JP2004177080A - Dc electric resistance type melting furnace and its operation method - Google Patents

Dc electric resistance type melting furnace and its operation method Download PDF

Info

Publication number
JP2004177080A
JP2004177080A JP2002347129A JP2002347129A JP2004177080A JP 2004177080 A JP2004177080 A JP 2004177080A JP 2002347129 A JP2002347129 A JP 2002347129A JP 2002347129 A JP2002347129 A JP 2002347129A JP 2004177080 A JP2004177080 A JP 2004177080A
Authority
JP
Japan
Prior art keywords
electrode
melting furnace
temperature
ash
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347129A
Other languages
Japanese (ja)
Inventor
Akemasa Yoshimoto
明正 吉本
Mitsuru Fujita
満 藤田
Yoshisada Soga
義貞 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd, Taiheiyo Kinzoku KK, Pacific Metals Co Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002347129A priority Critical patent/JP2004177080A/en
Publication of JP2004177080A publication Critical patent/JP2004177080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Furnace Details (AREA)
  • Control Of Resistance Heating (AREA)
  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC electric resistance type melting furnace and its operation method for realizing stable operation. <P>SOLUTION: A position of a central electrode 2 is controlled by an electrode lifting device 3 so that electric power supplied by a DC power source 1 becomes constant. A temperature under a furnace cover of the melting furnace and in the vicinity of an exhaust gas outlet of the furnace is measured by thermocouples 40 and 41, and an input quantity of incineration ash is controlled by estimating the thickness of an ash layer 11 by this measured value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却灰などの無機廃棄物を直流電気抵抗式で溶融処理する直流電気抵抗式溶融炉及びその運転制御方法に関する。
【0002】
【従来の技術】
近年埋め立て地の立地が困難になるに伴い、ごみ焼却等によって焼却装置から出た焼却灰は、灰溶融炉によって溶融処理を行い、灰の中に含まれている有害物質を無害化する処理が行われるようになっている。
【0003】
直流電気抵抗式の溶融炉は、炉底に設置された電極と、大電流を通電できるようにカーボン材で構成された可動の中央電極との間に直流電源から電流を流して、そのジュール熱によって焼却灰を加熱溶融し、粉末状又は固体状の焼却灰を一体化して有害物質を封じ込めると共に減容化する。尚この中央電極はカーボン材で構成されているので、炉内温度の上昇により炉内の酸素との燃焼反応、昇華反応若しくは灰中の金属酸化物との還元反応により、二酸化炭素や一酸化炭素としてガス化してゆく。そのため中央電極は運転と共に消耗していく。
【0004】
【特許文献1】
特開平9−112849号公報(図1)
上記特許文献には、溶融炉の制御の為に、炉壁に複数の測温器を設けて、炉壁の温度分布を調べて、この温度分布から溶融スラグレベル及び炉内温度を検知し、灰の投入量や電力投入量を制御する溶融炉が開示されている。
【0005】
溶融炉の中で処理されると焼却灰は溶融してスラグとなるが、このスラグでは溶融温度と抵抗率の間に相関関係がある。スラグは、例えば溶融温度が1500℃の時は4Ωcmの抵抗率となり、高抵抗であるが電気伝導性がある。そしてこの溶融スラグを通じて両電極間に直流電流が流れ、溶融スラグに生じる抵抗損失によりスラグが加熱される。
【0006】
また処理される焼却灰は、溶融炉上方若しくは上横方から定量切り出されてスラグの上に装入されるが、安定した運転を行なうためには灰を一定時間に一定量溶融する必要がある。そして灰の溶融速度が不安定な時や、スラグ上の灰の層の高さが一定に保たれないと、灰中に存在する低沸点物のNaCl、KCl、ZnCl 、PbCl などの揮発ガスの発生にムラが生じ、排ガス装置の安定運転を阻害したり、上記低沸点物が灰中において固化し、灰中を通過するガスの抵抗となり、ガスの突沸が生じてスラグの液面が変動したりする等の問題が生じる。
【0007】
よって溶融炉において安定した運転を行なう為には、灰の溶融速度を一定にする為に、スラグの温度や対流流速を一定にする運転が必要であり、また灰層の高さを一定に保つ制御運転が必要となる。
【0008】
【発明が解決しようとする課題】
しかし、溶融スラグの温度は約1500℃位であり、このような高温の液体の温度を連続的に測定する方法はない。また放射温度計は、スラグの上を灰が覆っている為、測定することが出来ない。
【0009】
また灰の高さを測定する測定器具には耐熱性が求められ、且つ高温での化学反応、例えば塩素ガス雰囲気に耐える必要があるが、これらを満足する適切な材料がないため、その実現は難しい。
【0010】
更にスラグの温度を一定に保つ運転方法として、発熱源はスラグによる抵抗損失であるので、直流電源の出力電力が一定となるよう運転を制御することによって、発熱量を一定にする制御方式が考えられる。しかし中央電極は、運転と共に消耗して短くなったり細くなったりしてゆき、この中央電極の消耗によって電流分布が変わり、スラグ中に形成される発熱場所(ホットポイント)の位置が変化する。そのため、灰の溶融に大きく影響する、灰に接触するスラグ面の温度とスラグの対流流速は一定とならずに変化してしまう。
