JP2008019562A - Construction method of countermeasure against liquefaction under breakwater - Google Patents

Construction method of countermeasure against liquefaction under breakwater Download PDF

Info

Publication number
JP2008019562A
JP2008019562A JP2006190049A JP2006190049A JP2008019562A JP 2008019562 A JP2008019562 A JP 2008019562A JP 2006190049 A JP2006190049 A JP 2006190049A JP 2006190049 A JP2006190049 A JP 2006190049A JP 2008019562 A JP2008019562 A JP 2008019562A
Authority
JP
Japan
Prior art keywords
breakwater
ground improvement
sandy soil
soil layer
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006190049A
Other languages
Japanese (ja)
Other versions
JP4982632B2 (en
Inventor
Takahiro Sugano
高弘 菅野
Susumu Iai
進 井合
Tetsuo Hida
哲男 飛田
Shigeki Sugita
繁樹 杉田
Shoichiro Matsumoto
正一郎 松本
Masaaki Mitsufuji
正明 三藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Original Assignee
Kyoto University
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Penta Ocean Construction Co Ltd, National Institute of Maritime Port and Aviation Technology filed Critical Kyoto University
Priority to JP2006190049A priority Critical patent/JP4982632B2/en
Publication of JP2008019562A publication Critical patent/JP2008019562A/en
Application granted granted Critical
Publication of JP4982632B2 publication Critical patent/JP4982632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method of countermeasures against liquefaction under a breakwater caused by chemical grouting which enables construction to be inexpensively performed in a short period of time, and can effectively prevent the occurrence of a liquefaction phenomenon. <P>SOLUTION: A rubble-mound 11 is created on a sandy soil layer 10 on the bottom of the sea. The breakwater is constituted by installing a concrete dam body 12 on the rubble-mound 11. Under the breakwater, a horizontal soil-improving layer A like a board with a desired thickness is created in a section ranging from the top surface of a sandy soil layer 10 immediately below the dam body 12 to a desired depth. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,海底の砂質地盤上に構築されている防波堤下の地盤が、地震発生時に液状化することによる防波堤の沈下や倒壊をより小さいものとし、防波堤機能が損なわれないようにする防波堤下の液状化対策工法に関する。   The present invention relates to a breakwater that prevents the breakwater function from being impaired by reducing the breakwater subsidence or collapse due to liquefaction of the ground under the breakwater built on the sandy ground of the seabed. It relates to the following liquefaction countermeasure method.

一般に、突堤や沖堤等の防波堤は,波浪等の外力に対して滑動及び転倒を生じさせないだけの支持力を確保できるような地盤上に築造する。   In general, breakwaters such as jetties and offshore dikes are constructed on the ground so as to secure a supporting force that does not cause sliding and overturning against external forces such as waves.

従来、防波堤下にあってこれを支持している砂質地盤としては、粘性土からなる原地盤を砂で置き換えた置換砂質土である場合や、原地盤が波浪等の外力に対して防波堤の滑動や転倒を生じさせないだけの支持力を有している砂質土である場合がある。   Conventionally, the sandy ground under and supporting the breakwater is a replacement sandy soil in which the original ground made of clay soil is replaced with sand, or the ground is against a wave or other external force. In some cases, it is sandy soil having a supporting force that does not cause sliding or falling.

しかし、このような波浪等の外力に対して充分な支持力を有している砂質地盤であっても、地震発生時に液状化現象によって支持力を失い、防波堤を沈下させることが想定され、地震によって液状化現象が発生すると砂質土層に体積変化が生じて堤体が沈下したり、傾いたり、場合によっては倒壊するという事態が予想される。   However, even in sandy ground that has sufficient support for external forces such as waves, it is assumed that the support will be lost due to the liquefaction phenomenon at the time of the earthquake and the breakwater will sink. When a liquefaction phenomenon occurs due to an earthquake, a volume change occurs in the sandy soil layer, and the dam body is expected to sink, tilt, or in some cases collapse.

堤体が一定以上沈下したり傾いたりすると波浪遮断機能が損なわれ、港内側への越波量が増大し、港内の静穏度が確保されなくなる。また、地震発生後に津波が押し寄せると津波の越波量が増大し、背後の陸地に対する浸水被害を食い止めるための機能が損なわれるという問題がある。   If the levee body sinks or tilts more than a certain level, the wave blocking function is impaired, the amount of overtopping to the inside of the port increases, and the calmness within the port cannot be ensured. In addition, when a tsunami comes after an earthquake, the amount of overtopping of the tsunami increases, and there is a problem that the function to stop flooding damage to the land on the back is impaired.

従来、このような砂質地盤上に防波堤を築造する場合における液状化対策としては、サンドコンパクションパイル工法(例えば特許文献1及び2)がある。これは図21に示すように、防波堤築造前に、その下の砂質土層1内にサンドコンパクションパイルの造成等の地盤改良工法によって液状化が防止できるように改良地盤2を造成し、その上に捨石マウンド3を造成し、その上にコンクリートケーソンや場所打ちコンクリートによるコンクリート堤体4を設置する方法である。   Conventionally, as a countermeasure for liquefaction when building a breakwater on such sandy ground, there is a sand compaction pile method (for example, Patent Documents 1 and 2). As shown in FIG. 21, before construction of the breakwater, an improved ground 2 is created in the sandy soil layer 1 below the ground so that liquefaction can be prevented by a ground improvement method such as creation of a sand compaction pile. This is a method in which a rubble mound 3 is created on top of which a concrete dam body 4 made of concrete caisson or cast-in-place concrete is installed.

