JP2008095388A - Construction management method in mixing processing construction method and its device - Google Patents

Construction management method in mixing processing construction method and its device Download PDF

Info

Publication number
JP2008095388A
JP2008095388A JP2006278617A JP2006278617A JP2008095388A JP 2008095388 A JP2008095388 A JP 2008095388A JP 2006278617 A JP2006278617 A JP 2006278617A JP 2006278617 A JP2006278617 A JP 2006278617A JP 2008095388 A JP2008095388 A JP 2008095388A
Authority
JP
Japan
Prior art keywords
depth
processing method
construction
tip
tide level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006278617A
Other languages
Japanese (ja)
Other versions
JP4405996B2 (en
Inventor
Hisafumi Hosomi
尚史 細見
Hitoshi Miura
仁 三浦
Masanori Ota
正規 太田
Tatsuo Nagatsu
辰男 長津
Juichi Ise
寿一 伊勢
Hideaki Nakajima
秀晃 中島
Takaaki Yoshida
貴昭 吉田
Koichiro Yamaguchi
好一郎 山口
Koichi Otsuka
浩一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Toa Corp
Toray Engineering Co Ltd
Penta Ocean Construction Co Ltd
Takenaka Doboku Co Ltd
Shimizu Corp
Toto Electric Industry Co Ltd
Fudo Tetra Corp
Original Assignee
Shimizu Construction Co Ltd
Toa Corp
Penta Ocean Construction Co Ltd
Takenaka Doboku Co Ltd
Toyo Construction Co Ltd
Shimizu Corp
Toto Electric Industry Co Ltd
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Toa Corp, Penta Ocean Construction Co Ltd, Takenaka Doboku Co Ltd, Toyo Construction Co Ltd, Shimizu Corp, Toto Electric Industry Co Ltd, Fudo Tetra Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006278617A priority Critical patent/JP4405996B2/en
Publication of JP2008095388A publication Critical patent/JP2008095388A/en
Application granted granted Critical
Publication of JP4405996B2 publication Critical patent/JP4405996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction management method and its device for controlling so as to provide an objective structure, by successively arithmetically operating and correcting a value of the tip depth of a construction machine, by inputting a change in a water level, while floating a pontoon on a water surface. <P>SOLUTION: This device is composed of a ground improvement measuring step of detecting the tip depth, a lifting speed, a blade cutting frequency and a delivery quantity of cement slurry of a mixing processing agitating shaft, a step of correcting and arithmetically operating the value of the tip depth of the agitating shaft by manually or automatically inputting a change in the water level caused by a tide level to this measured value, and a step of controlling so as to minimize a deviation between a workload being a reference value such as the lifting speed per unit depth and the delivery quantity of the cement slurry set in the arithmetic operation step and a target workload per unit depth. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、混合処理施工機を搭載した台船を海上などの水面に浮かべてセメント系改良材を軟弱な水底地盤に注入固化して、強固な地盤を確保するための混合処理工法において、潮位の変化による各種の計測値を補正して設計通りの構築物を構築可能にした混合処理工法における施工管理方法及びその装置に関するものである。   The present invention relates to a mixed processing method for securing a solid ground by floating a trolley equipped with a mixed processing construction machine on the surface of the sea or the like to inject and solidify a cement-based improvement material into a soft underwater ground. The present invention relates to a construction management method and its apparatus in a mixed processing method that makes it possible to construct a structure as designed by correcting various measurement values due to changes in the temperature.

軟弱なシルト質粘土地盤や砂質地盤を、強固な地盤に改良するための混合処理工法は、陸上のみならず、海底その他の水底地盤にも採用されている。この水底地盤では、運河・河川の護岸基礎、堤防基礎、岸壁基礎などの地盤改良を構築するに際して、安定性の確保、沈下防止、側方移動防止などを目的として、地盤の表層、中層、深層などをセメント系改良材で固化して、強固な地盤を確保する。   The mixed processing method for improving soft silty clay and sandy ground to solid ground has been adopted not only on land but also on the seabed and other waterbed ground. In this submerged ground, when constructing ground improvement such as revetment foundations, embankment foundations, and quay foundations for canals and rivers, the surface, middle and deep layers of the ground are used to ensure stability, prevent settlement, and prevent lateral movement. Etc. are solidified with cement-based improving materials to secure a solid ground.

撹拌翼で地盤を撹拌して改良体を構築する混合処理工法は、改良杭の出来型が地中に埋設したものであり、目で確認できないため施工時の管理が重要な要素となる。従来より、施工中の処理機の先端深度、昇降速度、攪拌翼の羽根切り回数、セメントスラリーの吐出量、撹拌軸昇降用モータの電流値又はトルク値を検出する装置を取り付け、それぞれの値を検出して管理をするか、施工管理システムに記録を取って、改良杭の出来型を記録紙で確認するかしていた。   In the mixed processing method in which the ground is agitated with a stirring blade and an improved body is constructed, the finished shape of the improved pile is embedded in the ground and cannot be confirmed visually, so management during construction is an important factor. Conventionally, a device that detects the depth of the tip of the processing machine under construction, the lifting speed, the number of blades of the stirring blade, the discharge amount of cement slurry, the current value or torque value of the stirring shaft lifting motor is attached, and each value is set. Either it was detected and managed, or it was recorded in the construction management system and the finished shape of the improved pile was confirmed on the recording paper.