【0011】
また灰の高さを一定にするため、灰の投入量をスラグの出滓量に応じて投入制御する方式が考えられる。しかし、灰の中には鉄、銅などのメタルも含まれており、これらは炉底に沈降するので、灰の量とスラグの出滓量は同量とならず、この方式では炉内の灰の高さを常に一定にはできない。
【0012】
本発明は、安定した運転を実現した直流電気抵抗式溶融炉やその運転方法を提供することを課題とする。
また灰に接触するスラグの温度や対流流速を保ち、灰の溶融量を一定にすることが出来る直流電気抵抗式溶融炉や運転方法を提供することを課題とする。
【0013】
また灰層の高さを一定に保つよう制御することが出来る直流電気抵抗式溶融炉や運転方法を提供することを課題とする。
【0014】
【課題を解決するための手段】
上記課題を解決する為、本発明による直流電気抵抗式溶融炉の第1の形態は、溶融炉内を可動する第1の電極及び第2の電極を有することを特徴とし直流電源及び電極昇降制御手段を備える。
【0015】
直流電源は、前記第1の電極と前記第2の電極の間に電流を流して電力を供給する。
電極昇降制御手段は、前記直流電源が供給する電力が一定となるように、前記第1の電極の位置を制御する。
【0016】
上記直流電気抵抗式溶融炉は、例えば前記直流電源は、指定された値の電流を出力し、前記電極昇降制御手段は、前記第1の電極と前記第2の電極の間の抵抗値が一定となるように、前記第1の電極の位置を制御する。
【0017】
上記第1の形態の直流電気抵抗式溶融炉では、直流電源が供給する電力に基づいて、第1の電極の位置を制御する。従って、第1の電極が消耗しても、スラグの温度分布や流速を一定に保つことが出来る。
【0018】
本発明による直流電気抵抗式溶融炉の第2の形態は、温度計測手段及び投入量制御手段を備える。
温度計測手段は、溶融炉内の温度を計測する。
【0019】
投入量制御手段は、前記温度計測手段による温度の計測結果に基づいて、灰層の厚さを推測して、投入する焼却灰の投入量を制御する。
前記温度計測手段は、例えば、前記溶融炉の炉蓋下若しくは炉の排ガス出口の近辺の温度の少なくとも一方を計測し、前記投入制御手段は、前記炉蓋下の近辺の温度若しくは前記排ガス出口の近辺の温度の少なくとも一方を用いて前記投入量を制御する。
【0020】
上記第2の形態の直流電気抵抗式溶融炉では、溶融炉内の温度、例えば蓋下の近辺の温度や前記排ガス出口の近辺の温度によって灰層の厚さを推定して、灰の投入量を制御するので、灰層の厚さを一定に保つことが出来る。
【0021】
また本発明は、電気抵抗式溶融炉における運転方法もその範囲に含む。
【0022】
【発明の実施の形態】
上記課題を解決するため、本発明では溶融炉内でのスラグの加熱メカニズムに着目して、スラグの温度や流速を一定にする制御を行なうことが出来る直流電気抵抗式溶融炉を実現している。
【0023】
中央電極の先端部分近辺は電界強度が高く、電流が多く流れ、抵抗損失によって加熱が行われるホットポイントが形成される。そして、このホットポイントで昇温されて膨張したスラグは、対流して上方に浮上し、次に炉の側壁に向かって流れる。従って中央電極が消耗しても、スラグ層でホットポイントが形成される位置がほぼ同じ場所になるように中央電極の位置を上下に制御することにより、また、直流電源の出力電流を一定にすることによってホットポイントの熱量を一定に出来、その結果流速を一定に保つことができる。
【0024】
中央電極の先端部分の位置が変化すれば抵抗値が変化するので、常に抵抗値が一定になるように制御すれば中央電極の先端部分の位置が一定になり、また電力=出力電流×出力電流×抵抗値であるので灰を溶融するために費やされる電力(加えられる熱量)も一定になる。よって電極に流れる電流値を一定に保つ制御を行なえば、灰に接触するスラグの温度や流速を一定に保つことができる。
【0025】
また、スラグ層の上に形成される灰層の高さが薄くなると、溶融スラグからの輻射熱から灰層が吸収する熱量が少なくなるため、当然炉内の温度は高くなる。逆に灰層が厚くなると灰層が吸収する熱量が多くなるので、炉内の温度、例えば排ガス出口や炉蓋直下の温度は低くなる。よって、この炉内の温度に基づいて、焼却灰の装入量を制御することにより、灰層の厚さを一定に保つことが出来る。
【0026】
溶融スラグ温度に対して炉蓋直下の温度は900〜1000℃、排ガス出口温度は500〜700℃と低い。本実施形態における直流電気抵抗式溶融炉では、炉内の温度の測定手段として、排ガス出口や炉蓋直下の温度は熱電対等を用いることによって連続測定を可能としている。そして、この排ガス出口や炉蓋直下の温度を連続測定し、この温度によって、投入する焼却灰の量を調節することによって、灰層の高さを一定に保つことができる。
【0027】
図1は本実施形態における直流電気抵抗式溶融炉の構成例を示す図である。
同図において、直流電気抵抗式溶融炉の炉壁は、カーボン壁32と耐火物壁33の二重の壁と水冷された鉄皮34で構成されている。また同図の直流電気抵抗式溶融炉は、直流電源1、中央電極2、電極昇降装置3、炉底電極4、制御装置5、排ガス出口20、スラグ出滓口21、メタル出銑口22、2つの灰貯蔵ビン30a,30bとその灰定量切り出し装置31a,31b、炉蓋下熱電対40及び排ガス出口熱電対41を有する。
【0028】
カーボン材で構成された円柱状の中央電極2とカーボン壁32炉底中に埋め込まれた炉底電極4は直流電源1に接続されており、両者の間には直流電源1から供給される電力によって電流が流れる。直流電源1は、中央電極2と炉底電極4との間に出力電流を指定された大きさに保ちながら電力を供給する。直流電源1は両端の抵抗値を計測する計測手段を備え、その計測値は制御装置5に通知されている。また中央電極2は、電極昇降装置3により、溶融炉内を上下動する。電極昇降装置3は、制御装置5からの指示に基づいて、中央電極2を炉内で昇降させてその先端部の位置を上下に移動させる。
【0029】
排ガス出口20は、焼却灰が溶融する際に発生するガス等を排出する排出口である。またスラグ出滓口21は、溶融したスラグ層11からスラグを出滓する取り出し口であり、メタル出銑口22は、一定以上貯まったメタル層12を出銑する取り出し口である。灰貯蔵ビン30a,30bは、溶融炉に投入される焼却灰を貯蔵するもので、貯蔵されている灰は、灰定量切り出し装置31により定量切り出され、溶融炉に装入される。灰定量切り出し装置31a,31bは、制御装置5の指示に基づいて、灰貯蔵ビン30a,30bから灰を定量切り出して、溶融炉上部から投入する。炉蓋下熱電対40は、炉蓋下の温度を計測するもの、また排ガス出口熱電対41は、排ガス出口20付近の温度を計測するもので、これらの計測結果は制御装置5に通知される。
【0030】
スラグ層11の下の炉底にはスラグとの比重差により沈降したメタルによるメタル層12があり、メタルが一定以上貯まるとメタル出銑口22から取り出される。また焼却灰は貯蔵ビン30a,30bから灰定量切り出し装置31a,31bにより定量炉に装入される。よってスラグ層11の上部にこの焼却灰による灰層10が形成される。この灰層10はスラグが炉内雰囲気と反応するのを遮断し、スラグ層からの輻射熱を防止する。
