JP2001012722A - Heating/melting processing apparatus - Google Patents

Heating/melting processing apparatus

Info

Publication number
JP2001012722A
JP2001012722A JP11185199A JP18519999A JP2001012722A JP 2001012722 A JP2001012722 A JP 2001012722A JP 11185199 A JP11185199 A JP 11185199A JP 18519999 A JP18519999 A JP 18519999A JP 2001012722 A JP2001012722 A JP 2001012722A
Authority
JP
Japan
Prior art keywords
heating
slag
melting
outlet
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11185199A
Other languages
Japanese (ja)
Inventor
Hisayuki Orita
久幸 折田
Tomohiko Miyamoto
知彦 宮本
Ken Amano
研 天野
Osamu Ito
修 伊藤
Koji Sato
晃二 佐藤
Isao Okochi
功 大河内
Koichi Tatsumura
浩一 立村
Shigeji Kaneko
滋司 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11185199A priority Critical patent/JP2001012722A/en
Publication of JP2001012722A publication Critical patent/JP2001012722A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heating/melting processing apparatus having a structure wherein molten slag of a burned residue can be stably taken out, and a constituent member around an outlet can be prolonged in its life. SOLUTION: There are provided a cooling tube 6 for cooling a refractory member 3 around an outlet 9 through which molten slag 5 flows out, and a heater 7 for heating the molten slag 5 around the outlet 9. The heater 7 is graphite coated with SiC, a conductive MoSi2 composite sintered structure, a conductive ZrB2 composite sintered structure, or ones enclosed with a non- conductive refractory member, and is excellent in non-oxydation and slag resistant. The molten slag 5 is continuously stably taken out owing to heat of the heater 7 at the outlet 9. In contrast, a self-coating layer 10 is for med in which slag is solidified on an internal wall of the outlet 9, whereby the internal wall of the outlet 9 and the molten slag 5 are prevented from directly making contact with each other, and hence the refractory member 3 is prevented from being melted for its long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加熱溶融処理装置
に係り、特に、都市ゴミ,下水汚泥などの焼却残渣を減
容し無害化するための加熱溶融処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating and melting treatment apparatus, and more particularly to a heating and melting treatment apparatus for reducing the volume and detoxifying incineration residues such as municipal waste and sewage sludge.

【0002】[0002]

【従来の技術】現在、家庭から排出されるゴミ,下水処
理で発生する汚泥等の廃棄物は、焼却処理し、発生した
残渣を埋め立て処分している。しかし、埋め立て地が枯
渇するとともに、ダイオキシンや重金属などの環境汚染
が問題になってきている。
2. Description of the Related Art At present, wastes such as garbage discharged from homes and sludge generated in sewage treatment are incinerated, and the generated residues are landfilled. However, as landfills are depleted, environmental pollution such as dioxins and heavy metals has become a problem.

【0003】これらの問題を同時に解決する有効な手段
として、焼却残渣を溶融しスラグ化する加熱溶融処理装
置が開発されている。
As an effective means for solving these problems at the same time, a heating and melting treatment apparatus for melting incineration residues to form slag has been developed.

【0004】[0004]

【発明が解決しようとする課題】加熱溶融処理方式を大
別すると、燃焼加熱式と電気加熱式とがある。いずれの
方式においても、溶融スラグを安定して出滓でき、しか
も、出滓口の周辺の構成部材をどれだけ長寿命化できる
かが課題である。
The heating and melting treatment methods are roughly classified into a combustion heating method and an electric heating method. In any of the methods, there is a problem that the molten slag can be stably discharged and how long the life of the components around the discharge port can be extended.

【0005】溶融物の安定出滓について、実開平5−2
7595号公報は、出滓口の周辺を補助電極で加熱する
技術を開示している。この技術では、電極材の黒鉛が、
酸化し消耗するので、一定期間毎の交換が必要である。
特公平5−30517号公報は、出滓口の周囲を導電性
セラミックスで構成し、誘導加熱する技術を提案してい
る。この技術では、耐酸化性は向上するが、1400℃
以上では、導電性セラミックスが溶融スラグに溶出し、
消耗するために、やはり一定期間毎の交換が必要とな
る。
[0005] Regarding the stable slag of the molten material, see Japanese Utility Model Application Laid-open No.
No. 7595 discloses a technique for heating the periphery of a slag outlet with an auxiliary electrode. In this technology, the graphite of the electrode material
Since it is oxidized and consumed, it needs to be replaced at regular intervals.
Japanese Patent Publication No. 5-30517 proposes a technique in which the periphery of a slag outlet is made of conductive ceramics and induction heating is performed. With this technique, oxidation resistance is improved, but 1400 ° C.
Above, the conductive ceramics elutes into the molten slag,
In order to wear out, replacement is also required at regular intervals.

【0006】一方、出滓口の周辺の構成部材の長寿命化
について、特開平8−121739号公報,特開平8−
159440号公報は、出滓口の内壁を構成する非導電
性の耐火材を内部から冷却し、出滓口の内壁にスラグの
固化層を形成させ、耐火材を保護する技術を示してい
る。しかし、溶融スラグの出滓量が、スラグ固化層の温
度に影響される上に、溶融スラグと耐火材との熱伝導度
が低いので、冷媒流量の制御により出滓量を一定に保つ
ことは困難である。
On the other hand, regarding the prolongation of the service life of the components around the slag outlet, Japanese Patent Application Laid-Open Nos.
Japanese Unexamined Patent Publication No. 159440 discloses a technique for cooling a non-conductive refractory material constituting an inner wall of a slag port from the inside and forming a solidified layer of slag on the inner wall of the slag port to protect the refractory material. However, the amount of slag from the molten slag is affected by the temperature of the solidified slag layer, and the thermal conductivity between the molten slag and the refractory material is low. Have difficulty.

【0007】本発明の目的は、焼却残渣の溶融スラグを
安定して出滓でき、しかも、出滓口の周辺の構成部材を
長寿命化できる構造の加熱溶融処理装置を提供すること
である。
An object of the present invention is to provide a heating and melting treatment apparatus having a structure capable of stably removing molten slag from incineration residues and extending the life of constituent members around the discharge port.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、固体および/または粉体を加熱溶融する
加熱溶融処理装置において、溶融物が流出する出滓口を
溶融炉の底部に設け、出滓口の入口周辺を非導電性の耐
火材で構成し、耐火材を内部から冷却する手段を備え、
出滓口の出口周辺を発熱体で構成した加熱溶融処理装置
を提案する。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a heating and melting apparatus for heating and melting a solid and / or a powder. Provided in the, around the entrance of the slag port is made of non-conductive refractory material, comprising means for cooling the refractory material from the inside,
We propose a heating and melting treatment device in which a heating element is provided around the outlet of the slag outlet.

【0009】本発明は、また、固体および/または粉体
を加熱溶融する加熱溶融処理装置において、溶融物が流
出する出滓口を溶融炉の底部に設け、出滓口の入口周辺
を非導電性の耐火材で構成し、耐火材を内部から冷却す
る手段を備え、出滓口の出口周辺を発熱体と非導電性の
耐火材とで構成した加熱溶融処理装置を提案する。
According to the present invention, there is further provided a heating and melting treatment apparatus for heating and melting a solid and / or powder, wherein a slag outlet through which a molten material flows is provided at the bottom of the melting furnace, and the periphery of the slag outlet is electrically non-conductive. The present invention proposes a heating and melting treatment apparatus comprising a refractory material having a means for cooling the refractory material from the inside, and a heating element and a non-conductive refractory material around the outlet of the slag port.

【0010】本発明は、さらに、固体および/または粉
体を加熱溶融する加熱溶融処理装置において、溶融物が
流出する出滓口を溶融炉の底部に設け、出滓口の入口周
辺を発熱体と非導電性の耐火材とで構成し、耐火材を内
部から冷却する手段を備え、出滓口の出口周辺を発熱体
で構成した加熱溶融処理装置を提案する。
According to the present invention, there is further provided a heating and melting treatment apparatus for heating and melting a solid and / or powder, wherein a slag outlet through which a melt flows out is provided at the bottom of the melting furnace, and a heating element is provided around the entrance of the slag opening. And a means for cooling the refractory material from the inside, and comprising a heating element around the outlet of the slag outlet.

【0011】いずれの加熱溶融処理装置においても、出
滓口の出口の孔が出滓口の入口の孔よりも広くすること
が望ましい。
In any of the heating and melting treatment apparatuses, it is desirable that the hole at the outlet of the slag port is wider than the hole at the entrance of the slag port.

【0012】本発明は、固体および/または粉体を加熱
溶融する加熱溶融処理装置において、溶融物が流出する
出滓口を溶融炉の底部に設け、出滓口の入口から出口ま
での周辺を発熱体と非導電性の耐火材で構成し、耐火材
を内部から冷却する手段を備えた加熱溶融処理装置を提
案する。
According to the present invention, in a heating and melting treatment apparatus for heating and melting a solid and / or powder, a slag outlet from which a melt flows out is provided at the bottom of a melting furnace, and a periphery from an inlet to an outlet of the slag outlet is provided. The present invention proposes a heating and melting treatment apparatus which is composed of a heating element and a non-conductive refractory material and has means for cooling the refractory material from the inside.

【0013】本発明は、また、固体および/または粉体
を加熱溶融する加熱溶融処理装置において、溶融物が流
出する出滓口を溶融炉の底部に設け、出滓口の周辺を非
導電性の耐火材で構成し、耐火材を内部から冷却する手
段を設け、出滓口の孔内に発熱体を挿入して設置した加
熱溶融処理装置を提案する。
According to the present invention, there is also provided a heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag outlet through which a melt flows out is provided at the bottom of the melting furnace, and the periphery of the slag outlet is electrically non-conductive. And a means for cooling the refractory material from the inside, and a heating and melting treatment apparatus in which a heating element is inserted and installed in the hole of the slag port is proposed.