水位がない陸上工事においては、ベースマシンが原地盤に接地しており、原地盤の高さを0点にして、この0点を基準として深さ方向の深度管理ができ、なんら問題なく十分な施工管理ができる。
しかしながら、河川・湖沼・海上等水位のある場所での施工においては、台船上から混合処理機を昇降させて施工しており、台船上からの施工の場合においては、水面を0点にセットする方法しかないため、潮位値の変動により施工した深度が常に変化し0点に変化が生じる。潮位値の変動分を常に加味して毎回杭1本毎のパターン変更が生じ、それを補正しなければならない。
In land construction where there is no water level, the base machine is in contact with the original ground, the height of the original ground is set to zero, and depth management in the depth direction can be performed based on this zero point, and there is no problem. Construction management is possible.
However, in construction in places with rivers, lakes, sea level, etc., the mixing treatment machine is moved up and down from the trolley, and in the case of construction from the trolley, the water level is set to zero. Because there is only a method, the depth of construction always changes due to fluctuations in the tide level value, and changes occur at the zero point. The pattern change for each pile occurs every time taking into account the fluctuation of the tide level value, and it must be corrected.

干満差のある場所での施工中は、常時潮位値が変動する。例えば、図9は、気象庁が発表した2006年7月12日の東京(東京都中央区晴海5丁目)の潮位である。潮位は、大きいときで1時間に40〜50cmの変化があり、しかも、その変化が一定していないので、処理機貫入開始時(改良杭打設開始時)と処理機引抜完了時(改良杭打設完了時)の潮位が異なる。これにより、施工記録紙又はオシログラフでは、処理機先端位置がずれてしまい貫入時及び引抜時におけるその時々の処理機先端位置と完了時処理機先端位置に矛盾が生じる。
然るに、施工完了後杭の先端深度を記録紙から測り、杭一本毎に測定し深度の補正を行い、場合によっては、潮位の変動による施工不良杭(セメントスラリーの吐出量不足、羽根切り回数不足など)が生じているのが現状である。
During construction in a place with a tidal range, the tide level always fluctuates. For example, FIG. 9 shows the tide level in Tokyo (Harumi 5-chome, Chuo-ku, Tokyo) on July 12, 2006 announced by the Japan Meteorological Agency. When the tide level is large, there is a change of 40 to 50 cm per hour, and since the change is not constant, the processing machine penetration start (improved pile driving start time) and the processing machine pull-out completion (improved pile) The tide level at the time of placement is different. As a result, in the construction recording paper or the oscillograph, the processing machine tip position is shifted, and there is a contradiction between the processing machine tip position at the time of penetration and withdrawal and the processing machine tip position at the time of completion.
However, after completion of construction, measure the tip depth of the pile from the recording paper, and measure the depth of each pile to correct the depth. In some cases, poorly constructed piles due to fluctuations in the tide level (insufficient cement slurry discharge rate, blade cutting frequency) Currently, there is a shortage.

この潮位や波の変化の影響を受けないように台船などの作業施設を支持する方法として、海底地盤の表層に平板状の支持基盤を造成し、この支持基盤に作業施設のレグを支持するようにした工法が提案されている(特許文献1)。
特開2004−44147号公報
As a method of supporting work facilities such as trolleys so as not to be affected by changes in tide level and waves, a flat support base is created on the surface layer of the submarine ground, and the legs of the work facilities are supported by this support base. Such a construction method has been proposed (Patent Document 1).
JP 2004-44147 A

前述した海底地盤の表層に造成した平板状の支持基盤に、台船などの作業施設のレグを支持するようにした工法は、潮位や波の変化の影響を受けないことと、海底の強固な岩盤まで長いレグを延ばす必要がないなどの利点を有するが、次のような問題点がある。
1.海底地盤の表層に支持基盤を造成するための大掛かりな作業を必要とし、場合によっては、工事終了後に支持基盤を撤去しなければならない。
2.造成した支持基盤が撹拌軸先端の掘削部による掘削の邪魔になる恐れがある。
3.支持基盤を造成する場所は、もともと改良体を構築するための軟弱地盤であるから、しっかりした支持基盤の造成が面倒である。
4.台船を移動する度に支持基盤を造成する必要がある。
The construction method that supports the leg of the work facility such as a trolley on the flat support base created on the surface layer of the seabed described above is not affected by changes in tide level and waves, and has a strong seabed. Although there is an advantage that it is not necessary to extend a long leg to the bedrock, there are the following problems.
1. It requires extensive work to create a support base on the surface layer of the submarine ground. In some cases, it is necessary to remove the support base after completion of construction.
2. The created support base may interfere with excavation by the excavation part at the tip of the stirring shaft.
3. Since the place where the support base is created is originally a soft ground for constructing an improved body, it is troublesome to create a solid support base.
4). It is necessary to create a support base every time a trolley is moved.

本発明は、台船は、水面に浮かせたままとし、水位の変化を入力して処理機の先端深度の値を逐次演算補正し、基準となる仕事量の補正を演算指示し、目的の構築物を得るように制御するための混合処理工法における施工管理方法及びその装置を提供することを目的とするものである。   In the present invention, the trolley is left floating on the surface of the water, the change in the water level is input, the value of the tip depth of the processing machine is sequentially calculated and corrected, the correction of the reference work amount is calculated and instructed, and the target structure It is an object of the present invention to provide a construction management method and a device therefor in a mixed processing method for controlling so as to obtain the above.

本発明による混合処理工法における施工管理方法は、先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測ステップと、この地盤改良計測ステップによる計測値に、水位の変化を入力することにより前記撹拌軸の先端深度の値を補正演算する演算ステップと、この演算ステップで設定された単位深さ当りの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御ステップとを具備したことを特徴とする。   The construction management method in the mixed processing method according to the present invention is a mixed processing method that mixes and stirs while injecting a cement-based improving material into a water-bottomed soft ground with a stirring shaft for mixing processing having a stirring blade at the tip. The ground improvement measurement step for detecting the tip depth of the agitation shaft, the lifting speed, the number of blade cuttings, and the discharge amount of cement slurry, and the change of the water level in the measurement value obtained by the ground improvement measurement step are input to the stirring shaft. The calculation step for correcting the tip depth value and the deviation between the reference work per unit depth set in this calculation step and the target work per unit depth is made as small as possible. And a control step for controlling.