また既設の防波堤に対する液状化対策として、図22に示すような嵩上げ工法がある。これは堤体4の真上を静水面から必要な高さまで嵩上げしておくものであり、堤体4上に嵩上げ部5を場所打ちコンクリートによって構築し、堤体の滑動、転倒に対する安定を確保するために必要に応じて拡幅し、重量を確保する。   Further, as a countermeasure against liquefaction for the existing breakwater, there is a raising method as shown in FIG. This is to raise the height just above the levee body 4 from the static water surface to the required height, and build the raised portion 5 on the dam body 4 with cast-in-place concrete to ensure stability against sliding and falling of the dam body. In order to do so, it is widened as necessary to ensure weight.

更に堤体の拡幅と同様に堤体の滑動、転倒に対する安定を確保するために防波堤港内側に1〜70kg/個程度の石を必要量投入して裏込め盛石部6を造成する。
特開平8−27759号公報 特開平7−207653号公報
Furthermore, in order to ensure stability against the sliding and falling of the levee body as well as the widening of the levee body, a required amount of stone of about 1 to 70 kg / piece is put inside the breakwater port to create the backfilling stone portion 6.
JP-A-8-27759 JP 7-207653 A

上述した従来の、新設防波堤築造に際し、防波堤下となる砂質土層内にサンドコンパクションパイルの造成などによる地盤改良を施す方法では、その地盤改良範囲が広範となるため、工費が増大するとともに、工期も長くなるという問題がある。   In the conventional construction of the new breakwater described above, the method of applying ground improvement by creating a sand compaction pile in the sandy soil layer under the breakwater increases the construction cost, because the ground improvement range is wide, There is a problem that the construction period becomes longer.

また、既設の防波堤に対する嵩上げ工法では、砂質土層の液状化そのものを防止することはできず、液状化現象が生じたときは堤体が相当の沈下を起こし、防波堤法線が直線状ではなくなり、防波堤としての機能を十分に発揮できなくなるおそれがある。   Moreover, the raising method for the existing breakwater cannot prevent liquefaction of the sandy soil layer itself, and when the liquefaction phenomenon occurs, the levee body undergoes considerable subsidence, and the breakwater normal is not straight. There is a risk that the function as a breakwater cannot be fully achieved.

また、予想される津波の高さが大きくなればなるほど、波力に対する滑動や転倒を防止するために堤体幅を相当量大きくする必要が生じる。同様に滑動に対する安定性を確保するために港内側への裏込石の投入量を多くしなければならず、嵩上げ高さを大きくする場合にはそれに応じてコスト高となり、しかも防波堤下の砂質土層にかかる重量が大きくなり、これが沈下の要因となるおそれがあるなどの問題がある。   In addition, as the expected height of the tsunami increases, it is necessary to increase the dam body width by a considerable amount in order to prevent sliding and falling over the wave force. Similarly, in order to ensure stability against sliding, the amount of lining stones inside the port must be increased, and when raising the height, the cost increases accordingly, and the sand under the breakwater There is a problem that the weight applied to the soil layer increases, which may cause settlement.

本発明は上述の如き従来の問題に鑑み、既設、新設の何れの防波堤に対して施工する場合を問わず、低コストで短期間に施工することができ、しかも液状化現象による堤体の沈下を効果的に防止することができる防波堤下の液状化対策工法の提供を目的としてなされたものである。   In view of the conventional problems as described above, the present invention can be applied in a short period of time at low cost regardless of whether it is applied to any existing or new breakwater, and the settlement of the levee body due to liquefaction phenomenon It was made for the purpose of providing a liquefaction countermeasure method under a breakwater that can effectively prevent the dam.

上述の如き従来の課題を解決し、所期の目的を達成するための請求項1に記載の発明の特徴は、海底の砂質土層上に捨石マウンドを造成し、該捨石マウンド上にコンクリート製の堤体を設置して構成された防波堤下の液状化対策工法であって、前記堤体直下の前記砂質土層の表面から所望の深さに至る部分に、地盤改良用の薬液又はセメント系固化材を注入させることにより、液状化現象の生じない所望厚さの盤状をした水平地盤改良層を造成することにある。   The feature of the invention described in claim 1 for solving the conventional problems as described above and achieving the intended purpose is that a rubble mound is formed on a sandy soil layer on the seabed, and concrete is formed on the rubble mound. A liquefaction countermeasure construction method under a breakwater constructed by installing a dam body made of a chemical solution for ground improvement or a portion extending from the surface of the sandy soil layer directly under the dam body to a desired depth By injecting a cement-based solidifying material, a horizontal ground improvement layer having a disk shape with a desired thickness that does not cause a liquefaction phenomenon is created.

請求項2に記載の発明の特徴は、上記請求項1の構成に加え、前記薬液は、水ガラス系、特殊シリカ系又は高分子系の地盤改良用薬液を使用することにある。   A feature of the invention described in claim 2 is that, in addition to the structure of claim 1, the chemical solution uses a water glass-based, special silica-based or polymer-based chemical solution for ground improvement.

請求項3に記載の発明の特徴は、上記請求項1又は2の構成に加え、前記防波堤が新設の防波堤であり、前記捨石マウンド造成前に防波堤下となる前記砂質地盤に前記盤状をした水平地盤改良層を造成することにある。   According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the breakwater is a newly installed breakwater, and the sandy ground that is under the breakwater before the rubble mound is formed has the plate shape. It is to create a horizontal ground improvement layer.

請求項4に記載の発明の特徴は、上記請求項1又は2の構成に加え、前記防波堤が、既設の防波堤であり、該既設の防波堤下の砂質土層に前記盤状をした水平地盤改良層を造成することにある。   According to a fourth aspect of the present invention, in addition to the configuration of the first or second aspect, the breakwater is an existing breakwater, and the ground is formed in a sandy soil layer under the existing breakwater. The purpose is to create an improved layer.