【0031】
溶融スラグには電気伝導性があるため、直流電源1の両端には、中央電極2、スラグ層11、メタル層12及び炉底電極4による電気回路が構成される。そして、スラグ層11で生じた抵抗損失によってスラグに熱エネルギーが供給され、スラグ層11からの熱によりスラグに接触する灰層12の焼却灰が溶融してスラグとなってゆく。
【0032】
図2は溶融炉内の電流分布を示す図で、電流線を破線50で示している。
電流は、中央電極2から溶融炉の半径方向に流れカーボン壁32を通じて炉底電極4に通じるルートと、中央電極2からほぼ真っ直ぐ炉底電極4に向かうルートがあるが、中央電極2が円柱状の電極の場合、先端部の電界強度が高いため先端部に電流が集中して流れ、結果的に中央電極2の主に先端部から破線50のように電流が流れる。
【0033】
よって、図3に示すように中央電極2の先端部近辺にホットポイント60が形成される。このホットポイント60部分のスラグは対流により上方に移動し、矢印61に沿ってスラグの流れが形成される。
【0034】
中央電極2は溶融炉の運転と共に消耗していく為、中央電極2を同じ位置に固定したままだと、ホットポイント60の形成される位置は中央電極2の消耗と共に徐々に上方に移動してゆく。そして、ホットポイント60の移動に伴って流れ61も変化してゆき、灰に接するスラグの流速やスラグの温度分布も変化してゆく。これにより、灰の溶融速度や炉底部の温度も変化するので、溶融状態が変化する。灰の溶融物は揮発性物質を含むので、溶融状態を常に安定させ突沸現象を防ぐ為、中央電極2の先端部の位置が常に一定であることが求められる。
【0035】
本実施形態における直流電気抵抗式溶融炉では、直流電源1が2つの電極2、4の間に一定電流値の電力を供給し、制御装置5が直流電源1が電極間の抵抗値を監視して、抵抗値が一定になるように中央電極2の位置を電極昇降装置3を用いて制御する。これにより、消耗量に伴う分だけ中央電極2の位置を下げ、スラグ層11に生じるホットポイント60の位置をほぼ一定の位置に保つことができる。尚メタル層12の電気抵抗値は、スラグ層11に比べてきわめて小さいので、その影響は無視することができる。
【0036】
更に直流電源1の出力電流を一定に保ち、また抵抗値が一定になるように中央電極2の位置を制御して消費電力が一定となるように運転することにより、ホットポイント60で加えられる熱量を一定に出来、またスラグの流れ61を一定に保つことが出来る。従って灰に接触するスラグの温度や流速を一定に保った運転が可能となり、灰の溶融速度を一定に保つことが出来る。
【0037】
また灰層11の高さは、炉蓋下に付けられた熱電対40や炉の排ガス出口20の近辺に付けられた熱電対41の温度が一定になるように灰定量切り出し装置31a,31bを制御する。焼却灰が溶融してスラグとなり灰層11が薄くなると、灰層11によって吸収されるスラグからの輻射熱が少なくなるので、炉内の温度は上昇する。制御装置5は、熱電対40,41によって炉内の温度を監視し、これらの温度から灰層11の厚さを推定し、灰の定量切り出し装置31を制御して灰層11の高さを一定に保つ。
【0038】
灰層11の厚さと、排ガス出口温度や炉蓋直下の温度の関係の一例を示すと、
a)灰層11の厚さが100mm時、排ガス出口温度が587℃、炉蓋直下の温度900℃
b)灰層11の厚さが50mmの時、排ガス出口温度が658℃、炉蓋直下の温度990℃
c)灰層11の厚さが150mmの時、排ガス出口温度が500℃、炉蓋直下の温度820℃
となる。
【0039】
このような関係を事前に調べておき、熱電対40,41からの温度に基づいて灰定量切り出し装置31を制御して、灰の投入量を制御することにより、灰層11の厚さを所望の厚さに保つことが出来る。例えば、上記例で、灰層11の厚さを100mmに保ちたい時は、排ガス出口温度が590℃、炉蓋直下の温度900℃を目標値として、例えば灰投入量が416kg/hとなるように、灰投入制御を行なえばよい。
【0040】
尚灰の投入は、灰層の厚さが増し揮発物の揮発を灰層が阻害しなければ、一定の速度で灰を連続的に投入する連続投入でも、1分投入1分休止、5分投入5分休止等のような間欠投入でもよい。また、炉内の温度の計測として炉蓋下と排ガス出口付近に熱電対40,41を設けて計測しているが、炉内の温度を安定的に測定できるのであれば、他の位置に熱電対を設けたり、或いは熱電対以外の測定手段を用いてもよい。
【0041】
尚上記した数値例は一例であり、詳細値は各々の物性、炉寸法等の種々の条件により変化する。
【0042】
【発明の効果】
本発明に拠れば、直流電気抵抗式溶融炉の安定した運転を実現することが出来る。
【0043】
また灰に接触するスラグの温度や対流流速を保ち、灰の溶融量を一定にすることが出来る。
更に灰層の高さを一定に保つよう制御することが出来る。
【図面の簡単な説明】
【図1】本実施形態における直流電気抵抗式溶融炉の構成例を示す図である。
【図2】溶融炉内の電流分布を示す図である。
【図3】スラグ層で形成されるホットポイントを示す図である。
【符号の説明】
1 直流電源
2 中央電極
3 電極昇降装置
4 炉底電極
5 制御装置
10 灰屑
11 スラグ層
12 メタル層
20 排ガス出口
21 スラグ出滓口
22 メタル出銑口
30 灰貯留ビン
31 灰定量切り出し装置
32 カーボン壁
33 耐火物壁
34 鉄皮
40 炉蓋下熱電対
41 排ガス出口熱電対
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a DC electric resistance melting furnace for melting and processing inorganic wastes such as refuse incineration ash using a DC electric resistance method, and a method for controlling the operation thereof.
[0002]
[Prior art]
In recent years, as the location of landfills has become more difficult, incineration ash that has come out of incinerators due to garbage incineration has been melted in an ash melting furnace, and a process to detoxify harmful substances contained in the ash has been implemented. Is being done.
[0003]
