JP5324832B2 - Level measuring method and level measuring apparatus for ash melting furnace - Google Patents

Level measuring method and level measuring apparatus for ash melting furnace Download PDF

Info

Publication number
JP5324832B2
JP5324832B2 JP2008155827A JP2008155827A JP5324832B2 JP 5324832 B2 JP5324832 B2 JP 5324832B2 JP 2008155827 A JP2008155827 A JP 2008155827A JP 2008155827 A JP2008155827 A JP 2008155827A JP 5324832 B2 JP5324832 B2 JP 5324832B2
Authority
JP
Japan
Prior art keywords
furnace body
main electrode
molten
molten slag
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008155827A
Other languages
Japanese (ja)
Other versions
JP2009300010A (en
Inventor
雅晴 大上
考太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2008155827A priority Critical patent/JP5324832B2/en
Publication of JP2009300010A publication Critical patent/JP2009300010A/en
Application granted granted Critical
Publication of JP5324832B2 publication Critical patent/JP5324832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce initial cost and running cost and reduce work on the site. <P>SOLUTION: In an ash melting furnace 2, while inert gas G is supplied from a chip of a main electrode 4 provided on a ceiling wall of a furnace body 3 so as to be liftable/lowerable to inside of the furnace body 3, molten objects within the furnace body 3 are molten to form a molten metal layer M and a molten slug layer S within the furnace body 3. While the main electrode 4 is lowered, back pressure of the inert gas G supplied to inside of the furnace body 3 is measured, and based on the increase rate of the back pressure, the position of the main electrode 4 when the chip of the main electrode 4 is located on the molten slug face and molten metal face is detected. Based on the position of the main electrode 4 when the molten slug face and molten metal face are detected, the thickness L1 of the molten slug layer S is calculated. By a non-contact type distance meter 14 provided in the furnace body 3, a distance L3 from the distance meter 14 to the molten slug face is measured, and based on the thickness L1 of the molten slug layer S and the measured distance L3, the thickness L2 of the molten metal layer M, that is, a molten metal level ML is calculated. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、主にごみ焼却炉から排出された焼却残渣や飛灰、下水汚泥等の被溶融物を溶融処理するプラズマ式電気溶融炉等の灰溶融炉に用いられるものであり、主電極から炉内ヘ供給される不活性ガスの背圧及び非接触式の距離計を利用して溶融スラグレベル、溶融メタルレベルを測定するようにした灰溶融炉のレベル測定方法及びレベル測定装置の改良に関するものである。   The present invention is mainly used in an ash melting furnace such as a plasma electric melting furnace for melting an incineration residue discharged from a refuse incinerator, a fly ash, a sewage sludge and the like to be melted. The present invention relates to an improvement in the level measuring method and level measuring apparatus of an ash melting furnace that measures the molten slag level and the molten metal level by using a back pressure of an inert gas supplied to the furnace and a non-contact distance meter. Is.

従来、灰溶融炉に於ける溶融スラグレベルや溶融メタルレベルを測定する方法としては、例えば特開2003−42428号公報(特許文献1)、特開2001−50528号公報(特許文献2)、特開平10−332268号公報(特許文献3)、特開平10−9555号公報(特許文献4)、特開平8−320111号公報(特許文献5)、特開平8−271319号公報(特許文献6)及び特開平10−122544号公報(特許文献7)に開示された技術が知られている。
又、灰溶融炉に用いられるものではないが、ガス管から供給されるガスの背圧の変化を検出して溶湯レベルを測定する方法としては、特開平9−126858号公報(特許文献8)、特開昭63−196820号公報(特許文献9)、特開平6−588号公報(特許文献10)及び特開平6−589号公報(特許文献11)に開示された技術が知られている。
Conventionally, as a method for measuring a molten slag level and a molten metal level in an ash melting furnace, for example, Japanese Patent Application Laid-Open No. 2003-42428 (Patent Document 1), Japanese Patent Application Laid-Open No. 2001-50528 (Patent Document 2), Japanese Laid-Open Patent Application No. 10-332268 (Patent Document 3), Japanese Patent Application Laid-Open No. 10-9555 (Patent Document 4), Japanese Patent Application Laid-Open No. 8-320111 (Patent Document 5), Japanese Patent Application Laid-Open No. 8-271319 (Patent Document 6). And a technique disclosed in Japanese Patent Laid-Open No. 10-122544 (Patent Document 7) is known.
Further, although not used in an ash melting furnace, as a method for measuring a molten metal level by detecting a change in the back pressure of a gas supplied from a gas pipe, Japanese Patent Laid-Open No. 9-126858 (Patent Document 8). JP-A 63-196820 (Patent Document 9), JP-A 6-588 (Patent Document 10) and JP-A 6-589 (Patent Document 11) are known. .

即ち、特開2003−42428号公報に開示された技術は、溶融炉本体の重量を重量検出器によって連続的に検出し、その重量検出信号に基づいて溶融スラグ層レベルや溶融メタル層レベルを演算し、これに基づいて灰溶融炉を制御するようにしたものである。又、特開2003−42428号公報には、溶融炉本体内へメタルレベル測定用プローブを挿着し、このメタルレベル測定用プローブを溶融スラグ層へ挿入してその先端を溶融メタル層へ接触させ、これをメタルレベル測定装置により検出することによって、溶融メタル層の厚さを演算・表示するようにした技術が開示されている。   That is, in the technique disclosed in Japanese Patent Application Laid-Open No. 2003-42428, the weight of the melting furnace body is continuously detected by the weight detector, and the molten slag layer level and the molten metal layer level are calculated based on the weight detection signal. Based on this, the ash melting furnace is controlled. In Japanese Patent Laid-Open No. 2003-42428, a metal level measurement probe is inserted into the melting furnace body, the metal level measurement probe is inserted into the molten slag layer, and its tip is brought into contact with the molten metal layer. A technique is disclosed in which the thickness of the molten metal layer is calculated and displayed by detecting this with a metal level measuring device.

特開平2001−50528号公報に開示された技術は、溶湯内に挿入したレベル検出センサー(メタルレベル検出器)又は溶融炉本体の側壁外方に設けたメタルレベル検出器(磁気方式又は超音波方式)により溶融メタルレベルを検出するようにしたものである。   The technique disclosed in Japanese Patent Application Laid-Open No. 2001-50528 is a level detection sensor (metal level detector) inserted into the molten metal or a metal level detector (magnetic system or ultrasonic system) provided outside the side wall of the melting furnace body. ) To detect the molten metal level.

特開平10−332268号公報に開示された技術は、加熱源供給電極を炉底に当接させてこのときの加熱源供給電極の高さを検出し、加熱源供給電極とベースメタルとの間の抵抗値又は電位差を検出しつつ加熱源供給電極を上昇させ、前記抵抗値又は電位差の変化と加熱源供給電極の上昇距離からベースメタルレベルを検出するようにしたものである。   In the technique disclosed in Japanese Patent Laid-Open No. 10-332268, the heating source supply electrode is brought into contact with the furnace bottom to detect the height of the heating source supply electrode at this time, and the gap between the heating source supply electrode and the base metal is detected. The heating source supply electrode is raised while detecting the resistance value or potential difference, and the base metal level is detected from the change in the resistance value or potential difference and the rising distance of the heating source supply electrode.