【0014】本発明は、上記目的を達成するために、固
体および/または粉体を加熱溶融する加熱溶融処理装置
において、溶融物が流出する出滓口を溶融炉の底部に設
け、出滓口の入口周辺を構成する発熱体を炉内に突き出
して設置し、出滓口を構成しない発熱体側面と発熱体上
面とを非導電性の耐火材で覆い、発熱体上面に設けた非
導電性の耐火材を出滓口の上面を覆うよう延長して配置
し、非導電性の耐火材を内部から冷却する手段を備えた
加熱溶融処理装置を提案する。
According to the present invention, in order to achieve the above object, in a heating and melting treatment apparatus for heating and melting a solid and / or powder, a slag outlet from which a melt flows out is provided at the bottom of a melting furnace. The heating element that forms the periphery of the entrance of the furnace is protruded into the furnace and installed. The side of the heating element and the top surface of the heating element that do not form the slag port are covered with a nonconductive refractory material. The present invention proposes a heating and melting treatment apparatus provided with means for extending the refractory material so as to cover the upper surface of the slag outlet and cooling the non-conductive refractory material from the inside.

【0015】本発明は、固体および/または粉体を加熱
溶融する加熱溶融処理装置において、溶融物が流出する
出滓口を溶融炉の側壁に設け、出滓口の周辺を非導電性
の耐火材で構成し、耐火材を内部から冷却する手段を備
え、出滓口の出口に対面し前記出口から離れた位置に発
熱体を設けた加熱溶融処理装置を提案する。
According to the present invention, there is provided a heating and melting treatment apparatus for heating and melting a solid and / or a powder. The present invention proposes a heating and melting treatment apparatus comprising a means for cooling a refractory material from the inside, comprising a heating element at a position facing the outlet of the slag port and away from the outlet.

【0016】本発明は、また、固体および/または粉体
を加熱溶融する加熱溶融処理装置において、溶融物が流
出する出滓口を溶融炉の側壁に設け、出滓口の下部側を
非導電性の耐火材で構成し、耐火材を内部から冷却する
手段を備え、出滓口の上部側に発熱体を設けた加熱溶融
処理装置を提案する。
According to the present invention, there is also provided a heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag port through which a melt flows out is provided on a side wall of the melting furnace, and a lower side of the slag port is nonconductive. The present invention proposes a heating and melting treatment apparatus comprising a refractory material having a means for cooling the refractory material from the inside and a heating element provided on the upper side of the slag port.

【0017】この加熱溶融処理装置においては、出滓口
の出口に対面し前記出口から離れた位置に発熱体を設け
ることができる。
In this heat melting apparatus, a heating element can be provided at a position facing the outlet of the slag port and away from the outlet.

【0018】上記いずれの加熱溶融処理装置において
も、発熱体は、炭化けい素でコーティングされた黒鉛、
金属ほう化物を含有する導電性セラミックス、金属けい
化物を含有する導電性セラミックス、前記黒鉛または前
記導電性セラミックスを内包する非導電性の耐火材のい
ずれかとする。
In any of the above-mentioned heat melting apparatuses, the heating element is made of graphite coated with silicon carbide,
Conductive ceramics containing a metal boride, conductive ceramics containing a metal silicide, graphite or a non-conductive refractory material containing the conductive ceramics.

【0019】また、出滓口の周辺を構成する耐火材は、
ほう化ジルコニウムまたはけい化モリブデンを含有する
セラミックスで構成する。
Further, the refractory material constituting the periphery of the slag port is as follows:
It is made of ceramics containing zirconium boride or molybdenum silicide.

【0020】さらに、冷却手段は、冷媒により耐火材を
冷却する手段であり、冷却手段の冷媒の流量を制御する
手段と、発熱体の発熱量を制御する手段と、非導電性の
耐火材の内部に設置された温度測定手段と、発熱体内部
またはその近傍に設置された温度測定手段と、測定され
たそれぞれの温度に基づき冷媒の流量と発熱体の発熱量
とを制御する手段とを備えることができる。
Further, the cooling means is means for cooling the refractory material with the refrigerant, means for controlling the flow rate of the refrigerant of the cooling means, means for controlling the amount of heat generated by the heating element, and means for cooling the non-conductive refractory material. A temperature measuring means installed inside the heating element, a temperature measuring means installed inside or near the heating element, and a means for controlling the flow rate of the refrigerant and the heating value of the heating element based on the measured temperatures. be able to.

【0021】この場合、出滓口の出口の状況を非接触に
監視するモニタ装置を備え、モニタ装置により得られた
出滓口の状況に基づき冷媒の流量と発熱体の発熱量を制
御する手段を備えてもよい。
In this case, there is provided a monitoring device for monitoring the condition of the outlet of the slag outlet in a non-contact manner, and means for controlling the flow rate of the refrigerant and the calorific value of the heating element based on the status of the slag port obtained by the monitoring device. May be provided.

【0022】本発明において、溶融スラグは、冷却によ
り形成された固化層の表面を伝って流下するので、溶融
スラグと耐火材との接触を防ぎ、耐火材の溶損を防止で
きる。この場合、スラグ自身を耐火材の保護層にするこ
とから、本明細書では、この作用をセルフコーティング
という。
In the present invention, the molten slag flows down along the surface of the solidified layer formed by cooling, so that contact between the molten slag and the refractory material can be prevented, and erosion of the refractory material can be prevented. In this case, since the slag itself is used as a protective layer of the refractory material, in the present specification, this action is called self-coating.

【0023】一方、溶融スラグは、溶融炉内部から出滓
口を経て流下する過程で温度が低下し、粘度が増し、さ
らには固化し、閉塞に至る。
On the other hand, the temperature of the molten slag decreases in the process of flowing down from the inside of the melting furnace through the slag port, the viscosity increases, and furthermore, the molten slag solidifies and becomes clogged.

【0024】そこで、本発明では、出滓口の周辺に加熱
手段を備え、スラグを加熱し、安定して出滓できるよう
にした。
Therefore, in the present invention, a heating means is provided around the slag outlet to heat the slag so that the slag can be stably extracted.

【0025】セルフコーティング層の厚さは、温度と溶
融スラグ量との変化に敏感に対応して変化するが、出滓
口の周辺の冷却手段と加熱手段とをそれぞれ制御する
と、セルフコーティング層の厚さを所定値に保つことが
でき、溶融スラグを安定して連続出滓できる。
The thickness of the self-coating layer changes in response to changes in temperature and the amount of molten slag. However, when the cooling means and the heating means in the vicinity of the slag port are controlled, respectively, The thickness can be maintained at a predetermined value, and the molten slag can be stably discharged continuously.

【0026】この出滓口の周辺構造では、出滓口の入口
の孔径より出口の孔径を広くする。これにより、発熱体
と溶融スラグとの接触を防ぎ、溶融スラグによる発熱体
の溶損を防ぐことができる。
In the peripheral structure of the slag outlet, the hole diameter of the outlet is larger than that of the inlet of the slag outlet. Thereby, contact between the heating element and the molten slag can be prevented, and melting of the heating element by the molten slag can be prevented.

【0027】冷却管入口では冷媒の温度は低いが、熱交
換によって、温度上昇し、出口では高温となるため、対
向流によって、内管の高温部と外管の低温部、または内
管の低温部と外管の高温部を熱伝導によって、均一化す
る。冷却管を出滓口の周辺で折り返す構造でも対向流を
実現できる。
Although the temperature of the refrigerant is low at the inlet of the cooling pipe, the temperature rises due to heat exchange and becomes high at the outlet. Therefore, the high temperature part of the inner pipe and the low temperature part of the outer pipe or the low temperature of the inner pipe are caused by the counterflow. The part and the high temperature part of the outer tube are made uniform by heat conduction. Counterflow can also be realized with a structure in which the cooling pipe is folded around the slag port.

【0028】[0028]

【発明の実施の形態】次に、図1〜図13を参照して、
本発明による加熱溶融処理装置の実施例を説明する。溶
融加熱処理方式は、例えば電気加熱式の場合、電気抵抗
加熱式,アーク放電加熱式,電磁誘導加熱式のいずれで
もよい。ここでは、電磁誘導加熱式の例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, referring to FIGS.
An embodiment of the heating and melting treatment apparatus according to the present invention will be described. For example, in the case of an electric heating method, any one of an electric resistance heating method, an arc discharge heating method, and an electromagnetic induction heating method may be used as the melting heat treatment method. Here, an example of the electromagnetic induction heating type will be described.

【0029】《実施例1》図1は、出滓口を底部に設け
た本発明による加熱溶融処理装置の実施例1のシステム
構成を示す系統図である。実施例1は、溶融物すなわち
溶融スラグ5が流出する出滓口8を溶融炉1の底部に設
け、出滓口9の入口周辺を非導電性の耐火材3で構成
し、耐火材3を内部から冷却する手段6を備え、出滓口
9の出口周辺を発熱体7で構成した。
Embodiment 1 FIG. 1 is a system diagram showing a system configuration of Embodiment 1 of a heating and melting treatment apparatus according to the present invention in which a slag port is provided at the bottom. In the first embodiment, a slag port 8 through which a molten material, that is, a molten slag 5 flows out, is provided at the bottom of the melting furnace 1, and the periphery of the entrance of the slag port 9 is made of a non-conductive refractory material 3. A means 6 for cooling from the inside was provided, and a heating element 7 was formed around the outlet of the slag port 9.

【0030】電磁誘導加熱炉1は、溶融炉用コイル2
と、その内側に配置されて炉体を形成している耐火材3
とからなる。炉底部には、溶融処理したスラグ5を排出
する出滓口9を形成し、炉内には、導電性物質である黒
鉛4を充填してある。
The electromagnetic induction heating furnace 1 comprises a melting furnace coil 2
And the refractory material 3 which is arranged inside and forms a furnace body
Consists of A slag port 9 for discharging the melt-processed slag 5 is formed at the bottom of the furnace, and the furnace is filled with graphite 4 as a conductive substance.