本発明によれば、海底地盤の表層に支持基盤を造成するための大掛かりな作業を必要とせず、しかも、潮位の変化による各種の計測値を補正して設計通りの構築物を構築することができる。   According to the present invention, it is not necessary to perform a large-scale work for creating a support base on the surface layer of the seabed ground, and it is possible to construct a structure as designed by correcting various measurement values due to changes in tide level. .

請求項1記載の発明は、先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測ステップと、この地盤改良計測ステップによる計測値に、水位の変化を入力することにより前記撹拌軸の先端深度の値を補正演算する演算ステップと、この演算ステップで設定された単位深さ当りの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御ステップとを具備したことを特徴とする。   The invention according to claim 1 is a mixing processing method in which a mixing processing stirring shaft having a stirring blade at a tip portion is inserted into a water-bottomed soft ground and mixed and stirred while injecting a cement-based improvement material. The ground improvement measurement step for detecting the tip depth, lifting speed, blade cutting frequency, and discharge amount of cement slurry, and the value of the tip depth of the stirring shaft by inputting the change in the water level to the measurement value by this ground improvement measurement step Control step to correct and calculate to control the deviation between the reference work amount per unit depth set in this calculation step and the target work amount per unit depth as much as possible And a step.

請求項2記載の発明は、先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測ステップと、この地盤改良計測ステップによる計測値に、自動潮位計から得られた水位の変化を入力することにより前記撹拌軸の先端深度の値を補正演算する演算ステップと、この演算ステップで設定された単位深さ当りの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御ステップとを具備したことを特徴とする。   The invention according to claim 2 is a mixing processing method in which a mixing processing stirring shaft having a stirring blade at the tip is inserted into the bottom soft ground and mixed and stirred while injecting a cement-based improvement material. By inputting the change in the water level obtained from the automatic tide gauge into the ground improvement measurement step for detecting the tip depth, the lifting speed, the number of blade cuttings, the discharge amount of cement slurry, and the measurement value by this ground improvement measurement step The calculation step for correcting and calculating the tip depth value of the stirring shaft, and the deviation between the reference work amount per unit depth set in this calculation step and the target work amount per unit depth is as much as possible And a control step for controlling to be small.

請求項3記載の発明は、先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測手段と、この地盤改良計測手段に、水位の変化を入力することにより前記撹拌軸の先端深度の値を補正演算する演算手段と、その演算手段から設定された単位深さ当りの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御手段とを具備したことを特徴とする。   According to a third aspect of the present invention, there is provided a mixing processing method in which a mixing processing stirring shaft having a stirring blade at a tip portion is inserted into a water-bottomed soft ground and mixed and stirred while injecting a cement-based improvement material. Ground improvement measuring means for detecting tip depth, lifting speed, number of blade cutting, discharge amount of cement slurry, and correction calculation of the tip depth value of the agitation shaft by inputting the change in water level to this ground improvement measuring means And a control means for controlling the deviation between the work amount serving as a reference value per unit depth set from the calculation means and the target work amount per unit depth to be as small as possible. It is characterized by having.

請求項4記載の発明は、先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測手段と、この地盤改良計測手段に、自動潮位計から得られた水位の変化を自動入力することにより前記撹拌軸の先端深度の値を補正演算する手段と、この演算手段から設定された単位深さ当りの昇降速度、羽根切り回数、セメントスラリーの吐出量などの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御手段とを具備したことを特徴とする。   According to a fourth aspect of the present invention, there is provided a mixing processing method in which a mixing processing stirring shaft having a stirring blade at a tip portion is inserted into a water-bottomed soft ground and mixed and stirred while injecting a cement-based improvement material. The ground improvement measuring means for detecting the tip depth, the lifting speed, the number of blade cuttings, and the discharge amount of the cement slurry, and the stirring shaft by automatically inputting the water level change obtained from the automatic tide gauge to the ground improvement measuring means. Means for correcting and calculating the tip depth value, and the amount of work per unit depth and the reference value such as the lifting speed per unit depth, the number of blade cuttings, and the discharge amount of cement slurry set from this calculating means And a control means for controlling the deviation from the target work amount to be as small as possible.

請求項5又は6記載の発明は、潮位に起因する水位データを公的機関の所定時間ごとのデータを用い、現在時刻の施工場所における潮位として演算して用いるようにしたことを特徴とする。   The invention according to claim 5 or 6 is characterized in that the water level data resulting from the tide level is calculated and used as the tide level at the construction site at the current time using the data for every predetermined time of the public organization.

請求項7又は8記載の発明は、潮位に起因する水位データを公的機関の所定時間ごとのデータを用い、このデータを、施工機を搭載した台船に水深深度計のデータと対比して補正し、現在時刻の施工場所における潮位として演算して用いるようにしたことを特徴とする。   The invention according to claim 7 or 8 uses the water level data resulting from the tide level for each predetermined time of a public organization, and this data is compared with the data of the depth gauge on a trolley equipped with a construction machine. It is corrected and used as a tide level at the construction site at the current time.

