JP5060182B2 - Control method of plasma melting furnace - Google Patents

Control method of plasma melting furnace Download PDF

Info

Publication number
JP5060182B2
JP5060182B2 JP2007159699A JP2007159699A JP5060182B2 JP 5060182 B2 JP5060182 B2 JP 5060182B2 JP 2007159699 A JP2007159699 A JP 2007159699A JP 2007159699 A JP2007159699 A JP 2007159699A JP 5060182 B2 JP5060182 B2 JP 5060182B2
Authority
JP
Japan
Prior art keywords
electrode
distance
furnace
main electrode
input voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007159699A
Other languages
Japanese (ja)
Other versions
JP2008309436A (en
Inventor
雅晴 大上
考太郎 加藤
吉司 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2007159699A priority Critical patent/JP5060182B2/en
Publication of JP2008309436A publication Critical patent/JP2008309436A/en
Application granted granted Critical
Publication of JP5060182B2 publication Critical patent/JP5060182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、例えばごみ焼却炉から排出される焼却灰や飛灰等の被溶融物を溶融処理する際に用いられるプラズマ溶融炉の制御方法の改良に関する。   The present invention relates to an improvement in a control method for a plasma melting furnace used for melting a material to be melted such as incineration ash and fly ash discharged from a waste incinerator, for example.

プラズマ溶融炉に於ては、溶融時に発生する飛灰やヒューム等に依り可視光カメラでは炉内を監視することができなかった。
このため、長波長(8〜12μm)の赤外線カメラを利用して、流出口や側壁に設置された覗き窓から炉内を監視し、赤外線カメラの画像からプラズマアークを解析することにより主電極の先端を求め、主電極を上下動させて直接アーク長さを一定にする制御を行うものが知られている(特許文献1〜8参照)。
In a plasma melting furnace, the inside of the furnace could not be monitored with a visible light camera due to fly ash, fume, etc. generated during melting.
For this reason, using a long wavelength (8 to 12 μm) infrared camera, the inside of the furnace is monitored from a viewing window installed at the outlet or the side wall, and the plasma arc is analyzed from the image of the infrared camera to detect the main electrode. A technique is known in which the tip is obtained and the main electrode is moved up and down to directly control the arc length (see Patent Documents 1 to 8).

然しながら、このようなものは、主電極が溶湯に浸かっている場合やダスト濃度が高くて炉内を監視できない場合には、アーク長さが0mmと判断されるので、主電極が設定高さになるように上げ続けられて、炉内ガス温度が上がる過ぎることによる電力原単位の増加や、炉天井部及びガス層部の耐火物の損傷や、サイドアークが発生する恐れがあると共に、更に主電極が上げられると、電極シール部から主電極が抜ける恐れがあった。
加えて、主電極は、時間と共に消耗するので、適切な電極高さ上限を設定することができない。そのために、赤外線カメラや画像処理装置が故障した場合には、主電極が上がり過ぎて前述と同様の問題が発生する恐れがあった。
However, in such a case, when the main electrode is immersed in the molten metal or when the inside of the furnace cannot be monitored because the dust concentration is high, the arc length is determined to be 0 mm. As the gas temperature inside the furnace rises too much, there is a risk of an increase in power consumption, damage to the refractory in the furnace ceiling and gas layer, and side arcs. When the electrode is raised, the main electrode may come off from the electrode seal portion.
In addition, since the main electrode is consumed with time, an appropriate upper limit of the electrode height cannot be set. Therefore, when the infrared camera or the image processing apparatus breaks down, there is a possibility that the same problem as described above may occur because the main electrode rises too much.

他方、プラズマ溶融炉に於ては、電圧を一定にする制御を行うものも知られている(特許文献9参照)。
当該制御では、プラズマ溶融炉への投入電力又は灰供給量は、予め設定された投入電力(又は灰供給量)に応じた灰供給量(又は投入電力)が演算される。投入電力は、(投入電力)=(投入電圧)×(投入電流)であり、投入電圧は、投入電力に応じて予め設定された投入電圧が演算され、プラズマ溶融炉の主電極位置の制御値となる。投入電流は、(投入電流)=(投入電力)÷(投入電圧)により演算され、直流電源装置で制御される。投入電圧は、過去の運転実績や安定した運転状態で決定されるものであり、灰供給量は、灰の嵩比重等からの計算値や冷間での実測値から灰供給装置の回転数が決定される。
On the other hand, in a plasma melting furnace, one that performs control to make the voltage constant is also known (see Patent Document 9).
In the control, the ash supply amount (or input power) corresponding to the preset input power (or ash supply amount) is calculated as the input power or ash supply amount to the plasma melting furnace. The input power is (input power) = (input voltage) × (input current). As the input voltage, a preset input voltage is calculated according to the input power, and the control value of the main electrode position of the plasma melting furnace is calculated. It becomes. The applied current is calculated by (applied current) = (applied power) ÷ (applied voltage), and is controlled by the DC power supply device. The input voltage is determined based on past operating results and stable operating conditions, and the ash supply amount is calculated based on the calculated value from the bulk specific gravity of the ash and the actual measured value in the cold state. It is determined.