In a DC electric resistance type melting furnace, a current is passed from a DC power source between an electrode installed at the bottom of the furnace and a movable central electrode made of carbon material so that a large current can be passed, and the Joule heat is generated. The incineration ash is heated and melted, and the powdered or solid incineration ash is integrated to contain harmful substances and reduce the volume. Since the center electrode is made of carbon material, a combustion reaction with oxygen in the furnace, a sublimation reaction, or a reduction reaction with metal oxides in ash due to an increase in the furnace temperature causes carbon dioxide or carbon monoxide. Gasification. Therefore, the center electrode is consumed with operation.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 9-112449 (FIG. 1)
In the above patent document, for the control of the melting furnace, a plurality of temperature detectors are provided on the furnace wall, the temperature distribution of the furnace wall is examined, and the melting slag level and the furnace temperature are detected from this temperature distribution, A melting furnace for controlling the input amount of ash and the input amount of electric power is disclosed.
[0005]
When treated in a melting furnace, the incinerated ash melts into slag, which has a correlation between melting temperature and resistivity. The slag has a resistivity of, for example, 4 Ωcm when the melting temperature is 1500 ° C., and has a high resistance but is electrically conductive. Then, a direct current flows between both electrodes through the molten slag, and the slag is heated by resistance loss generated in the molten slag.
[0006]
In addition, the incinerated ash to be treated is cut out quantitatively from the upper side or upper side of the melting furnace and charged on the slag, but it is necessary to melt a certain amount of the ash in a certain time in order to perform a stable operation. . When the melting rate of the ash is unstable or the height of the ash layer on the slag is not kept constant, the volatile substances such as NaCl, KCl, ZnCl 2 , PbCl 2 and the like, which are present in the ash, are present. Irregularities occur in the generation of gas, hindering the stable operation of the exhaust gas device, or the low-boiling substances solidify in the ash, causing the gas to pass through the ash, causing bumping of the gas and the liquid level of the slag Problems such as fluctuations occur.
[0007]
Therefore, in order to perform stable operation in the melting furnace, it is necessary to operate the slag temperature and the convection flow velocity constant in order to keep the ash melting rate constant, and to keep the ash layer height constant Control operation is required.
[0008]
[Problems to be solved by the invention]
However, the temperature of molten slag is about 1500 ° C., and there is no method for continuously measuring the temperature of such a high-temperature liquid. In addition, the radiation thermometer cannot measure because ash covers the slag.
[0009]
In addition, a measuring instrument for measuring ash height is required to have heat resistance, and must withstand chemical reactions at a high temperature, for example, a chlorine gas atmosphere. difficult.