特開平10−9555号公報に開示された技術は、レベル検出用電極を灰溶融炉に挿入し、レベル検出用電極を昇降させてその過程で電圧の電流に対する比が不連続に変化するレベル検出用電極の位置を検出することによって、溶融スラグ及び溶融メタルのレベルを検出するようにしたものである。   In the technique disclosed in Japanese Patent Laid-Open No. 10-9555, a level detection electrode is inserted into an ash melting furnace, the level detection electrode is moved up and down, and the ratio of voltage to current changes discontinuously in the process. The level of the molten slag and the molten metal is detected by detecting the position of the working electrode.

特開平8−320111号公報に開示された技術は、検出部材(検出電極)又はプラズマ発生電極を下降させて溶融スラグの表面へ接触させ、検出部材(検出電極)又はプラズマ発生電極とベースメタルとの電位差を検出して溶融スラグ層の厚さを検知し、これによりベースメタルレベルを検出したり、或いはメタルの排出湯面レベルの近傍にベースメタルと接触可能な導電性部材を設け、この導電性部材とベースメタルとの電位差を検出してベースメタルレベルの位置を検知するようにしたものである。   In the technique disclosed in Japanese Patent Laid-Open No. 8-320111, the detection member (detection electrode) or the plasma generation electrode is lowered and brought into contact with the surface of the molten slag, and the detection member (detection electrode) or the plasma generation electrode and the base metal The thickness of the molten slag layer is detected to detect the base metal level, or a conductive member that can come into contact with the base metal is provided near the level of the discharged metal surface of the metal. The position of the base metal level is detected by detecting the potential difference between the conductive member and the base metal.

特開平8−271319号公報に開示された技術は、溶融メタルと溶融スラグの中間の密度を有するセラミック製のメタルレベル検出用検知体を溶融炉内に挿入し、メタルレベル検出用検知体が溶融メタルから受ける浮力をロードセルによりロードセル荷重として検出し、そのロードセル荷重から溶融炉内のメタルレベルをオンラインで検出するようにしたものである。   In the technique disclosed in Japanese Patent Laid-Open No. 8-271319, a metal level detection detector made of ceramic having a density intermediate between molten metal and molten slag is inserted into a melting furnace, and the metal level detection detector is melted. The buoyancy received from the metal is detected as a load cell load by the load cell, and the metal level in the melting furnace is detected online from the load cell load.

特開平10−122544号公報に開示された技術は、スラグ湯面検出電極及び金属湯面検出電極を備えたレベルプローブを溶融炉内に挿入し、レベルプローブを昇降させて抵抗式又は磁気式で溶融金属レベルを測定するようにしたものである。   In the technique disclosed in Japanese Patent Laid-Open No. 10-122544, a level probe including a slag molten metal level detection electrode and a metal molten metal level detection electrode is inserted into a melting furnace, and the level probe is moved up and down to be resistive or magnetic. The molten metal level is measured.

特開平9−126858号公報に開示された技術は、連続鋳造設備のモールド内の溶湯内にパージ管を立設し、パージ管にパージガスを供給してその背圧を背圧検出器で検出することによって、溶湯レベルを測定するようにしたものである。   In the technique disclosed in Japanese Patent Laid-Open No. 9-126858, a purge pipe is erected in a molten metal in a mold of a continuous casting facility, purge gas is supplied to the purge pipe, and the back pressure is detected by a back pressure detector. Thus, the molten metal level is measured.

特開昭63−196820号公報に開示された技術は、下端開口から不活性ガスが流出されている送ガス管を溶湯内に挿入し、送ガス管の背圧の変化を背圧検知器により検知することによって、溶湯レベルを測定するようにしたものである。   In the technique disclosed in Japanese Patent Laid-Open No. 63-196820, a gas supply pipe from which an inert gas has flowed out from the lower end opening is inserted into the molten metal, and a change in the back pressure of the gas supply pipe is detected by a back pressure detector. By detecting, the molten metal level is measured.

特開平6−588号公報及び特開平6−589号公報に開示された技術は、鋳型内に注入された溶融金属内にバブラー管を挿入し、このバブラー管を発泡させてバブラー管のその位置に於ける背圧等を測定し、この測定した背圧等の値を基として溶融金属の境界層レベルを測定するようにしたものである。   The technique disclosed in Japanese Patent Laid-Open Nos. 6-588 and 6-589 is a technique in which a bubbler tube is inserted into a molten metal injected into a mold, and the bubbler tube is foamed to position the bubbler tube. In this example, the back pressure and the like in the metal are measured, and the boundary layer level of the molten metal is measured based on the measured back pressure and the like.

然し乍ら、上述した従来技術は、何れも専用のレベル測定装置を用いるものであり、又、メタルレベル測定用のプローブを用いたものは、プローブを測定毎に取り替える必要があり、専用の測定装置のイニシャルコストや消耗品のランニングコストが大幅に高騰すると云う問題があった。
更に、メタルレベル測定用のプローブを交換する際に、プローブの取り付け確認等、現場での作業を必要とする問題があった。
However, all of the above-described conventional techniques use a dedicated level measuring device, and those using a metal level measuring probe require the probe to be replaced for each measurement. There was a problem that the initial cost and the running cost of consumables increased significantly.
Furthermore, when replacing the probe for measuring the metal level, there is a problem that requires on-site work such as confirmation of probe attachment.

特開2003−42428号公報Japanese Patent Laid-Open No. 2003-42428 特開2001−50528号公報JP 2001-50528 A 特開平10−332268号公報JP 10-332268 A 特開平10−9555号公報Japanese Patent Laid-Open No. 10-9555 特開平8−320111号公報JP-A-8-320111 特開平8−271319号公報JP-A-8-271319 特開平10−122544号公報Japanese Patent Laid-Open No. 10-122544 特開平9−126858号公報JP-A-9-126858 特開昭63−196820号公報JP-A 63-196820 特開平6−588号公報JP-A-6-588 特開平6−589号公報JP-A-6-589

本発明は、このような問題点に鑑みて為されたものであり、その目的は、イニシャルコストやランニングコストを削減できると共に、現場での作業を減らせるようにした灰溶融炉のレベル測定方法及びレベル測定装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to reduce the initial cost and the running cost, and to reduce the work at the site, and a method for measuring the level of an ash melting furnace. And providing a level measuring device.

上記目的を達成するために、本発明の請求項1の発明は、炉本体の天井壁に昇降自在に設けた主電極の先端から炉本体内に不活性ガスを供給しつつ、前記主電極と炉本体の底壁に配設した炉底電極との間に所定の電圧を印加して両電極間にプラズマアークを発生させ、当該プラズマアークの発生熱により炉本体内に投入した被溶融物を溶融して炉本体内に溶融メタル層及び溶融スラグ層を形成する灰溶融炉に於いて、前記主電極を降下させながら炉本体内に供給している不活性ガスの背圧を測定し、背圧の増加率の変化から主電極先端が溶融スラグ面及び溶融メタル面にあるときの主電極の位置を検出すると共に、溶融スラグ面及び溶融メタル面の検出時に於ける主電極の位置から溶融スラグ層の厚みを算出し、又、炉本体の天井壁に設けたマイクロ波距離計により当該マイクロ波距離計から溶融スラグ面までの距離を測定し、前記溶融スラグ層の厚みとマイクロ波距離計による溶融スラグ面までの測定距離とから溶融メタル層の厚みを算出するようにしたことに特徴がある。 In order to achieve the above object, the invention of claim 1 of the present invention is characterized in that an inert gas is supplied into the furnace body from the tip of the main electrode provided on the ceiling wall of the furnace body so as to be movable up and down. A predetermined voltage is applied between the furnace bottom electrode arranged on the bottom wall of the furnace body to generate a plasma arc between both electrodes, and the melt to be introduced into the furnace body is generated by the heat generated by the plasma arc. In an ash melting furnace that melts to form a molten metal layer and a molten slag layer in the furnace body, the back pressure of the inert gas supplied into the furnace body is measured while lowering the main electrode, and the back pressure is measured. The position of the main electrode when the tip of the main electrode is on the molten slag surface and the molten metal surface is detected from the change in pressure increase rate, and the molten slag is detected from the position of the main electrode when detecting the molten slag surface and molten metal surface. calculating the thickness of the layer, also provided on the ceiling wall of the furnace body The distance from the microwave rangefinder to the molten slag surface measured by microwave rangefinder, for calculating the thickness of the molten metal layer and a measurement distance until said molten slag surface by the thickness and the microwave rangefinder molten slag layer It is characterized by doing so.

