JP2004251520A - Method of controlling operation of electric melting furnace - Google Patents

Method of controlling operation of electric melting furnace Download PDF

Info

Publication number
JP2004251520A
JP2004251520A JP2003041719A JP2003041719A JP2004251520A JP 2004251520 A JP2004251520 A JP 2004251520A JP 2003041719 A JP2003041719 A JP 2003041719A JP 2003041719 A JP2003041719 A JP 2003041719A JP 2004251520 A JP2004251520 A JP 2004251520A
Authority
JP
Japan
Prior art keywords
melting furnace
electric melting
supply amount
input power
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041719A
Other languages
Japanese (ja)
Inventor
Kichiji Matsuda
吉司 松田
Satoshi Naito
聡 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2003041719A priority Critical patent/JP2004251520A/en
Publication of JP2004251520A publication Critical patent/JP2004251520A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling operation of an electric melting furnace for melting municipal refuse and refuse burned residue permitting efficient, stable, and automatic operation of the electric melting furnace with low running cost. <P>SOLUTION: In this method of controlling operation of the electric melting furnace for melting municipal refuse and refuse burned residue, input power or melted matter supply quantity into the electric melting furnace is set, and the melted matter supply quantity or the input power into the electric melting furnace is calculated on the basis of the respective set values. The melted matter supply quantity and the input power are respectively controlled via a controller such that the input power and the melted matter supply quantity into the electric melting furnace equal to the set value and the calculated value or that the melted matter supply quantity and the input power into the electric melting furnace are the set value and the calculated value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや都市ごみの焼却残滓等を溶融処理するアーク溶融炉やプラズマアーク溶融炉、抵抗式溶融炉等の電気溶融炉の操業制御方法に関するものであり、被溶融物処理量若しくは投入電力の何れか一方を設定して最適な被溶融物処理量又は投入電力を演算し、これ等に基づいて電気溶融炉の操業制御を行なうことにより、被溶融物処理量やその性状の変化及び電力供給事情の変化等に対応して最適な操業を実現できるようにした電気溶融炉の操業制御方法に関するものである。
【0002】
【従来の技術】
従前から都市ごみや都市ごみの焼却残滓等の溶融処理には、アーク溶融炉やプラズマアーク溶融炉、抵抗式溶融炉等の電気溶融炉が多く利用されている。ごみ焼却施設の発電設備から溶融用電力が得やすいうえ、焼却残滓等のより一層の減量及び高品質な資源化等が図れるからである。
図8は、焼却灰等の溶融処理に広く利用されている公知のプラズマアーク溶融炉の一例を示すものであり、炉本体1の天井壁に主電極2と補助電極3とが、また、炉本体1の底面に炉底電極4が夫々設けられており、直流電源装置5から主電極3と炉底電極4間へ直流電圧を印加して主電極2と溶融スラグD間にプラズマアーク6を発生させ、その発生熱によって炉本体1内へ供給されて来る焼却残滓Cを順次溶融させて行く。尚、図8に於いて、Bは金属等の溶融メタル、7は集電板、8は焼却残滓Cの投入口、9は溶融スラグDの隘流口、10は溶融メタルBの抜出孔、12は主電極支持装置、13は補助電極支持装置、14は電力用配電盤、16は焼却残滓Cの供給装置である。
【0003】
而して、供給装置16により投入口8から炉本体1内へ供給された焼却残滓Cは、プラズマアーク6の発生熱や溶融スラグDの熱により順次溶融され、炉本体1内の溶融スラグDは隘流口9を通して順次冷却用水槽(図示省略)内へ流下し、水冷スラグとして回収されて行く。
また、焼却残滓Cの溶融に伴なって炉本体1内に発生した燃焼排ガスGは、隘流口9等から炉本体1外へ誘引され、2次燃焼室で可燃性成分を完全に燃焼させたあと、排ガス冷却装置、排ガス処理装置(集塵装置)、誘引通風機を経て煙突から大気中へ放出されて行く(図示省略)。
【0004】
更に、上記電気溶融炉の運転に際しては、オペレータが、焼却残滓Cの処理量等から予かじめ経験的に得られている投入電力(投入電圧、投入電流)を適宜に選定すると共に、前記選定した設定値を基にして、焼却残滓Cの供給量と投入電力とを夫々独立した制御系でもって調整・制御することにより、電気溶融炉の連続運転を達成するようにしている。
尚、上記の如き電気溶融炉の構成や焼却残滓Cの定常的な溶融運転、排ガス処理装置の運転操作等は公知の技術であるため、ここではその詳細な説明を省略する。
【特許文献1】
特開2001−50528号公報
【特許文献2】
特開平8−121739号公報
【0005】
【発明が解決しようとする課題】
上記従前のプラズマアーク溶融炉やアーク溶融炉、抵抗式溶融炉等の電気溶融炉は、焼却残滓等の被溶融物Cを安定に溶融処理することができ、優れた実用的効用を有するものである。
しかし、従前の溶融炉にも解決すべき問題が多く残されており、その中でも特に、電気溶融炉の操業運転がオペレータの運転経験や運転技倆に大きく依存する傾向にあり、その結果、オペレータによって電気溶融炉の操業制御が夫々大きく異なったものになると云う点が、解決されるべき問題として残されている。
【0006】
具体的には、電気溶融炉へ供給されてくる焼却残滓Cの量や性状は、発生源であるごみ焼却炉毎に異なるうえ、季節や時間によっても大きく変動する。
また、電気溶融炉へ供給される電力も、電力供給事情によってそのコストが変化し、例えば夜間電力は昼間に比較して安価となる。
そのため、電気溶融炉をより効率的且つ経済的に運転するためには、電力供給事情と被処理物Cの必要処理量やその性状を総合的に勘案して、電気溶融炉への被処理物Cの供給量や投入電力を連繋的に制御する必要がある。
【0007】
しかし、上記のようなオペレータの運転経験や運転技倆に比較的大きく依存する従前の電気溶融炉の操業制御方法にあっては、電力供給事情の変動や被溶融処理物Cの処理量及び性状の変化に速応して電気溶融炉を効率よくしかも経済的に運転することが困難であり、結果として被処理物Cの溶融処理コストの大幅な削減が図れないと云う問題がある。
【0008】
本発明は、従前の都市ごみやごみ焼却残滓等を被溶融物Cとする電気溶融炉の運転制御に於ける上述の如き問題、即ちオペレータの運転経験や運転技倆に依存する度合いが高かく、電力供給事情や処理すべき被処理物量及び性状の変化に速応した電気溶融炉の効率的で経済的な運転が出来ないと云う問題を解決せんとするものであり、被溶融物処理量か又は投入電力の何れか一方を設定することにより、最適な被溶融物処理量又は投入電流及び投入電圧を演算し、これによってオペレータの運転経験等に依存することなしに電気溶融炉の自動操業運転を行なえるようにすると共に、任意の時間単位で前記被溶融物処理量と投入電力の基準設定を何れか一方に切り換え可能とすることにより、電力供給事情や被溶融物処理量及び性状の変化に適応した最適な操業を行なえるようにした電気溶融炉の時間別操業制御方法を提供するものである。
【0009】
【課題を解決するための手段】
電気溶融炉に於いては、被溶融物Cの処理量(供給量)と投入電力(投入電圧、投入電流)の制御が電気溶融炉の操業制御上の基本的な制御対象となる。
ところで、前記被溶融物の投入量(処理量)と投入電力との関係は、一般に下記の式で表わすことができる。
投入電力=K×[溶融物処理量×被溶融物の比熱×(被溶融物の溶融スラグ温度−被溶融物の初期温度)+(溶融炉本体からの放熱量)]……(1)式
但し、Kは定数である。
即ち、上記(1)の関係式からも明らかなように、被溶融物Cの処理量か、又は投入電力の何れか一方が決定されれば、他方はこれと連繋的に演算され、その結果最適な電気溶融炉の操業制御が実現できることになる。
【0010】
本願発明に於いては、上記最適な電気溶融炉の操業制御を実現するために、▲1▼被溶融物の処理量を設定することにより、最適な投入電力量を演算すること及び▲2▼投入電力を設定することにより、最適な被溶融物の処理量を演算することの二種の演算を自動的に行なうと共に、上記▲1▼及び▲2▼の何れか一方を電気溶融炉の操業制御のベースとして切換選択することを可能とし、選択した前記▲1▼又は▲2▼の操業制御方法に基づいて電気溶融炉への被溶融物供給量と投入電圧及び投入電流を自動制御することにより、安定した電気溶融炉の自動操業制御を可能にするものである。
【0011】
また、本願発明は、上記▲1▼及び▲2▼の選択切換えを連続操業下に於いて1時間単位で可能とすることにより、昼夜間電力料金や電力供給事情、季節による被溶融物の性状変動及び被溶融物の搬入量の変動等に対応して最適な電気溶融炉の自動操業制御を行なえるようにするものである。
【0012】
即ち、本願請求項1に記載の発明は、都市ごみやごみ焼却残滓を被溶融物とする電気溶融炉の操業制御方法に於いて、先ず電気溶融炉への投入電力又は被溶融物供給量を設定すると共に、前記各設定値に基づいて電気溶融炉への被溶融物供給量又は投入電力を演算し、電気溶融炉への投入電力及び被溶融物供給量が前記設定値及び演算値に、若しくは電気溶融炉への被溶融物供給量及び投入電力が前記設定値及び演算値となるように制御装置を介して被溶融物供給量及び投入電力を夫々制御する構成としたことを発明の基本構成とするものである。
【0013】
請求項2の発明は、都市ごみやごみ焼却炉を被溶融物とする電気溶融炉の操業制御方法に於いて、当該電気溶融炉の操業制御を、電気溶融炉への投入電力を設定すると共に当該投入電力の設定値から電気溶融炉への被溶融物供給量を演算し、投入電力及び被溶融物供給量を前記設定値及び演算値を基準にして制御するようにした操業制御方法と、電気溶融炉への被溶融物供給量を設定すると共に当該被溶融物供給量の設定値から電気溶融炉への投入電力を演算し、被溶融物供給量及び投入電力を前記設定値及び演算値を基準にして制御するようにした操業制御方法とに、任意の時間間隔でもって選択切換えする構成としたことを発明の基本構成とするものである。
【0014】
請求項3の発明は、請求項1又は請求項2の発明に於いて、被溶融物又は投入電力を、投入電力=K×[溶融物供給量×被溶融物の比熱×(被溶融物の溶融スラグ温度−被溶融物の初期温度)+(溶融炉本体からの放熱量)]の関係式(但し、Kは定数)から演算するようにしたものである。
【0015】
請求項4の発明は、請求項1又は請求項2の発明に於いて、投入電力を投入電圧と投入電流とにより表示するようにしたものである。
【0016】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明の実施に使用するプラズマアーク溶融炉の概要を示すものであり、また図2は、図1の電気溶融炉の電気系統の等価回路図である。尚、プラズマアーク溶融炉自体の構成は、従前のプラズマアーク溶融炉の場合と略同一である。また、本実施形態では発明の実施に使用する電気溶融炉としてプラズマアーク電気溶融炉を挙げているが、溶融炉としては如何なる型式の電気溶融炉であってもよいことは勿論である。
【0017】
前記図1及び図2に於いて、Aは電気溶融炉、Dは溶融スラグ、Bは溶融メタル、Cは被溶融物、Gは燃焼排ガス、Raはアーク抵抗、Rmは溶融スラグ抵抗、Vpは投入電圧、Ipは投入電流、1は炉本体、2は主電極、3は補助電極、4は炉底電極、5は直流電源装置、6はプラズマアーク、7は集電板、8は被溶融物投入口、9は溶融スラグDの隘流口、10は溶融メタルの抜出孔、11は排ガス排出口、12は主電極支持装置、13は補助電極支持装置、14は電力用配電盤、15は制御装置、16は被溶融物(焼却灰)供給装置であり、主電極2は直流電源装置5の+極に、補助電極3及び炉底電極4を形成する集電板7は−極に夫々接続されている。
【0018】
図1及び図2を参照して、被溶融物供給装置15により被溶融物投入口8を通して炉本体1内へ供給された焼却灰等の被溶融物Cは、溶融炉本体1内の溶融スラグD上へ落下し、溶融スラグDの熱やプラズマアーク6の発生熱により順次溶融されると共に、隘流口9を通して溶融スラグDが冷却水槽(図示省略)内へ流下して、水砕スラグが形成される。