【0031】溶融炉用高周波電源14は、溶融炉用コイ
ル2に通電し、磁場を発生させ、黒鉛4を誘導加熱す
る。溶融炉用コイル2は、通電により発熱するので、銅
管で構成し、内部に通水して冷却し、保護する。
The high frequency power supply 14 for the melting furnace energizes the coil 2 for the melting furnace, generates a magnetic field, and heats the graphite 4 by induction. Since the melting furnace coil 2 generates heat when energized, it is made of a copper tube, and water is passed through to cool and protect it.

【0032】供給口11から投入した灰は、炉内で加熱
され、黒鉛4の表面で溶融し、炉内を流下し、溶融スラ
グ5となり、出滓口9から排出される。溶融排ガスは、
排出口12を経て、除塵し無害化処理され、大気に排出
される。
The ash supplied from the supply port 11 is heated in the furnace, melts on the surface of the graphite 4, flows down in the furnace, becomes molten slag 5, and is discharged from the slag port 9. The molten exhaust gas is
Through the discharge port 12, it is subjected to dust removal and harmless treatment, and is discharged to the atmosphere.

【0033】出滓口9の出口は、炉内と外気との境界で
あるから、出口を通過する溶融スラグ5は、温度が下が
りやすく、粘度が増して流動性が悪化し、さらには固化
し、出口を閉塞する。
Since the outlet of the slag port 9 is a boundary between the inside of the furnace and the outside air, the temperature of the molten slag 5 passing through the outlet tends to decrease, the viscosity increases, the fluidity deteriorates, and the molten slag 5 further solidifies. Close the outlet.

【0034】本発明においては、溶融スラグ5を安定し
て出滓させるために、炉内低部の溶融スラグ5を約14
00℃の高温に保持するとともに、出滓口9の出口で溶
融スラグ5を加熱する。
In the present invention, the molten slag 5 in the lower part of the furnace is reduced by about 14 to stably discharge the molten slag 5.
While maintaining a high temperature of 00 ° C., the molten slag 5 is heated at the outlet of the slag port 9.

【0035】出滓口9の周辺の加熱手段として、発熱体
7とそれを誘導加熱する出滓口用コイル16とを出滓口
9の下部に設け、出滓口用高周波電源15からの電力に
より誘導加熱する。発熱体7は、炉体耐火材3の耐熱温
度まで加熱できる。
As a heating means around the slag port 9, a heating element 7 and a slag port coil 16 for inductively heating the heating element 7 are provided below the slag port 9. Induction heating. The heating element 7 can be heated to the heat resistant temperature of the furnace body refractory material 3.

【0036】発熱体7は、出滓口9の外側の外気内にあ
るので、耐酸化性に優れた材質とする。さらに、発熱体
7は、溶融スラグ5による溶損を防止するため、耐スラ
グ性も優れた材質を採用するか、または、出滓口9の孔
径よりも発熱体7の孔径を大きくする。
Since the heating element 7 is in the outside air outside the slag port 9, it is made of a material having excellent oxidation resistance. Further, in order to prevent the heating element 7 from being melted by the molten slag 5, a material having excellent slag resistance is employed, or the hole diameter of the heating element 7 is made larger than the hole diameter of the slag port 9.

【0037】出滓口部分の耐火材3としては、耐熱性,
耐スラグ性に優れたアルミナ系の耐火材を用いる。14
00℃という高温環境下では、耐火材3は、少量ながら
溶融スラグ5側に溶出するので、冷却管6により耐火材
3を冷却し、耐火材3の表面にスラグの固化層すなわち
セルフコーティング層10を形成させる。
As the refractory material 3 in the slag port, heat resistance,
Uses alumina-based refractory material with excellent slag resistance. 14
In a high temperature environment of 00 ° C., the refractory material 3 elutes in a small amount to the molten slag 5 side, so that the refractory material 3 is cooled by the cooling pipe 6, and a solidified slag layer, that is, a self-coating layer 10 is formed on the surface of the refractory material 3. Is formed.

【0038】このセルフコーティング層10が保護層と
なり、耐火材3と溶融スラグ5との直接接触を避け、耐
火材3の溶損を防止する。
The self-coating layer 10 serves as a protective layer to prevent direct contact between the refractory material 3 and the molten slag 5 and prevent the refractory material 3 from being melted.

【0039】セルフコーティング層10の厚さは、出滓
口部の耐火材3表面温度によって変化するので、セルフ
コーティング層10の厚さを一定に保つには、発熱体7
の発熱量と冷却管6からの除熱量とを制御する。
Since the thickness of the self-coating layer 10 varies depending on the surface temperature of the refractory material 3 at the slag outlet, the heating element 7 must be used to keep the thickness of the self-coating layer 10 constant.
And the amount of heat removed from the cooling pipe 6 are controlled.

【0040】発熱体7の発熱量は、出滓口用高周波電源
15の出力電力で制御し、冷却管6からの除熱量は、流
量調節手段17の冷媒流量で制御する。
The amount of heat generated by the heating element 7 is controlled by the output power of the high frequency power supply 15 for the slag outlet, and the amount of heat removed from the cooling pipe 6 is controlled by the refrigerant flow rate of the flow rate adjusting means 17.

【0041】このように、炉内底部および出滓口の出口
における加熱によって溶融スラグを連続的に安定して出
滓するとともに、出滓口9周辺の耐火材3を冷却により
長寿命化する。
As described above, the molten slag is continuously and stably discharged by heating at the bottom of the furnace and at the outlet of the slag outlet, and the refractory material 3 around the slag outlet 9 is extended in life by cooling.

【0042】しかし、これらの操作は、エネルギー的に
は、加熱と冷却という相反する操作である。そこで、冷
却管6からの除熱量と発熱体7への印加電力とを必要最
小限とし、省エネルギー化する。
However, these operations are, in terms of energy, opposing operations of heating and cooling. Therefore, the amount of heat removed from the cooling pipe 6 and the power applied to the heating element 7 are minimized to save energy.

【0043】まず、セルフコーティング層10は、溶融
スラグ5の融点以下で形成されるから、出滓口9の内壁
温度は、溶融スラグ5の融点以下とする。溶融スラグ5
の融点は、成分によって異なる。ゴミ焼却灰や下水汚泥
焼却灰の融点は1200℃程度なので、出滓口9の内壁
温度を1100℃程度に制御する。
First, since the self-coating layer 10 is formed at a temperature lower than the melting point of the molten slag 5, the inner wall temperature of the slag port 9 is set at a temperature lower than the melting point of the molten slag 5. Molten slag 5
Has different melting points depending on the components. Since the melting point of refuse incineration ash and sewage sludge incineration ash is about 1200 ° C., the inner wall temperature of the slag port 9 is controlled to about 1100 ° C.

【0044】冷却管6内には、水だけ,空気だけ,ミス
ト状の水と空気との混合物のいずれかを通すことが可能
である。
It is possible to pass any one of only water, only air, and a mixture of mist-like water and air into the cooling pipe 6.

【0045】冷媒が空気の場合、単位体積当りの比熱が
水の1万分の1であり、除熱量は少ないが、微量調整が
可能となる。
When the refrigerant is air, the specific heat per unit volume is 1 / 10,000 of water, and the amount of heat removed is small, but a small amount can be adjusted.

【0046】ミスト状の水と空気との混合物を冷媒とす
ると、空気の場合より大きな除熱量を確保でき、しか
も、空気量を調節すると、除熱量の微量調節もできる。
When a mixture of mist-like water and air is used as a refrigerant, a larger amount of heat can be secured than in the case of air, and a small amount of heat can be adjusted by adjusting the amount of air.

【0047】さらに、冷却機22で冷媒の入口温度を低
温にすると、除熱量を増加させることもできる。
Further, when the temperature of the inlet of the refrigerant is lowered by the cooler 22, the heat removal amount can be increased.

【0048】ここでは、制御性を重視し、冷媒を空気と
して説明する。
Here, the controllability will be emphasized, and the refrigerant will be described as air.

【0049】冷却管6がSUS管の場合、酸化防止のた
めに冷却管6を700℃以下で使用する。出滓口9の内
壁から離して冷却管6を設置すれば、緩慢な温度制御と
なり、出滓口9の内壁に近づけて冷却管6を設置すれ
ば、除熱不足で冷却管6の表面温度が700℃以上にな
る可能性がある。望ましくは、冷却管6と出滓口9の内
壁との距離を30mmから50mmとし、冷却管6の表
面温度を700℃以下に保ちつつ、出滓口9の内壁温度
を1100℃程度に維持する。
When the cooling pipe 6 is a SUS pipe, the cooling pipe 6 is used at 700 ° C. or lower to prevent oxidation. If the cooling pipe 6 is installed away from the inner wall of the slag port 9, slow temperature control will be performed. If the cooling pipe 6 is installed close to the inner wall of the slag port 9, the surface temperature of the cooling pipe 6 will be insufficient due to insufficient heat removal. May be 700 ° C. or higher. Desirably, the distance between the cooling pipe 6 and the inner wall of the slag port 9 is 30 mm to 50 mm, and the inner wall temperature of the slag port 9 is maintained at about 1100 ° C. while the surface temperature of the cooling pipe 6 is maintained at 700 ° C. or less. .

【0050】また、表面が最も高温となる箇所に、冷却
管用温度測定器20を設置して温度を監視し、冷却管6
の全表面の酸化を防止する。
Further, a cooling pipe temperature measuring device 20 is installed at a place where the surface has the highest temperature, the temperature is monitored, and the cooling pipe 6 is measured.
Prevents oxidation of the entire surface.