請求項5に記載の発明の特徴は、上記請求項1〜3又は4の構成に加え、前記堤体直下に前記盤状をした水平地盤改良層を造成するとともに、前記堤体の前後両縁部に沿ってそのやや外側下の前記砂質土層内に、一対の不透水性又は難透水性の地中壁を造成することにある。   The invention according to claim 5 is characterized in that, in addition to the structure of claims 1 to 3 or 4 above, a horizontal ground improvement layer having the plate shape is formed immediately below the bank body, and both front and rear edges of the bank body A pair of impermeable or hardly permeable underground walls is created in the sandy soil layer slightly below the outer side along the part.

請求項6に記載の発明の特徴は、上記請求項5の構成に加え、上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内に、地盤改良用の薬液又はセメント系固化材を注入させることにより造成することにある。   A feature of the invention described in claim 6 is that, in addition to the structure of claim 5, the pair of impermeable or hardly permeable underground walls are provided in the sandy soil layer with a chemical solution for ground improvement or It is to create by injecting cement-based solidifying material.

請求項7に記載の発明の特徴は、上記請求項5の構成に加え、上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内に矢板を打設することによって造成することにある。   According to a seventh aspect of the present invention, in addition to the structure of the fifth aspect, the pair of impermeable or hardly permeable underground walls are formed by placing a sheet pile in the sandy soil layer. It is to create.

本発明においては、海底の砂質土層上に捨石マウンドを造成し、該捨石マウンド上にコンクリート製の堤体を設置して構成された防波堤の堤体直下の砂質地盤の表面から所望の深さに至る部分に、地盤改良用の薬液又はセメント系固化材を注入させることにより、液状化現象の生じない所望厚さの盤状をした水平地盤改良層を造成すると、地震発生時の液状化現象は、その水平地盤改良層下の地盤改良されていない砂質土層において発生することとなるが、堤体直下の盤状をした水平地盤改良層には液状化現象は生じない。   In the present invention, a rubble mound is formed on a sandy soil layer on the seabed, and a desired dam is formed from the surface of the sandy ground directly under the breakwater of the breakwater constructed by installing a concrete dam on the rubble mound. If a horizontal ground improvement layer with a desired thickness that does not cause liquefaction phenomenon is created by injecting a chemical solution or cement-based solidifying material for soil improvement into the depth part, The liquefaction phenomenon occurs in the sandy soil layer that is not ground improved under the horizontal ground improvement layer, but the liquefaction phenomenon does not occur in the horizontal ground improvement layer in the shape of a plate directly under the bank.

液状化現象が発生する地盤、即ち可液状化地盤の上の構構物の、液状化現象発生時に生じる沈下量は、構造物下の可液状化地盤の厚さに比例する。従って、上記のように堤体直下の可液状化地盤である砂質土層に液状化現象が発生しない盤状をした水平地盤改良層を造成することによって、その分だけ可液状化地盤の厚さが減少することとなり、地震による液状化現象発生時の堤体沈下量は、上記水平地盤改良層の厚さに対応して減少することとなる。   The amount of subsidence that occurs when the liquefaction phenomenon occurs in the ground where the liquefaction phenomenon occurs, that is, the structure on the liquefiable ground, is proportional to the thickness of the liquefiable ground under the structure. Therefore, by creating a horizontal ground improvement layer that does not cause liquefaction in the sandy soil layer, which is the liquefiable ground directly under the dam body, as described above, the thickness of the liquefiable ground is increased accordingly. Therefore, the amount of subsidence at the time of occurrence of liquefaction due to the earthquake will decrease corresponding to the thickness of the horizontal ground improvement layer.

従って、液状化によって発生する沈下が、防波堤の許容沈下量以下となるように砂質土層に対する盤状をした水平地盤改良層の厚さの比率を実験又はシミュレーションによって算出し、必要な厚さの水平地盤改良層を造成することにより、地震発生時にも防波堤の必要な機能を維持させることが可能となる。   Therefore, by calculating the ratio of the thickness of the horizontal ground improvement layer in the form of a plate to the sandy soil layer so that the subsidence caused by liquefaction is less than the allowable subsidence amount of the breakwater, the necessary thickness is calculated. By creating the horizontal ground improvement layer, it is possible to maintain the necessary functions of the breakwater even in the event of an earthquake.

次に、本発明の実施の形態について図面を用いて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明により液状化対策を施した第1実施例の防波堤及びその下の地盤の断面を示している。同図において符号10は防波堤下の原地盤が砂質土である場合の砂質土層を示しており、11はその上に10〜200kg/個程度の重さの基礎用捨石を投入して造成した捨石マウンド、12は捨石マウンド11上に載置したコンクリートケーソン又は場所打ちコンクリートからなる堤体である。   FIG. 1 shows a cross section of a breakwater according to the first embodiment in which countermeasures against liquefaction have been taken according to the present invention and the ground below it. In the figure, reference numeral 10 indicates a sandy soil layer when the original ground under the breakwater is sandy soil, and 11 indicates a rubble for foundations having a weight of about 10 to 200 kg / piece thereon. The created rubble mound 12 is a dam body made of concrete caisson or cast-in-place concrete placed on the rubble mound 11.

捨石マウンド11の上面は、堤体12下を除き、その表面を1t/個程度の重さの被覆石13によって被覆されているとともに、堤体12の根元部分の前後に根固石14を積み上げている。   The upper surface of the rubble mound 11 is covered with a covering stone 13 having a weight of about 1 t / piece except for the bottom of the dam body 12, and the solid stone 14 is stacked before and after the root portion of the dam body 12. ing.

本発明における液状化対策は、堤体12直下の砂質土層10の表面から所望の深さに至る部分に、地盤改良用の薬液を注入させることにより、所望厚さの盤状をした水平地盤改良層Aを造成することによってなされている。   The liquefaction countermeasure in the present invention is a horizontal plate having a desired thickness by injecting a chemical solution for improving the ground into a portion from the surface of the sandy soil layer 10 immediately below the dam body 12 to a desired depth. This is done by creating a ground improvement layer A.