本発明の請求項2の発明は、炉本体の天井壁に昇降自在に設けた主電極の先端から炉本体内に不活性ガスを供給しつつ、前記主電極と炉本体の底壁に配設した炉底電極との間に所定の電圧を印加して両電極間にプラズマアークを発生させ、当該プラズマアークの発生熱により炉本体内に投入した被溶融物を溶融して炉本体内に溶融メタル層及び溶融スラグ層を形成するようにした灰溶融炉に用いるレベル測定装置に於いて、前記レベル測定装置は、炉本体の天井壁に昇降自在に設けられ、先端から不活性ガスを噴出する中空孔を備えた主電極と、主電極を支持して昇降させると共に、主電極を支持する位置を検出する位置検出手段を備えた昇降装置と、主電極の中空孔を介して炉本体内に不活性ガスを供給するガス供給装置と、不活性ガスの背圧を検出する背圧検出器と、炉本体の天井壁に設けられ、溶融スラグ面までの距離を測定するマイクロ波距離計と、背圧検出器による背圧の増加率の変化及び昇降装置の位置検出手段により検出した主電極の位置並びにマイクロ波距離計により測定した溶融スラグ面までの測定距離から溶融スラグ層の厚み及び溶融メタル層の厚み、溶融スラグレベル、溶融メタルレベルを夫々演算する演算装置とから構成したことに特徴がある。 The invention of claim 2 of the present invention is arranged on the main electrode and the bottom wall of the furnace body while supplying an inert gas into the furnace body from the front end of the main electrode provided on the ceiling wall of the furnace body so as to be movable up and down. A predetermined voltage is applied between the furnace bottom electrode and a plasma arc is generated between both electrodes, and the material to be melted in the furnace body is melted by the generated heat of the plasma arc to melt into the furnace body. In the level measuring apparatus used in the ash melting furnace in which the metal layer and the molten slag layer are formed, the level measuring apparatus is provided on the ceiling wall of the furnace body so as to be movable up and down, and injects an inert gas from the tip. A main electrode having a hollow hole, a lifting device having a position detection means for detecting a position for supporting the main electrode while moving up and down while supporting the main electrode, and the furnace body through the hollow hole of the main electrode A gas supply device for supplying an inert gas, and an inert gas A back pressure detector that detects pressure, a microwave rangefinder that is installed on the ceiling wall of the furnace body, measures the distance to the molten slag surface, changes in the increase rate of back pressure by the back pressure detector, and Calculation for calculating the thickness of the molten slag layer, the thickness of the molten metal layer, the molten slag level, and the molten metal level from the position of the main electrode detected by the position detecting means and the measured distance to the molten slag surface measured by the microwave rangefinder. It is characterized by comprising the device .

本発明の灰溶融炉のレベル測定方法は、主電極の先端から炉内に不活性ガスを供給しつつ、主電極を降下させながら炉内に供給している不活性ガスの背圧を測定し、背圧の増加率の変化から主電極の先端が溶融スラグ面及び溶融メタル面にあるときの主電極の位置を検出すると共に、溶融スラグ面及び溶融メタル面の検出時に於ける主電極の位置から溶融スラグ層の厚みを算出し、又、炉本体の天井壁に設けたマイクロ波距離計により当該マイクロ波距離計から溶融スラグ面までの距離を測定し、前記溶融スラグ層の厚みとマイクロ波距離計による溶融スラグ面までの測定距離とから溶融メタル層の厚みを算出するようにしているため、専用のレベル測定装置を不要とし、イニシャルコストやランニングコストの大幅な削減を図れるうえ、メタルレベル測定用のプローブ等の取り替え作業や取り付け確認等の作業が不要となり、現場作業等の省力化を図れる。
又、本発明の灰溶融炉のレベル測定方法は、溶融スラグ面までの距離を測定するのにマイクロ波距離計を使用して溶融スラグ面までの距離を測定しているため、炉内が高ダスト雰囲気であっても溶融スラグ面までの距離を正確に測定することができ、溶融スラグレベルを正確に測定することができる。
The level measuring method of the ash melting furnace of the present invention measures the back pressure of the inert gas supplied into the furnace while lowering the main electrode while supplying the inert gas into the furnace from the tip of the main electrode. The position of the main electrode when the tip of the main electrode is on the molten slag surface and the molten metal surface is detected from the change in the increase rate of the back pressure, and the position of the main electrode in detecting the molten slag surface and the molten metal surface calculating the thickness of the molten slag layer from, also the distance from the microwave rangefinder to the molten slag surface and measured by the microwave range finder provided on the ceiling wall of the furnace body, microwaves and the thickness of the molten slag layer since according rangefinder and a measured distance to the molten slag surface and to calculate the thickness of the molten metal layer, and eliminating the need for dedicated level measuring device, after which attained a significant reduction in initial cost and running cost, main Work of the work and the mounting confirmation, such as replacement of such probes for Rureberu measurement is not required, thereby labor saving, such as field operations.
Further, the level measurement method for the ash melting furnace of the present invention uses a microwave rangefinder to measure the distance to the molten slag surface, and thus the distance to the molten slag surface is measured. Even in a dust atmosphere, the distance to the molten slag surface can be accurately measured, and the molten slag level can be accurately measured.