また、溶融炉本体1内に発生した燃焼排ガスGは、溶融炉用の誘引通風機の誘引作用により排ガス排出口11を通して2次燃焼室内へ導入され、ここで2次燃焼されたあと、排ガス冷却装置や排ガス処理装置を通して清浄化され、大気中へ放散されて行く(図示省略)。
【0019】
図3は、前記図1のプラズマアーク溶融炉へ本願方法発明を適用する場合の操業制御の流れ図を示すものであり、図4は操業制御に於ける電力関係を主とする制御ブロック図、図5は操業制御に於ける灰供給関係を主とする制御ブロック図である。
図3乃至図5を参照して、先ず当該電気溶融炉Aの運転に際して、ステップSに於いて機械的及び電気的初期条件のチェック(例えば、主電極支持装置12の作動条件の確認や主電極2の損耗のチェック、被処理物供給装置16の作動条件の確認や被処理物Cの供給状況、直流電源装置5の作動条件や電力用配電盤14、制御装置15等の作動条件等)が行なわれる。
【0020】
前記初期条件の成立が確認されると、ステップSに於いて投入可能電力の上限値設定(又は選択)が行なわれる。
当該投入可能電力の上限値設定は、ごみ焼却炉に設けた発電設備から電力供給を受けているような場合の電力不足等をチエックするためのものであり、通常は定格受電容量以下の値に設定される。
尚、上限値設定を行なわない場合には、制御は直接に次のステップSへ移される。また、発電事情により、電気溶融炉側の投入電力設定値より発電施設からの供給電力が下回った際に、発電設備の過負荷を生じさせない様に自動的に電気溶融炉側の電力設定値を発電施設から供給可能な電力に絞り込む役割も果たす。
【0021】
ステップSでは、電気溶融炉の運転モードの設定(選択)が行なわれる。即ち、電気溶融炉の運転モードとしては自動運転、手動運転、保持運転の三種が用意されており、自動運転は本願発明が対象とする所謂電気溶融炉の全自動運転モードである。
また、手動運転は被処理物Cの供給や投入電力(投入電圧、投入電流)等をオペレータが全て手動で制御をする手動運転モードである。
更に、保持運転は、電気溶融炉を現状に保持する運転モードのことであり、被溶融物Cの供給(投入)は停止されるが、電気溶融炉Aへは炉本体の放熱量に相当する電力が投入され、炉本体内の溶融スラグDの温度を所定温度に保持し、すぐに灰溶融可能な状態にしておく運転モードである。
【0022】
前記ステップSで保持運転モードが選択されると、制御はステップSSへ移り、サブルーチンに相当する保持運転制御が開始される。
同様に、ステップSで手動運転モードが選択されると、制御はステップSSへ移り、サブルーチンに相当する手動制御が開始される。即ち、先ず最初に、灰供給量や投入電圧、投入電流等の手動設定が行なわれ、これ等の設定値を基準にして手動で電気溶融炉の操業制御が行なわれる。
【0023】
前記ステップSに於いて自動運転モードが選択されると、制御は本発明に係る自動操業制御に移行することになり、ステップSに於いて時間別設定の入・切(選択)が設定される。
即ち、ステップSで時間別設定が入(時間別設定を選択すること)にされると、制御はステップSSへ移り、前記式1で記述したように、設定された被溶融物処理量を基礎(主)とし投入電力を従とする電気溶融炉の操業制御と、設定された投入電力を基礎(主)とし、被溶融物供給量を従とする電気溶融炉の操業制御が、所定時間単位で切換え実施されることになる。
具体的にはサブルーチンに相当する「時間別設定によるプラズマ制御」が行なわれ、時間別設定による投入電力の設定や時間別設定による灰供給量の設定が行なわれると共に、これ等に基づいて被溶融物供給量や投入電力が演算され、前記設定値や演算値を基準にして電気溶融炉の操業制御が行なわれる。
【0024】
ステップSで時間別制御設定が切(時間別制御を行なわない)に設定(選択)されると、制御はステップ4へ移行し、自動運転の選択設定が行なわれる。
即ち、前記式1に於ける被溶融物Cの供給量を基礎(主)として投入電力の制御を従とする操業運転制御とするか、或いは投入電力を基礎(主)として被溶融物供給量の制御を従とする操業運転制御とするかの、何れかの操業制御方法が選択される。
【0025】
ステップSに於いて、被処理物供給量(灰供給量)を基礎とする制御が選択されると、被溶融物供給量(灰供給量)の設定(ステップS)が行なわれ、設定した被溶融物供給量に見合う投入電圧、電流(電力)の演算がステップSで行なわれる。
【0026】
また、ステップ4で投入電力を基礎とする制御が選択されると、ステップ7で投入電力の設定が行なわれ、設定した投入電力に見合う被溶融物供給量(灰供給量)がステップ8で演算される。
【0027】
尚、ステップ6又はステップ8で必要な投入電力又は可能な被溶融物供給量が演算されると、当該投入電力又は被溶融物供給量が確保されるように直流電源装置5及び主電極支持装置9の昇降度等が、又は被溶融物供給装置16の作動等が、制御装置15を介して夫々制御されることは勿論である。
【0028】
又、前記式1による被溶融物供給量を基礎(主)とした場合の入要な投入電力の演算及び投入電力を基礎(主)とした場合の可能な被溶融物投入量の演算そのものは、公知である。そのため、ここではこれ等についての詳細な説明は省略するが、都市ごみ等の焼却灰を被溶融物Cとするプラズマアーク溶融炉(直流電源装置の容量600〜1000KWH/灰T・電圧100〜550V)の場合、被溶融物供給量を4.0T/Hrとすると、投入電力量は約2700(電流9000A、電圧300V)KVA〜3000KVAの間となり、また、投入電力を2725(電流9083A、電圧300V)KVAとすると、被溶融物供給量は約3.6T/Hr〜4.4T/Hrの間となる。
【0029】
図6は、本発明に係る電気溶融炉の操業制御方法に於ける制御対象の一覧を示すものである。二重線で囲んだ枠内に記載の事項が制御対象となるものであり、また、××印で表示した数値は、設定値又は演算値を表わすものである。
【0030】
図7は、本発明に係る電気溶融炉の時間別操業制御方法を実施した場合の制御状況を示す一覧表であり、図3のステップSSの制御を用い、投入電力を基礎として時刻0、4〜7、8、12〜16、20〜23の間操業制御をし、また被処理物供給量(灰供給量)を基礎として時刻1〜3、9〜11、17〜19の間操業制御を行なった場合を、夫々示すものである。尚、枠内の××は夫々の数値を示すものである。
【0031】
【発明の効果】
本願請求項1の発明に於いては、都市ごみやごみ焼却残滓を被溶融物とする電気溶融炉の操業制御に際して、先ず電気溶融炉への投入電力又は被溶融物供給量を設定すると共に、前記各設定値に基づいて電気溶融炉への供給可能な被溶融物供給量又は必要な投入電力を演算し、電気溶融炉への投入電力及び被溶融物供給量が前記設定値及び演算値に、若しくは電気溶融炉への被溶融物供給量及び投入電力が前記設定値及び演算値となるように制御装置を介して被溶融物供給量及び投入電力を夫々制御する構成としている。
その結果、従前のこの種電気溶融炉の操業制御の場合のように、オペレータが電気溶融炉への投入電力と被溶融物供給量とを夫々の経験若しくは技倆に基づいて設定したり、適宜に調整制御したりする必要が皆無となり、所謂全自動でもって、しかも電気溶融炉への投入電力と被溶融物供給量とを連繋させた状態で一元的に制御することが可能となり、電気溶融炉を常に高能率で、且つ安定した状態で運転することが可能となる。
【0032】
また、本願請求項2の発明では、電気溶融炉の操業制御に於いて、電気溶融炉の操業制御を、電気溶融炉への投入電力を設定すると共に当該投入電力の設定値から電気溶融炉へ供給する被溶融物の供給量を演算し、投入電力及び被溶融物供給量を前記設定値及び演算値を基準にして制御するようにした操業制御方法と、電気溶融炉への被溶融物供給量を設定すると共に当該被溶融物供給量の設定値から電気溶融炉への投入電力を演算し、被溶融物供給量及び投入電力を前記設定値及び演算値を基準にして制御するようにした操業制御方法とに、任意の時間間隔でもって選択切換えする構成としている。
その結果、本願請求項3の発明に於いては、電気溶融炉への電力供給事情や電気溶融炉へ供給されてくる被溶融物の搬入量やその性状に応じて、前記二つの操業制御方法の何れか最適の方法を任意に選択することができ、電気溶融炉の操業制御の完全な自動化による運転効率の向上のみならず、電気溶融炉のランニングコストの大幅な引下げが可能となる。
本発明は上述の通り、優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】本発明の実施に使用する電気溶融炉(プラズマアーク溶融炉)の全体構成を示す断面概要図である。
【図2】図1の電気溶融炉の電気等価回路である。
【図3】本発明の電気溶融炉の操業制御を示す流れ図である。
【図4】電気溶融炉の操業制御に於ける電力関係を主とする制御ブロック図である。
【図5】電気溶融炉の操業制御に於ける灰供給関係を主とする制御ブロック図である。
【図6】本発明の電気溶融炉の操業制御方法に於ける制御対象の一覧を示すものである。
【図7】本発明の電気溶融炉の時間別操業制御方法の制御状況の一覧を示すものである。
【図8】従前のプラズマアーク電気溶融炉の断面概要図である。
【符号の説明】
Aは電気溶融炉、Dは溶融スラグ、Bは溶融メタル、Cは被溶融物、Gは燃焼排ガス、Raはアーク抵抗、Rmは溶融スラグ抵抗、Vpは投入電圧、Ipは投入電流、1は炉本体、2は主電極、3は補助電極、4は炉底電極、5は直流電源装置、6はプラズマアーク、7は集電板、8は被溶融物投入口、9は溶融スラグDの隘流口、10は溶融メタルの抜出孔、11は排ガス排出口、12は主電極支持装置、13は補助電極支持装置、14は電力用配電盤、15は制御装置、16は被溶融物供給装置、S〜Sは制御ステップ、SS〜SSは副制御に於ける制御ステップ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an operation control method for an electric melting furnace such as an arc melting furnace, a plasma arc melting furnace, or a resistance melting furnace for melting and processing municipal solid waste and incineration residues of municipal solid waste. Calculate the optimum amount of molten material to be processed or input power by setting either of the input powers and control the operation of the electric melting furnace based on these to change the amount of molten material to be processed or its properties. Also, the present invention relates to an operation control method for an electric melting furnace capable of realizing an optimal operation in response to a change in a power supply situation.
[0002]
[Prior art]
BACKGROUND ART Conventionally, electric melting furnaces such as an arc melting furnace, a plasma arc melting furnace, and a resistance melting furnace are often used for melting treatment of municipal waste and incineration residues of municipal waste. This is because electric power for melting is easily obtained from the power generation equipment of the refuse incineration facility, and further reduction of incineration residues and the like and high-quality resource recycling can be achieved.
FIG. 8 shows an example of a known plasma arc melting furnace widely used for melting processing of incinerated ash and the like, and a main electrode 2 and an auxiliary electrode 3 are provided on a ceiling wall of a furnace main body 1 and a furnace. Furnace bottom electrodes 4 are provided on the bottom surface of the main body 1, respectively, and a DC voltage is applied between the main electrode 3 and the furnace bottom electrode 4 from a DC power supply 5 to generate a plasma arc 6 between the main electrode 2 and the molten slag D. The incineration residue C supplied to the inside of the furnace body 1 by the generated heat is sequentially melted. In FIG. 8, B is a molten metal such as a metal, 7 is a current collector, 8 is an inlet for incineration residue C, 9 is a bottleneck for molten slag D, and 10 is an outlet for molten metal B. , 12 is a main electrode support device, 13 is an auxiliary electrode support device, 14 is a power switchboard, and 16 is a device for supplying incineration residue C.