この水平地盤改良層Aは、恒久性のある水ガラス系、特殊シリカ系又は高分子系の薬液を砂質土層10内に浸透させるか、セメントスラリーを砂質土層10内に注入・混合することによって造成され、その水平地盤改良層Aは地震発生時に液状化現象が発生しない構造となっている。   In this horizontal ground improvement layer A, a permanent water glass type, special silica type or polymer type chemical solution is infiltrated into the sandy soil layer 10 or cement slurry is injected and mixed into the sandy soil layer 10. The horizontal ground improvement layer A has a structure in which liquefaction does not occur when an earthquake occurs.

次に、砂質土層10上に防波堤を新設する際に、薬液注入によって図1に示す第1実施例の液状化対策を施工する例について説明する。   Next, when a breakwater is newly installed on the sandy soil layer 10, an example in which the liquefaction countermeasure of the first embodiment shown in FIG.

図2にその施工フローを示している。施工フローにおける敷砂工では、水平地盤改良層Aを造成しようとする砂質土層10の上に敷砂30を敷設する。この敷砂30は水平地盤改良層Aを造成するために地盤中に注入する薬液が水中へ流出するのを防止するために敷設するものであり、厚さ1.0m程度とする。   FIG. 2 shows the construction flow. In the laying sand work in the construction flow, the laying sand 30 is laid on the sandy soil layer 10 where the horizontal ground improvement layer A is to be created. The laying sand 30 is laid to prevent the chemical liquid injected into the ground from flowing into the water in order to create the horizontal ground improvement layer A, and has a thickness of about 1.0 m.

敷砂施工は、図3に示すように底開式土運船31を使用し、底開により直接投入するか、グラブ付き自航運搬船を使用して船上からグラブバケットにより投入する等、従来使用されている敷砂方法により実施する。   As shown in Fig. 3, the sand-laying work is conventionally used, such as using a bottom-open type earth-moving ship 31 and putting it directly by opening the bottom or using a grab bucket with a self-propelled carrier ship with a grab. It is carried out by the existing sanding method.

このようにして敷砂工を実施した後、水平地盤改良層Aを造成するための薬液注入工を行う。この薬液注入工は、陸上において使用されている浸透固化処理工法に使用されている装置と同様の方法によって行うものであり、図4に示すように、作業台船40上に搭載したドリリングマシン41によっておこなう。   After carrying out the laying sand work in this way, a chemical solution injection work for creating the horizontal ground improvement layer A is performed. This chemical injection is performed by a method similar to that used in the osmosis solidification processing method used on land, and as shown in FIG. 4, a drilling machine 41 mounted on a work table ship 40 is used. To do.

尚、この作業台船40は図5に示すように支柱40aを昇降させることによって、水底面に支持させ、潮の干満や波浪に影響されることなく、正確な位置及び高さに固定した状態で作業を行うことができるものを使用することが好ましい。   As shown in FIG. 5, this work table ship 40 is supported on the bottom of the water by raising and lowering the support column 40a, and is fixed at an accurate position and height without being affected by tides and waves. It is preferable to use one that can perform the operation.

次に薬液注入の作業手順について説明する。   Next, a procedure for injecting the chemical solution will be described.

先ず図6に示すように、ドリリングマシン41によって削孔を行う。この削孔は中空筒状のケーシング42を継ぎ足しながら、内部の土砂を排出しつつ、造成しようとする水平地盤改良層Aの深度に達するまで行う。   First, as shown in FIG. 6, drilling is performed by a drilling machine 41. This drilling is performed until the depth of the horizontal ground improvement layer A to be created is reached while discharging the earth and sand while adding the hollow cylindrical casing 42.

この削孔作業が完了した後、ケーシング42を抜き取り、その抜き取り後の孔43内に、薬液注入用の外管45を挿入する。この外管45は、図7(a)に示すように、その長手方向に所定の間隔を隔てて薬液吐出孔46,46……が形成されているとともに、その各薬液吐出孔46の上下位置の外周に布スリーブ47,47……が固定されている。   After this drilling operation is completed, the casing 42 is extracted, and an outer tube 45 for injecting a chemical solution is inserted into the hole 43 after the extraction. As shown in FIG. 7A, the outer tube 45 is formed with chemical liquid discharge holes 46, 46... At predetermined intervals in the longitudinal direction, and the vertical positions of the chemical liquid discharge holes 46. Cloth sleeves 47, 47,...

次いで45内から、各布スリーブ47内にスラリー状のセメントベントナイト48を注入し、布スリーブ47を膨らませて削孔内面の地山と一体化させる。このセメントベントナイト48の注入は、図7(b)に示すように、セメントベントナイト注入用ホース49を使用する。セメントベントナイト注入用ホース49には、下端部側面にセメントベントナイト吐出孔50を備え、その上下の外面にゴム状弾性材からなるパッカー51,51が固定されており、この両パッカー51,51内に水を注入して膨張させることによって、外管内面に圧接させて、吐出孔50上下の外管内面隙間を閉鎖することにより、吐出孔50からのセメントベントナイト48が外管45のセメントベントナイト注入孔47aを通して布スリーブ47内に充填されるようになっている。   Next, a slurry-like cement bentonite 48 is injected into each cloth sleeve 47 from within 45, and the cloth sleeve 47 is inflated to be integrated with the ground on the inner surface of the drilling hole. The cement bentonite 48 is injected by using a cement bentonite injection hose 49 as shown in FIG. The cement bentonite injecting hose 49 is provided with a cement bentonite discharge hole 50 on the side surface of the lower end portion, and packers 51 and 51 made of rubber-like elastic material are fixed to the upper and lower outer surfaces thereof. By injecting and expanding water, the inner surface of the outer tube is pressed against the inner surface of the outer tube, and the gap between the upper and lower outer tube surfaces is closed, so that the cement bentonite 48 from the discharge hole 50 becomes the cement bentonite injection hole of the outer tube 45. The cloth sleeve 47 is filled through 47a.