本発明の灰溶融炉のレベル測定装置は、先端から不活性ガスを噴出する中空孔を備えた主電極と、主電極を支持して昇降させると共に、主電極を支持する位置を検出する位置検出手段を備えた昇降装置と、主電極の中空孔を介して炉本体内に不活性ガスを供給するガス供給装置と、不活性ガスの背圧を検出する背圧検出器と、溶融スラグ面までの距離を測定するマイクロ波距離計と、背圧検出器による背圧の増加率の変化及び昇降装置の位置検出手段により検出した主電極の位置並びにマイクロ波距離計により測定した溶融スラグ面までの測定距離から溶融スラグ層の厚み及び溶融メタル層の厚み、溶融スラグレベル、溶融メタルレベルを夫々演算する演算装置とから構成しているため、上記方法を好適に実施することができる。その結果、本発明のレベル測定装置を用いれば、イニシャルコストやランニングコストの大幅な削減を図れると共に、現場作業等の省力化を図れる。
又、本発明の灰溶融炉のレベル測定装置は、灰溶融炉の主電極と昇降装置とガス供給装置を利用しているため、灰溶融炉の構造が複雑化したり、設置スペースが余分に必要になったりすると云うことがない。
The level measuring apparatus for an ash melting furnace of the present invention includes a main electrode having a hollow hole for injecting an inert gas from the tip, and a position detection for supporting the main electrode to move up and down and detecting a position for supporting the main electrode. Elevating device provided with means, gas supply device for supplying inert gas into the furnace body through the hollow hole of the main electrode, back pressure detector for detecting the back pressure of the inert gas, and up to the molten slag surface Microwave distance meter that measures the distance of the surface, the change in the increase rate of the back pressure by the back pressure detector, the position of the main electrode detected by the position detection means of the lifting device and the molten slag surface measured by the microwave distance meter The above method can be suitably implemented because the apparatus includes a calculation device that calculates the thickness of the molten slag layer, the thickness of the molten metal layer, the molten slag level, and the molten metal level from the measurement distance. As a result, by using the level measuring apparatus of the present invention, it is possible to greatly reduce initial costs and running costs, and to save labor such as on-site work.
In addition, the ash melting furnace level measuring device of the present invention uses the main electrode, lifting device and gas supply device of the ash melting furnace, so that the structure of the ash melting furnace is complicated and installation space is required. There is no such thing as becoming.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は本発明の実施の形態に係るレベル測定装置1を用いた灰溶融炉2を示し、当該灰溶融炉2は、都市ごみや産業廃棄物等を焼却処理するごみ焼却炉から排出された焼却残渣や飛灰、下水汚泥等の被溶融物を溶融処理するものであり、プラズマ式電気溶融炉の構造を呈している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an ash melting furnace 2 using a level measuring apparatus 1 according to an embodiment of the present invention, and the ash melting furnace 2 is discharged from a waste incinerator that incinerates municipal waste, industrial waste, and the like. It is intended to melt incineration residue, fly ash, sewage sludge and other materials to be melted, and has a plasma electric melting furnace structure.

即ち、前記灰溶融炉2は、図1に示す如く、耐火物等により形成された天井壁、周壁及び底壁(炉底)から成る炉本体3と、天井壁に貫通状に配設され、直流電源装置(図示省略)の陰極に接続された昇降自在な主電極4と、天井壁に貫通状に配設され、直流電源装置の一方の陽極に接続された昇降自在なスタート電極5と、底壁全域に配設され、直流電源装置の他方の陽極に集電板を介して接続された導電性耐火物製の炉底電極6と、主電極4を昇降自在に支持する昇降装置7と、スタート電極5を昇降自在に支持するスタート電極用昇降装置(図示省略)と、主電極4に形成した中空孔4aを通して炉本体3内に窒素ガス等の不活性ガスGを供給するガス供給装置8と、炉本体3の周壁に設けられ、炉本体3内に焼却残渣等の被溶融物を供給する被溶融物供給装置9(スクリューフィーダー)と、溶融スラグレベルSL及び溶融メタルレベルMLを測定するレベル測定装置1等から構成されている。   That is, as shown in FIG. 1, the ash melting furnace 2 is disposed in a penetrating manner in a furnace body 3 including a ceiling wall, a peripheral wall and a bottom wall (furnace bottom) formed of a refractory and the like, A vertically movable main electrode 4 connected to the cathode of a DC power supply (not shown), a vertically movable start electrode 5 disposed in a penetrating manner on the ceiling wall and connected to one anode of the DC power supply; A furnace bottom electrode 6 made of a conductive refractory, which is disposed over the entire bottom wall and connected to the other anode of the DC power supply device via a current collector, and a lifting device 7 which supports the main electrode 4 so as to be movable up and down; A start electrode lifting device (not shown) for supporting the start electrode 5 so as to be movable up and down, and a gas supply device for supplying an inert gas G such as nitrogen gas into the furnace body 3 through a hollow hole 4a formed in the main electrode 4 8 and provided on the peripheral wall of the furnace body 3, and to-be-melted materials such as incineration residues in the furnace body 3 And the melt feed device 9 for feeding (screw feeder), and a level measuring device 1 and the like for measuring the molten slag level SL and the molten metal level ML.

尚、図1に於いて、10は炉本体3の周壁に形成され、溶融スラグをオーバーフローさせる溶融スラグ出滓口、11は溶融スラグを流下させるスラグ出湯樋、12は炉本体3内の排ガスを排出する排ガス排出口である。   In FIG. 1, 10 is formed on the peripheral wall of the furnace main body 3 and overflows the molten slag, 11 is a slag hot water outlet that allows the molten slag to flow down, and 12 is exhaust gas in the furnace main body 3. It is an exhaust gas exhaust port for discharging.

以上のように構成された灰溶融炉2に於いて、焼却残渣や飛灰等の被溶融物の溶融処理を開始するに当たっては、先ず、主電極4とスタート位置に下降させたスタート電極5とに通電させて両電極間4,5に電流を発生させ、これにより炉本体3内の被溶融物を溶融する。これは、主電極4と炉底電極6の間に非導電性の被溶融物が介在するため、運転開始時に於いては、主電極4と炉底電極6との間にプラズマアークを発生させ得ないからである。   In the ash melting furnace 2 configured as described above, in order to start the melting treatment of the melted material such as incineration residue and fly ash, first, the main electrode 4 and the start electrode 5 lowered to the start position Is energized to generate a current between the electrodes 4 and 5, thereby melting the material to be melted in the furnace body 3. This is because a non-conductive material to be melted is interposed between the main electrode 4 and the furnace bottom electrode 6, and a plasma arc is generated between the main electrode 4 and the furnace bottom electrode 6 at the start of operation. It is because it is not obtained.

炉内の被溶融物が溶融して導電性が上昇すると、スタート電極5を待機位置に上昇させたうえ、主電極4と炉底電極6との間に直流電源装置により所定の電圧を印加して両電極4,6間にプラズマアークを発生させ、当該プラズマアークの発生熱により被溶融物供給装置9から炉本体3内へ投入された被溶融物を溶融する。
尚、炉本体3内は、溶融スラグへの重金属類の混入を低減したり、主電極4やスタート電極5の酸化等を防止するために還元性雰囲気に保持されている。そのため、ガス供給装置8から窒素ガス等の不活性ガスGが主電極4に形成した中空孔4a等を通して炉本体3内ヘ連続的に供給されている。
When the melted material in the furnace is melted and the conductivity is increased, the start electrode 5 is raised to the standby position, and a predetermined voltage is applied between the main electrode 4 and the furnace bottom electrode 6 by the DC power supply device. Then, a plasma arc is generated between the electrodes 4 and 6, and the melt to be melted introduced into the furnace body 3 from the melt melt supply device 9 is melted by the heat generated by the plasma arc.
The inside of the furnace body 3 is maintained in a reducing atmosphere in order to reduce the mixing of heavy metals into the molten slag and to prevent the main electrode 4 and the start electrode 5 from being oxidized. Therefore, an inert gas G such as nitrogen gas is continuously supplied from the gas supply device 8 into the furnace body 3 through the hollow holes 4 a formed in the main electrode 4.

主電極4と炉底電極6との間に発生するプラズマアークにより炉本体3内の被溶融物が順次溶融されて行くと、炉本体3内に溶湯が形成される。この溶湯は、焼却残渣等の被溶融物中にシリカを始めとするスラグ成分や鉄を始めとする金属類が多く含まれているため、比重差によって上方に位置する溶融スラグ層Sと溶融スラグ層Sの下方に位置する溶融メタル層Mとに分離される。   When the material to be melted in the furnace body 3 is sequentially melted by the plasma arc generated between the main electrode 4 and the furnace bottom electrode 6, a molten metal is formed in the furnace body 3. Since this molten metal contains many slag components such as silica and metals such as iron in the melted material such as incineration residue, the molten slag layer S and the molten slag located above due to the difference in specific gravity. It is separated into a molten metal layer M located below the layer S.