[0003]
The incineration residue C supplied into the furnace body 1 from the charging port 8 by the supply device 16 is sequentially melted by the heat generated by the plasma arc 6 and the heat of the molten slag D, and the molten slag D in the furnace body 1 is melted. Flows down into a cooling water tank (not shown) sequentially through the bottleneck 9 and is collected as water-cooled slag.
Further, the combustion exhaust gas G 0 that occur is accompanied furnace body 1 for melting the incineration residue C is attracted from隘流port 9, etc. into the furnace body 1 outside, complete combustion of the combustible components in the secondary combustion chamber After that, the exhaust gas is discharged from the chimney to the atmosphere through an exhaust gas cooling device, an exhaust gas treatment device (dust collection device), and an induced draft fan (not shown).
[0004]
Further, during the operation of the electric melting furnace, the operator appropriately selects the input power (input voltage, input current) obtained empirically in advance from the throughput of the incineration residue C and the like, and performs the selection. The continuous operation of the electric melting furnace is achieved by adjusting and controlling the supply amount of the incineration residue C and the input electric power by independent control systems based on the set values thus set.
Since the configuration of the electric melting furnace, the steady melting operation of the incineration residue C, the operation of the exhaust gas treatment device, and the like are known technologies, detailed description thereof will be omitted here.
[Patent Document 1]
JP 2001-50528 A [Patent Document 2]
JP-A-8-121739
[Problems to be solved by the invention]
Electric melting furnaces such as the above-mentioned conventional plasma arc melting furnace, arc melting furnace, and resistance melting furnace can stably melt a material C to be melted such as incineration residues, and have excellent practical utility. is there.
However, there are still many problems to be solved in the conventional melting furnace, and in particular, the operation and operation of the electric melting furnace tend to greatly depend on the operating experience and operating skill of the operator. That is, the operation control of the electric melting furnace is greatly different from each other, which remains as a problem to be solved.
[0006]
Specifically, the amount and properties of the incineration residue C supplied to the electric melting furnace vary depending on the waste incinerator that is the generation source, and vary greatly depending on the season and time.
Further, the cost of the electric power supplied to the electric melting furnace also varies depending on the electric power supply circumstances. For example, nighttime electric power is cheaper than daytime.
Therefore, in order to operate the electric melting furnace more efficiently and economically, it is necessary to comprehensively consider the power supply situation, the required processing amount of the processing object C and its properties, and It is necessary to jointly control the supply amount of C and the input power.
[0007]
However, in the conventional operation control method of the electric melting furnace relatively depending on the operation experience and the operation skill of the operator as described above, fluctuations in the power supply situation and the processing amount and properties of the material C to be melted are considered. However, it is difficult to operate the electric melting furnace efficiently and economically in response to the change in the temperature, and as a result, there is a problem that the melting cost of the object C cannot be significantly reduced.
[0008]
The present invention has the above-mentioned problem in the operation control of an electric melting furnace in which the conventional municipal waste or refuse incineration residue or the like is used as the material to be melted C, that is, the degree of dependence on the operating experience and operating skill of the operator is high. In order to solve the problem that efficient and economical operation of the electric melting furnace cannot be performed quickly in response to changes in the power supply situation, the amount of material to be treated and the properties, Calculate the optimal amount of material to be melted or the input current and input voltage by setting either the input power or the input power, thereby automatically operating the electric melting furnace without depending on the operating experience of the operator. In addition to enabling operation, the reference value of the processing amount of the molten material and the reference setting of the input power can be switched to any one in an arbitrary time unit, so that the power supply situation and the processing amount and the property of the molten material can be changed. Suitable for change Another operation control method time the optimum electric melting furnace for perform operations is to provide.
[0009]
[Means for Solving the Problems]
In the electric melting furnace, the control of the processing amount (supply amount) and the input power (input voltage, input current) of the material to be melted C is a basic control target in the operation control of the electric melting furnace.
Incidentally, the relationship between the input amount (processing amount) of the melt and the input power can be generally represented by the following equation.
Input power = K × [Amount of molten material processed × Specific heat of molten material × (Melting slag temperature of molten material−Initial temperature of molten material) + (Amount of heat released from the melting furnace body)] (1) Here, K is a constant.
That is, as is clear from the relational expression of the above (1), if either the processing amount of the melt C or the input power is determined, the other is calculated in conjunction with this, and as a result Optimum operation control of the electric melting furnace can be realized.
[0010]