【0051】この場合、温度制御装置18は、さらに、
モニタ装置23で、セルフコーティング層10の厚さお
よび出滓状況を遠隔監視し、冷却管用温度測定器20お
よび発熱体用温度測定器21の温度情報に基づき出滓口
9の内壁温度を予測し、流量調節手段17,冷却機2
2,出滓口用高周波電源15の出力を制御する。
In this case, the temperature control device 18 further includes
The monitor device 23 remotely monitors the thickness of the self-coating layer 10 and the slag condition, and predicts the inner wall temperature of the slag port 9 based on the temperature information of the cooling pipe temperature measuring device 20 and the heating element temperature measuring device 21. , Flow control means 17, cooling machine 2
2. Control the output of the high frequency power supply 15 for the slag outlet.

【0052】《実施例2》図2は、出滓口を底部に設け
た本発明による加熱溶融処理装置の実施例2の要部構造
を示す図である。実施例2は、溶融物5が流出する出滓
口9を溶融炉1の底部に設け、出滓口9の入口周辺を非
導電性の耐火材3で構成し、耐火材3を内部から冷却す
る手段6を備え、出滓口9の出口周辺を発熱体7と非導
電性の耐火材3とで構成した。
<Embodiment 2> FIG. 2 is a diagram showing a main structure of a heating and melting treatment apparatus according to a second embodiment of the present invention in which a slag port is provided at the bottom. In the second embodiment, the slag port 9 through which the melt 5 flows out is provided at the bottom of the melting furnace 1, the periphery of the entrance of the slag port 9 is made of a non-conductive refractory material 3, and the refractory material 3 is cooled from the inside. A heating means 7 and a non-conductive refractory material 3 are provided around the outlet of the slag port 9.

【0053】すなわち、出滓口9の入口周辺を炉体耐火
材3で構成し、耐火材3内部に冷却管6を備え、出滓口
9の出口周辺を炉体耐火材3と発熱体7とで構成してあ
る。
That is, the periphery of the entrance of the slag port 9 is made of the furnace body refractory material 3, the cooling pipe 6 is provided inside the refractory material 3, and the vicinity of the exit of the slag port 9 is the furnace body refractory material 3 and the heating element 7. It consists of

【0054】発熱体7は、出滓口用直流電源30により
通電し、抵抗加熱する。炉内の溶融スラグ5は、出滓口
9の内壁で冷却されて、セルフコーティング層10を形
成する。発熱体7は、温度が低下し粘度が増した溶融ス
ラグを再加熱し、流下を促進する。この発熱体7は、耐
酸化性に優れた材質とし、出滓口9の入口より出口を広
くして、溶融スラグ5との接触を防止し、溶損を抑え
る。
The heating element 7 is energized by a slag outlet DC power supply 30 to perform resistance heating. The molten slag 5 in the furnace is cooled by the inner wall of the slag port 9 to form a self-coating layer 10. The heating element 7 reheats the molten slag whose temperature has decreased and the viscosity has increased, and promotes the flow down. The heating element 7 is made of a material having excellent oxidation resistance, and has a wider outlet than the entrance of the slag port 9 to prevent contact with the molten slag 5 and suppress erosion.

【0055】出滓口9の右側の炉体耐火材3表面には、
下方まで成長したセルフコーティング層10を形成す
る。流量調節手段の流量17と出滓口用直流電源30の
出力を制御し、このセルフコーティング層10を形成し
た状態を保持する。
On the surface of the furnace refractory 3 on the right side of the slag port 9,
The self-coating layer 10 that has grown down is formed. The flow rate 17 of the flow rate control means and the output of the slag outlet DC power supply 30 are controlled to maintain the state in which the self-coating layer 10 is formed.

【0056】《実施例3》図3は、出滓口を底部に設け
た本発明による加熱溶融処理装置の実施例3の要部構造
を示す図である。実施例3は、溶融物5が流出する出滓
口9を溶融炉1の底部に設け、出滓口9の入口周辺を発
熱体8と非導電性の耐火材3とで構成し、耐火材3を内
部から冷却する手段6を備え、出滓口9の出口周辺を発
熱体7,8で構成した。
Embodiment 3 FIG. 3 is a diagram showing a main part structure of Embodiment 3 of a heating and melting treatment apparatus according to the present invention in which a slag port is provided at the bottom. In the third embodiment, a slag port 9 through which the melt 5 flows out is provided at the bottom of the melting furnace 1, and the periphery of the entrance of the slag port 9 is composed of a heating element 8 and a non-conductive refractory material 3. Means 6 for cooling the inside 3 was provided, and the periphery of the outlet of the slag outlet 9 was constituted by heating elements 7 and 8.

【0057】すなわち、炉体耐火材3とその下部の発熱
体7と対面側の発熱体8とで、出滓口9の周囲を構成す
る。これら発熱体7,8は、出滓口用コイル16と出滓
口用高周波電源15とにより、電磁誘導加熱する。
That is, the furnace body refractory 3, the heating element 7 below the furnace body 3, and the heating element 8 on the opposite side constitute the periphery of the slag port 9. These heating elements 7 and 8 are heated by electromagnetic induction by a coil 16 for a slag port and a high-frequency power supply 15 for a slag port.

【0058】出滓口9の左側下部の発熱体7は、耐スラ
グ性に優れた材質とし、さらに出滓口9の出口を入口よ
り広くし、溶融スラグとの接触を抑えている。
The heating element 7 on the lower left side of the slag port 9 is made of a material having excellent slag resistance, and the outlet of the slag port 9 is made wider than the inlet to suppress contact with the molten slag.

【0059】対面側発熱体8は、実施例2よりも、スラ
グを加熱しやすくなっている。しかし、この対面側発熱
体8は、溶融スラグ5と接触するので、耐スラグ性に優
れた材質にするとともに、稼働中でも可動式支持体31
を移動させ交換できるようにしてある。
The facing heating element 8 is easier to heat the slag than in the second embodiment. However, since the facing-side heating element 8 comes into contact with the molten slag 5, it is made of a material having excellent slag resistance, and the movable support 31 during operation.
Can be moved and exchanged.

【0060】また、対面側発熱体8は、溶融炉1内に突
き出して設置したので、炉内からの熱伝導により昇温
し、少ない電力でも、溶融スラグ5を高温にできる。
Further, since the facing-side heating element 8 is disposed so as to protrude into the melting furnace 1, the temperature is raised by heat conduction from the furnace, and the molten slag 5 can be heated to a high temperature with a small amount of electric power.

【0061】この場合も、流量調節手段17の流量と出
滓口用高周波電源15の出力とを制御し、セルフコーテ
ィング層10を形成した状態を保持する。
Also in this case, the flow rate of the flow rate adjusting means 17 and the output of the high frequency power supply 15 for the slag port are controlled to maintain the state in which the self-coating layer 10 is formed.

【0062】《実施例4》図4は、出滓口を底部に設け
た本発明による加熱溶融処理装置の実施例4の要部構造
を示す図である。実施例4は、溶融物5が流出する出滓
口9を溶融炉1の底部に設け、出滓口9の入口から出口
までの周辺を発熱体8と非導電性の耐火材3で構成し、
耐火材3を内部から冷却する手段6を備えた。
<Embodiment 4> FIG. 4 is a view showing a main structure of a heating and melting treatment apparatus according to a fourth embodiment of the present invention in which a slag port is provided at the bottom. In the fourth embodiment, a slag port 9 through which the melt 5 flows out is provided at the bottom of the melting furnace 1, and the periphery from the inlet to the outlet of the slag port 9 is constituted by the heating element 8 and the non-conductive refractory material 3. ,
A means 6 for cooling the refractory material 3 from the inside is provided.

【0063】実施例3の説明で述べたように、対面側発
熱体8は、溶融炉1内に突き出して設置した場合、炉内
からの熱伝導により昇温し、少ない電力でも、溶融スラ
グ5を高温にできるから、実施例4は、実施例3におけ
る下部の発熱体7を設けないで、対面側発熱体8の加熱
量を増加させる方式を採用した。
As described in the description of the third embodiment, when the facing-side heating element 8 is installed so as to protrude into the melting furnace 1, the temperature rises due to heat conduction from the furnace, and the molten slag 5 can be heated with little power. In Example 4, the method of increasing the heating amount of the facing-side heating element 8 without providing the lower heating element 7 in Example 3 was adopted.

【0064】この場合も、流量調節手段17の流量と出
滓口用高周波電源15の出力とを制御し、セルフコーテ
ィング層10を形成した状態を保持する。
Also in this case, the flow rate of the flow rate adjusting means 17 and the output of the high frequency power supply 15 for the slag port are controlled to maintain the state in which the self-coating layer 10 is formed.

【0065】《実施例5》図5は、出滓口を底部に設け
た本発明による加熱溶融処理装置の実施例5の要部構造
を示す図である。実施例5は、溶融物5が流出する出滓
口9を溶融炉1の底部に設け、出滓口9の周辺を非導電
性の耐火材3で構成し、耐火材3を内部から冷却する手
段6を設け、出滓口の孔内に発熱体7を挿入して設置し
た。
<Embodiment 5> FIG. 5 is a view showing the structure of a main part of Embodiment 5 of a heating and melting treatment apparatus according to the present invention in which a slag port is provided at the bottom. In the fifth embodiment, a slag port 9 through which the melt 5 flows out is provided at the bottom of the melting furnace 1, the periphery of the slag port 9 is made of a non-conductive refractory material 3, and the refractory material 3 is cooled from the inside. The means 6 was provided, and the heating element 7 was inserted and installed in the hole of the slag port.

【0066】発熱体7は、出滓口用コイル16と出滓口
用高周波電源15とによって、電磁誘導加熱する。発熱
体7は、溶融スラグ5と接触するので、耐スラグ性に優
れた材質とする。さらに、稼働中でも可動式支持体31
を移動させて、発熱体7を交換できるようにしている。
The heating element 7 is heated by electromagnetic induction by means of the tapping coil 16 and the tapping high frequency power supply 15. Since the heating element 7 comes into contact with the molten slag 5, it is made of a material having excellent slag resistance. Further, even during operation, the movable support 31
Is moved so that the heating element 7 can be replaced.