前記溶融スラグは、溶融スラグ出滓口10から順次オーバーフローし、スラグ出湯樋11を流下して冷却水を貯留した水冷槽(図示省略)内へ落下排出され、ここで水冷されて水砕スラグにされる。
又、炉本体3内で発生した排ガスは、誘引通風機(図示省略)の誘引作用により天井壁に形成した排ガス排出口12を通って燃焼室(図示省略)内へ導入され、ここで燃焼された後、排ガス処理装置(図示省略)等を経て浄化されてから大気中へ放出されている。
The molten slag sequentially overflows from the molten slag tap 10 and falls down into a water-cooled tank (not shown) in which cooling water is stored after flowing down the slag tap 11, where it is cooled with water to form granulated slag. Is done.
Further, the exhaust gas generated in the furnace body 3 is introduced into the combustion chamber (not shown) through the exhaust gas discharge port 12 formed in the ceiling wall by an attracting action of an induction fan (not shown) and burned there. After being purified through an exhaust gas treatment device (not shown) or the like, it is discharged into the atmosphere.

一方、溶融スラグの下方に位置する溶融メタルは、灰溶融炉2の運転時間の経過と共に順次底壁(炉底)に残留・蓄積し、溶融メタル層Mのレベルを上昇させて溶融メタル層Mの厚さを増加させる。これに伴って、上方の溶融スラグ層Sの厚さは、炉本体3の溶湯容積が一定であることとも相俟って、順次薄くなって行く。   On the other hand, the molten metal located below the molten slag remains and accumulates in the bottom wall (furnace bottom) sequentially with the lapse of the operation time of the ash melting furnace 2, and the level of the molten metal layer M is raised to increase the molten metal layer M. Increase the thickness of the. Along with this, the thickness of the upper molten slag layer S gradually decreases in combination with the fact that the molten metal volume of the furnace body 3 is constant.

ところで、溶融メタル層Mのレベルが上昇すると、溶融スラグ層Sの厚さが薄くなってアーク電圧やアーク電流の変動値が大きくなり、安定な運転が困難になるうえ、溶融スラグに溶融メタルが混合して排出され、スラグの品質が低下したりする等の問題が発生するため、レベル測定装置1により溶融スラグレベルSL及び溶融メタルレベルMLを測定し、その測定結果に基づいて周壁下部に設けたタップホール(図示省略)を間欠的に開孔し、ここから溶融メタルを抜き出して溶融メタル層Mの厚さが所定の厚さを超えないようにしている。   By the way, when the level of the molten metal layer M rises, the thickness of the molten slag layer S becomes thin and the fluctuation value of the arc voltage and arc current becomes large, and stable operation becomes difficult, and molten metal is added to the molten slag. Since problems such as deterioration of the quality of the slag occur due to mixing and discharging, the level measuring device 1 measures the molten slag level SL and the molten metal level ML and provides them at the lower part of the peripheral wall based on the measurement results. The tapped holes (not shown) are intermittently opened, and the molten metal is extracted therefrom so that the thickness of the molten metal layer M does not exceed a predetermined thickness.

前記レベル測定装置1は、炉本体3の天井壁に昇降自在に設けられ、先端から不活性ガスGを噴出する中空孔4aを備えた主電極4と、主電極4を支持して昇降させると共に、主電極4を支持する位置を検出する位置検出手段7aを備えた昇降装置7と、主電極4の中空孔4aを介して炉本体3内に不活性ガスGを供給するガス供給装置8と、不活性ガスGの背圧を検出する背圧検出器13と、炉本体3の天井壁に設けられ、溶融スラグ面までの距離L3を測定する非接触式の距離計14と、背圧検出器13による背圧の増加率の変化及び昇降装置7の位置検出手段7aにより検出した主電極4の位置並びに距離計14により測定した溶融スラグ面までの測定距離L3から溶融スラグ層Sの厚みL1及び溶融メタル層Mの厚みL2、溶融スラグレベルSL、溶融メタルレベルMLを夫々演算する演算装置15とから構成されており、主電極4の中空孔4aを通して炉本体3内に供給している不活性ガスGの背圧の変化率から主電極4の先端が溶融スラグ面及び溶融メタル面にあるときの主電極4の位置を検出し、又、溶融スラグ面及び溶融メタル面の検出時に於ける主電極4の位置と前記背圧の相関から溶融スラグ層Sの厚みL1を算出し、更に、距離計14により測定した溶融スラグレベルSLと前記溶融スラグの厚みL1から溶融メタル層Mの厚みL2を算出するようにしたものである。   The level measuring device 1 is provided on the ceiling wall of the furnace body 3 so as to be movable up and down, and supports the main electrode 4 having a hollow hole 4a through which an inert gas G is jetted from the tip, and supports the main electrode 4 to move up and down. The elevating device 7 provided with a position detecting means 7a for detecting the position supporting the main electrode 4, and the gas supply device 8 for supplying the inert gas G into the furnace body 3 through the hollow hole 4a of the main electrode 4. A back pressure detector 13 for detecting the back pressure of the inert gas G, a non-contact type distance meter 14 provided on the ceiling wall of the furnace body 3 for measuring the distance L3 to the molten slag surface, and back pressure detection The thickness L1 of the molten slag layer S from the change in the increase rate of the back pressure by the vessel 13, the position of the main electrode 4 detected by the position detecting means 7a of the lifting device 7 and the measured distance L3 to the molten slag surface measured by the distance meter 14 And the thickness L2 of the molten metal layer M, the molten slurry It comprises an arithmetic unit 15 for calculating the level SL and the molten metal level ML, respectively. The main component is based on the change rate of the back pressure of the inert gas G supplied into the furnace body 3 through the hollow hole 4a of the main electrode 4. The position of the main electrode 4 is detected when the tip of the electrode 4 is on the molten slag surface and the molten metal surface, and the position of the main electrode 4 in the detection of the molten slag surface and the molten metal surface is correlated with the back pressure. Then, the thickness L1 of the molten slag layer S is calculated, and the thickness L2 of the molten metal layer M is calculated from the molten slag level SL measured by the distance meter 14 and the thickness L1 of the molten slag.

主電極4は、人造黒鉛により円柱状に形成されており、その中心部には、炉本体3内へ窒素ガス等の不活性ガスGを供給する中空孔4aを備えている。この主電極4は、灰溶融炉2の運転中に漸次消耗して短くなって行くため、新しい電極を継ぎ足せる構造となっている。   The main electrode 4 is formed in a cylindrical shape by artificial graphite, and has a hollow hole 4 a for supplying an inert gas G such as nitrogen gas into the furnace body 3 at the center thereof. Since the main electrode 4 is gradually consumed and shortened during the operation of the ash melting furnace 2, it has a structure in which a new electrode can be added.

昇降装置7は、炉本体3上又はその近傍に立設したマスト7bと、マスト7bに昇降自在に片持ち支持された支持アーム7cと、支持アーム7cの先端部に設けた電極把持装置7dと、支持アーム7cを昇降動させる流体圧シリンダ又はウインチ等から成る駆動装置(図示省略)と、主電極4を支持する支持アーム7cの位置を検出するポテンションメータ等から成る位置検出手段7aとから構成されている。   The lifting device 7 includes a mast 7b erected on or near the furnace body 3, a support arm 7c that is cantilevered by the mast 7b, and an electrode gripping device 7d provided at the tip of the support arm 7c. A drive device (not shown) composed of a fluid pressure cylinder or winch for moving the support arm 7c up and down, and a position detection means 7a composed of a potentiometer or the like for detecting the position of the support arm 7c supporting the main electrode 4. It is configured.

