステップS3)。
(3) 溶湯の電気抵抗値Rmが増加した場合には、上部電極3が下降される(ステップS4)。
(4) 上部電極3が下降されると、プラズマアークからの輻射熱が減少して炉内ガス温度が低下する(ステップS5)。
(5) 炉内ガス温度が低下すると、これが温度測定手段11により検出され、制御装置12により直流電源装置6又は被溶融物供給装置8が制御されて電力量の増加又は灰供給量設定値の減少が行われる(ステップS6)。
(6) 炉内ガス温度の値が適正値かどうか判断され、適正であれば、ステップS1に戻される(ステップS7)。
(7) ステップS3に於て、溶湯の電気抵抗値Rmが減少した場合には、上部電極3が上昇される(ステップS8)。
(8) 上部電極3が上昇されると、プラズマアークからの輻射熱が増加して炉内ガス温度が上昇する(ステップS9)。
(9) 炉内ガス温度が上昇すると、これが温度測定手段11により検出され、制御装置12により直流電源装置6又は被溶融物供給装置8が制御されて電力量の減少又は灰供給量設定値の増加が行われる(ステップS10)。
(10) ステップS7に於て、炉内ガス温度の値が適正値かどうか判断され、不適であれば、ステップS3に戻されて適正値となるまでステップS3からステップS10が繰り返され、電力量及び灰供給量設定値の増減が行われる。
FIG. 4 is a flowchart showing the control method of the plasma melting furnace of the present invention, which is controlled in the following manner.
(1) The electric energy (ash supply amount) corresponding to the ash supply amount (electric power amount) is set from the relationship between the preset ash supply amount and electric power, and the plasma melting furnace 1 is operated. That is, a predetermined voltage and current are calculated from the set power, and the voltage is controlled by the upper and lower positions of the upper electrode 3 and the current is controlled by the DC power supply device 6 (step S1).
(2) When the properties of the ash to be treated change, the electrical resistance value of the molten metal changes due to the component change, or the change in bulk specific gravity causes a difference from the ash supply amount setting value, so that the actual ash supply amount is excessive or insufficient (Step S2).
(2) As a result, the electric resistance value Rm of the molten metal under the upper electrode 3 increases or decreases (step S3).
(3) When the electric resistance value Rm of the molten metal increases, the upper electrode 3 is lowered (step S4).
(4) When the upper electrode 3 is lowered, the radiant heat from the plasma arc is reduced and the furnace gas temperature is lowered (step S5).
(5) When the in-furnace gas temperature decreases, this is detected by the temperature measuring means 11, and the controller 12 controls the DC power supply device 6 or the melt supply device 8 to increase the electric energy or set the ash supply amount set value. Reduction is performed (step S6).
(6) It is determined whether or not the value of the gas temperature in the furnace is an appropriate value, and if it is appropriate, the process returns to step S1 (step S7).
(7) In step S3, when the electrical resistance value Rm of the molten metal decreases, the upper electrode 3 is raised (step S8).
(8) When the upper electrode 3 is raised, the radiant heat from the plasma arc increases and the furnace gas temperature rises (step S9).
(9) When the gas temperature in the furnace rises, this is detected by the temperature measuring means 11, and the controller 12 controls the DC power supply device 6 or the melt supply device 8 to reduce the electric energy or set the ash supply amount set value. An increase is made (step S10).
(10) In step S7, it is determined whether or not the value of the in-furnace gas temperature is an appropriate value. If the value is not appropriate, the process returns to step S3 and steps S3 to S10 are repeated until the appropriate value is reached. And the ash supply amount set value is increased or decreased.

図5は、設定された灰供給量に応じて一定の電力(図示せず)を供給した場合のプラズマ溶融炉の運転データの一例である。
本例では、実際の灰供給量が設定値よりも多く、灰供給量過多(電力不足)となっている状態である。
灰供給量過多(電力不足)であるため、上部電極の下近くまで溶けてきっていない灰が接近し、上部電極下の溶湯の電気抵抗値が高くなり、設定された電圧(図示せず)となるように位置調整されている上部電極が急激に下降する場合がある。
上部電極位置が下降すると、炉内ガス温度が低下するため、本例では炉内ガス温度が設定温度以下となった場合に灰供給を停止し、炉内ガス温度が設定値以上となった場合に灰供給を再開するようにしている(すなわち、平均灰供給量を減少させている)。このような運転を実施することで、適正な電力と灰供給量のバランスをとっている。
FIG. 5 is an example of operation data of the plasma melting furnace when a constant electric power (not shown) is supplied according to the set ash supply amount.
In this example, the actual ash supply amount is larger than the set value, and the ash supply amount is excessive (power shortage).
As the ash supply amount is excessive (power shortage), the ash that has not melted to near the lower part of the upper electrode approaches, the electric resistance value of the molten metal under the upper electrode increases, and the set voltage (not shown) There is a case where the upper electrode whose position is adjusted so as to fall rapidly.
When the position of the upper electrode is lowered, the furnace gas temperature decreases. In this example, when the furnace gas temperature falls below the set temperature, the ash supply is stopped and the furnace gas temperature rises above the set value. The ash supply is restarted (that is, the average ash supply is reduced). By carrying out such an operation, the balance between the appropriate power and the ash supply amount is achieved.