In the present invention, in order to realize the above-mentioned optimal operation control of the electric melting furnace, (1) calculating the optimum input electric energy by setting the processing amount of the material to be melted; and (2) By setting the input power, the two types of calculations, that is, calculating the optimum amount of the molten material to be processed, are automatically performed, and one of the above (1) and (2) is operated by the electric melting furnace. It is possible to switch and select as a control base, and to automatically control the supply amount of the material to be melted to the electric melting furnace, the input voltage and the input current based on the selected operation control method (1) or (2). Thereby, stable automatic operation control of the electric melting furnace can be realized.
[0011]
In addition, the present invention makes it possible to switch between the above items (1) and (2) in units of one hour under continuous operation, thereby making it possible to change the power rates during the day and night, the power supply situation, and the properties of the material to be melted depending on the season. It is possible to perform optimal automatic operation control of the electric melting furnace in response to fluctuations and fluctuations in the carry-in amount of the material to be melted.
[0012]
That is, the invention according to claim 1 of the present application relates to an operation control method of an electric melting furnace in which municipal waste or refuse incineration residue is used as a material to be melted. Set and calculate the supply amount or input power of the molten material to the electric melting furnace based on each set value, the input power and the supply amount of the molten material to the electric melting furnace to the set value and the calculated value, Alternatively, the basic structure of the invention is such that the supply amount of the melt and the input power are controlled via a control device such that the supply amount and the input power of the melt to the electric melting furnace are the set value and the calculated value, respectively. Configuration.
[0013]
The invention according to claim 2 is a method for controlling the operation of an electric melting furnace in which a municipal refuse or a refuse incinerator is used as an object to be melted, wherein the operation control of the electric melting furnace is performed by setting power to be supplied to the electric melting furnace. An operation control method for calculating the supply amount of the melt to the electric melting furnace from the set value of the input power, and controlling the input power and the supply amount of the melt based on the set value and the calculated value, The supply amount of the molten material to the electric melting furnace is set, and the power to be supplied to the electric melting furnace is calculated from the set value of the supply amount of the molten material. The basic structure of the present invention is that the operation control method is controlled based on the reference and the configuration is such that the selection is switched at an arbitrary time interval.
[0014]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the molten material or the input electric power is obtained by: input electric power = K × [melt supply amount × specific heat of the molten object × (of the molten object) (The molten slag temperature−the initial temperature of the material to be melted) + (the amount of heat released from the melting furnace body)] (where K is a constant).
[0015]
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the applied power is displayed by an applied voltage and an applied current.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of a plasma arc melting furnace used for carrying out the present invention, and FIG. 2 is an equivalent circuit diagram of an electric system of the electric melting furnace of FIG. The configuration of the plasma arc melting furnace itself is substantially the same as that of the conventional plasma arc melting furnace. Further, in this embodiment, a plasma arc electric melting furnace is used as an electric melting furnace used for carrying out the present invention, but it goes without saying that any type of electric melting furnace may be used as the melting furnace.
[0017]
In FIGS. 1 and 2, A is an electric melting furnace, D is the molten slag, B is molten metal, C is the melt, G 0 is flue gas, Ra arc resistance, Rm is molten slag resistance, Vp Is a supply voltage, Ip is a supply current, 1 is a furnace body, 2 is a main electrode, 3 is an auxiliary electrode, 4 is a furnace bottom electrode, 5 is a DC power supply, 6 is a plasma arc, 7 is a current collector, and 8 is a target. A melt inlet, 9 is a bottleneck of molten slag D, 10 is an outlet for molten metal, 11 is an exhaust gas outlet, 12 is a main electrode support device, 13 is an auxiliary electrode support device, 14 is a power switchboard, Reference numeral 15 denotes a control device, 16 denotes a device to supply a material to be melted (incinerated ash), and the main electrode 2 is a positive electrode of the DC power supply 5, and the current collecting plate 7 forming the auxiliary electrode 3 and the furnace bottom electrode 4 is a negative electrode. Connected to each other.
[0018]
With reference to FIGS. 1 and 2, a melt C such as incineration ash supplied into the furnace main body 1 through the melt input port 8 by the melt supply device 15 is supplied to the molten slag in the melt furnace main body 1. D, the molten slag D is sequentially melted by the heat of the molten slag D and the heat generated by the plasma arc 6, and the molten slag D flows down into the cooling water tank (not shown) through the bottleneck opening 9, and the granulated slag is discharged. It is formed.
Further, after the combustion exhaust gas G 0 generated in the melting furnace body 1, which is introduced through the exhaust gas outlet 11 to the secondary combustion chamber by inducing the action of the induced draft fan for the melting furnace, which is here a secondary combustion gas The gas is purified through a cooling device and an exhaust gas treatment device, and is released into the atmosphere (not shown).
[0019]