ガス供給装置8は、PSA窒素ガス製造装置等の不活性ガス発生装置8a、不活性ガス供給管8b、減圧弁(図示省略)及び定流量弁(図示省略)等から成り、窒素ガス等の不活性ガスGを主電極4の中空孔4aへ供給し、主電極4先端から炉本体3内へ不活性ガスGを供給できるようにしたものである。   The gas supply device 8 includes an inert gas generator 8a such as a PSA nitrogen gas production device, an inert gas supply pipe 8b, a pressure reducing valve (not shown), a constant flow valve (not shown), and the like. The active gas G is supplied to the hollow hole 4 a of the main electrode 4 so that the inert gas G can be supplied from the tip of the main electrode 4 into the furnace body 3.

背圧検出器13は、主電極4へ不活性ガスGを供給する不活性ガス供給管8bの下流側に接続されており、主電極4の中空孔4aを通して炉本体3内へ供給されている不活性ガスGの背圧を検出するものである。   The back pressure detector 13 is connected to the downstream side of the inert gas supply pipe 8 b that supplies the inert gas G to the main electrode 4, and is supplied into the furnace body 3 through the hollow hole 4 a of the main electrode 4. The back pressure of the inert gas G is detected.

非接触式の距離計14は、炉本体3の天井壁に設けられており、距離計14から溶融スラグ面までの距離L3を測定するものである。この非接触式の距離計14には、マイクロ波を発信及び受信するアンテナ、マイクロ波を発信してから受信するまでの時間を距離に換算するコントローラ等を備えたマイクロ波距離計が使用されている。
尚、非接触式の距離計14として、マイクロ波距離計に替えてレーザー距離計又は超音波距離計を使用するようにしても良い。
The non-contact type distance meter 14 is provided on the ceiling wall of the furnace body 3 and measures the distance L3 from the distance meter 14 to the molten slag surface. As this non-contact type distance meter 14, a microwave distance meter including an antenna that transmits and receives microwaves, a controller that converts a time from when a microwave is transmitted to when it is received into a distance, and the like is used. Yes.
As the non-contact type distance meter 14, a laser distance meter or an ultrasonic distance meter may be used instead of the microwave distance meter.

演算装置15は、昇降装置7の位置検出手段7aからの検出信号、背圧検出器13からの検出信号及び非接触式の距離計14からの検出信号に基づいて溶融スラグ層Sの厚みL1及び溶融メタル層Mの厚みL2、溶融スラグレベルSL、溶融メタルレベルMLを夫々演算するものである。   The arithmetic device 15 is configured to detect the thickness L1 of the molten slag layer S based on the detection signal from the position detection means 7a of the elevating device 7, the detection signal from the back pressure detector 13, and the detection signal from the non-contact distance meter 14. The thickness L2, the molten slag level SL, and the molten metal level ML of the molten metal layer M are respectively calculated.

次に、上述したレベル測定装置1を用いて溶融スラグレベルSL及び溶融メタルレベルMLを測定する場合について説明する。   Next, the case where the molten slag level SL and the molten metal level ML are measured using the level measuring apparatus 1 described above will be described.

図2に示す如く、液体(溶融スラグ及び溶融メタル)に気体(窒素ガス)を吹き込むと、液体の比重差と浸漬深さに応じて背圧が変化することが知られている。
従って、主電極4先端から不活性ガスG(窒素ガス)を噴出させながら、主電極4を昇降装置7により降下させると、炉内ガスと溶融スラグと溶融メタルの比重の差でガス層(炉本体3内の溶融スラグ層Sの上方空間)と溶融スラグ層Sと溶融メタル層Mでの不活性ガスGの背圧の増加率が変化する。この背圧の増加率が変化したときの主電極4先端の位置が境界面(ガス層と溶融スラグ層Sの境界面、溶融スラグ層Sと溶融メタル層Mの境界面)であり、境界面の炉本体3の炉底からの距離を溶融スラグレベルSL(溶融スラグ層Sの厚みL1と溶融メタル層Mの厚みL2の和に相当)及び溶融メタルレベルML(溶融メタル層Mの厚みL2に相当)とする。
As shown in FIG. 2, it is known that when a gas (nitrogen gas) is blown into a liquid (molten slag and molten metal), the back pressure changes according to the specific gravity difference and immersion depth of the liquid.
Therefore, when the main electrode 4 is lowered by the elevating device 7 while the inert gas G (nitrogen gas) is ejected from the tip of the main electrode 4, a gas layer (furnace) is generated due to the difference in specific gravity among the gas in the furnace, the molten slag, and the molten metal. The increasing rate of the back pressure of the inert gas G in the molten slag layer S, the molten slag layer S, and the molten metal layer M is changed. The position of the tip of the main electrode 4 when the increase rate of the back pressure is changed is a boundary surface (a boundary surface between the gas layer and the molten slag layer S, a boundary surface between the molten slag layer S and the molten metal layer M). The distance from the furnace bottom of the furnace body 3 to the molten slag level SL (corresponding to the sum of the thickness L1 of the molten slag layer S and the thickness L2 of the molten metal layer M) and the molten metal level ML (the thickness L2 of the molten metal layer M) Equivalent).

測定手順は、先ず、不活性ガスGを主電極4の中空孔4aを通してその先端から噴出させながら、主電極4先端が溶融スラグ層Sより上になるまで主電極4を昇降装置7により上昇させる。これは、ガス層(炉本体3内の溶融スラグ層Sの上方空間)では液層(溶融スラグ層S及び溶融メタル層M)より背圧の変化が小さいので、主電極4を一定距離だけ上昇させたときの背圧の変化が設定値より小さいことで確認する。   The measurement procedure is as follows. First, the main electrode 4 is raised by the elevating device 7 until the tip of the main electrode 4 is above the molten slag layer S while the inert gas G is ejected from the tip of the main electrode 4 through the hollow hole 4a. . This is because the change in back pressure is smaller in the gas layer (the space above the molten slag layer S in the furnace body 3) than in the liquid layer (the molten slag layer S and the molten metal layer M), so the main electrode 4 is raised by a certain distance. Confirm that the change in the back pressure is smaller than the set value.

次に、主電極4先端から不活性ガスGを噴出させながら、主電極4を昇降装置7により一定速度で降下させると共に、不活性ガスGの背圧を背圧検出器13により測定し、背圧の増加率の変化から主電極4先端が溶融スラグ面及び溶融メタル面にあるときの主電極4の位置を昇降装置7の位置検出手段7aにより検出する。   Next, while the inert gas G is ejected from the tip of the main electrode 4, the main electrode 4 is lowered at a constant speed by the lifting device 7, and the back pressure of the inert gas G is measured by the back pressure detector 13. The position detecting means 7a of the elevating device 7 detects the position of the main electrode 4 when the tip of the main electrode 4 is on the molten slag surface and the molten metal surface from the change in pressure increase rate.

従って、溶融スラグ層Sの厚みL1は、溶融スラグ面から溶融メタル面までの主電極4の移動距離から算出することができる。このときの主電極4の移動距離は、背圧検出器13からの検出信号及び位置検出手段7aからの検出信号を演算装置15で演算処理することにより求められる。   Therefore, the thickness L1 of the molten slag layer S can be calculated from the moving distance of the main electrode 4 from the molten slag surface to the molten metal surface. The movement distance of the main electrode 4 at this time is obtained by performing arithmetic processing on the detection signal from the back pressure detector 13 and the detection signal from the position detection means 7a by the arithmetic device 15.