【0067】出滓口用コイル16は、中空であり、中に
水を通して冷却する冷却管の作用も兼ねている。
The slag outlet coil 16 is hollow, and also has the function of a cooling pipe for cooling water through the slag outlet.

【0068】この場合も、流量調節手段17の流量と出
滓口用高周波電源15の出力とを制御し、セルフコーテ
ィング層10を形成した状態を保持する。
Also in this case, the flow rate of the flow rate adjusting means 17 and the output of the high frequency power supply 15 for the slag port are controlled to maintain the state in which the self-coating layer 10 is formed.

【0069】なお、図5の構造は、出滓口9を溶融炉の
側壁に設けた後述の実施例7,実施例8にも適応でき
る。
The structure shown in FIG. 5 can be applied to the later-described seventh and eighth embodiments in which the slag port 9 is provided on the side wall of the melting furnace.

【0070】《実施例6》図6は、出滓口を底部に設け
た本発明による加熱溶融処理装置の実施例6の要部構造
を示す図である。実施例6は、溶融物5が流出する出滓
口9を溶融炉1の底部に設け、出滓口9の入口周辺を構
成する発熱体8を炉内に突き出して設置し、出滓口9を
構成しない発熱体7の側面と発熱体7の上面とを非導電
性の耐火材3で覆い、発熱体8の上面に設けた非導電性
の耐火材3を出滓口9の上面を覆うよう延長して配置
し、非導電性の耐火材3を内部から冷却する手段45,
46を備えた。
<Embodiment 6> FIG. 6 is a diagram showing a main structure of a heating and melting treatment apparatus according to a sixth embodiment of the present invention in which a slag port is provided at the bottom. In the sixth embodiment, a slag port 9 from which the melt 5 flows out is provided at the bottom of the melting furnace 1, and a heating element 8 constituting the periphery of the entrance of the slag port 9 is protruded into the furnace and installed. And the upper surface of the heating element 7 is covered with the non-conductive refractory material 3, and the non-conductive refractory material 3 provided on the upper surface of the heating element 8 is covered with the upper surface of the slag port 9. Means 45 for cooling the non-conductive refractory material 3 from the inside,
46.

【0071】図6は、対面側発熱体8も溶融スラグと接
触しないような構造にしたものである。対面側発熱体8
の出滓口9と面しない側面と上面を耐火材3で覆ってい
る。対面側発熱体8上面の耐火材3は、出滓口9の上面
を覆い隠すように炉内部に突き出し、内部には炉内部冷
却管45を備えている。
FIG. 6 shows a structure in which the facing-side heating element 8 does not come into contact with the molten slag. Face-side heating element 8
The side and upper surface not facing the slag port 9 are covered with the refractory material 3. The refractory material 3 on the upper surface of the facing heating element 8 projects into the furnace so as to cover the upper surface of the slag port 9, and has a furnace internal cooling pipe 45 inside.

【0072】これにより、セルフコーティング層10を
形成し、炉内部耐火材47を保護する。溶融スラグは出
滓口9の左側から流れ、流下する。
Thus, the self-coating layer 10 is formed to protect the refractory material 47 inside the furnace. The molten slag flows from the left side of the slag port 9 and flows down.

【0073】したがって、出滓口9の耐火材3と対面側
発熱体8との距離を調節すれば、対面側発熱体8の溶融
スラグとの接触を回避できる。
Therefore, if the distance between the refractory material 3 of the slag port 9 and the facing-side heating element 8 is adjusted, contact of the facing-side heating element 8 with the molten slag can be avoided.

【0074】溶融スラグの流量が少ない時には、可動式
支持体31によって、対面側発熱体8の位置を調節し、
対面側発熱体8を出滓口9に近づけ、スラグ5に与える
熱量を増加させる。
When the flow rate of the molten slag is small, the position of the facing heating element 8 is adjusted by the movable support 31,
The facing-side heating element 8 is brought closer to the slag port 9 to increase the amount of heat applied to the slag 5.

【0075】流量調節手段43,44の出力と出滓口用
高周波電源15の出力とを制御し、セルフコーティング
層10を形成した状態を保持する。
The output of the flow rate adjusting means 43 and 44 and the output of the high frequency power supply 15 for the slag port are controlled to maintain the state in which the self-coating layer 10 is formed.

【0076】《実施例7》図7は、出滓口を側壁に底部
に設けた本発明による加熱溶融処理装置の実施例のシス
テム構成を示す系統図である。実施例7は、溶融物5が
流出する出滓口9を溶融炉1の側壁に設け、出滓口9の
周辺を非導電性の耐火材3で構成し、耐火材3を内部か
ら冷却する手段6を備え、出滓口9の出口に対面し前記
出口から離れた位置に発熱体7を設けた。
<Embodiment 7> FIG. 7 is a system diagram showing a system configuration of an embodiment of a heating and melting treatment apparatus according to the present invention in which a slag outlet is provided on a bottom portion on a side wall. In the seventh embodiment, a slag port 9 through which the melt 5 flows out is provided on the side wall of the melting furnace 1, the periphery of the slag port 9 is made of a non-conductive refractory material 3, and the refractory material 3 is cooled from the inside. Means 6 were provided, and a heating element 7 was provided at a position facing the outlet of the slag outlet 9 and away from the outlet.

【0077】ここでは、溶融炉の加熱方式を電気抵抗式
として説明する。電気抵抗式加熱炉1は、炉体耐火材3
と、側壁から溶融スラグ5を排出する出滓口9と、溶融
炉1上部から挿入した2本の黒鉛電極34と、灰供給口
11と、排ガス排出口12とを含んでいる。
Here, the heating method of the melting furnace is described as an electric resistance method. The electric resistance heating furnace 1 includes a furnace body refractory material 3.
And a slag port 9 for discharging the molten slag 5 from the side wall, two graphite electrodes 34 inserted from above the melting furnace 1, an ash supply port 11, and an exhaust gas discharge port 12.

【0078】2本の黒鉛電極34は、交流電源35と接
続され、溶融スラグ5を抵抗体として、抵抗熱を発生さ
せ、その熱で灰を高温溶融する。
The two graphite electrodes 34 are connected to an AC power supply 35, generate resistance heat using the molten slag 5 as a resistor, and melt the ash at a high temperature by the heat.

【0079】耐火材3の内壁をセルフコーティングで保
護するため、炉体用冷却水36で、外壁を冷却する。出
滓口9の内壁も、炉体の冷却水36により冷却され、セ
ルフコーティング層10を形成する。
In order to protect the inner wall of the refractory material 3 by self-coating, the outer wall is cooled with the furnace body cooling water 36. The inner wall of the slag port 9 is also cooled by the cooling water 36 of the furnace body to form the self-coating layer 10.

【0080】溶融スラグ5の液位が出滓口9の設置位置
より低い場合には、出滓口9の加熱源がなく、出滓口9
は閉塞する。
When the liquid level of the molten slag 5 is lower than the installation position of the slag port 9, there is no heating source for the slag port 9 and the slag port 9 is not provided.
Closes.

【0081】液位が高い場合は、出滓口9の後流で孔に
対して垂直に設置した発熱体7を出滓口用直流電源30
により通電加熱し、固化しまたは粘度が増した溶融スラ
グ5を加熱し、出滓を促進する。
When the liquid level is high, the heating element 7 installed perpendicularly to the hole downstream of the slag port 9 is connected to the slag port DC power supply 30.
To heat the molten slag 5 that has solidified or increased in viscosity, thereby promoting slag removal.

【0082】制御装置37は、発熱体用温度測定器21
が測定した発熱体7の温度に基づいて、出滓口用直流電
源30から発熱体7に供給する電力を制御する。
The control device 37 is provided with the temperature measuring device 21 for the heating element.
Controls the power supplied from the slag outlet DC power supply 30 to the heating element 7 based on the measured temperature of the heating element 7.

【0083】発熱体7は、可動式支持体31により支持
されて、横方向に移動できるようにしている。溶融スラ
グ5の流量が少ない時は、発熱体8を出滓口9に近づ
け、スラグ5に与える熱量を増加させ、溶融スラグの流
出量が多い場合は、接触しないように出滓口9から離し
て使用する。このように、発熱体7の位置は、状況に応
じて制御できることが望ましいので、モニタ装置23に
より状況を監視し、その状況に基づき、制御することも
できる。
The heating element 7 is supported by a movable support 31 so that it can move in the lateral direction. When the flow rate of the molten slag 5 is low, the heating element 8 is brought closer to the slag port 9 to increase the amount of heat applied to the slag 5, and when the flow rate of the molten slag is large, the heating element 8 is separated from the slag port 9 so as not to contact. To use. As described above, since it is desirable that the position of the heating element 7 can be controlled according to the situation, the situation can be monitored by the monitor device 23 and controlled based on the situation.

【0084】溶融スラグの流出量が多い場合には、セル
フコーティング層10が薄くなるため、冷却管6によ
り、セルフコーティング層10の厚さを制御する。流量
調節手段17により冷媒の流量を制御して、冷却管6の
表面が酸化しない温度に保持する。
When the outflow of the molten slag is large, the thickness of the self-coating layer 10 is controlled by the cooling pipe 6 because the self-coating layer 10 becomes thin. The flow rate of the refrigerant is controlled by the flow rate adjusting means 17 to maintain the temperature at which the surface of the cooling pipe 6 does not oxidize.

【0085】制御装置37は、冷却管用温度測定器2
0,モニタ装置23,発熱体用温度測定器21からの各
情報をに取り込み、出滓口用直流電源30で発熱体7の
温度を制御し、流量調節手段17で冷却管6の表面温度
を制御し、可動式支持体31で発熱体7の位置をそれぞ
れ制御し、連続かつ安定した溶融スラグの出滓を可能と
する。
The control device 37 is provided with a cooling pipe temperature measuring device 2.
0, the monitoring device 23, and the information from the temperature measuring device 21 for the heating element, the temperature of the heating element 7 is controlled by the DC power supply 30 for the slag outlet, and the surface temperature of the cooling pipe 6 is controlled by the flow rate adjusting means 17. The position of the heating element 7 is controlled by the movable support 31 so that the molten slag can be continuously and stably discharged.