[0010]
Further, as a driving method for maintaining the temperature of the slag constant, a control method for controlling the operation so that the output power of the DC power supply is constant, since the heat source is resistance loss due to the slag, to thereby stabilize the heating value is considered. Can be However, the center electrode wears and becomes shorter or thinner with operation, and the current distribution changes due to the wear of the center electrode, and the position of a heat generating point (hot point) formed in the slag changes. Therefore, the temperature of the slag surface in contact with the ash and the convective flow velocity of the slag, which greatly affect the melting of the ash, are not constant but change.
[0011]
In addition, in order to keep the height of the ash constant, a method is conceivable in which the charging amount of the ash is controlled in accordance with the slag slag discharging amount. However, ash contains metals such as iron and copper, which settle at the bottom of the furnace, so that the amount of ash and the amount of slag slag are not the same. The height of the ash cannot always be constant.
[0012]
It is an object of the present invention to provide a DC electric resistance melting furnace which realizes stable operation and an operation method thereof.
It is another object of the present invention to provide a DC electric resistance melting furnace and an operating method capable of maintaining the temperature and convective flow velocity of slag in contact with ash and keeping the amount of ash melted constant.
[0013]
It is another object of the present invention to provide a DC electric resistance melting furnace and an operating method that can control the height of the ash layer to be constant.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, a first embodiment of a DC electric resistance type melting furnace according to the present invention has a first electrode and a second electrode that can move inside the melting furnace, and is characterized by a DC power supply and an electrode elevation control. Means.
[0015]
The DC power supply supplies power by flowing a current between the first electrode and the second electrode.
The electrode elevation control means controls the position of the first electrode so that the power supplied from the DC power supply is constant.
[0016]
In the DC electric resistance type melting furnace, for example, the DC power supply outputs a current of a designated value, and the electrode elevation control unit controls a resistance value between the first electrode and the second electrode to be constant. The position of the first electrode is controlled so that
[0017]
In the DC electric resistance melting furnace of the first embodiment, the position of the first electrode is controlled based on the power supplied by the DC power supply. Therefore, even if the first electrode is consumed, the temperature distribution and the flow velocity of the slag can be kept constant.
[0018]
A second embodiment of the DC electric resistance melting furnace according to the present invention includes a temperature measuring unit and a charging amount controlling unit.
The temperature measuring means measures the temperature in the melting furnace.
[0019]
The input amount control means estimates the thickness of the ash layer based on the measurement result of the temperature by the temperature measurement means, and controls the input amount of the incinerated ash to be input.
The temperature measuring means, for example, measures at least one of the temperature under the furnace lid of the melting furnace or the vicinity of an exhaust gas outlet of the furnace, and the charging control means measures the temperature near the furnace bottom or the exhaust gas outlet. The input amount is controlled using at least one of the temperatures in the vicinity.
[0020]
In the DC electric resistance melting furnace of the second embodiment, the thickness of the ash layer is estimated based on the temperature in the melting furnace, for example, the temperature near the bottom of the lid or the temperature near the exhaust gas outlet, and the amount of ash input , The thickness of the ash layer can be kept constant.
[0021]
The present invention also includes an operation method in an electric resistance melting furnace within the scope thereof.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above problems, the present invention has focused on a slag heating mechanism in a melting furnace, and has realized a DC electric resistance melting furnace capable of performing control for keeping the temperature and flow rate of the slag constant. .
[0023]
In the vicinity of the tip of the center electrode, the electric field intensity is high, a large amount of current flows, and a hot point is formed at which heating is performed by resistance loss. The slag that has been heated and expanded at the hot point convects and floats upward, and then flows toward the side wall of the furnace. Therefore, even if the central electrode is consumed, by controlling the position of the central electrode up and down so that the hot spot is formed in the slag layer at substantially the same position, the output current of the DC power supply is kept constant. As a result, the heat quantity at the hot point can be kept constant, and as a result, the flow velocity can be kept constant.
[0024]
If the position of the tip of the center electrode changes, the resistance value changes. Therefore, if the resistance is constantly controlled, the position of the tip of the center electrode will be constant, and power = output current x output current X Since it is a resistance value, the electric power (the amount of heat applied) consumed to melt the ash is constant. Therefore, if control is performed to keep the value of the current flowing through the electrode constant, the temperature and flow rate of the slag that comes into contact with the ash can be kept constant.
[0025]
Further, when the height of the ash layer formed on the slag layer is reduced, the amount of heat absorbed by the ash layer from the radiant heat from the molten slag decreases, so that the temperature in the furnace naturally increases. Conversely, when the ash layer becomes thicker, the amount of heat absorbed by the ash layer increases, so that the temperature inside the furnace, for example, the temperature immediately below the exhaust gas outlet or immediately below the furnace lid decreases. Therefore, the thickness of the ash layer can be kept constant by controlling the charging amount of the incinerated ash based on the temperature in the furnace.
[0026]
The temperature immediately below the furnace lid is 900 to 1000 ° C, and the exhaust gas outlet temperature is 500 to 700 ° C, which is lower than the molten slag temperature. In the direct current resistance melting furnace in the present embodiment, the temperature in the exhaust gas outlet and the temperature immediately below the furnace lid can be continuously measured by using a thermocouple or the like as a means for measuring the temperature in the furnace. Then, the temperature of the exhaust gas outlet and the temperature immediately below the furnace lid are continuously measured, and the height of the ash layer can be kept constant by adjusting the amount of the incinerated ash to be charged based on the temperature.