尚、背圧の増加率の変化点の判定は、図3に示す如く、背圧の変化率(mmAq/sec)が設定値を超えた点とする。又、背圧の生値ではバラツキが大きい場合、移動平均値の変化率で判定する。移動平均のサンプル数と主電極4の移動速度は、灰溶融炉2の試運転時に予め決定しておく。   Note that the change point of the increase rate of the back pressure is determined at a point where the change rate of the back pressure (mmAq / sec) exceeds the set value as shown in FIG. In addition, when the raw value of the back pressure varies greatly, it is determined by the rate of change of the moving average value. The number of moving average samples and the moving speed of the main electrode 4 are determined in advance during the trial operation of the ash melting furnace 2.

ところで、主電極4の下降時にレベル測定装置1により溶融スラグ面を判定した直後に背圧が安定しない時期があり、その時期に次の境界面である溶融メタル面を誤って判定することがある。その場合、主電極4が下降して溶融スラグ面を判定した後に、次の境界面である溶融メタル面を検出する際に待ち時間を設ける。即ち、レベル測定装置1に検出待ちタイマー(図示省略)を設け、背圧が安定してから測定するようにする。待ち時間は、灰溶融炉2の試運転時に予め決定しておく。   By the way, there is a time when the back pressure is not stable immediately after the molten slag surface is determined by the level measuring device 1 when the main electrode 4 is lowered, and the molten metal surface which is the next boundary surface may be erroneously determined at that time. . In that case, after the main electrode 4 is lowered and the molten slag surface is determined, a waiting time is provided when detecting the molten metal surface which is the next boundary surface. That is, the level measuring apparatus 1 is provided with a detection waiting timer (not shown) so that the measurement is performed after the back pressure is stabilized. The waiting time is determined in advance during the trial operation of the ash melting furnace 2.

そして、溶融メタル層Mの厚みL2は、非接触式の距離計14により当該距離計14から溶融スラグ面までの距離L3を測定し、この検出信号を演算装置15に入力してここで先に求められたデータを用いて演算処理することにより算出される。即ち、溶融メタル層Mの厚みL2は、距離計14から炉本体3の炉底までの距離L(この距離Lは一定であり、予め測定されている)から距離計14により測定した溶融スラグ面までの測定距離L3及び溶融スラグ層Sの厚みL1を引くことにより求められる。   The thickness L2 of the molten metal layer M is determined by measuring the distance L3 from the distance meter 14 to the molten slag surface with a non-contact type distance meter 14 and inputting this detection signal to the arithmetic unit 15 where Calculation is performed using the obtained data. That is, the thickness L2 of the molten metal layer M is the molten slag surface measured by the distance meter 14 from the distance L from the distance meter 14 to the furnace bottom of the furnace body 3 (this distance L is constant and measured in advance). Is obtained by subtracting the measurement distance L3 and the thickness L1 of the molten slag layer S.

溶融スラグレベルSL及び溶融メタルレベルMLは、演算装置15で演算処理することにより求められる。即ち、溶融スラグレベルSLは、溶融スラグ層Sの厚みL1に溶融メタル層Mの厚みL2を足すことにより求められ、又、溶融メタルレベルMLは、溶融メタル層Mの厚みL2から求められる。   The molten slag level SL and the molten metal level ML are obtained by performing arithmetic processing with the arithmetic device 15. That is, the molten slag level SL is obtained by adding the thickness L2 of the molten metal layer M to the thickness L1 of the molten slag layer S, and the molten metal level ML is obtained from the thickness L2 of the molten metal layer M.

本発明の実施の形態に係るレベル測定装置を用いた灰溶融炉の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the ash melting furnace using the level measuring apparatus which concerns on embodiment of this invention. 主電極の位置(高さ)と背圧の関係を示す説明図である。It is explanatory drawing which shows the position (height) of a main electrode, and the relationship between back pressure. 主電極位置、窒素背圧及び窒素背圧変化率の関係を示すグラフである。It is a graph which shows the relationship between a main electrode position, nitrogen back pressure, and a nitrogen back pressure change rate.

符号の説明Explanation of symbols

1はレベル測定装置、2は灰溶融炉、3は炉本体、4は主電極、4aは主電極の中空孔、7は主電極の昇降装置、8はガス供給装置、13は背圧検出器、14は非接触式の距離計、15は演算装置、Gは不活性ガス、Lは距離計から炉底までの距離、L1は溶融スラグ層の厚み、L2は溶融メタル層の厚み、L3は距離計から溶融スラグ面までの距離、SLは溶融スラグレベル、MLは溶融メタルレベル、Sは溶融スラグ層、Mは溶融メタル層。   1 is a level measuring device, 2 is an ash melting furnace, 3 is a furnace body, 4 is a main electrode, 4a is a hollow hole in the main electrode, 7 is a lifting / lowering device for the main electrode, 8 is a gas supply device, and 13 is a back pressure detector. , 14 is a non-contact type distance meter, 15 is an arithmetic unit, G is an inert gas, L is a distance from the distance meter to the furnace bottom, L1 is a thickness of the molten slag layer, L2 is a thickness of the molten metal layer, and L3 is The distance from the distance meter to the molten slag surface, SL is the molten slag level, ML is the molten metal level, S is the molten slag layer, and M is the molten metal layer.

Claims (2)