尚、先の例では、炉内ガス温度を制御対象としているが、例えば溶融炉ガス層部の放熱量や上部電極の先端位置を制御対象としたり、あるいはこれらのうちの複数を組合わせても良い。
溶融炉ガス層部の放熱量を制御対象とする場合は、図1の鎖線で示す如く、炉本体2に放熱量検出手段18を設ける。放熱量検出手段18は、図略しているが、炉本体2を冷却する冷却媒体の流量や冷却媒体の入出温度差を検出してこれらから放熱量を演算するものを用いることができる。
上部電極3の先端位置を制御対象とする場合は、図1の鎖線で示す如く、炉本体2に位置検出手段19を設ける。位置検出手段19は、炉本体2の外部に設置されて上部電極3の先端部を観察する赤外線カメラなどを用いることができる。
In the previous example, the gas temperature in the furnace is the control target. For example, the heat dissipation amount of the melting furnace gas layer and the tip position of the upper electrode can be controlled, or a plurality of these can be combined. good.
When the heat release amount of the melting furnace gas layer is to be controlled, the heat release amount detection means 18 is provided in the furnace body 2 as shown by the chain line in FIG. Although not shown in the figure, the heat radiation amount detecting means 18 may be one that detects the flow rate of the cooling medium that cools the furnace body 2 or the temperature difference of the cooling medium and calculates the heat radiation amount therefrom.
When the tip position of the upper electrode 3 is to be controlled, the position detection means 19 is provided in the furnace body 2 as shown by the chain line in FIG. As the position detection means 19, an infrared camera or the like that is installed outside the furnace body 2 and observes the tip of the upper electrode 3 can be used.

本発明は、例えば製鋼用の電気炉等にも適用することができる。   The present invention can also be applied to, for example, an electric furnace for steelmaking.

本発明の実施に使用するプラズマ溶融炉を示す概要図。The schematic diagram which shows the plasma melting furnace used for implementation of this invention. 図1の要部拡大図。The principal part enlarged view of FIG. 図1のプラズマ溶融炉の電気回路図。The electric circuit diagram of the plasma melting furnace of FIG. 本発明のプラズマ溶融炉の制御方法を示すフローチャート。The flowchart which shows the control method of the plasma melting furnace of this invention. 溶融炉の運転データの一例を示すグラフ。The graph which shows an example of the operation data of a melting furnace.

符号の説明Explanation of symbols

1…プラズマ溶融炉、2…炉本体、3…上部電極、4…下部電極、5…集電板、6…直流電源装置、7…電極昇降装置、8…被溶融物供給装置、9…溶湯、10…流出口、11…温度検出手段、12…制御装置、13…鉄部、14…耐火物、15…絶縁物、16…シール装置、17…サイドアーク、18…放熱量検出手段、19…位置検出手段、V…投入電圧、I…投入電流、Ra…アーク抵抗、Rm…溶湯抵抗、S1〜S10…制御ステップ。   DESCRIPTION OF SYMBOLS 1 ... Plasma melting furnace, 2 ... Furnace main body, 3 ... Upper electrode, 4 ... Lower electrode, 5 ... Current collecting plate, 6 ... DC power supply device, 7 ... Electrode raising / lowering device, 8 ... Molten material supply apparatus, 9 ... Molten metal DESCRIPTION OF SYMBOLS 10 ... Outlet, 11 ... Temperature detection means, 12 ... Control apparatus, 13 ... Iron part, 14 ... Refractory material, 15 ... Insulator, 16 ... Sealing device, 17 ... Side arc, 18 ... Radiation amount detection means, 19 ... position detecting means, V ... charging voltage, I ... charging current, Ra ... arc resistance, Rm ... molten metal resistance, S1-S10 ... control step.