FIG. 3 is a flow chart of operation control when the method of the present invention is applied to the plasma arc melting furnace shown in FIG. 1, and FIG. 4 is a control block diagram mainly showing a power relation in the operation control. 5 is a control block diagram mainly showing the ash supply relation in the operation control.
3 to refer to FIG. 5, first, when the operation of the electric melting furnace A, checking of mechanical and electrical initial conditions in step S 0 (e.g., check the main operating conditions of the main electrode supporting device 12 Checking the wear of the electrode 2, checking the operating conditions of the workpiece supply device 16, the supply status of the workpiece C, the operating conditions of the DC power supply 5, the operating conditions of the power distribution board 14, the control device 15, etc.) Done.
[0020]
When establishment of the initial condition is verified, the upper limit setting of the input electric power in step S 1 (or selection) is performed.
The upper limit value of the inputtable power is set to check for power shortage when power is supplied from the power generation equipment installed in the refuse incinerator, and is usually set to a value equal to or less than the rated power receiving capacity. Is set.
Incidentally, in the case of no upper limit setting, control is directly transferred to the next step S 2. In addition, when the power supplied from the power generation facility falls below the power input set value on the electric melting furnace side due to the power generation situation, the power set value on the electric melting furnace side is automatically adjusted so as not to overload the power generation equipment. It also plays a role in narrowing down the power that can be supplied from the power generation facility.
[0021]
In step S 2, set the operating mode of the electric melting furnace (selection) is performed. That is, three types of operation modes of the electric melting furnace, automatic operation, manual operation, and holding operation, are prepared, and the automatic operation is a so-called fully automatic operation mode of the electric melting furnace to which the present invention is applied.
The manual operation is a manual operation mode in which the operator manually controls the supply of the workpiece C, the applied power (the applied voltage, the applied current), and the like.
Further, the holding operation is an operation mode in which the electric melting furnace is maintained in the current state, and the supply (feeding) of the material to be melted C is stopped, but it corresponds to the heat release amount of the furnace body to the electric melting furnace A. This is an operation mode in which electric power is supplied, the temperature of the molten slag D in the furnace main body is maintained at a predetermined temperature, and the ash can be immediately melted.
[0022]
When the holding operation mode in the step S 2 is selected, control passes to step SS 1, holding operation control corresponding to a subroutine is initiated.
Similarly, when the manual operation mode is selected in step S 2, control passes to step SS 2, manual control corresponding to a subroutine is initiated. That is, first, the ash supply amount, the input voltage, the input current, and the like are manually set, and the operation control of the electric melting furnace is manually performed based on these set values.
[0023]
When the automatic operation mode is selected at the step S 2, control will be moving to the automatic operation control according to the present invention, the input and switching (selection) Hourly set in step S 3 is set Is done.
That is, when the time another set in step S 3 is in the ON (to select the time another set), control passes to step SS 3, as described by the formula 1, the melt processing amount set The operation control of the electric melting furnace based on the input power as the base (main) and the operation control of the electric melting furnace based on the set input power as the base (main) and the supply amount of the melted material are prescribed. The switching is performed in units of time.
Specifically, “plasma control by time setting” corresponding to a subroutine is performed, setting of input power by time setting and setting of ash supply amount by time setting are performed, and melting based on these is performed. An amount of supplied material and input power are calculated, and operation control of the electric melting furnace is performed based on the set values and the calculated values.
[0024]
Step S 3 in Hourly control setting is set to OFF (no separate control time) (selected), the control proceeds to step 4, selecting and setting of the automatic operation is performed.
That is, the operation control is performed based on the supply amount of the melted material C in Equation 1 as a base (main) and the control of the input power is dependent, or the supply amount of the melted material based on the input power as the base (main). Any one of the operation control methods is selected to determine whether or not the above operation control is the operation control.
[0025]
In Step S 4, the control based upon the object to be treated supply amount (ash supply amount) is selected, setting of the melt supply amount (ash supply amount) (Step S 5) is performed, set charged voltage commensurate with the melt feed amount that is, calculation of the current (power) is performed in step S 6.
[0026]
When the control based on the input power is selected in step 4, the input power is set in step 7, and the supply amount of the molten material (the ash supply amount) corresponding to the set input power is calculated in step 8. Is done.
[0027]
When the required input power or the possible supply amount of the molten material is calculated in step 6 or step 8, the DC power supply device 5 and the main electrode support device are operated so that the supplied power or the supply amount of the molten material is secured. It goes without saying that the elevation and the like of 9 and the operation and the like of the molten material supply device 16 are respectively controlled via the control device 15.
[0028]