図1において、12は、海底の軟弱地盤などの改良地盤で、この改良地盤12の海水面10には、施工機13を搭載した台船11が浮かべられ、この台船11は、必要に応じてアンカー40を下ろしたり、陸上からのロープにて係留したりして流れに対して固定される。
前記台船11には、施工機13の他に、スラリープラント19,グラウトポンプ20及び地盤改良計測装置36が搭載されている。
In FIG. 1, reference numeral 12 denotes an improved ground such as a soft ground on the seabed. A sea ship 11 on which a construction machine 13 is mounted is floated on the sea surface 10 of the improved ground 12. The anchor 40 is lowered or moored with a rope from the land, and fixed to the flow.
In addition to the construction machine 13, a slurry plant 19, a grout pump 20, and a ground improvement measuring device 36 are mounted on the carriage 11.

前記施工機13では、図1に示すような1軸又は図2に示すような複数軸の撹拌軸14が支柱37にて垂直に支持されている。この撹拌軸14は、モータ18にて改良地盤12への貫入と引抜が行われる。この撹拌軸14の下端部には、複数枚の撹拌翼15が取り付けられ、先端部には、掘削部16が取り付けられるとともに、セメントスラリーの吐出口17が形成されている。
また、前記グラウトポンプ20には、吐出量計21が設けられ、前記支柱37の上端には、深度速度計22が設けられている。前記モータ18には、回転計23と電流計24がそれぞれ接続され、施工機用計測装置26へデータが送られる。
本発明では、海面10の潮位の変化は、施工場所近くに設置した潮位計(量水標)から読み取るか、又は後述するように、気象庁発表の潮位データに基づき演算するが、必要に応じて、前記台船11から圧力検出器などの水深深度計25が海底まで沈められ、海面10の潮位の変化が施工機用計測装置26へ送られる。
前記施工機用計測装置26には、表示器27が接続され、施工機13の運転席に設置され、図5に示すような表示器35の内容が表示される。
In the construction machine 13, a single shaft as shown in FIG. 1 or a plurality of stirring shafts 14 as shown in FIG. The stirring shaft 14 is inserted into and extracted from the improved ground 12 by a motor 18. A plurality of stirring blades 15 are attached to the lower end portion of the stirring shaft 14, and an excavation portion 16 is attached to the distal end portion, and a discharge port 17 for cement slurry is formed.
The grout pump 20 is provided with a discharge meter 21, and a depth speed meter 22 is provided at the upper end of the column 37. A tachometer 23 and an ammeter 24 are connected to the motor 18, respectively, and data is sent to the construction machine measuring device 26.
In the present invention, the change in the tide level at the sea level 10 is read from a tide gauge (quantitative water mark) installed near the construction site or is calculated based on tide level data announced by the Japan Meteorological Agency, as will be described later. A depth gauge 25 such as a pressure detector is submerged from the carriage 11 to the seabed, and a change in the tide level of the sea surface 10 is sent to the construction machine measuring device 26.
A display 27 is connected to the construction machine measuring device 26 and is installed in the driver's seat of the construction machine 13 to display the contents of the display 35 as shown in FIG.

前記台船11の上又は陸上などに設置された管理室側には、前記地盤改良計測装置36に、施工管理用計測装置28,施工管理装置30が順次接続されている。前記施工管理用計測装置28には、表示器29が接続され、この表示器29には、図3に示す表示器33、図4に示す潮位設定表34などが表示される。
前記施工管理装置30には、日報作成用コンピュータ31とプリンタ32が接続され、このうち日報作成用コンピュータ31には、図6に示すような施工管理内容が表示される。
A construction management measuring device 28 and a construction management device 30 are sequentially connected to the ground improvement measuring device 36 on the management room side installed on the trolley 11 or on land. A display device 29 is connected to the construction management measuring device 28, and the display device 29 displays a display device 33 shown in FIG. 3, a tide level setting table 34 shown in FIG.
A daily report creating computer 31 and a printer 32 are connected to the construction management apparatus 30, and the construction management contents as shown in FIG. 6 are displayed on the daily report creating computer 31.

次に、図8に示したフローチャートに基づきセメント系改良材の注入動作を説明する。
(1)第1ステップ:装置をスタートし、施工管理装置30にて図6(a)に示すような杭No.と各種の設定値を確定する。詳しくは、
・管理基準(撹拌軸14の昇降速度、羽根切り回数)
・材料配合(改良材の配合比、杭の断面面積)
・層基準(図2又は図7に示すような層数、境界深度、改良区分、設計セメント量、基準スラリー量)
・杭No.
を確定する。
Next, the injection operation of the cement-based improving material will be described based on the flowchart shown in FIG.
(1) First step: The apparatus is started, and the pile management numbers and various set values as shown in FIG. For more information,
・ Management standards (up and down speed of stirring shaft 14, number of blade cutting)
・ Material mix (mixing ratio of improved material, cross-sectional area of pile)
・ Layer standard (number of layers, boundary depth, improvement category, design cement amount, standard slurry amount as shown in FIG. 2 or FIG. 7)
・ Pile No.
Confirm.

(2)第2ステップ:施工機13を用いて図2又は図7に示すような従来公知の方法で改良地盤12にセメント系改良材を注入し、地盤改良計測装置36から毎秒計測データを取り込む。計測データとして、深度速度計22から撹拌軸14の先端深度と昇降速度、回転計23から軸回転数、吐出量計21からスラリー吐出量、電流計24から電流値が取り込まれる。 (2) Second step: A cement-based improvement material is injected into the improved ground 12 using a construction machine 13 by a conventionally known method as shown in FIG. 2 or FIG. 7, and measurement data is taken in from the ground improvement measuring device 36 every second. . As the measurement data, the depth and the ascending / descending speed of the stirring shaft 14 from the depth velocimeter 22, the shaft rotation speed from the tachometer 23, the slurry discharge amount from the discharge meter 21, and the current value from the ammeter 24 are taken in.

(3)第3ステップ:「潮位は時間算出か?」が判断される。 (3) Third step: “Is the tide level a time calculation?” Is determined.