Claims (3)

電力と灰供給量のバランスを適正値とするために、炉内ガス温度を制御対象として、電力又は灰供給量を調整する事を特徴とするプラズマ溶融炉の制御方法。   A control method for a plasma melting furnace, characterized in that the power or ash supply amount is adjusted with the furnace gas temperature as a control target in order to set the balance between the electric power and the ash supply amount to an appropriate value. 電力と灰供給量のバランスを適正値とするために、炉体ガス層部放熱量を制御対象として、電力又は灰供給量を調整する事を特徴とするプラズマ溶融炉の制御方法。   A control method for a plasma melting furnace, characterized in that the power or ash supply amount is adjusted with the furnace body gas layer heat release amount as a control target in order to set the balance between the electric power and the ash supply amount to an appropriate value. 電力と灰供給量のバランスを適正値とするために、上部電極先端位置を制御対象として、電力又は灰供給量を調整する事を特徴とするプラズマ溶融炉の制御方法。


A control method for a plasma melting furnace, wherein the power or ash supply amount is adjusted with the position of the tip of the upper electrode as a control target in order to set the balance between the power and the ash supply amount to an appropriate value.


JP2006280439A 2006-10-13 2006-10-13 Control method of plasma melting furnace Active JP5007094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280439A JP5007094B2 (en) 2006-10-13 2006-10-13 Control method of plasma melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280439A JP5007094B2 (en) 2006-10-13 2006-10-13 Control method of plasma melting furnace

Publications (2)

Publication Number Publication Date
JP2008096067A true JP2008096067A (en) 2008-04-24
JP5007094B2 JP5007094B2 (en) 2012-08-22

Family

ID=39379092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280439A Active JP5007094B2 (en) 2006-10-13 2006-10-13 Control method of plasma melting furnace

Country Status (1)

Country Link
JP (1) JP5007094B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216216A (en) * 2016-06-02 2017-12-07 東芝三菱電機産業システム株式会社 Electrode lifting device
CN110296421A (en) * 2019-05-28 2019-10-01 江苏天楹环保能源成套设备有限公司 A kind of solid waste melting disposal system and its method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289427A (en) * 2000-04-07 2001-10-19 Babcock Hitachi Kk Plasma heating type melting furnace, and its operation method
JP2002039521A (en) * 2000-07-27 2002-02-06 Nkk Corp Ash handling system for incineration ash and the like and method for controlling exhaust gas temperature
JP2002081634A (en) * 2000-06-29 2002-03-22 Mitsubishi Heavy Ind Ltd Plasma ash-melting furnace and its operation method
JP2004251520A (en) * 2003-02-19 2004-09-09 Takuma Co Ltd Method of controlling operation of electric melting furnace
JP2005337579A (en) * 2004-05-26 2005-12-08 Ebara Corp Heat quantity control method for incinerated ash melting furnace and heat quantity control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289427A (en) * 2000-04-07 2001-10-19 Babcock Hitachi Kk Plasma heating type melting furnace, and its operation method
JP2002081634A (en) * 2000-06-29 2002-03-22 Mitsubishi Heavy Ind Ltd Plasma ash-melting furnace and its operation method
JP2002039521A (en) * 2000-07-27 2002-02-06 Nkk Corp Ash handling system for incineration ash and the like and method for controlling exhaust gas temperature
JP2004251520A (en) * 2003-02-19 2004-09-09 Takuma Co Ltd Method of controlling operation of electric melting furnace
JP2005337579A (en) * 2004-05-26 2005-12-08 Ebara Corp Heat quantity control method for incinerated ash melting furnace and heat quantity control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216216A (en) * 2016-06-02 2017-12-07 東芝三菱電機産業システム株式会社 Electrode lifting device
CN110296421A (en) * 2019-05-28 2019-10-01 江苏天楹环保能源成套设备有限公司 A kind of solid waste melting disposal system and its method

Also Published As

Publication number Publication date
JP5007094B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
US20180340734A1 (en) Electric arc furnace and method of operating same
EP0696879B1 (en) Plasma melting method and plasma melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP4191885B2 (en) Plasma ash melting furnace and operating method thereof
JP5324832B2 (en) Level measuring method and level measuring apparatus for ash melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JP3746921B2 (en) Operation method of electric melting furnace
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP5096797B2 (en) Level measurement method for ash melting furnace
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP4007771B2 (en) Molten state control device in plasma melting furnace
KR101276453B1 (en) Electric Furnace
JP4249086B2 (en) Heating means output control method for melting furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP4563241B2 (en) Incineration ash melting electric furnace
JP5060182B2 (en) Control method of plasma melting furnace
JP3542074B2 (en) Automatic controller for electric resistance melting furnace
JP3198593B2 (en) Power control method for ash melting furnace
JP2004144443A (en) Operation controller and its method for dc electric type melting furnace
JPH11173531A (en) Method for detecting thickness of slag in electric ash melting furnace
JP2006112667A (en) Electric type ash melting furnace, and its operation method
JP2004177080A (en) Dc electric resistance type melting furnace and its operation method
KR101175409B1 (en) Method for applying water using dust collector of electric furnace and thereof method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5007094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250