【0086】出滓口は、1400℃の高温雰囲気であり
大気と接触する個所でもあるから、出滓口9の周辺に設
ける発熱体は、耐酸化性に優れていることが重要であ
る。
Since the slag port is a high-temperature atmosphere at 1400 ° C. and is also a place in contact with the atmosphere, it is important that the heating element provided around the slag port 9 has excellent oxidation resistance.

【0087】《実施例8》図8は、出滓口を側壁に設け
た本発明による加熱溶融処理装置の実施例8の要部構造
を示す図である。実施例8は、溶融物5が流出する出滓
口9を溶融炉1の側壁に設け、出滓口9の下部側を非導
電性の耐火材3で構成し、耐火材を内部から冷却する手
段6を備え、出滓口の上部側に発熱体8を設けた。さら
に、出滓口9の出口に対面し出口から離れた位置に発熱
体7を設けた。
<Eighth Embodiment> FIG. 8 is a view showing a main structure of an eighth embodiment of a heating and melting treatment apparatus according to the present invention in which a slag port is provided on a side wall. In the eighth embodiment, the slag port 9 through which the melt 5 flows out is provided on the side wall of the melting furnace 1, the lower side of the slag port 9 is made of the non-conductive refractory material 3, and the refractory material is cooled from the inside. Means 6 were provided, and a heating element 8 was provided above the slag outlet. Further, a heating element 7 was provided at a position facing the outlet of the slag outlet 9 and away from the outlet.

【0088】実施例8の場合、出滓口9の出口の上部側
にも発熱体8があるから、溶融スラグ5をよりスムーズ
に連続出滓できる。
In the case of the eighth embodiment, since the heating element 8 is also provided on the upper side of the outlet of the slag port 9, the molten slag 5 can be continuously and smoothly slag-discharged.

【0089】図9は、本発明の出滓口の周辺に用いる発
熱体の構造の一例を示す図である。図9の発熱体は、黒
鉛25の表面に非酸化物系セラミックスである炭化けい
素SiC26を約1mmコーティングした発熱体であ
る。黒鉛25は、発熱体として安価ではあるが、大気中
の酸素と接触し、損耗する。そこで、黒鉛25をSiガ
ス中で表面化成処理して炭化けい素の膜26を形成させ
る。SiCの膜26は、高温時に酸化し、SiO2の膜
となって黒鉛25の保護被膜として作用する。
FIG. 9 is a view showing an example of the structure of a heating element used around the slag outlet of the present invention. The heating element in FIG. 9 is a heating element in which a surface of graphite 25 is coated with silicon carbide SiC 26, which is a non-oxide ceramic, by about 1 mm. The graphite 25 is inexpensive as a heating element, but is in contact with oxygen in the atmosphere and is worn away. Therefore, the graphite 25 is subjected to a surface conversion treatment in a Si gas to form a silicon carbide film 26. The SiC film 26 is oxidized at a high temperature, becomes a SiO 2 film, and acts as a protective film for the graphite 25.

【0090】図10は、本発明の出滓口の周辺に用いる
発熱体の構造の他の例を示す図である。図10の発熱体
は、酸化されないAl23−Cr23系耐火物材27の
内部に、導電性発熱体25を内包する発熱体である。A
23−Cr23系耐火物材27は、溶融スラグ5と接
触しても溶損の少ない耐スラグ性に優れた材料でもあ
る。耐火材3は、多孔質材であるから、望ましくは、黒
鉛25にSiCコーティングし、酸素の侵入から二重に
保護する。
FIG. 10 is a view showing another example of the structure of the heating element used around the slag port of the present invention. The heating element of FIG. 10 is a heating element including a conductive heating element 25 inside an Al 2 O 3 —Cr 2 O 3 refractory material 27 that is not oxidized. A
l 2 O 3 -Cr 2 O 3 based refractory material 27 is also an excellent material less slag resistance of erosion when in contact with molten slag 5. Since the refractory material 3 is a porous material, the graphite 25 is desirably coated with SiC to provide double protection from oxygen intrusion.

【0091】図11は、本発明の出滓口の周辺に用いる
発熱体の構造の別の例を示す図である。図11の発熱体
は、非酸化物系セラミックスと導電性セラミックスとの
混合材料28を発熱体とするものである。
FIG. 11 is a view showing another example of the structure of the heating element used around the slag port of the present invention. The heating element in FIG. 11 uses a mixed material 28 of non-oxide ceramics and conductive ceramics as the heating element.

【0092】ここでは、導電性金属であるMoSi2
非導電性セラミックスのAl23とを所定の割合で混合
し、ホットプレス法により製造した導電性のMoSi2
系の複合焼結体28を採用している。このMoSi2
の複合焼結体28は、Al23−Cr23系耐火物材と
同様に、耐スラグ性に優れた材質である。
Here, the conductive metal MoSi 2 and the non-conductive ceramic Al 2 O 3 were mixed at a predetermined ratio, and the conductive MoSi 2 produced by hot pressing was used.
A system-based composite sintered body 28 is employed. The MoSi 2 -based composite sintered body 28 is a material having excellent slag resistance, like the Al 2 O 3 -Cr 2 O 3 -based refractory material.

【0093】図12は、本発明による発熱体の消耗度を
従来の黒鉛発熱体の消耗度と比較して示す図である。す
なわち、図9〜図11の3種類の発熱体について、消耗
度を比較した結果を示す図である。
FIG. 12 is a diagram showing the degree of wear of the heating element according to the present invention in comparison with the degree of consumption of the conventional graphite heating element. That is, it is a diagram showing the results of comparing the degrees of wear of the three types of heating elements of FIGS. 9 to 11.

【0094】スラグタップの耐久性を試験した灰溶融試
験の手順の概要は、以下の通りである。まず、図1に示
した電磁誘導加熱式の溶融装置で、炉内を1400℃に
昇温した。その後、灰を30kg/hでフイーダから定
量供給し、炉内各部の温度が定常状態になってから、連
続20時間運転して、停止後に出滓口部の発熱体の重量
を計量し、重量減少率を求めた。その後、再度昇温し、
20時間運転するサイクルを繰り返して、20時間毎に
重量減少率を評価した。
The outline of the procedure of the ash melting test for testing the durability of the slag tap is as follows. First, the inside of the furnace was heated to 1400 ° C. by the electromagnetic induction heating type melting apparatus shown in FIG. After that, the ash was fed at a constant rate of 30 kg / h from a feeder. After the temperature of each part in the furnace became a steady state, the furnace was operated continuously for 20 hours. The rate of decrease was determined. After that, the temperature rises again,
The cycle of running for 20 hours was repeated, and the weight loss rate was evaluated every 20 hours.

【0095】その結果、黒鉛は、酸化が著しく進行し、
約40時間では、その形状をとどめないほどに減少す
る。一方、他の3種類の発熱体は、総運転時間80時間
でも、重量減少は、10%以下と少ない。
As a result, the graphite is significantly oxidized,
At about 40 hours, the shape is reduced so as not to remain. On the other hand, the weight loss of the other three types of heating elements is as small as 10% or less even when the total operation time is 80 hours.

【0096】これら3種類を空気雰囲気で加熱した試験
では、総運転時間80時間でもいずれも重量減少はな
く、灰溶融試験における約10%の消耗は、溶融スラグ
への溶損と判断できる。したがって、発熱体と溶融スラ
グとの接触頻度を低減すれば、さらに、消耗を低下でき
る。
In the test in which these three types were heated in an air atmosphere, there was no weight loss even in the total operation time of 80 hours, and about 10% consumption in the ash melting test can be judged as melting damage to the molten slag. Therefore, if the frequency of contact between the heating element and the molten slag is reduced, the consumption can be further reduced.

【0097】なお、SiCとZrB2とを所定の割合で
混合し焼結した非導電性のZrB2系の複合焼結体は、
耐酸化性では劣るものの、耐スラグ性が3種類よりも優
れた材質である。出滓口9の入口では、酸素濃度が低い
ので、耐火部材3として使用できる。
A non-conductive ZrB 2 composite sintered body obtained by mixing and sintering SiC and ZrB 2 at a predetermined ratio is as follows:
Although it is inferior in oxidation resistance, it is a material that is superior in slag resistance to three types. Since the oxygen concentration is low at the entrance of the slag port 9, it can be used as the refractory member 3.

【0098】図13は、本発明により連続出滓されるス
ラグ排出量の変動を従来の間欠出滓における変動と比較
して示す図である。従来の溶融スラグ5は、溶融炉1の
内部から出滓口9を経て流下する過程で温度が低下し、
粘度が増し、さらには固化し、閉塞に至るので、間欠出
滓になっていた。
FIG. 13 is a diagram showing the variation in the amount of slag discharged continuously according to the present invention in comparison with the variation in the conventional intermittent slag. The temperature of the conventional molten slag 5 decreases in the process of flowing down from the inside of the melting furnace 1 through the slag port 9,
The viscosity increased and further solidified, leading to blockage, resulting in intermittent scum.

【0099】これに対して、本発明では、出滓口9出口
で発熱体7の熱により、溶融スラグ5を連続的に安定し
て出滓できる。一方、冷却管6からの冷却により、出滓
口9内壁にスラグが固化したセルフコーティング層10
を形成し、出滓口9内壁と溶融スラグ5との直接接触を
避けたので、耐火材3の溶損を防止し、長寿命化でき
る。
On the other hand, in the present invention, the molten slag 5 can be continuously and stably discharged by the heat of the heating element 7 at the outlet of the discharge port 9. On the other hand, the self-coating layer 10 in which the slag is solidified on the inner wall of the slag port 9 by cooling from the cooling pipe 6.
Is formed, and the direct contact between the inner wall of the slag port 9 and the molten slag 5 is avoided, so that the refractory material 3 is prevented from being melted and the service life can be extended.