(4)第4ステップ:第3ステップがYESの場合、地盤改良計測装置36から潮位算出値を取り込む。詳しくは、図3に示す表示器33の潮位設定釦38を押すと、図4に示す潮位設定表34が表示される。この潮位設定表34に、気象庁発表の潮位を入力し、この設定潮位から瞬時潮位を算定する。
例えば、現在時刻が10時12分00秒とすると、10時の潮位が1.01m、11時の潮位が0.73mであるから、
瞬時潮位は、1.01+(0.73−1.01)×12×60÷3600=0.96
となる。この瞬時潮位から
先端深度=潮位−計測深度=0.96−深度速度計22による計測深度
の演算による求められる。
ここでの算出項目は、潮位、先端深度、先端速度である。
(4) Fourth step: When the third step is YES, the tide level calculated value is taken from the ground improvement measuring device 36. Specifically, when the tide level setting button 38 of the display 33 shown in FIG. 3 is pressed, a tide level setting table 34 shown in FIG. 4 is displayed. The tide level announced by the Japan Meteorological Agency is input to the tide level setting table 34, and the instantaneous tide level is calculated from the set tide level.
For example, if the current time is 10:12:00, the tide level at 10:00 is 1.01m and the tide level at 11:00 is 0.73m.
The instantaneous tide level is 1.01+ (0.73-1.01) × 12 × 60 ÷ 3600 = 0.96
It becomes. From this instantaneous tide level, the tip depth = tide level−measured depth = 0.96−the depth measured by the depth velocimeter 22 is obtained.
The calculation items here are tide level, tip depth, and tip speed.

(5)第5ステップ:第3ステップがNOの場合、潮位標(量水標)、水深深度計25等で計測した潮位を算出し、施工機用計測装置26へ送る。ここでの算出項目は、潮位である。 (5) Fifth step: If the third step is NO, the tide level measured by the tide level indicator (quantity water indicator), the depth depth meter 25, etc. is calculated and sent to the construction machine measurement device 26. The calculation item here is the tide level.

(6)第6ステップ:第4ステップ又は第5ステップで求めた潮位から先端深度を算出し、さらにこの先端深度から杭の区間長を算出する。ここでの算出項目は、先端深度、区間長である。 (6) Sixth step: The tip depth is calculated from the tide level obtained in the fourth step or the fifth step, and the section length of the pile is further calculated from the tip depth. The calculation items here are the tip depth and the section length.

(7)第7ステップ:1m行データを算出し、表示し、判定し、制御信号を出力し、警報を出力する。詳しくは、1m行データを区間長から算出し、表示器27,表示器29,日報作成用コンピュータ31に表示する。
算出項目は、1m行区間(吐出量、軸回転数、昇降速度)である。
判定は、算出区間の基準値と比較し、潮位などが基準値と異なっているときには、制御部39から制御信号を出力し、昇降速度、羽根切り回数、吐出量を制御するとともに、警報を出力する。
計測値が潮位などで基準値と異なっているときの制御について図6(a)(b)に基づきさらに詳しく説明する。
図6(b)は、潮位の変化にも拘らず吐出量、軸回転数、昇降速度を制御しない場合である。
潮位が1.0mで変化しない場合において、先端深度が−3.0mから−3.8mまでは、吐出量、軸回転数、昇降速度は、正常な値を示している。ところが、潮位が0.9mに変化したとき、昇降速度は、潮位の低下と相俟って2.0m/minに増加し、このことは、軸回転数は、10回/m(区間長)に低下し、吐出量は、80リットル/0.8mとなるべきところ50リットル/m(区間長)に低下する。さらに潮位が0.8mに変化したとき、昇降速度は、潮位の低下と相俟って1.1m/minに増加し、このことは、軸回転数は、18回/m(区間長)に低下し、吐出量は、80リットル/m(区間長)になる。
図6(a)は、潮位の変化に応じて制御部39で吐出量、軸回転数、昇降速度を制御した場合である。潮位が0.9mに変化したとき、潮位の低下によって昇降速度を調整する命令を制御部39で演算して指示し、それに伴って、軸回転数、吐出量を単位深さ当りの目標仕事量に可及的に近づける。その表示は、図6(a)に示すように制御して1.0m/minに保持する。そのため軸回転数は、20回/m(区間長)を保持し、吐出量は、80リットル/0.8mとなる。潮位が0.8mに変化したときも同様に制御する。
このようにして、潮位が変化するとそれに応じて制御部39で吐出量、軸回転数、昇降速度を制御して設計通りの杭が構築される。
(7) Seventh step: 1m line data is calculated, displayed, determined, a control signal is output, and an alarm is output. Specifically, 1 m row data is calculated from the section length and displayed on the display 27, the display 29, and the daily report creation computer 31.
The calculation item is a 1-m row section (discharge amount, shaft rotation speed, lifting speed).
The judgment is compared with the reference value of the calculation section, and when the tide level etc. is different from the reference value, a control signal is output from the control unit 39 to control the lifting speed, the number of blade cuts, the discharge amount, and output an alarm To do.
The control when the measured value is different from the reference value due to the tide level or the like will be described in more detail based on FIGS. 6 (a) and 6 (b).
FIG. 6B shows a case where the discharge amount, the shaft rotation speed, and the elevation speed are not controlled despite the change in the tide level.
In the case where the tide level does not change at 1.0 m, the discharge amount, the shaft rotation speed, and the ascending / descending speed show normal values when the tip depth is from -3.0 m to -3.8 m. However, when the tide level changes to 0.9 m, the ascending / descending speed increases to 2.0 m / min in combination with the decrease in tide level, which means that the shaft speed is 10 times / m (section length). The discharge amount is reduced to 50 liter / m (section length) where it should be 80 liter / 0.8 m. Furthermore, when the tide level changes to 0.8 m, the ascending / descending speed increases to 1.1 m / min in combination with the decrease in tide level, which means that the shaft speed is 18 times / m (section length). The discharge amount becomes 80 liters / m (section length).
FIG. 6A shows a case where the control unit 39 controls the discharge amount, the shaft rotation speed, and the lifting speed according to the change in the tide level. When the tide level changes to 0.9 m, the control unit 39 calculates and instructs a command to adjust the ascending / descending speed according to the tide level drop. As close as possible. The display is controlled and held at 1.0 m / min as shown in FIG. Therefore, the shaft rotation speed is kept 20 times / m (section length), and the discharge amount is 80 liters / 0.8 m. The same control is performed when the tide level changes to 0.8 m.
In this way, when the tide level changes, the control unit 39 controls the discharge amount, the shaft rotation speed, and the lifting / lowering speed accordingly, and a pile as designed is constructed.