In addition, the calculation of the required input power when the supply amount of the melt is based on the above (Equation 1) and the calculation itself of the possible input amount of the melt when the supply power is the base (main) are as follows. It is known. Therefore, although a detailed description of these is omitted here, a plasma arc melting furnace (capacity of DC power supply unit: 600 to 1000 kWH / ash T, voltage: 100 to 550 V) using incinerated ash such as municipal waste as a material to be melted C In the case of), assuming that the supply amount of the melt is 4.0 T / Hr, the input power is about 2700 (current 9000 A, voltage 300 V) from KVA to 3000 KVA, and the input power is 2725 (current 9083 A, voltage 300 V). ) Assuming KVA, the supply amount of the melted material is between about 3.6 T / Hr and 4.4 T / Hr.
[0029]
FIG. 6 shows a list of control objects in the operation control method of the electric melting furnace according to the present invention. Items described in a frame surrounded by a double line are to be controlled, and numerical values indicated by XX represent set values or calculated values.
[0030]
Figure 7 is a table showing a control situation when carrying out the hourly operating control method for an electro-melting furnace according to the present invention, using the control in step SS 3 in FIG. 3, time 0 the input power basis, Operation control is performed between 4 to 7, 8, 12 to 16, and 20 to 23, and operation control is performed during times 1 to 3, 9 to 11, and 17 to 19 on the basis of the supply amount of the material to be treated (ash supply amount). Are respectively shown. In addition, xx in a frame shows each numerical value.
[0031]
【The invention's effect】
In the invention of claim 1 of the present application, at the time of operation control of an electric melting furnace that uses municipal waste and refuse incineration residue as a material to be melted, firstly, an electric power supplied to the electric melting furnace or a supply amount of the material to be melted is set, Calculate the supply amount or required input power of the meltable material that can be supplied to the electric melting furnace based on the set values, and the input power and the melt supply amount to the electric melting furnace are set to the set value and the calculated value. Alternatively, the supply amount of the melt and the input power are controlled via the control device such that the supply amount of the melt and the input power to the electric melting furnace become the set value and the calculated value, respectively.
As a result, as in the case of the conventional operation control of this type of electric melting furnace, the operator sets the input power to the electric melting furnace and the supply amount of the melted material based on their experience or skill, or appropriately. There is no need to adjust and control the electric melting, so that it is possible to perform unified control in a so-called fully automatic manner and in a state where the electric power supplied to the electric melting furnace and the supply amount of the material to be melted are linked. The furnace can always be operated with high efficiency and in a stable state.
[0032]
According to the invention of claim 2 of the present application, in the operation control of the electric melting furnace, the operation control of the electric melting furnace is performed by setting the input power to the electric melting furnace and changing the setting value of the input power to the electric melting furnace. An operation control method for calculating the supply amount of the melt to be supplied, and controlling the input power and the melt supply amount based on the set value and the calculated value; and supplying the melt to the electric melting furnace. The amount to be set and the input power to the electric melting furnace were calculated from the set value of the supply amount of the melt, and the supply amount and the input power of the melt were controlled based on the set value and the calculated value. In the operation control method, the selection is switched at an arbitrary time interval.
As a result, according to the invention of claim 3 of the present application, the two operation control methods are performed in accordance with the situation of power supply to the electric melting furnace, the amount of the material to be melted supplied to the electric melting furnace, and the properties thereof. Any of the optimal methods can be arbitrarily selected, and not only the operation efficiency can be improved by completely automating the operation control of the electric melting furnace, but also the running cost of the electric melting furnace can be significantly reduced.
As described above, the present invention has excellent practical utility.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the overall configuration of an electric melting furnace (plasma arc melting furnace) used for carrying out the present invention.
FIG. 2 is an electric equivalent circuit of the electric melting furnace of FIG.
FIG. 3 is a flowchart showing operation control of the electric melting furnace of the present invention.
FIG. 4 is a control block diagram mainly related to electric power in operation control of the electric melting furnace.
FIG. 5 is a control block diagram mainly related to ash supply in operation control of the electric melting furnace.
FIG. 6 shows a list of objects to be controlled in the operation control method of the electric melting furnace of the present invention.
FIG. 7 shows a list of control statuses of the electric melting furnace operation control method according to time according to the present invention.
FIG. 8 is a schematic sectional view of a conventional plasma arc electric melting furnace.
[Explanation of symbols]
A electric melting furnace, D is the molten slag, B is molten metal, C is the melt, G 0 is flue gas, Ra arc resistance, Rm is molten slag resistance, Vp is charged voltage, Ip is making current, 1 Is a furnace main body, 2 is a main electrode, 3 is an auxiliary electrode, 4 is a furnace bottom electrode, 5 is a DC power supply, 6 is a plasma arc, 7 is a current collector, 8 is an inlet for a material to be melted, and 9 is a molten slag D. 10 is a discharge hole for molten metal, 11 is an exhaust gas outlet, 12 is a main electrode support device, 13 is an auxiliary electrode support device, 14 is a power distribution board, 15 is a control device, and 16 is a material to be melted. Supply device, S 1 to S 8 are control steps, and SS 1 to SS 3 are control steps in sub-control.