【0100】[0100]

【発明の効果】本発明によれば、出滓口の内壁を構成す
る耐火材にセルフコーティング層を形成し、耐火材の溶
融スラグへの溶損を防ぎ、耐火材を長寿命化できる。
According to the present invention, a self-coating layer is formed on the refractory material constituting the inner wall of the slag port, so that the refractory material is prevented from being melted into the molten slag and the life of the refractory material can be extended.

【0101】また、出滓口の周辺を加熱する発熱体に耐
酸化性と耐スラグ性に優れた材料を用い、発熱体が溶融
スラグと接触しにくい構造にすることにより、発熱体を
長寿命化できる。
Further, a material having excellent oxidation resistance and slag resistance is used for the heating element for heating the periphery of the slag outlet, and the heating element has a structure that does not easily come into contact with the molten slag. Can be

【0102】さらに、出滓口の周辺を構成する耐火材と
発熱体との両方を長寿命化し結果、溶融スラグをほぼ連
続的に出滓できる。
Furthermore, as a result of extending the life of both the refractory material and the heating element constituting the periphery of the slag outlet, the molten slag can be ashed almost continuously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】出滓口を底部に設けた本発明による加熱溶融処
理装置の実施例1のシステム構成を示す系統図である。
FIG. 1 is a system diagram showing a system configuration of a first embodiment of a heating and melting treatment apparatus according to the present invention in which a slag port is provided at a bottom portion.

【図2】出滓口を底部に設けた本発明による加熱溶融処
理装置の実施例2の要部構造を示す図である。
FIG. 2 is a view showing a main structure of a second embodiment of the heating and melting treatment apparatus according to the present invention, in which a slag port is provided at a bottom portion.

【図3】出滓口を底部に設けた本発明による加熱溶融処
理装置の実施例3の要部構造を示す図である。
FIG. 3 is a diagram showing a main part structure of a third embodiment of the heating and melting treatment apparatus according to the present invention, in which a slag port is provided at the bottom.

【図4】出滓口を底部に設けた本発明による加熱溶融処
理装置の実施例4の要部構造を示す図である。
FIG. 4 is a diagram showing a main structure of a fourth embodiment of the heating and melting treatment apparatus according to the present invention, in which a slag port is provided at the bottom.

【図5】出滓口を底部に設けた本発明による加熱溶融処
理装置の実施例5の要部構造を示す図である。
FIG. 5 is a diagram showing a main part structure of a fifth embodiment of the heating and melting treatment apparatus according to the present invention in which a slag port is provided at the bottom.

【図6】出滓口を底部に設けた本発明による加熱溶融処
理装置の実施例6の要部構造を示す図である。
FIG. 6 is a view showing a structure of a main part of a sixth embodiment of the heating and melting treatment apparatus according to the present invention, in which a slag port is provided at the bottom.

【図7】出滓口を側壁に設けた本発明による加熱溶融処
理装置の実施例7のシステム構成を示す系統図である。
FIG. 7 is a system diagram showing a system configuration of Embodiment 7 of the heating and melting treatment apparatus according to the present invention in which a slag port is provided on a side wall.

【図8】出滓口を側壁に設けた本発明による加熱溶融処
理装置の実施例8の要部構造を示す図である。
FIG. 8 is a view showing a main structure of a heating and melting treatment apparatus according to an eighth embodiment of the present invention in which a slag port is provided on a side wall.

【図9】本発明の出滓口の周辺に用いる発熱体の構造の
一例を示す図である。
FIG. 9 is a view showing an example of the structure of a heating element used around the slag outlet of the present invention.

【図10】本発明の出滓口の周辺に用いる発熱体の構造
の他の例を示す図である。
FIG. 10 is a view showing another example of the structure of the heating element used around the slag outlet of the present invention.

【図11】本発明の出滓口の周辺に用いる発熱体の構造
の別の例を示す図である。
FIG. 11 is a view showing another example of the structure of the heating element used around the slag outlet of the present invention.

【図12】本発明による発熱体の消耗度を従来の黒鉛発
熱体の消耗度と比較して示す図である。
FIG. 12 is a diagram showing the degree of wear of a heating element according to the present invention in comparison with the degree of wear of a conventional graphite heating element.

【図13】本発明により連続出滓されるスラグ排出量の
変動を従来の間欠出滓における変動と比較して示す図で
ある。
FIG. 13 is a diagram showing a change in the amount of slag discharged continuously according to the present invention in comparison with a change in a conventional intermittent slag.

【符号の説明】[Explanation of symbols]

1 電磁誘導加熱炉 2 溶融炉用コイル 3 炉体耐火材 4 黒鉛発熱体 5 溶融スラグ 6 冷却管 7 発熱体 8 対面側発熱体 9 出滓口 10 セルフコーティング層 11 供給口 12 排出口 14 溶融炉用高周波電源 15 出滓口用高周波電源 16 出滓口用コイル 17 流量調節手段 18 温度制御装置 20 冷却管用温度測定器 21 発熱体用温度測定器 22 冷却機 23 モニタ装置 25 黒鉛 26 SiCコーティング 27 Al23−Cr23系耐火材 28 MoSi2系複合焼結体 30 出滓口用直流電源 31 可動式支持体 33 電気抵抗式加熱炉 34 黒鉛電極 35 交流電源 36 炉体用冷却水 37 制御装置 43 内部冷却用流量調節手段 44 低部冷却用流量調節手段 45 炉内部冷却管 46 炉低部冷却管 47 炉内部耐火材DESCRIPTION OF SYMBOLS 1 Electromagnetic induction heating furnace 2 Melting furnace coil 3 Furnace body refractory material 4 Graphite heating element 5 Melting slag 6 Cooling tube 7 Heating element 8 Face side heating element 9 Slag port 10 Self-coating layer 11 Supply port 12 Discharge port 14 Melting furnace High frequency power supply 15 High frequency power supply for slag port 16 Coil for slag port 17 Flow rate adjusting means 18 Temperature control device 20 Temperature measuring device for cooling pipe 21 Temperature measuring device for heating element 22 Cooling machine 23 Monitoring device 25 Graphite 26 SiC coating 27 Al 2 O 3 -Cr 2 O 3 -based refractory material 28 MoSi 2 -based composite sintered body 30 DC power supply for slag port 31 Movable support 33 Electric resistance heating furnace 34 Graphite electrode 35 AC power supply 36 Cooling water for furnace body 37 Control device 43 Flow rate adjusting means for internal cooling 44 Flow rate adjusting means for low part cooling 45 Furnace internal cooling pipe 46 Furnace low part cooling pipe 47 Furnace internal refractory

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B09B 3/00 F23G 5/00 115Z F23G 5/00 ZAB B09B 3/00 ZAB 115 303L (72)発明者 天野 研 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 伊藤 修 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 佐藤 晃二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 大河内 功 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 立村 浩一 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 金子 滋司 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 3K061 AA23 AC03 CA11 DB19 NB01 NB28 4D004 AA36 CA29 CA32 CB31 CB43 DA01 DA02 DA06 DA12 DA20Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) B09B 3/00 F23G 5/00 115Z F23G 5/00 ZAB B09B 3/00 ZAB 115 303L (72) Inventor Ken Amano Ibaraki 7-1-1, Omikamachi, Hitachi City Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Osamu Ito 7-1-1, Omikamachi, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Koji Sato 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory, Ltd. 72) Inventor Koichi Tatemura 3-1-1, Sachimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Plant (72) Inventor Shige Kaneko 3-1-1, Sachimachi, Hitachi City, Ibaraki Prefecture Co., Ltd. F-term (reference) in Hitachi, Ltd. Hitachi Plant 3K061 AA23 AC03 CA11 DB19 NB01 NB28 4D004 AA36 CA29 CA32 CB31 CB43 DA01 DA02 DA06 DA12 DA20