(8)第8ステップ:「計測終了か?」を判断する。 (8) Eighth step: It is judged whether “measurement is finished”.

(9)第9ステップ:「区間長=1.0mか?」が判断される。NOであれば、第2ステップに戻る。 (9) Ninth step: “Section length = 1.0 m?” Is determined. If NO, return to the second step.

(10)第10ステップ:第9ステップがYESであれば、次の1m区間へ移行し、第2ステップに戻る。 (10) Tenth step: If the ninth step is YES, the process proceeds to the next 1 m section and returns to the second step.

(11)第11ステップ:第8ステップで「計測終了か?」がYESであれば、処理終了し、エンドとなる。 (11) Eleventh step: If “Is measurement completed?” In the eighth step, YES, the process ends and the process is ended.

前記実施例1では、潮位の変化を施工場所近くに設置した潮位計(量水標)から読み取るか、気象庁発表のデータを演算し、入力して制御するようにした。しかし、潮位は、施工地域によって変動量、変動時間が異なるものである。
実施例2では、工事現場にその場の潮位を計測する自動潮位計を設置し、この自動潮位計のデータを逐次入力して吐出量、軸回転数、昇降速度を制御することができる。
In the first embodiment, the change in tide level is read from a tide gauge (quantitative water mark) installed near the construction site, or data published by the Japan Meteorological Agency is calculated and input for control. However, the tide level varies depending on the construction area and time.
In the second embodiment, an automatic tide gauge that measures the tide level at the site is installed at the construction site, and the discharge amount, shaft rotational speed, and lifting speed can be controlled by sequentially inputting data of the automatic tide gauge.

前記実施例1及び2では、海水面10が潮位の変化のみで起こるものとして制御するようにした。しかし、海面10は、図9の点線で示すように、潮位の他に、風や近くを航行する船舶の波などによっても変化する。
実施例3では、潮位に加え、他の原因によっても変化する現象のデータをも逐次入力して吐出量、軸回転数、昇降速度を制御することができる。
In the said Example 1 and 2, it was made to control as the sea level 10 occurred only by the change of a tide level. However, as shown by the dotted line in FIG. 9, the sea level 10 changes in addition to the tide level, such as by wind or waves of a ship that navigates nearby.
In the third embodiment, in addition to the tide level, data of a phenomenon that changes due to other causes can be sequentially input to control the discharge amount, the shaft rotation speed, and the elevation speed.

本発明による混合処理工法における施工管理方法及びその装置の一実施例を示すブロック図である。It is a block diagram which shows one Example of the construction management method and its apparatus in the mixed processing method by this invention. 2連の撹拌軸で地盤改良している状態の動作説明図である。It is operation | movement explanatory drawing of the state which is improving the ground with two stirring shafts. 図1における表示器の一例を示す説明図である。It is explanatory drawing which shows an example of the indicator in FIG. 図1における表示器の潮位設定表の一例を示す説明図である。It is explanatory drawing which shows an example of the tide level setting table | surface of the indicator in FIG. 図1における表示器の一例を示す説明図である。It is explanatory drawing which shows an example of the indicator in FIG. (a)は、潮位を考慮して制御した施工管理モニターの一例を示す説明図、(b)は、潮位を考慮しないで制御した施工管理モニターの一例を示す説明図である。(A) is explanatory drawing which shows an example of the construction management monitor controlled considering the tide level, (b) is explanatory drawing which shows an example of the construction management monitor controlled without considering the tide level. 一般的な地盤改良の動作説明図である。It is operation | movement explanatory drawing of a general ground improvement. 本発明による混合処理工法における施工管理方法及びその装置のフローチャートである。It is a flowchart of the construction management method and its apparatus in the mixed processing method by this invention. 気象庁発表の潮位データに基づく一日の波形図である。It is a waveform diagram of the day based on tide level data announced by the Japan Meteorological Agency.