ところが、このようなものは、投入電圧が、(投入電圧)=(投入電流)×(電気抵抗値)で計算されるため、主電極位置を上下することによって投入電圧すなわち電気抵抗値を調整している。電圧は、運転実績や安定した運転状態で決定された値であるが、溶融炉の運転状態(処理する灰の性状変化や灰供給量の設定値と実際の相違による過不足など)によって適正な投入電圧が異なる。灰の性状変化や灰供給量の設定値と実際の相違などは短時間では判断できないため、適正な投入電圧で運転することが困難であった。すなわち、溶融した灰(溶湯)の性状による電気抵抗値や灰供給量の過不足によって、主電極下の溶湯部の電気抵抗値が変化するため、主電極先端位置が過度に高くなったり、逆に溶湯に深く沈んだりする場合があった。   However, in such a case, since the input voltage is calculated by (input voltage) = (input current) × (electric resistance value), the input voltage, that is, the electric resistance value is adjusted by moving the main electrode position up and down. ing. The voltage is a value determined based on actual operation and stable operating conditions. However, the voltage is appropriate depending on the operating conditions of the melting furnace (changes in the properties of the ash to be processed, excess or deficiency due to actual differences in the set value of the ash supply amount, etc.) The input voltage is different. It was difficult to operate at an appropriate charging voltage because changes in ash properties and actual differences from the set value of ash supply cannot be determined in a short time. That is, the electrical resistance value due to the properties of the molten ash (molten metal) and the electrical resistance value of the molten metal part under the main electrode change due to excess or shortage of the ash supply amount. In some cases, it was deeply submerged in the molten metal.

特開平11−287426号公報JP-A-11-287426 特開2002−81992号公報JP 2002-81992 A 特許第3611299号公報Japanese Patent No. 3611299 特開2002−81634号公報JP 2002-81634 A 特許第3659903号公報Japanese Patent No. 3659903 特開2003−28411号公報JP 2003-28411 A 特開2003−343824号公報JP 2003-343824 A 特開2004−156865号公報JP 2004-156865 A 特開2004−251520号公報JP 2004-251520 A

要するに、従来のアーク長さ一定制御や投入電圧一定制御には、夫々一長一短があり、プラズマ溶融炉の安定した操業制御を実現することが難しかった。   In short, the conventional constant arc length control and constant input voltage control have their merits and demerits, and it has been difficult to achieve stable operation control of the plasma melting furnace.

本発明は、叙上の問題点に鑑み、これを解消する為に創案されたもので、その課題とする処は、投入電圧一定制御を基本にする共に、赤外線カメラによる制御が可能かどうかを判断する基準を設定し、赤外線カメラによる制御が可能な時には、電極間距離(電極下端から溶湯面の距離)の偏差による投入電圧補正を追加することで安定した操業制御を実現するようにしたプラズマ溶融炉の制御方法を提供するにある。   The present invention was devised in view of the above-mentioned problems, and was devised to solve this problem. The problem is that whether or not the control by the infrared camera is possible, based on the constant input voltage control. When the standard for judgment is set and control with an infrared camera is possible, plasma is designed to realize stable operation control by adding input voltage correction based on the deviation of the distance between electrodes (distance from the bottom of the electrode to the molten metal surface). It is in providing the control method of a melting furnace.