[0027]
FIG. 1 is a diagram illustrating a configuration example of a DC electric resistance melting furnace according to the present embodiment.
In the figure, the furnace wall of the DC electric resistance melting furnace is composed of a double wall of a carbon wall 32 and a refractory wall 33, and a water-cooled steel shell. The DC electric resistance type melting furnace shown in the figure has a DC power supply 1, a central electrode 2, an electrode lifting device 3, a furnace bottom electrode 4, a control device 5, an exhaust gas outlet 20, a slag outlet 21, a metal tap 22, It has two ash storage bins 30a, 30b, their ash quantitative cutout devices 31a, 31b, a thermocouple under the furnace lid 40, and a thermocouple 41 for exhaust gas outlet.
[0028]
The cylindrical central electrode 2 made of carbon material and the bottom electrode 4 embedded in the bottom of the carbon wall 32 are connected to a DC power source 1, and the power supplied from the DC power source 1 is between them. Causes a current to flow. The DC power supply 1 supplies electric power between the center electrode 2 and the furnace bottom electrode 4 while maintaining an output current at a designated magnitude. The DC power supply 1 includes a measuring unit that measures the resistance value at both ends, and the measured value is notified to the control device 5. The center electrode 2 is moved up and down in the melting furnace by the electrode lifting device 3. The electrode lifting / lowering device 3 raises / lowers the center electrode 2 in the furnace based on an instruction from the control device 5 and moves the position of the tip thereof up and down.
[0029]
The exhaust gas outlet 20 is an outlet for discharging gas and the like generated when the incinerated ash is melted. The slag tap 21 is a tap for discharging slag from the molten slag layer 11, and the metal tap 22 is a tap for tapping the metal layer 12 that has accumulated more than a certain amount. The ash storage bins 30a and 30b store incinerated ash to be put into the melting furnace, and the stored ash is cut out by the ash fixed quantity cutting device 31 and charged into the melting furnace. The ash fixed amount cutout devices 31a and 31b cut out a fixed amount of ash from the ash storage bins 30a and 30b based on an instruction from the control device 5, and put the ash from the upper part of the melting furnace. The under-furnace thermocouple 40 measures the temperature under the furnace lid, and the exhaust gas outlet thermocouple 41 measures the temperature near the exhaust gas outlet 20. These measurement results are notified to the control device 5. .
[0030]
At the bottom of the furnace below the slag layer 11, there is a metal layer 12 made of metal that has settled due to a difference in specific gravity from slag. The incinerated ash is charged from the storage bins 30a, 30b into the quantitative furnace by the ash quantitative cut-out devices 31a, 31b. Therefore, the ash layer 10 made of the incinerated ash is formed above the slag layer 11. The ash layer 10 blocks the slag from reacting with the atmosphere in the furnace and prevents radiant heat from the slag layer.
[0031]
Since the molten slag has electric conductivity, an electric circuit including the center electrode 2, the slag layer 11, the metal layer 12, and the furnace bottom electrode 4 is formed at both ends of the DC power supply 1. Then, thermal energy is supplied to the slag due to the resistance loss generated in the slag layer 11, and the heat from the slag layer 11 causes the incinerated ash of the ash layer 12 that comes into contact with the slag to melt and become slag.
[0032]
FIG. 2 is a diagram showing a current distribution in the melting furnace, and current lines are indicated by broken lines 50.
The current flows from the center electrode 2 in the radial direction of the melting furnace to the furnace bottom electrode 4 through the carbon wall 32 and the route from the center electrode 2 to the furnace bottom electrode 4 almost straight. In the case of the electrode (2), since the electric field strength at the tip portion is high, the current flows intensively at the tip portion, and as a result, the current flows mainly from the tip portion of the central electrode 2 as shown by a broken line 50.
[0033]
Therefore, a hot point 60 is formed near the tip of the center electrode 2 as shown in FIG. The slag at the hot point 60 moves upward by convection, and a slag flow is formed along the arrow 61.
[0034]
Since the central electrode 2 is consumed with the operation of the melting furnace, if the central electrode 2 is fixed at the same position, the position where the hot point 60 is formed gradually moves upward with the consumption of the central electrode 2. go. Then, the flow 61 changes with the movement of the hot point 60, and the flow velocity of the slag in contact with the ash and the temperature distribution of the slag also change. As a result, the melting rate of the ash and the temperature of the furnace bottom also change, so that the melting state changes. Since the ash melt contains a volatile substance, it is required that the position of the tip of the center electrode 2 be always constant in order to stabilize the molten state and prevent bumping.
[0035]
In the DC electric resistance melting furnace according to this embodiment, the DC power supply 1 supplies a constant current value between the two electrodes 2 and 4, and the control device 5 monitors the resistance value between the electrodes. Then, the position of the center electrode 2 is controlled using the electrode lifting device 3 so that the resistance value becomes constant. Thereby, the position of the center electrode 2 can be lowered by an amount corresponding to the consumption amount, and the position of the hot point 60 generated in the slag layer 11 can be maintained at a substantially constant position. Since the electric resistance value of the metal layer 12 is much smaller than that of the slag layer 11, the effect can be neglected.
[0036]
Further, by keeping the output current of the DC power supply 1 constant and controlling the position of the center electrode 2 so that the resistance value is constant and operating the power consumption to be constant, the amount of heat added at the hot point 60 is increased. And the slag flow 61 can be kept constant. Therefore, it is possible to operate the slag in contact with the ash while keeping the temperature and the flow rate constant, and it is possible to keep the ash melting rate constant.