炉本体の天井壁に昇降自在に設けた主電極の先端から炉本体内に不活性ガスを供給しつつ、前記主電極と炉本体の底壁に配設した炉底電極との間に所定の電圧を印加して両電極間にプラズマアークを発生させ、当該プラズマアークの発生熱により炉本体内に投入した被溶融物を溶融して炉本体内に溶融メタル層及び溶融スラグ層を形成する灰溶融炉に於いて、前記主電極を降下させながら炉本体内に供給している不活性ガスの背圧を測定し、背圧の増加率の変化から主電極先端が溶融スラグ面及び溶融メタル面にあるときの主電極の位置を検出すると共に、溶融スラグ面及び溶融メタル面の検出時に於ける主電極の位置から溶融スラグ層の厚みを算出し、又、炉本体の天井壁に設けたマイクロ波距離計により当該マイクロ波距離計から溶融スラグ面までの距離を測定し、前記溶融スラグ層の厚みとマイクロ波距離計による溶融スラグ面までの測定距離とから溶融メタル層の厚みを算出するようにしたことを特徴とする灰溶融炉のレベル測定方法。 While supplying an inert gas into the furnace body from the front end of the main electrode provided on the ceiling wall of the furnace body so as to be movable up and down, a predetermined gap is provided between the main electrode and the furnace bottom electrode disposed on the bottom wall of the furnace body. An ash that generates a plasma arc between both electrodes by applying a voltage, melts the material to be melted in the furnace body by the generated heat of the plasma arc, and forms a molten metal layer and a molten slag layer in the furnace body In the melting furnace, the back pressure of the inert gas supplied into the furnace body is measured while lowering the main electrode, and the main electrode tip is changed to the molten slag surface and the molten metal surface from the change in the increase rate of the back pressure. The thickness of the molten slag layer is calculated from the position of the main electrode at the time of detecting the molten slag surface and the molten metal surface, and the position of the microelectrode provided on the ceiling wall of the furnace body. molten scan from the microwave rangefinders by waves rangefinder Measuring the distance to the grayed surface, the ash melting furnace, characterized in that to calculate the thickness of the molten metal layer and a measurement distance until said molten slag surface by the thickness and the microwave rangefinder molten slag layer Level measurement method. 炉本体の天井壁に昇降自在に設けた主電極の先端から炉本体内に不活性ガスを供給しつつ、前記主電極と炉本体の底壁に配設した炉底電極との間に所定の電圧を印加して両電極間にプラズマアークを発生させ、当該プラズマアークの発生熱により炉本体内に投入した被溶融物を溶融して炉本体内に溶融メタル層及び溶融スラグ層を形成するようにした灰溶融炉に用いるレベル測定装置に於いて、前記レベル測定装置は、炉本体の天井壁に昇降自在に設けられ、先端から不活性ガスを噴出する中空孔を備えた主電極と、主電極を支持して昇降させると共に、主電極を支持する位置を検出する位置検出手段を備えた昇降装置と、主電極の中空孔を介して炉本体内に不活性ガスを供給するガス供給装置と、不活性ガスの背圧を検出する背圧検出器と、炉本体の天井壁に設けられ、溶融スラグ面までの距離を測定するマイクロ波距離計と、背圧検出器による背圧の増加率の変化及び昇降装置の位置検出手段により検出した主電極の位置並びにマイクロ波距離計により測定した溶融スラグ面までの測定距離から溶融スラグ層の厚み及び溶融メタル層の厚み、溶融スラグレベル、溶融メタルレベルを夫々演算する演算装置とから構成したことを特徴とする灰溶融炉のレベル測定装置。While supplying an inert gas into the furnace body from the front end of the main electrode provided on the ceiling wall of the furnace body so as to be movable up and down, a predetermined gap is provided between the main electrode and the furnace bottom electrode disposed on the bottom wall of the furnace body. A voltage is applied to generate a plasma arc between both electrodes, and the molten material thrown into the furnace body is melted by the generated heat of the plasma arc to form a molten metal layer and a molten slag layer in the furnace body In the level measuring apparatus used in the ash melting furnace, the level measuring apparatus is provided on the ceiling wall of the furnace body so as to be movable up and down, and has a main electrode provided with a hollow hole for injecting an inert gas from the tip, A lifting device provided with position detecting means for detecting a position for supporting the main electrode and detecting a position for supporting the main electrode, and a gas supply device for supplying an inert gas into the furnace body through the hollow hole of the main electrode, , Back pressure detector to detect back pressure of inert gas and Microwave distance meter that is provided on the ceiling wall of the furnace body and measures the distance to the molten slag surface, the change in the increase rate of the back pressure by the back pressure detector, and the position of the main electrode detected by the position detection means of the lifting device And an arithmetic unit that calculates the thickness of the molten slag layer, the thickness of the molten metal layer, the molten slag level, and the molten metal level from the measured distance to the molten slag surface measured by a microwave distance meter, respectively. Level measuring device for ash melting furnace.
JP2008155827A 2008-06-13 2008-06-13 Level measuring method and level measuring apparatus for ash melting furnace Active JP5324832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155827A JP5324832B2 (en) 2008-06-13 2008-06-13 Level measuring method and level measuring apparatus for ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155827A JP5324832B2 (en) 2008-06-13 2008-06-13 Level measuring method and level measuring apparatus for ash melting furnace

Publications (2)

Publication Number Publication Date
JP2009300010A JP2009300010A (en) 2009-12-24
JP5324832B2 true JP5324832B2 (en) 2013-10-23

Family

ID=41547095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155827A Active JP5324832B2 (en) 2008-06-13 2008-06-13 Level measuring method and level measuring apparatus for ash melting furnace

Country Status (1)

Country Link
JP (1) JP5324832B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671744B2 (en) * 2010-12-27 2015-02-18 株式会社ワイヤーデバイス Measuring method of electrode length in electric resistance melting furnace
JP5803050B2 (en) * 2011-06-22 2015-11-04 株式会社東京精密 Surface roughness measuring device, measurement waiting time setting method thereof, and measurement waiting time setting program
WO2014002192A1 (en) * 2012-06-26 2014-01-03 株式会社ワイヤーデバイス Method for measuring electrode length in electric resistance melting furnace
KR101701322B1 (en) * 2015-09-08 2017-02-01 주식회사 포스코 Apparatus and method for measuring the amount of molten steel
CN113932879A (en) * 2021-09-26 2022-01-14 中国恩菲工程技术有限公司 Automatic detection device for high-temperature melt
KR20240134545A (en) 2023-03-02 2024-09-10 현대제철 주식회사 Methods of operating electric furnace

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787679A (en) * 1971-08-18 1973-02-19 Allegheny Ludlum Ind Inc METHOD AND APPARATUS FOR DETERMINING THE DEPTH OF SUBMERSIBLE INJECTION AND ANALOGUE LANCES
JPS57175921A (en) * 1981-04-24 1982-10-29 Nippon Steel Corp Method for detecting interfacial boundary position between multiple layers of liquid
JP3071379B2 (en) * 1995-05-26 2000-07-31 日立造船株式会社 Method for detecting base metal level in plasma type ash melting furnace
JP3709945B2 (en) * 1996-06-25 2005-10-26 石川島播磨重工業株式会社 Level detection method and apparatus for ash melting furnace
JP3585344B2 (en) * 1997-06-02 2004-11-04 日立造船株式会社 Apparatus and method for detecting base metal level in plasma type ash melting furnace
JP2003344142A (en) * 2002-05-24 2003-12-03 Jfe Steel Kk Method and apparatus for measuring level of molten metal and thickness of slag layer by means of microwave level gauge
JP4965890B2 (en) * 2006-04-24 2012-07-04 株式会社タクマ Electric melting furnace operation control method
JP5096797B2 (en) * 2007-05-25 2012-12-12 株式会社タクマ Level measurement method for ash melting furnace

Also Published As

Publication number Publication date
JP2009300010A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5324832B2 (en) Level measuring method and level measuring apparatus for ash melting furnace
JP2010189766A (en) Method for operating electric-resistant furnace
JP3746921B2 (en) Operation method of electric melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JP2008116066A (en) Operating method of electric furnace
JP5096797B2 (en) Level measurement method for ash melting furnace
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP2007071509A (en) Bottom electrode structure for electric melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP2003090524A (en) Molten metal temperature measuring device for melting furnace
JP5697105B2 (en) Electroslag remelting temperature measuring device and electroslag remelting temperature measuring method
JP3709945B2 (en) Level detection method and apparatus for ash melting furnace
JP2013052407A (en) Apparatus for supplying molten metal to die-casting machine, and method for supplying the molten metal
JPH10332268A (en) Molten metal sensing method for base metal in electric ash melting furnace
JP5346625B2 (en) Melting furnace level measuring device
KR100481072B1 (en) Melting apparatus using electric resistance and method thereof
KR20030054416A (en) Apparatus of Measuring the Steel Height in EAF
CN114433805B (en) Method, device and system for measuring liquid level of molten steel in tundish
JPH11218320A (en) Ash treating electric resistance melting furnace of refuse treating facility and method for operating it
JP2003042428A (en) Ash melting furnace and operation method for the ash melting furnace
JP2988313B2 (en) Method and apparatus for measuring depth of molten metal in incineration ash melting furnace
JP2006132926A (en) Operation method for plasma type ash melting furnace
JP2006220380A (en) Molten steel level detection method and molten steel level detection device for arc furnace
JP2002013719A (en) Ash melting furnace and method of melting ashes
JPH11237018A (en) Plasma melting furnace, and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5324832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250