本発明のプラズマ溶融炉の制御方法は、炉内に設けられた主電極と炉底電極との間に印加される電圧によって発生するプラズマアークにより被溶融物を溶融すると共に、主電極を昇降させることにより投入電圧を一定にする投入電圧一定制御を行うプラズマ溶融炉において、炉外に設けられた赤外線カメラにより炉内を観察できる時には、溶湯面から主電極の先端までの距離を一定としてこの距離に応じた投入電圧補正をする電極間距離一定制御を行い、また、赤外線カメラにより炉内を観察できない時には、投入電圧一定制御を行い、更に、前記電極間距離一定制御は、赤外線カメラにより主電極と溶湯面を撮影し、その画像上において主電極の下端及び側端と溶湯面を判定すると共に、溶湯面から主電極の先端までの電極間距離と、主電極の側端間の電極幅を測定し、当該測定した電極幅と実際の電極幅との比から実際の電極間距離を算出し、電極側端の判定の可否により電極間距離に応じた投入電圧補正の入・切を行い、前記のように算出した電極間距離の測定値と予め設定している設定値との偏差により投入電圧補正を行うようにしたことに特徴が存する。 The method for controlling a plasma melting furnace of the present invention melts a material to be melted by a plasma arc generated by a voltage applied between a main electrode and a furnace bottom electrode provided in the furnace, and raises and lowers the main electrode. In a plasma melting furnace that controls the input voltage constant by making the input voltage constant, when the inside of the furnace can be observed with an infrared camera provided outside the furnace, the distance from the molten metal surface to the tip of the main electrode is constant. The inter-electrode distance constant control is performed to correct the applied voltage according to the above. When the inside of the furnace cannot be observed by the infrared camera, the applied voltage constant control is performed . Further, the inter-electrode distance constant control is performed by the infrared camera. The molten metal surface is photographed, and the lower and side edges of the main electrode and the molten metal surface are determined on the image, the distance between the electrodes from the molten metal surface to the leading edge of the main electrode, Measure the electrode width between the two side edges, calculate the actual interelectrode distance from the ratio of the measured electrode width to the actual electrode width, and apply the voltage according to the interelectrode distance depending on whether the electrode side end can be determined. The feature is that the correction of the applied voltage is performed based on the deviation between the measured value of the distance between the electrodes calculated as described above and the set value set in advance .

本発明に依れば、次の様な優れた効果を奏する事ができる。
(1) 赤外線カメラにより炉内を観察できない時には、電極間距離一定制御を切るようにしたので、主電極(投入電圧)を上げ過ぎることによる電力原単位の増加、耐火物の損傷、サイドアークの発生及び主電極の抜けを防止することができる。
(2) 電極高さ制御ではなく、投入電圧補正の追加による制御なので、投入電圧の上限を設定することで、主電極(投入電圧)の異常上昇を防止できる。
(3) 電極高さ制御ではなく、投入電圧補正の追加による制御なので、当該制御を切れば、制御開始設定値を変更する必要がない。
(4) 実際の電極間距離を算出するので、カメラ位置等を変更しても、電極間距離設定値を変更する必要がない。また、実際の電極間距離をパラメータにすることで、電極間距離と運転状態の関係を他プランと比較できる。
(5) 予め溶湯面の高さを設定することで、未溶融の灰が流出口付近まで漂って溶湯面の判別が困難な時でも、主電極の先端を判別できれば電極間距離を測定できる。
(6) 投入電圧補正の追加による制御なので、従来の投入電圧一定制御からの変更が少なく、既設改造作業が容易である。また、運転員が制御方法の変更に対応し易い。
According to the present invention, the following excellent effects can be achieved.
(1) When the inside of the furnace cannot be observed with an infrared camera, the constant inter-electrode distance control is turned off, so that the power unit intensity increases due to excessively high main electrode (input voltage), refractory damage, side arc Generation and removal of the main electrode can be prevented.
(2) Since the control is not the electrode height control but the addition voltage correction, an abnormal increase of the main electrode (the input voltage) can be prevented by setting the upper limit of the input voltage.
(3) Since the control is based on the addition of the applied voltage correction, not the electrode height control, it is not necessary to change the control start set value if the control is turned off.
(4) Since the actual interelectrode distance is calculated, it is not necessary to change the interelectrode distance setting value even if the camera position or the like is changed. In addition, by using the actual distance between electrodes as a parameter, the relationship between the distance between electrodes and the operating state can be compared with other plans.
(5) By setting the height of the molten metal surface in advance, the distance between the electrodes can be measured if the tip of the main electrode can be determined even when unmelted ash drifts to the vicinity of the outlet and it is difficult to determine the molten metal surface.
(6) Since the control is based on the addition of the input voltage correction, there is little change from the conventional constant input voltage control, and the existing remodeling work is easy. In addition, the operator can easily cope with the change in the control method.