Claims (4)

都市ごみやごみ焼却残滓を被溶融物とする電気溶融炉の操業制御方法に於いて、先ず電気溶融炉への投入電力又は被溶融物供給量を設定すると共に、前記各設定値に基づいて電気溶融炉への被溶融物供給量又は投入電力を演算し、電気溶融炉への投入電力及び被溶融物供給量が前記設定値及び演算値に、若しくは電気溶融炉への被溶融物供給量及び投入電力が前記設定値及び演算値となるように制御装置を介して被溶融物供給量及び投入電力を夫々制御する構成としたことを特徴とする電気溶融炉の操業制御方法。In an operation control method of an electric melting furnace using municipal solid waste and refuse incineration residue as a material to be melted, first, an electric power supplied to the electric melting furnace or a supply amount of the material to be melted is set, and the electric power is set based on the set values. Calculate the supply amount or input power of the melt to the melting furnace, the input power and supply amount of the melt to the electric melting furnace to the set value and the calculated value, or the supply amount of the melt to the electric melting furnace and An operation control method for an electric melting furnace, wherein a supply amount of a material to be melted and an input power are respectively controlled via a control device such that the input power becomes the set value and the calculated value. 都市ごみやごみ焼却炉を被溶融物とする電気溶融炉の操業制御方法に於いて、当該電気溶融炉の操業制御を、電気溶融炉への投入電力を設定すると共に当該投入電力の設定値から電気溶融炉への被溶融物供給量を演算し、投入電力及び被溶融物供給量を前記設定値及び演算値を基準にして制御するようにした操業制御方法と、電気溶融炉への被溶融物供給量を設定すると共に当該被溶融物供給量の設定値から電気溶融炉への投入電力を演算し、被溶融物供給量及び投入電力を前記設定値及び演算値を基準にして制御するようにした操業制御方法とに、任意の時間間隔でもって選択切換えする構成としたことを特徴とする電気溶融炉の操業制御方法。In the operation control method of the electric melting furnace using the municipal solid waste and the refuse incinerator as the material to be melted, the operation control of the electric melting furnace is performed by setting the input power to the electric melting furnace and from the set value of the input power. An operation control method of calculating the supply amount of the material to be melted to the electric melting furnace, and controlling the input power and the supply amount of the material to be melted based on the set value and the calculated value; and The supply amount to the electric melting furnace is calculated from the set value of the supply amount of the melt and the set value of the supply amount of the melt, and the supply amount and the supply power of the melt are controlled based on the set value and the calculated value. And an operation control method for an electric melting furnace, wherein selection switching is performed at an arbitrary time interval. 被溶融物又は投入電力を、投入電力=K×[溶融物供給量×被溶融物の比熱×(被溶融物の溶融スラグ温度−被溶融物の初期温度)+(溶融炉本体からの放熱量)]の関係式(但し、Kは定数)から演算するようにした請求項1又は請求項2に記載の電気溶融炉の操業制御方法。The power to be melted or the input power is calculated by the following equation: Input power = K × [Material supply amount × Specific heat of the melt target × (Melting slag temperature of the melt target−Initial temperature of the melt target) + (Amount of heat released from the melting furnace body) 3) The operation control method for an electric melting furnace according to claim 1 or 2, wherein the operation is calculated from a relational expression (where K is a constant). 投入電力を投入電圧と投入電流とにより表示するようにした請求項1又は請求項2に記載の電気溶融炉の操業制御方法。The operation control method for an electric melting furnace according to claim 1 or 2, wherein the input power is displayed by the input voltage and the input current.
JP2003041719A 2003-02-19 2003-02-19 Method of controlling operation of electric melting furnace Pending JP2004251520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041719A JP2004251520A (en) 2003-02-19 2003-02-19 Method of controlling operation of electric melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041719A JP2004251520A (en) 2003-02-19 2003-02-19 Method of controlling operation of electric melting furnace