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の底部に設け、 前記出滓口の入口周辺を非導電性の耐火材で構成し、 前記耐火材を内部から冷却する手段を備え、 前記出滓口の出口周辺を発熱体で構成したことを特徴と
する加熱溶融処理装置。
1. A heating and melting treatment apparatus for heating and melting a solid and / or powder, wherein a slag outlet from which a melt flows out is provided at the bottom of the melting furnace, and a non-conductive refractory is provided around the entrance of the slag opening. A heating and melting treatment apparatus, comprising: means for cooling the refractory material from inside; and a heating element around the outlet of the slag port.
【請求項2】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の底部に設け、 前記出滓口の入口周辺を非導電性の耐火材で構成し、 前記耐火材を内部から冷却する手段を備え、 前記出滓口の出口周辺を発熱体と非導電性の耐火材とで
構成したことを特徴とする加熱溶融処理装置。
2. A heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag outlet from which a melt flows out is provided at the bottom of the melting furnace, and a non-conductive refractory is provided around the entrance of the slag opening. A heating and melting treatment apparatus, comprising: means for cooling the refractory material from the inside; and a heating element and a non-conductive refractory material around the outlet of the slag port.
【請求項3】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の底部に設け、 前記出滓口の入口周辺を発熱体と非導電性の耐火材とで
構成し、 前記耐火材を内部から冷却する手段を備え、 前記出滓口の出口周辺を発熱体で構成したことを特徴と
する加熱溶融処理装置。
3. A heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag port through which a melt flows out is provided at the bottom of the melting furnace, and the vicinity of the entrance of the slag port is electrically non-conductive with a heating element. A heating and melting treatment apparatus comprising: means for cooling the refractory material from the inside; and a heating element around the outlet of the slag port.
【請求項4】 請求項1ないし3のいずれか一項に記載
の加熱溶融処理装置において、 前記出滓口の出口の孔が出滓口の入口の孔よりも広いこ
とを特徴とする加熱溶融処理装置。
4. The heat melting treatment apparatus according to claim 1, wherein an outlet hole of the slag port is wider than an inlet hole of the slag port. Processing equipment.
【請求項5】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の底部に設け、 前記出滓口の入口から出口までの周辺を発熱体と非導電
性の耐火材で構成し、 前記耐火材を内部から冷却する手段を備えたことを特徴
とする加熱溶融処理装置。
5. A heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag outlet from which a melt flows out is provided at the bottom of the melting furnace, and heat is generated around the entrance to the outlet of the slag outlet. A heating and melting treatment apparatus comprising: a body and a non-conductive refractory material; and means for cooling the refractory material from the inside.
【請求項6】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の底部に設け、 前記出滓口の周辺を非導電性の耐火材で構成し、 前記耐火材を内部から冷却する手段を設け、 前記出滓口の孔内に発熱体を挿入して設置したことを特
徴とする加熱溶融処理装置。
6. A heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag port from which a melt flows out is provided at the bottom of the melting furnace, and the periphery of the slag port is a non-conductive refractory material. And a means for cooling the refractory material from the inside, and a heating element inserted and installed in the hole of the slag port.
【請求項7】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の底部に設け、 前記出滓口の入口周辺を構成する発熱体を炉内に突き出
して設置し、 前記出滓口を構成しない発熱体側面と発熱体上面とを非
導電性の耐火材で覆い、 前記発熱体上面に設けた非導電性の耐火材を前記出滓口
の上面を覆うよう延長して配置し、 前記非導電性の耐火材を内部から冷却する手段を備えた
ことを特徴とする加熱溶融処理装置。
7. A heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag outlet from which a melt flows out is provided at a bottom portion of the melting furnace, and a heating element constituting a periphery of the entrance of the slag outlet is provided. The heating element is disposed so as to protrude into the furnace, and the heating element side surface and the heating element upper surface which do not constitute the slag outlet are covered with a non-conductive refractory material. A heating and melting treatment apparatus, which is provided so as to extend so as to cover an upper surface of a mouth, and has means for cooling the non-conductive refractory material from the inside.
【請求項8】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の側壁に設け、 前記出滓口の周辺を非導電性の耐火材で構成し、 前記耐火材を内部から冷却する手段を備え、 前記出滓口の出口に対面し前記出口から離れた位置に発
熱体を設けたことを特徴とする加熱溶融処理装置。
8. A heating and melting treatment apparatus for heating and melting a solid and / or powder, wherein a slag port through which a melt flows out is provided on a side wall of a melting furnace, and the periphery of the slag port is a non-conductive refractory material. A heating and melting treatment apparatus comprising: means for cooling the refractory material from the inside; and a heating element provided at a position facing the outlet of the slag port and away from the outlet.
【請求項9】 固体および/または粉体を加熱溶融する
加熱溶融処理装置において、 溶融物が流出する出滓口を溶融炉の側壁に設け、 前記出滓口の下部側を非導電性の耐火材で構成し、 前記耐火材を内部から冷却する手段を備え、 前記出滓口の上部側に発熱体を設けたことを特徴とする
加熱溶融処理装置。
9. A heating and melting treatment apparatus for heating and melting a solid and / or a powder, wherein a slag port through which a melt flows out is provided on a side wall of the melting furnace, and a lower side of the slag port is a non-conductive refractory. A heating and melting treatment apparatus comprising: means for cooling the refractory material from the inside; and a heating element provided above the slag port.
【請求項10】 請求項9に記載の加熱溶融処理装置に
おいて、 前記出滓口の出口に対面し前記出口から離れた位置に発
熱体を設けたことを特徴とする加熱溶融処理装置。
10. The heating and melting treatment apparatus according to claim 9, wherein a heating element is provided at a position facing the outlet of the slag port and away from the exit.
【請求項11】 請求項1ないし10のいずれか一項に
記載の加熱溶融処理装置において、 前記発熱体が、炭化けい素でコーティングされた黒鉛、
金属ほう化物を含有する導電性セラミックス、金属けい
化物を含有する導電性セラミックス、前記黒鉛または前
記導電性セラミックスを内包する非導電性の耐火材のい
ずれかであることを特徴とする加熱溶融処理装置。
11. The heating and melting treatment apparatus according to claim 1, wherein the heating element is graphite coated with silicon carbide.
A heat-melting treatment apparatus characterized in that the heat-melt processing apparatus is any one of a conductive ceramic containing a metal boride, a conductive ceramic containing a metal silicide, a non-conductive refractory material containing the graphite or the conductive ceramic. .
【請求項12】 請求項1ないし10のいずれか一項に
記載の加熱溶融処理装置において、 出滓口の周辺を構成する耐火材が、ほう化ジルコニウム
またはけい化モリブデンを含有するセラミックスである
ことを特徴とする加熱溶融処理装置。
12. The heating and melting treatment apparatus according to claim 1, wherein the refractory material surrounding the slag port is a ceramic containing zirconium boride or molybdenum silicide. A heating and melting treatment apparatus.
【請求項13】 請求項1ないし12のいずれか一項に
記載の加熱溶融処理装置において、 前記冷却手段が、冷媒により前記耐火材を冷却する手段
であり、 前記冷却手段の冷媒の流量を制御する手段と、前記発熱
体の発熱量を制御する手段と、前記非導電性の耐火材の
内部に設置された温度測定手段と、前記発熱体内部また
はその近傍に設置された温度測定手段と、測定されたそ
れぞれの温度に基づき前記冷媒の流量と前記発熱体の発
熱量とを制御する手段とを備えたことを特徴とする加熱
溶融処理装置。
13. The heating and melting treatment apparatus according to claim 1, wherein the cooling unit is a unit that cools the refractory material with a refrigerant, and controls a flow rate of the refrigerant in the cooling unit. Means, a means for controlling the amount of heat generated by the heating element, a temperature measurement means installed inside the non-conductive refractory material, and a temperature measurement means installed inside or near the heating element, Means for controlling the flow rate of the refrigerant and the calorific value of the heating element based on the measured temperatures.
【請求項14】 請求項13に記載の加熱溶融処理装置
において、 前記出滓口の出口の状況を非接触に監視するモニタ装置
を備え、 前記モニタ装置により得られた出滓口の状況に基づき前
記冷媒の流量と前記発熱体の発熱量を制御する手段を備
えたことを特徴とする加熱溶融処理装置。
14. The heating and melting treatment apparatus according to claim 13, further comprising: a monitoring device for monitoring a status of an outlet of the slag port in a non-contact manner, based on a status of the slag port obtained by the monitoring device. A heating and melting treatment apparatus comprising means for controlling a flow rate of the refrigerant and a calorific value of the heating element.
JP11185199A 1999-06-30 1999-06-30 Heating/melting processing apparatus Pending JP2001012722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185199A JP2001012722A (en) 1999-06-30 1999-06-30 Heating/melting processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185199A JP2001012722A (en) 1999-06-30 1999-06-30 Heating/melting processing apparatus

Publications (1)

Publication Number Publication Date
JP2001012722A true JP2001012722A (en) 2001-01-19

Family

ID=16166607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185199A Pending JP2001012722A (en) 1999-06-30 1999-06-30 Heating/melting processing apparatus

Country Status (1)

Country Link
JP (1) JP2001012722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515893B1 (en) * 2002-04-03 2005-09-20 (주)위너 테크 Continuous type high-temperature incinerator
KR100782051B1 (en) 2006-01-26 2007-12-04 (주)위너 테크 APPARATUS FOR POISONOUS GAS PURIFICATION USING ULTRA HIGH TEMPERATURE AND QUICK HEATING MoSi2 HEATING ELEMENT
JP2009085549A (en) * 2007-10-02 2009-04-23 Sumitomo Metal Mining Co Ltd Method for estimating thickness of electric furnace slag coating by unsteady heat transfer analysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515893B1 (en) * 2002-04-03 2005-09-20 (주)위너 테크 Continuous type high-temperature incinerator
KR100782051B1 (en) 2006-01-26 2007-12-04 (주)위너 테크 APPARATUS FOR POISONOUS GAS PURIFICATION USING ULTRA HIGH TEMPERATURE AND QUICK HEATING MoSi2 HEATING ELEMENT
JP2009085549A (en) * 2007-10-02 2009-04-23 Sumitomo Metal Mining Co Ltd Method for estimating thickness of electric furnace slag coating by unsteady heat transfer analysis

Similar Documents

Publication Publication Date Title
JP2001012722A (en) Heating/melting processing apparatus
JP3746921B2 (en) Operation method of electric melting furnace
JP3970542B2 (en) Furnace wall structure of electric melting furnace and method for suppressing wear of furnace wall refractories
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP3806306B2 (en) Secondary combustion apparatus for ash melting furnace and method of operating secondary combustion apparatus
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JPH067007B2 (en) Waste melting furnace slag facility
JP3739940B2 (en) Waste melting furnace
JP3723100B2 (en) Furnace window structure
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP2002250592A (en) Heater at discharge opening of furnace
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP2001324124A (en) Plasma arc type ash melting furnace
JP2000297921A (en) Slag discharging device and slag discharging method from waste melting furnace
JP4113970B2 (en) DC electric resistance type reduction melting furnace
JP3799582B2 (en) Ash melting furnace
JP3575570B2 (en) Ash melting furnace
JP3744668B2 (en) Ash melting furnace
JP2004177080A (en) Dc electric resistance type melting furnace and its operation method
JPH109555A (en) Method and device for sensing level of ash melting furnace
JP2003090524A (en) Molten metal temperature measuring device for melting furnace
JP2002013719A (en) Ash melting furnace and method of melting ashes
JP3714383B2 (en) Ash melting furnace and method of operating the same
JP3831930B2 (en) Electrode sealing device for ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

RD04 Notification of resignation of power of attorney

Effective date: 20060202

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20071105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071231

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071231

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

RD04 Notification of resignation of power of attorney

Effective date: 20080326

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111114

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20131114

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250