以下、本発明の実施の形態を、図面に基づいて説明する。
図1は、本発明の実施に使用するプラズマ溶融炉を示す概要図。図2は、赤外線カメラの撮影画像を示す図。図3は、制御装置のブロック図。図4は、投入電圧補正演算の考え方を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing a plasma melting furnace used for carrying out the present invention. FIG. 2 is a view showing a captured image of the infrared camera. FIG. 3 is a block diagram of the control device. FIG. 4 is a diagram illustrating the concept of the input voltage correction calculation.

プラズマ溶融炉1は、都市ごみや産業廃棄物等のごみ焼却炉から排出された焼却灰や飛灰等の被溶融物Aを溶融処理するものであり、耐火物等により形成された炉本体2と、炉本体2の天井部を昇降可能に貫設された主電極3と、炉本体2の底部に配設された導電性耐火物製の炉底電極4と、陰極が主電極3に接続されると共に陽極が集電板5を介して炉底電極4に接続される直流電源装置6と、主電極3を昇降自在に支持する電極昇降装置7と、被溶融物Aを供給するための被溶融物供給装置8と、溶融スラグと溶融メタルから成る溶湯Bが溢流して流出される流出口9と、主電極3の先端位置3´と溶湯面B´を検出するための赤外線カメラ10と、赤外線カメラ10からの画像を処理する画像処理装置11と、画像処理装置11からの信号に基づいて直流電源装置6や電極昇降装置7を制御するための制御装置12とを備えている。   The plasma melting furnace 1 melts the melted material A such as incineration ash and fly ash discharged from a garbage incinerator such as municipal waste and industrial waste, and a furnace main body 2 formed of refractory or the like. A main electrode 3 penetrating the ceiling of the furnace body 2 so as to be movable up and down, a furnace bottom electrode 4 made of a conductive refractory disposed at the bottom of the furnace body 2, and a cathode connected to the main electrode 3 And a DC power supply device 6 whose anode is connected to the furnace bottom electrode 4 via the current collector plate 5, an electrode lifting / lowering device 7 that supports the main electrode 3 so that it can be lifted and lowered, and a material A to be melted A A melt supply device 8, an outlet 9 through which molten metal B made of molten slag and molten metal overflows, and an infrared camera 10 for detecting the tip position 3 ′ of the main electrode 3 and the molten metal surface B ′. An image processing device 11 for processing an image from the infrared camera 10, and a signal from the image processing device 11. And a control device 12 for controlling the DC power supply device 6 and the electrode lifting / lowering device 7 on the basis of the number.

赤外線カメラ10は、流出口9側の炉本体2に設けられた覗き窓13の外側に設置されている。   The infrared camera 10 is installed outside a viewing window 13 provided in the furnace body 2 on the outlet 9 side.

画像処理装置11は、カメラ画面14上に電極幅測定ウインドウ15と電極先端位置測定ウインドウ16と溶湯面B´の位置とが設定されている。   In the image processing apparatus 11, the electrode width measurement window 15, the electrode tip position measurement window 16, and the position of the molten metal surface B ′ are set on the camera screen 14.

制御装置12は、投入電力に応じて予め設定された投入電圧が演算される電力−電圧演算部17と、投入電圧補正値を手入力するための手入力部18と、投入電圧一定制御するための制御部19と、電極間距離(主電極3の下端3´から溶湯面B´の距離)の測定値PVと予め設定している設定値SVとの偏差PV−SVにより投入電圧補正値を演算するための投入電圧補正値演算部20と、電力−電圧演算部17及び手入力部18に対して投入電圧補正値演算部20を接続又は切断するための切換スイッチ21とを備えている。   The control device 12 performs a power-voltage calculation unit 17 in which a preset input voltage is calculated according to the input power, a manual input unit 18 for manually inputting the input voltage correction value, and a constant input voltage control. The input voltage correction value is determined by the control unit 19 and the deviation PV-SV between the measured value PV of the interelectrode distance (distance from the lower end 3 ′ of the main electrode 3 to the molten metal surface B ′) and the preset set value SV. An input voltage correction value calculation unit 20 for calculation, and a changeover switch 21 for connecting or disconnecting the input voltage correction value calculation unit 20 with respect to the power-voltage calculation unit 17 and the manual input unit 18 are provided.