符号の説明Explanation of symbols

10…海水面、11…台船、12…改良地盤、13…施工機、14…撹拌軸、15…撹拌翼、16…掘削部、17…吐出口、18…モータ、19…スラリープラント、20…グラウトポンプ、21…吐出量計、22…深度速度計、23…回転計、24…電流計、25…水深深度計、26…施工機用計測装置、27…表示器、28…施工管理用計測装置、29…表示器、30…施工管理装置、31…日報作成用コンピュータ、32…プリンタ、33…表示器、34…潮位設定表、35…表示器、36…地盤改良計測装置、37…支柱、38…潮位設定釦、39…制御部、40…アンカー。   DESCRIPTION OF SYMBOLS 10 ... Sea surface, 11 ... Dolly, 12 ... Improvement ground, 13 ... Construction machine, 14 ... Stirring shaft, 15 ... Stirring blade, 16 ... Excavation part, 17 ... Discharge port, 18 ... Motor, 19 ... Slurry plant, 20 DESCRIPTION OF SYMBOLS ... Grout pump, 21 ... Discharge meter, 22 ... Depth speed meter, 23 ... Tachometer, 24 ... Ammeter, 25 ... Depth meter, 26 ... Measuring device for construction machine, 27 ... Display, 28 ... For construction management Measuring device, 29 ... Display, 30 ... Construction management device, 31 ... Daily report creation computer, 32 ... Printer, 33 ... Display, 34 ... Tide level setting table, 35 ... Display, 36 ... Ground improvement measuring device, 37 ... Support column, 38 ... tide level setting button, 39 ... control unit, 40 ... anchor.

Claims (8)

先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測ステップと、この地盤改良計測ステップによる計測値に、水位の変化を入力することにより前記撹拌軸の先端深度の値を補正演算する演算ステップと、この演算ステップで設定された単位深さ当りの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御ステップとを具備したことを特徴とする混合処理工法における施工管理方法。   In the mixing processing method in which a mixing shaft with a stirring blade at the tip penetrates into the bottom soft ground and mixes and stirs while injecting cement-based improving material, at least the tip depth of the stirring shaft, the lifting speed, blade cutting The number of times, a ground improvement measurement step for detecting the discharge amount of cement slurry, and a calculation step for correcting and calculating the value of the tip depth of the stirring shaft by inputting a change in the water level to the measurement value by the ground improvement measurement step, A control step for controlling so that a deviation between a work amount serving as a reference value per unit depth set in the calculation step and a target work amount per unit depth is as small as possible. Construction management method in the mixed processing method. 先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測ステップと、この地盤改良計測ステップによる計測値に、自動潮位計から得られた水位の変化を入力することにより前記撹拌軸の先端深度の値を補正演算する演算ステップと、この演算ステップで設定された単位深さ当りの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御ステップとを具備したことを特徴とする混合処理工法における施工管理方法。   In the mixing processing method in which a mixing shaft with a stirring blade at the tip penetrates into the bottom soft ground and mixes and stirs while injecting cement-based improving material, at least the tip depth of the stirring shaft, the lifting speed, blade cutting By inputting the change in the water level obtained from the automatic tide gauge to the ground improvement measurement step for detecting the number of times and the discharge amount of cement slurry, and the measurement value obtained by this ground improvement measurement step, the value of the tip depth of the stirring shaft is obtained. A calculation step for performing correction calculation, and a control step for controlling the deviation between the reference work amount per unit depth set in this calculation step and the target work amount per unit depth as small as possible The construction management method in the mixed processing method characterized by comprising. 先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測手段と、この地盤改良計測手段に、水位の変化を入力することにより前記撹拌軸の先端深度の値を補正演算する演算手段と、その演算手段から設定された単位深さ当りの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御手段とを具備したことを特徴とする混合処理工法における施工管理装置。   In the mixing processing method in which a mixing shaft with a stirring blade at the tip penetrates into the bottom soft ground and mixes and stirs while injecting cement-based improving material, at least the tip depth of the stirring shaft, the lifting speed, blade cutting The ground improvement measuring means for detecting the number of times and the discharge amount of the cement slurry, the calculating means for correcting and calculating the value of the tip depth of the stirring shaft by inputting the change of the water level to the ground improvement measuring means, and the calculating means And a control means for controlling so that a deviation between a work amount serving as a reference value per unit depth and a target work amount per unit depth is set as small as possible. Construction management device in the processing method. 先端部に攪拌翼を有する混合処理用撹拌軸を水底軟弱地盤に貫入し、セメント系改良材を注入しながら混合・攪拌する混合処理工法において、少なくとも前記撹拌軸の先端深度、昇降速度、羽根切り回数、セメントスラリーの吐出量を検出する地盤改良計測手段と、この地盤改良計測手段に、自動潮位計から得られた水位の変化を自動入力することにより前記撹拌軸の先端深度の値を補正演算する手段と、この演算手段から設定された単位深さ当りの昇降速度、羽根切り回数、セメントスラリーの吐出量などの基準値となる仕事量と単位深さ当りの目標仕事量との偏差が可及的に小さくなるように制御する制御手段とを具備したことを特徴とする混合処理工法における施工管理装置。   In the mixing processing method in which a mixing shaft with a stirring blade at the tip penetrates into the bottom soft ground and mixes and stirs while injecting cement-based improving material, at least the tip depth of the stirring shaft, the lifting speed, blade cutting The ground improvement measuring means that detects the number of times and the amount of cement slurry discharged, and the ground improvement measuring means automatically inputs the change in the water level obtained from the automatic tide gauge to the ground improvement measuring means to correct the tip depth value of the stirring shaft. And deviation between the reference work amount per unit depth and the target work amount per unit depth is possible. A construction management apparatus in the mixed processing method, characterized by comprising a control means for controlling to be as small as possible. 潮位に起因する水位データを公的機関の所定時間ごとのデータを用い、現在時刻の施工場所における潮位として演算して用いるようにした請求項1又は2記載の混合処理工法における施工管理方法。   The construction management method in the mixed processing method according to claim 1 or 2, wherein water level data resulting from the tide level is calculated and used as a tide level at a construction site at a current time using data for every predetermined time of a public organization. 潮位に起因する水位データを公的機関の所定時間ごとのデータを用い、現在時刻の施工場所における潮位として演算して用いるようにした請求項3又は4記載の混合処理工法における施工管理装置。   The construction management apparatus in the mixed processing method according to claim 3 or 4, wherein the water level data resulting from the tide level is calculated and used as a tide level at a construction site at the current time using data for every predetermined time of a public organization. 潮位に起因する水位データを公的機関の所定時間ごとのデータを用い、このデータを、施工機を搭載した台船に水深深度計のデータと対比して補正し、現在時刻の施工場所における潮位として演算して用いるようにした請求項1又は2記載の混合処理工法における施工管理方法。   The water level data resulting from the tide level is used by the public institution at regular time intervals, and this data is corrected against the data of the depth gauge on the trolley equipped with the construction machine, and the tide level at the construction site at the current time is corrected. The construction management method in the mixed processing method according to claim 1 or 2, wherein the construction processing method is used as calculated. 潮位に起因する水位データを公的機関の所定時間ごとのデータを用い、このデータを、施工機を搭載した台船に水深深度計のデータと対比して補正し、現在時刻の施工場所における潮位として演算して用いるようにした請求項3又は4記載の混合処理工法における施工管理装置。   The water level data resulting from the tide level is used by the public institution at regular time intervals, and this data is corrected against the data of the depth gauge on the trolley equipped with the construction machine, and the tide level at the construction site at the current time is corrected. The construction management apparatus in the mixed processing method according to claim 3 or 4, wherein the construction management device is used as calculated.
JP2006278617A 2006-10-12 2006-10-12 Construction management method and apparatus in mixed processing method Active JP4405996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006278617A JP4405996B2 (en) 2006-10-12 2006-10-12 Construction management method and apparatus in mixed processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006278617A JP4405996B2 (en) 2006-10-12 2006-10-12 Construction management method and apparatus in mixed processing method