[0037]
The height of the ash layer 11 is adjusted so that the temperature of the thermocouple 40 provided under the furnace lid and the temperature of the thermocouple 41 provided near the exhaust gas outlet 20 of the furnace become constant. Control. When the incinerated ash melts to form slag and the ash layer 11 becomes thinner, the radiant heat from the slag absorbed by the ash layer 11 decreases, so that the temperature in the furnace increases. The control device 5 monitors the temperature inside the furnace with the thermocouples 40 and 41, estimates the thickness of the ash layer 11 from these temperatures, and controls the ash quantitative cut-out device 31 to determine the height of the ash layer 11. Keep constant.
[0038]
An example of the relationship between the thickness of the ash layer 11, the exhaust gas outlet temperature, and the temperature immediately below the furnace lid is shown below.
a) When the thickness of the ash layer 11 is 100 mm, the exhaust gas outlet temperature is 587 ° C., and the temperature immediately below the furnace lid is 900 ° C.
b) When the thickness of the ash layer 11 is 50 mm, the exhaust gas outlet temperature is 658 ° C., and the temperature immediately below the furnace lid is 990 ° C.
c) When the thickness of the ash layer 11 is 150 mm, the exhaust gas outlet temperature is 500 ° C., and the temperature just below the furnace lid is 820 ° C.
It becomes.
[0039]
By examining such a relationship in advance and controlling the ash quantitative cut-out device 31 based on the temperature from the thermocouples 40 and 41 to control the amount of ash input, the thickness of the ash layer 11 can be controlled to a desired value. Thickness can be maintained. For example, in the above example, when it is desired to keep the thickness of the ash layer 11 at 100 mm, the exhaust gas outlet temperature is set to 590 ° C., and the temperature of 900 ° C. immediately below the furnace lid is set to a target value, for example, the ash input amount becomes 416 kg / h. Then, ash input control may be performed.
[0040]
In addition, as long as the thickness of the ash layer increases and the ash layer does not hinder the volatilization of volatiles, the ash is continuously charged at a constant speed for 1 minute, 1 minute pause, 5 minutes Intermittent charging such as charging 5 minutes pause may be used. In addition, thermocouples 40 and 41 are provided below the furnace lid and near the exhaust gas outlet to measure the temperature inside the furnace. However, if the temperature inside the furnace can be measured stably, the thermocouples may be placed at other positions. A pair may be provided, or measurement means other than a thermocouple may be used.
[0041]
Note that the above numerical examples are merely examples, and the detailed values vary depending on various conditions such as physical properties and furnace dimensions.
[0042]
【The invention's effect】
According to the present invention, a stable operation of a direct current resistance melting furnace can be realized.
[0043]
In addition, the temperature and convection flow velocity of the slag in contact with the ash can be maintained, and the amount of the ash melted can be kept constant.
Further, the height of the ash layer can be controlled to be constant.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of a direct current resistance melting furnace according to an embodiment.
FIG. 2 is a diagram showing a current distribution in a melting furnace.
FIG. 3 is a diagram showing hot points formed by a slag layer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Central electrode 3 Electrode raising / lowering device 4 Furnace bottom electrode 5 Control device 10 Ash dust 11 Slag layer 12 Metal layer 20 Exhaust gas outlet 21 Slag tap hole 22 Metal tap hole 30 Ash storage bin 31 Ash quantitative cut-out device 32 Carbon Wall 33 Refractory wall 34 Iron shell 40 Thermocouple under furnace lid 41 Exhaust gas outlet thermocouple

Claims (6)

溶融炉内を可動する第1の電極及び第2の電極を有する直流電気抵抗式溶融炉において
前記第1の電極と前記第2の電極の間に電流を流して電力を供給する直流電源と、
前記直流電源が供給する電力が一定となるように、前記第1の電極の位置を制御する電極昇降制御手段と、
を備えることを特徴とする直流電気抵抗式溶融炉。
A DC power supply for supplying electric power by flowing a current between the first electrode and the second electrode in a DC electric resistance type melting furnace having a first electrode and a second electrode movable in the melting furnace;
Electrode elevation control means for controlling the position of the first electrode so that the power supplied by the DC power supply is constant;
A direct current resistance melting furnace comprising:
前記直流電源は、指定された値の電流を出力し、前記電極昇降制御手段は、前記第1の電極と前記第2の電極の間の抵抗値が一定となるように、前記第1の電極の位置を制御することを特徴とする請求項1に記載の直流電気抵抗式溶融炉。The DC power supply outputs a current of a designated value, and the electrode elevation control means controls the first electrode so that a resistance value between the first electrode and the second electrode is constant. 2. The direct current resistance type melting furnace according to claim 1, wherein the position is controlled. 溶融炉内の温度を計測する温度計測手段と、
前記温度計測手段による温度の計測結果に基づいて灰層の厚さを推測し、投入する焼却灰の投入量を制御する投入量制御手段と、
を備えることを特徴とする直流電気抵抗式溶融炉。
Temperature measuring means for measuring the temperature in the melting furnace,
Estimating the thickness of the ash layer based on the measurement result of the temperature by the temperature measurement means, the input amount control means to control the input amount of incineration ash to be input,
A direct current resistance melting furnace comprising:
前記温度計測手段は、前記溶融炉の炉蓋下若しくは炉の排ガス出口の近辺の温度の少なくとも一方を計測し、前記投入制御手段は、前記炉蓋下の近辺の温度若しくは前記排ガス出口の近辺の温度の少なくとも一方を用いて前記投入量を制御することを特徴とする請求項3に記載の直流電気抵抗式溶融炉。The temperature measuring means measures at least one of the temperature under the furnace lid of the melting furnace or near the exhaust gas outlet of the furnace, and the charging control means measures the temperature near the furnace bottom or the vicinity of the exhaust gas outlet. 4. The DC electric resistance melting furnace according to claim 3, wherein the input amount is controlled using at least one of the temperatures. 溶融炉内を可動する第1の電極及び第2の電極を有する直流電気抵抗式溶融炉における運転方法において、
前記第1の電極と前記第2の電極の間に電流を流して電力を供給し、
前記直流電源が供給する電力が一定となるように、前記第1の電極の位置を制御する
ことを特徴とする運転方法。
In an operation method in a direct current resistance type melting furnace having a first electrode and a second electrode movable in the melting furnace,
Supplying current by flowing a current between the first electrode and the second electrode;
An operation method, wherein the position of the first electrode is controlled so that the power supplied from the DC power supply is constant.