次に、この様な構成に基づいてその作用を述解する。
(1) 赤外線カメラ10で撮影されて画像処理装置11により画像処理されたカメラ画面14に於て、電極幅測定ウインドウ15内の輝度差で主電極3の側端を決定する事でエッジ処理をし、電極幅を測定する。また、エッジ処理可能の時のみに電極間距離に応じた投入電圧補正を実施する。
(2) 視界が良好な時に溶湯面B´を設定し、一定高さとする。電極先端位置測定ウインドウ16内の輝度差でエッジ処理をし、主電極3の先端3´を決定する事で、電極間距離を測定する。
(3) 測定した電極間距離と電極幅および実際の電極幅から実際の電極間距離を算出する。
(4) 電極間距離一定制御を行う際は、電極間距離の測定値PVと設定値SVの偏差PV−SVから投入電圧補正値を演算して求める。
(5) 主電極3の側端を確認できない時等、電極間距離一定制御が困難と判断すれば、切換スイッチ21により投入電圧補正を「切」にして、通常の投入電圧一定制御を実施する。
Next, the operation will be described based on such a configuration.
(1) Edge processing is performed by determining the side edge of the main electrode 3 based on the luminance difference in the electrode width measurement window 15 on the camera screen 14 photographed by the infrared camera 10 and processed by the image processing device 11. Then, the electrode width is measured. In addition, the applied voltage is corrected according to the distance between the electrodes only when the edge processing is possible.
(2) When the visibility is good, the molten metal surface B ′ is set to have a constant height. Edge processing is performed based on the luminance difference in the electrode tip position measurement window 16, and the tip 3 'of the main electrode 3 is determined, thereby measuring the distance between the electrodes.
(3) The actual inter-electrode distance is calculated from the measured inter-electrode distance, electrode width, and actual electrode width.
(4) When performing the inter-electrode distance constant control, the input voltage correction value is calculated from the measured value PV of the inter-electrode distance and the deviation PV-SV of the set value SV.
(5) When it is determined that the interelectrode distance constant control is difficult, such as when the side end of the main electrode 3 cannot be confirmed, the input voltage correction is set to “OFF” by the changeover switch 21, and the normal input voltage constant control is performed. .

本発明の実施に使用するプラズマ溶融炉を示す概要図。The schematic diagram which shows the plasma melting furnace used for implementation of this invention. 赤外線カメラの撮影画像を示す図。The figure which shows the picked-up image of an infrared camera. 制御装置のブロック図。The block diagram of a control apparatus. 投入電圧補正演算の考え方を示す図。The figure which shows the concept of the input voltage correction calculation.

符号の説明Explanation of symbols

1…プラズマ溶融炉、2…炉本体、3…主電極、3´…主電極の先端位置、4…炉底電極、5…集電板、6…直流電源装置、7…電極昇降装置、8…被溶融物供給装置、9…流出口、10…赤外線カメラ、11…画像処理装置、12…制御装置、13…覗き窓、14…カメラ画像、15…電極幅測定ウインドウ、16…電極先端位置測定ウインドウ、17…電力−電圧演算部、18…手入力部、19…投入電圧一定制御部、20…投入電圧補正値演算部、21…切換スイッチ、A…被溶融物、B…溶湯、B´…溶湯面。   DESCRIPTION OF SYMBOLS 1 ... Plasma melting furnace, 2 ... Furnace main body, 3 ... Main electrode, 3 '... Tip position of main electrode, 4 ... Furnace bottom electrode, 5 ... Current collecting plate, 6 ... DC power supply device, 7 ... Electrode raising / lowering device, 8 DESCRIPTION OF SYMBOLS ... Melt supply apparatus, 9 ... Outlet, 10 ... Infrared camera, 11 ... Image processing apparatus, 12 ... Control apparatus, 13 ... Viewing window, 14 ... Camera image, 15 ... Electrode width measurement window, 16 ... Electrode tip position Measurement window, 17 ... power-voltage calculation unit, 18 ... manual input unit, 19 ... charge voltage constant control unit, 20 ... charge voltage correction value calculation unit, 21 ... switch, A ... melted material, B ... melt, B ´… The molten metal surface.