このようにして布スリーブ47内へのセメントベントナイト注入作業を下端部から順にステップアップさせて全布スリーブ47に対して実施する。   In this way, the cement bentonite injection operation into the fabric sleeve 47 is performed on all the fabric sleeves 47 by stepping up in order from the lower end.

セメントベントナイト48を注入し、その固化養生後、薬液注入作業を行う。この薬液注入作業は、図8に示すように、外管45内に薬液注入ホース55を挿入して行う。薬液注入ホース55には、その先端部外周に薬液吐出孔56を有し、その上下の外周に注水によって膨張する前述と同様のパッカー57,57が固定されており、このパッカー57を膨張させることによって外管45の薬液吐出孔46の上下の外管内隙間を閉鎖し、薬液吐出孔56から高圧で薬液を吐出させることにより、外管45の薬液吐出孔46から砂質地盤中に薬液を浸透させ、球状の薬液浸透部60を造成する。   Cement bentonite 48 is injected, and after the solidification curing, a chemical solution injection operation is performed. This chemical injection operation is performed by inserting a chemical injection hose 55 into the outer tube 45 as shown in FIG. The chemical solution injection hose 55 has a chemical solution discharge hole 56 on the outer periphery of the tip end thereof, and fixed to the upper and lower outer peripheries of packers 57 and 57 similar to those described above by water injection, and this packer 57 is expanded. By closing the inner pipe gap above and below the chemical solution discharge hole 46 of the outer tube 45 and discharging the chemical solution at a high pressure from the chemical solution discharge hole 56, the chemical solution penetrates into the sandy ground from the chemical solution discharge hole 46 of the outer tube 45. The spherical chemical solution permeation part 60 is formed.

このようにして図9に示すように外管45の下端より球形の薬液浸透部60を互いにオーバーラップさせつつ順次造成する。この一連の作業を水平地盤改良層造成予定の全域に亘って順次繰り返して行うことにより所望の厚さ及び広さの水平地盤改良層Aを造成する。   In this way, as shown in FIG. 9, the spherical chemical liquid permeation portions 60 are sequentially formed from the lower end of the outer tube 45 while overlapping each other. This series of operations is sequentially repeated over the entire area where the horizontal ground improvement layer is scheduled to be formed, thereby creating the horizontal ground improvement layer A having a desired thickness and width.

砂質土層10表面より所望の厚さの水平地盤改良層Aを造成した後、敷砂撤去工を行う。この敷砂撤去工は、敷砂部分は薬液による改良が不十分で、その物性が不均質なためであり、物性が不均質な材料をそのまま基礎として使用するのが不適切と判断される場合に実施する。尚、敷砂および表層付近の盛り上り土砂の材質が均質であり基礎としての使用に適すると判断される場合には,その撤去は行わない。   After creating a horizontal ground improvement layer A having a desired thickness from the surface of the sandy soil layer 10, the ground sand removal work is performed. This sand removal work is due to the fact that the sand is not sufficiently improved with chemicals and its physical properties are inhomogeneous, and it is deemed inappropriate to use materials with inhomogeneous physical properties as a basis. To implement. In addition, when it is judged that the material of the ground sand and the uplifted soil near the surface layer is homogeneous and suitable for use as a foundation, it will not be removed.

次いで図1に示すように、従来と同様の方法によって捨石マウンド11を造成し、その上に堤体12を設置する。   Next, as shown in FIG. 1, a rubble mound 11 is formed by a method similar to the conventional method, and a bank body 12 is installed thereon.

次に本発明を既設の防波堤下の砂質土層に薬液注入によって図1に示す第1実施例の液状化対策を施工する例について説明する。この例では、陸上において使用されている浸透固化処理工法に使用されている装置と同様の曲がり削孔装置70を使用する。   Next, an example in which the present invention is applied to the liquefaction countermeasure of the first embodiment shown in FIG. 1 by injecting a chemical solution into a sandy soil layer under an existing breakwater will be described. In this example, a bending hole drilling device 70 similar to the device used in the permeation solidification processing method used on land is used.

この曲がり削孔装置70を図10に示すように前述の実施例と同様の作業台船40上に搭載し、防波堤を構成している捨石マウンド11の先端部より必要な距離を隔てた位置から、海底面より斜めに向けて捨石マウンド11下の砂質土層10内に削孔し、堤体12下では水平に向けて薬液注入用の作業孔71を削孔する。   As shown in FIG. 10, the curved hole drilling device 70 is mounted on a work table boat 40 similar to the above-described embodiment, and is separated from the tip of the rubble mound 11 constituting the breakwater from a position required. Then, a hole is drilled in the sandy soil layer 10 below the rubble mound 11 obliquely from the bottom of the sea, and a work hole 71 for injecting a chemical solution is drilled horizontally below the dam body 12.

この削孔作業は、図11に示すように作業孔71の崩壊を防止するために鞘管72を使用し、この鞘間72内に削孔刃73を先端に固定した削孔ロッド74を挿入しておき、削孔刃73を先行させて削孔しつつ鞘管72を押し出し、作業孔71の内面を鞘管72で被覆しつつ削孔を進める。   In this drilling operation, as shown in FIG. 11, a sheath tube 72 is used to prevent the work hole 71 from collapsing, and a drilling rod 74 having a drilling blade 73 fixed at the tip is inserted between the sheaths 72. In addition, the sheath pipe 72 is pushed out while drilling with the drilling blade 73 in advance, and the drilling is advanced while the inner surface of the work hole 71 is covered with the sheath pipe 72.