溶融炉内の温度を計測し、
前記温度計測手段による温度の計測結果に基づいて、投入する焼却灰の投入量を制御する
ことを特徴とする直流電気抵抗式溶融炉の運転方法。
Measure the temperature inside the melting furnace,
A method of operating a direct current resistance melting furnace, comprising controlling an amount of incinerated ash to be charged based on a result of temperature measurement by the temperature measuring means.
JP2002347129A 2002-11-29 2002-11-29 Dc electric resistance type melting furnace and its operation method Pending JP2004177080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347129A JP2004177080A (en) 2002-11-29 2002-11-29 Dc electric resistance type melting furnace and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347129A JP2004177080A (en) 2002-11-29 2002-11-29 Dc electric resistance type melting furnace and its operation method

Publications (1)

Publication Number Publication Date
JP2004177080A true JP2004177080A (en) 2004-06-24

Family

ID=32707827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347129A Pending JP2004177080A (en) 2002-11-29 2002-11-29 Dc electric resistance type melting furnace and its operation method

Country Status (1)

Country Link
JP (1) JP2004177080A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285670A (en) * 2006-04-20 2007-11-01 Jfe Engineering Kk Melting control method for electric resistance type ash melting furnace and its device
JP2010255890A (en) * 2009-04-22 2010-11-11 Nippon Steel Engineering Co Ltd Waste melting treatment method and waste melting treatment device
WO2012043402A1 (en) * 2010-09-30 2012-04-05 株式会社Ihi Graphitization furnace and method for producing graphite

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285670A (en) * 2006-04-20 2007-11-01 Jfe Engineering Kk Melting control method for electric resistance type ash melting furnace and its device
JP2010255890A (en) * 2009-04-22 2010-11-11 Nippon Steel Engineering Co Ltd Waste melting treatment method and waste melting treatment device
WO2012043402A1 (en) * 2010-09-30 2012-04-05 株式会社Ihi Graphitization furnace and method for producing graphite
CN103153852A (en) * 2010-09-30 2013-06-12 株式会社Ihi Graphitization furnace and method for producing graphite
JP2014210710A (en) * 2010-09-30 2014-11-13 株式会社Ihi Graphitization furnace and method of producing graphite
JP5645942B2 (en) * 2010-09-30 2014-12-24 株式会社Ihi Graphitization furnace and method for producing graphite
KR101495583B1 (en) * 2010-09-30 2015-03-12 가부시키가이샤 아이에이치아이 Graphitization furnace and method for producing graphite
CN103153852B (en) * 2010-09-30 2015-09-09 株式会社Ihi The method of graphitizing furnace and manufacture graphite
US9618267B2 (en) 2010-09-30 2017-04-11 Ihi Corporation Graphitization furnace and method for producing graphite

Similar Documents

Publication Publication Date Title
US8241391B2 (en) Process and equipment for the treatment of loads or residues of non-ferrous metals and their alloys
KR100985099B1 (en) Vitrification furnace and method with dual heating means
GB1567265A (en) Method of smelting steel from scrap in an electric reduction furnace
JP2004177080A (en) Dc electric resistance type melting furnace and its operation method
JP3746921B2 (en) Operation method of electric melting furnace
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP5096797B2 (en) Level measurement method for ash melting furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP3806306B2 (en) Secondary combustion apparatus for ash melting furnace and method of operating secondary combustion apparatus
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP3534693B2 (en) Operating method of plasma ash melting furnace
JP3714383B2 (en) Ash melting furnace and method of operating the same
JP2747983B2 (en) Method and apparatus for melting municipal solid waste incineration ash
KR20030054416A (en) Apparatus of Measuring the Steel Height in EAF
JP2001012722A (en) Heating/melting processing apparatus
JP2004278970A (en) Method and controlling device for operating electric resistance type ash melting furnace
JP4336393B2 (en) Electric melting incinerator
JP2016044823A (en) Ash melting device and ash melting method
JP3831930B2 (en) Electrode sealing device for ash melting furnace
JP2005337579A (en) Heat quantity control method for incinerated ash melting furnace and heat quantity control device
JPH0777318A (en) Method and device for waste melting treatment
JP2005016824A (en) Waste material melting furnace operating method
JP2002115838A (en) Electric ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919