Claims (1)

炉内に設けられた主電極と炉底電極との間に印加される電圧によって発生するプラズマアークにより被溶融物を溶融すると共に、主電極を昇降させることにより投入電圧を一定にする投入電圧一定制御を行うプラズマ溶融炉において、炉外に設けられた赤外線カメラにより炉内を観察できる時には、溶湯面から主電極の先端までの距離を一定としてこの距離に応じた投入電圧補正をする電極間距離一定制御を行い、また、赤外線カメラにより炉内を観察できない時には、投入電圧一定制御を行い、更に、前記電極間距離一定制御は、赤外線カメラにより主電極と溶湯面を撮影し、その画像上において主電極の下端及び側端と溶湯面を判定すると共に、溶湯面から主電極の先端までの電極間距離と、主電極の側端間の電極幅を測定し、当該測定した電極幅と実際の電極幅との比から実際の電極間距離を算出し、電極側端の判定の可否により電極間距離に応じた投入電圧補正の入・切を行い、前記のように算出した電極間距離の測定値と予め設定している設定値との偏差により投入電圧補正を行うようにしたことを特徴とするプラズマ溶融炉の制御方法。 Melting the molten material by a plasma arc generated by the voltage applied between the main electrode and the furnace bottom electrode provided in the furnace, and making the input voltage constant by raising and lowering the main electrode In the controlled plasma melting furnace, when the inside of the furnace can be observed by an infrared camera provided outside the furnace, the distance between the molten metal surface and the tip of the main electrode is constant, and the interelectrode distance is corrected for the input voltage according to this distance. When the inside of the furnace cannot be observed with an infrared camera, the applied voltage is controlled with constant control.In addition, the interelectrode distance control is performed by photographing the main electrode and the molten metal surface with an infrared camera. Determine the lower end and side ends of the main electrode and the molten metal surface, measure the distance between the molten metal surface and the tip of the main electrode, and the electrode width between the main electrode side edges, and perform the measurement The actual distance between the electrodes is calculated from the ratio of the measured electrode width and the actual electrode width, and the applied voltage correction is turned on / off according to the distance between the electrodes depending on whether the electrode side edge can be determined. A method for controlling a plasma melting furnace, wherein the input voltage is corrected based on a deviation between the measured value of the distance between the electrodes and a preset value .
JP2007159699A 2007-06-18 2007-06-18 Control method of plasma melting furnace Active JP5060182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159699A JP5060182B2 (en) 2007-06-18 2007-06-18 Control method of plasma melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159699A JP5060182B2 (en) 2007-06-18 2007-06-18 Control method of plasma melting furnace

Publications (2)

Publication Number Publication Date
JP2008309436A JP2008309436A (en) 2008-12-25
JP5060182B2 true JP5060182B2 (en) 2012-10-31

Family

ID=40237193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159699A Active JP5060182B2 (en) 2007-06-18 2007-06-18 Control method of plasma melting furnace

Country Status (1)

Country Link
JP (1) JP5060182B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3986519B2 (en) * 2004-10-12 2007-10-03 三菱重工業株式会社 Electric ash melting furnace and operation method thereof

Also Published As

Publication number Publication date
JP2008309436A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5060182B2 (en) Control method of plasma melting furnace
JP5324832B2 (en) Level measuring method and level measuring apparatus for ash melting furnace
JP4191885B2 (en) Plasma ash melting furnace and operating method thereof
JP5007094B2 (en) Control method of plasma melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JP3746921B2 (en) Operation method of electric melting furnace
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP5096797B2 (en) Level measurement method for ash melting furnace
US4161618A (en) DC arc furnace operation indicating system
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP3659903B2 (en) Plasma ash melting furnace
JP3986519B2 (en) Electric ash melting furnace and operation method thereof
JP3709945B2 (en) Level detection method and apparatus for ash melting furnace
JP2000088632A (en) Method for measuring depth of molten slag in plasma type ash melting furnace
RU2630160C2 (en) Electric mode automatic control system of melting facility with two electric heating sources using smart control sensor of melting metal aggregate state
JP4007771B2 (en) Molten state control device in plasma melting furnace
JP3534693B2 (en) Operating method of plasma ash melting furnace
JPH11173531A (en) Method for detecting thickness of slag in electric ash melting furnace
JPH10237531A (en) Method and instrument for detecting furnace hearth level of dc arc furnace
JPH09105507A (en) Operating method for ash treating electric resistance melting furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP4563241B2 (en) Incineration ash melting electric furnace
JPH1130545A (en) Apparatus and method for detecting deposit in melting furnace
JP2006220380A (en) Molten steel level detection method and molten steel level detection device for arc furnace
JP2003028411A (en) Plasma type ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5060182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250