削孔ロッド74の先端には、位置を検出するためのジャイロ(図示せず)及び上下左右方向の曲がりを検出する曲がりセンサー75が備えられ、その曲がりセンサー75の先端に削孔刃73が固定されている。この削孔刃73は先端の片側に進行方向決定用の傾斜面73aが形成されているとともに、先端部にジェット水噴射ノズル76を有している。   A gyroscope (not shown) for detecting the position and a bending sensor 75 for detecting bending in the vertical and horizontal directions are provided at the tip of the drilling rod 74, and a drilling blade 73 is fixed to the tip of the bending sensor 75. Has been. The drilling blade 73 has an inclined surface 73a for determining the traveling direction on one side of the tip, and a jet water spray nozzle 76 at the tip.

削孔ロッド74には、図には示してないが掘削水供給路と、掘削土砂を含んだ掘削水を戻す掘削水戻し路とが備えられており、掘削水供給路から掘削用の高圧水を削孔刃73先端のノズルに供給し、ノズルから掘削水を噴射させることにより前方の地山を掘削し、掘削した土砂を含む掘削水を、削孔ロッドを通じて作業船上に戻すことにより削孔するようになっている。   Although not shown in the drawing, the drilling rod 74 is provided with a drilling water supply path and a drilling water return path for returning the drilling water containing the drilling earth and sand. From the drilling water supply path, high-pressure water for drilling is provided. Is drilled into the front ground by jetting drilling water from the nozzle at the tip of the drilling blade 73, and drilling water containing the excavated earth and sand is returned to the work ship through the drilling rod. It is supposed to be.

尚、削孔は削孔ロッド74を回転させながら削孔刃73を前進させることによって直進削孔し、削孔ロッド74の回転を停止させた状態で前進せることにより、削孔刃73の傾斜面によって曲進削孔されるようになっている。   In addition, the drilling hole is straightly advanced by advancing the drilling blade 73 while rotating the drilling rod 74, and the drilling blade 73 is inclined by moving forward with the rotation of the drilling rod 74 stopped. Curved holes are cut by the surface.

また、ジャイロ及び曲がりセンサー75からの情報によって船上のコンピュータによって削孔位置を算出し、所望の曲線の削孔がなされるようになっている。   Further, a drilling position is calculated by a computer on the ship based on information from the gyroscope and the bending sensor 75, and a desired curve is drilled.

このようにして、内面を鞘管72で被覆した作業孔71を形成した後、先端の削孔刃73を地中に残して削孔ロッド74を抜き取る。   In this way, after forming the working hole 71 whose inner surface is covered with the sheath tube 72, the drilling rod 74 is removed leaving the drilling blade 73 at the tip in the ground.

次いで、削孔ロッド74を抜き取った鞘管72内に薬液注入ホース80を挿入する。この薬液注入ホース80は図12に示すように先端部に、水を注入することによって膨張するパッカー82,82が間隔を隔てて備えられ、そのパッカー82,82間に薬液吐出ノズル81が開口されており、薬液注入ホース80内には、両パッカーに水を加圧注入するための注水路と薬液を供給する注液路とが備えられている。   Next, the chemical solution injection hose 80 is inserted into the sheath tube 72 from which the drilling rod 74 has been removed. As shown in FIG. 12, the chemical solution injection hose 80 is provided with packers 82 and 82 which are expanded by injecting water at a distal end portion, and a chemical solution discharge nozzle 81 is opened between the packers 82 and 82. The chemical injection hose 80 is provided with a water injection path for injecting water into both packers under pressure and a liquid injection path for supplying the chemical liquid.

この薬液注入ホース80を鞘管72の先端部まで挿入し、鞘管72のみを前記両パッカー82,82が鞘管先端に突出する位置まで引き抜く。しかる後パッカー82,82に注水し、その外周面を作業孔71の地山面に押し付ける。この状態で薬液吐出ノズル81から薬液を高圧で吐出させることにより、パッカー82,82間の地山面から周囲の地盤に薬液を注入させて周辺地盤の土壌間隙内に薬液を浸透させる。このようにして1つの箇所における注入作業が完了した後、パッカー82,82内を減圧させて縮め、次の注入作業箇所まで、鞘管72とともに引き抜き、同様の薬液注入作業を順次繰り返す。   This chemical solution injection hose 80 is inserted to the distal end portion of the sheath tube 72, and only the sheath tube 72 is pulled out to a position where both the packers 82 and 82 protrude from the distal end of the sheath tube. Thereafter, water is poured into the packers 82 and 82, and the outer peripheral surface is pressed against the ground surface of the work hole 71. In this state, the chemical solution is discharged from the chemical solution discharge nozzle 81 at a high pressure, so that the chemical solution is injected from the ground surface between the packers 82 and 82 into the surrounding ground and penetrates into the soil gap of the surrounding ground. After the injection operation at one place is completed in this way, the inside of the packers 82 and 82 is decompressed and contracted, and the next injection operation place is pulled out together with the sheath tube 72, and the same chemical solution injection operation is sequentially repeated.

上記薬液注入作業を順次繰り返して、予定の水平地盤改良層造成域に、上下左右に間隔を隔てて多数の作業孔71を形成し、その作業孔毎に、その軸方向に間隔を隔てた所要数の箇所にて薬液注入作業を行い、図10に示すように各薬液注入作業位置毎の球形の薬液浸透部60を互いにオーバーラップさせて予定域の地盤改良を行うことにより予定の水平地盤改良層Aを造成する。   The above-described chemical solution injection operation is sequentially repeated to form a number of work holes 71 in the planned horizontal ground improvement layer formation region with a space in the vertical and horizontal directions, and each work hole is required to have a space in the axial direction. The chemical solution injection operation is performed at several places, and the planned horizontal ground improvement is performed by overlapping the spherical chemical solution infiltration portions 60 at each chemical solution injection operation position as shown in FIG. Layer A is created.