Publications (2)

Publication Number Publication Date
JP2008095388A true JP2008095388A (en) 2008-04-24
JP4405996B2 JP4405996B2 (en) 2010-01-27

Family

ID=39378517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006278617A Active JP4405996B2 (en) 2006-10-12 2006-10-12 Construction management method and apparatus in mixed processing method

Country Status (1)

Country Link
JP (1) JP4405996B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037815A (en) * 2008-08-05 2010-02-18 Onoda Chemico Co Ltd Soil improvement construction method
JP2012241433A (en) * 2011-05-20 2012-12-10 Fudo Tetra Corp Soil improvement method with reduced displacement
JP6166833B1 (en) * 2016-11-17 2017-07-19 あおみ建設株式会社 Management equipment for deep mixing equipment
CN107817830A (en) * 2017-10-30 2018-03-20 中交疏浚技术装备国家工程研究中心有限公司 Marine deep cement soil stirring number and lifting speed automatic matching method
JP7470974B2 (en) 2020-05-20 2024-04-19 三和機材株式会社 Method for controlling drive of ground improvement device and ground improvement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037815A (en) * 2008-08-05 2010-02-18 Onoda Chemico Co Ltd Soil improvement construction method
JP2012241433A (en) * 2011-05-20 2012-12-10 Fudo Tetra Corp Soil improvement method with reduced displacement
JP6166833B1 (en) * 2016-11-17 2017-07-19 あおみ建設株式会社 Management equipment for deep mixing equipment
JP2018080534A (en) * 2016-11-17 2018-05-24 あおみ建設株式会社 Management apparatus for deep layer mixing process machine
CN107817830A (en) * 2017-10-30 2018-03-20 中交疏浚技术装备国家工程研究中心有限公司 Marine deep cement soil stirring number and lifting speed automatic matching method
CN107817830B (en) * 2017-10-30 2020-09-22 中交疏浚技术装备国家工程研究中心有限公司 Method for automatically matching stirring times and lifting speed of deep cement soil at sea
JP7470974B2 (en) 2020-05-20 2024-04-19 三和機材株式会社 Method for controlling drive of ground improvement device and ground improvement device

Also Published As

Publication number Publication date
JP4405996B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP4958028B2 (en) Construction method of pile hole rooting layer, foundation pile construction management device, foundation pile construction management method
JP4405996B2 (en) Construction management method and apparatus in mixed processing method
KR100870722B1 (en) Deep cement mixing device for sea construction and construction work method using therewith
JP2006144387A (en) Structure of caisson
JP3583307B2 (en) Construction management system in ground improvement method
JP2020516794A (en) Foundation treatment method for staking a foundation structure by penetrating a hardbed layer
JP2008164350A (en) Excavation depth measuring control method and its equipment
JP3383157B2 (en) Chemical injection method
JP2010133140A (en) Rotary penetrating pile construction system
JP5040198B2 (en) Soil cement construction method, soil cement
JP2008019561A (en) Construction method of countermeasure against liquefaction under breakwater caused by creation of underground wall
JP3571585B2 (en) Position / depth measurement device of land preparation equipment such as ground improvement using GPS
JPS5944419A (en) Administration system for deep layer mixing treatment work
KR101023188B1 (en) Real time automatic record medium of method deep cement mixing
JP3788728B2 (en) Device that displays the construction status of the ground improvement method
JP2017115457A (en) Ground investigation method and ground investigation device
JP4702933B2 (en) Ground improvement construction support system and its support method
JP3734976B2 (en) Construction management device and construction management method for Nakabori Root Firming Method
JPH09137449A (en) Automatic construction control method of soilcement column in foundation ground
JP5137736B2 (en) Ground improvement method
KR20180079753A (en) Deep cement mixing device for sea construction and construction work method of slurry
JP4993719B2 (en) Soil columnar improvement equipment and its control program.
JP2008019562A (en) Construction method of countermeasure against liquefaction under breakwater
JP2884272B2 (en) Automatic injection control method of stabilizer in mixed treatment method for ground improvement
JP2002201638A (en) Soil-cement composite pile and construction method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4405996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250