Publications (1)

Publication Number Publication Date
JP2004251520A true JP2004251520A (en) 2004-09-09

Family

ID=33025213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041719A Pending JP2004251520A (en) 2003-02-19 2003-02-19 Method of controlling operation of electric melting furnace

Country Status (1)

Country Link
JP (1) JP2004251520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096067A (en) * 2006-10-13 2008-04-24 Takuma Co Ltd Control method for plasma melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096067A (en) * 2006-10-13 2008-04-24 Takuma Co Ltd Control method for plasma melting furnace

Similar Documents

Publication Publication Date Title
JPH08206629A (en) Disposing method for solid residue from trash incineration device,and device to use said method
JP2004251520A (en) Method of controlling operation of electric melting furnace
CA2583481A1 (en) Electronic circuit and method for feeding electric power to a alternating-current electric-arc furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP3746921B2 (en) Operation method of electric melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JPH0694926B2 (en) Method of melting incineration ash
CN218972671U (en) Plasma melting furnace
JP4917950B2 (en) Plant operation control method by omnidirectional monitoring
JP2004257631A (en) Plasma melting treatment apparatus for waste disposal
JPH0355411A (en) Melting disposing device for incinerated ash
JP4249086B2 (en) Heating means output control method for melting furnace
JPH0519277B2 (en)
JP2008096067A (en) Control method for plasma melting furnace
JP3534680B2 (en) Operation method of ash melting furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP3764641B2 (en) Electric melting furnace operation control method
JP3198593B2 (en) Power control method for ash melting furnace
JPH09318034A (en) Ash melting furnace
JP3744668B2 (en) Ash melting furnace
JPH09324912A (en) Ash fusion furnace
JP2000018554A (en) Manufacture of water-granulated slag
JP2747983B2 (en) Method and apparatus for melting municipal solid waste incineration ash
JP3757409B2 (en) Ash melting furnace and method for forming bottom electrode of ash melting furnace
JP3494493B2 (en) Electrode structure of electric melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050513

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A02 Decision of refusal

Effective date: 20071001

Free format text: JAPANESE INTERMEDIATE CODE: A02