尚、上述した薬液注入方法では、鞘管を引き抜きながら、両パッカーを作業孔の地山面に押し付けて薬液を注入するようにしているが、この他、図には示してないが鞘管に薬液注入用の貫通孔を形成しておき、両パッカーを鞘管の内面に押し当て、前記鞘管の注入孔を通じて地山内に薬液を注入する方法等、従来使用されている各種の注入方法が使用できる。   In the above-described chemical solution injection method, while pulling out the sheath tube, both packers are pressed against the ground surface of the work hole to inject the chemical solution. There are various conventionally used injection methods such as a method of forming a through hole for injecting a chemical solution, pressing both packers against the inner surface of the sheath tube, and injecting the chemical solution into the natural ground through the injection hole of the sheath tube. Can be used.

次に本発明の第2実施例を、図13を参照して説明する。図13はこの実施例により液状化対策を施した防波堤及びその下の地盤の断面を示している。図において前述の実施例と同一部分には同一の符号を付してその重複説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 13 shows a cross section of the breakwater and the ground below it that have been liquefied according to this embodiment. In the figure, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and redundant description thereof is omitted.

この例は、前述した堤体直下に盤状の水平地盤改良層Aを造成するとともに、その両側に砂質土層10の底部に至る高さの地盤改良による一対の地中壁B,Bを造成し、断面が門型の地盤改良を施したものである。   In this example, a plate-like horizontal ground improvement layer A is created directly under the above-mentioned dam body, and a pair of underground walls B, B by ground improvement at a height reaching the bottom of the sandy soil layer 10 is formed on both sides thereof. It was created and the ground was improved with a gate-shaped cross section.

地中壁B,Bは砂質土層10内にセメントスラリー等のセメント系の流動性を有する固化材を混入させて地盤改良を施すことによって、周囲の砂質土層に比べて剛性が高い不透水性又は難透水性の壁体としたものである。   The underground walls B and B have a higher rigidity than the surrounding sandy soil layer by mixing the sandy soil layer 10 with a cement-based fluidized solidifying material such as cement slurry to improve the ground. It is an impermeable or hardly permeable wall.

尚、この地中壁Bは、前述した図4に示す浸透固化処理設備を使用し、恒久性のある水ガラス系、特殊シリカ系又は高分子系の薬液を砂質土層10内に浸透させることによって造成しても良い。   In addition, this underground wall B uses the permeation solidification processing equipment shown in FIG. 4 described above, and permeates a permanent water glass-based, special silica-based or polymer-based chemical into the sandy soil layer 10. You may build it by.

この地中壁の厚さは、大きい程せん断変形抑止効果が大きくなり地震時の堤体沈下量がより抑制されることとなるが、必要な沈下抑制効果と経済性や施工性を考慮すると1.0〜3.0m程度が好ましい。   The greater the thickness of the underground wall, the greater the effect of suppressing shear deformation and the more the subsidence of the dam body during an earthquake is suppressed. However, considering the necessary subsidence suppression effect, economic efficiency and workability, 1 About 0.0-3.0 m is preferable.

先ず、新設の防波堤築造の際において施工する場合について説明すると、前述した第1実施例おける敷砂工完了後、盤状の水平地盤改良層Aを薬液注入により造成すると同時に又はこれと前後して、地中壁B,Bをセメント系固化材を砂質地盤中に添加混合することにより造成する。   First, the case where construction is performed in the construction of a new breakwater will be described. After completion of the laying sand work in the first embodiment described above, a plate-like horizontal ground improvement layer A is formed by chemical injection, or at the same time. The underground walls B and B are formed by adding and mixing cement-based solidified material into the sandy ground.

その造成には、従来水底の軟弱地盤に対して固化材を注入混合させて硬化させる地盤改良装置と同様の装置が使用できる。この装置は図14に示すように、外周にオーガ21を一体に備えた回転軸22を平行配置に備え、その各回転軸の下端部外周に複数の攪拌翼23を突設し、その一部の攪拌翼23に固化材吐出ノズル(図示せず)を設け、このノズルから回転軸22内を通して固化材を吐出させることができるようにするとともに、上端部に回転軸22を回転させる回転駆動機24を有する地盤改良機20を備えている。   For the construction, a device similar to a ground improvement device for injecting and mixing a solidified material to a soft ground at the bottom of the water can be used. As shown in FIG. 14, this apparatus includes a rotating shaft 22 integrally provided with an auger 21 on the outer periphery in a parallel arrangement, and a plurality of stirring blades 23 project from the outer periphery of the lower end of each rotating shaft. The agitating blade 23 is provided with a solidifying material discharge nozzle (not shown) so that the solidifying material can be discharged from the nozzle through the rotating shaft 22 and the rotating shaft 22 rotates the rotating shaft 22 at the upper end. A ground improvement machine 20 having 24 is provided.

この地盤改良機20は図15(a)に示すように、深層混合処理船25に立設したリーダー26に沿わせて上下駆動可能に設置し、地盤改良機20を深層混合処理船25から水底に向けて上下移動させることができるようになっている。   As shown in FIG. 15A, the ground improvement machine 20 is installed so as to be vertically movable along a leader 26 standing on the deep mixing treatment ship 25, and the ground improvement machine 20 is connected to the bottom of the water from the deep mixing treatment ship 25. It can be moved up and down toward.

そして、地盤改良機20を砂質土層10の底部まで回転させながら挿入した後、引き上げながら回転させると同時に固化材を攪拌翼23のノズルから吐出させ、これによって図15(a)に示すように砂質土層10の砂質土砂に固化材を混入させた柱状体20aを造成する。   Then, after inserting the ground improvement machine 20 while rotating it to the bottom of the sandy soil layer 10, it is rotated while being pulled up, and at the same time, the solidified material is discharged from the nozzle of the stirring blade 23, thereby as shown in FIG. 15 (a). A columnar body 20a in which a solidifying material is mixed into the sandy earth and sand of the sandy earth layer 10 is formed.

このようにして砂質土層10中に固化材を注入して柱状体20aをその側部を互いに一体化させた状態で造成する作業を繰り返し、連続した地中壁Bを造成する。   In this way, the operation of injecting the solidifying material into the sandy soil layer 10 and forming the columnar body 20a with the side portions integrated with each other is repeated to form a continuous underground wall B.

このようにして互いに平行な配置に一対の地中壁B,Bを順次水平方向に延長させた後、必要に応じて敷砂30を撤去し、図13に示すように、従来と同様の方法によって捨石マウンド11を造成し、その上に堤体12を設置する。   Thus, after extending a pair of underground wall B and B in order in the horizontal direction one by one in parallel arrangement | positioning, the covering sand 30 is removed as needed, and as shown in FIG. The rubble mound 11 is formed by the above, and the levee body 12 is installed thereon.

次に、第2実施例の液状化対策を既設の防波堤に対して施工する場合について説明する。   Next, the case where the liquefaction countermeasure of 2nd Example is constructed with respect to the existing breakwater is demonstrated.

堤体12の直下の水平地盤改良層Aの造成は、前述した第1実施例における既設防波堤下に対する施工と同様にして行う。これと平行して、又は前後して地中壁B,Bを造成する。   The horizontal ground improvement layer A immediately below the dam body 12 is formed in the same manner as the construction for the existing breakwater in the first embodiment described above. The underground walls B and B are created in parallel with or before and after this.

この場合における地中壁B,Bは根固石6の位置を避けたその外側位置の砂質土層10内に堤体12の縁部に沿った方向にそれぞれ連続させて造成する。この地中壁B,Bの造成は、前述した新設防波堤に築造の際の施工において述べたものと同じ地盤改良機20を使用する。   In this case, the underground walls B, B are formed continuously in the sandy soil layer 10 at the outer position avoiding the position of the stone 6 in the direction along the edge of the dam body 12. The underground walls B and B are created using the same ground improvement machine 20 as described in the construction at the time of construction on the new breakwater described above.

この地中壁Bの造成に際しては、先ず図16(イ)に示すように地盤改良機20を捨石マウンド11下の砂質土層10内に挿入できるようにするための地盤改良機挿入部27を形成する。この地盤改良機挿入部27は一時的に基礎捨石の一部を除去して捨石マウンド表裏に窓穴を形成するものであり、潜水夫により作業機を操作して捨石を除去することとしても良く、図には示してないがコアカッターを使用した切削機を使用して円筒形に切り取ることにより形成してもよい。   In creating the underground wall B, first, a ground improvement machine insertion portion 27 for allowing the ground improvement machine 20 to be inserted into the sandy soil layer 10 under the rubble mound 11 as shown in FIG. Form. This ground improvement machine insertion part 27 temporarily removes a part of the foundation rubble to form a window hole on the front and back of the rubble mound, and it may be possible to remove the rubble by operating the work machine by a diver. Although not shown in the figure, it may be formed by cutting into a cylindrical shape using a cutting machine using a core cutter.

このようにして地盤改良機挿入部27を地盤改良機20の1〜数回分の挿入広さに形成し、その地盤改良機挿入部27を通して図16(ロ)に示すように地盤改良機20を砂質土層10の底部まで回転させながら挿入した後、引き上げながら回転させると同時に固化材を攪拌翼23のノズルから吐出させ、これによって砂質土層10の砂質土に固化材を混入させた柱状体20aを造成する。   In this way, the ground improvement machine insertion part 27 is formed to have an insertion width of one to several times of the ground improvement machine 20, and the ground improvement machine 20 is passed through the ground improvement machine insertion part 27 as shown in FIG. After inserting while rotating to the bottom of the sandy soil layer 10, the solidifying material is discharged from the nozzle of the stirring blade 23 at the same time as it is pulled up, thereby mixing the solidifying material into the sandy soil of the sandy soil layer 10. The columnar body 20a is formed.

このようにして柱状体20aを造成した後、図16(ハ)に示すように地盤改良機挿入部27に基礎捨石を戻して捨石マウンドをもとの状態に復元させる。この工程を繰り返して図15(b)に示すように柱状態20a,20a……を多数幅方向に接した状態に造成して地盤改良による地中壁を造成する。   After the columnar body 20a is created in this manner, as shown in FIG. 16 (c), the foundation rubble is returned to the ground improvement machine insertion portion 27 to restore the rubble mound to its original state. By repeating this process, as shown in FIG. 15 (b), a plurality of column states 20a, 20a,...

尚、形成した地盤良機挿入部27内に埋め戻し砂を充填しておき、地盤改良機20による固化材の混入を砂質土層10への固化材混入に続けて埋め戻し砂にも固化材の混入を行うようにしてもよく、この場合には図17に示すように地盤改良機挿入部27が地中壁Bによって埋められることなり、埋め戻しの必要がなくなる。   It is to be noted that the formed ground good machine insertion portion 27 is filled with backfilling sand, and the mixing of the solidified material by the ground improvement machine 20 is continued to the backfilled sand after the mixing of the solidified material into the sandy soil layer 10. In this case, the ground improvement machine insertion portion 27 is filled with the underground wall B as shown in FIG.

上述の実施例では、一対の地中壁を砂質土層の砂質土内にセメント系固化材を混入させることによって造成しているが、この地中壁は上述の他、矢板を接合させて順次打設することによって不透水性又は難透水性の地中壁を造成してもよい。   In the above-described embodiment, a pair of underground walls are formed by mixing cement-based solidified material in the sandy soil of the sandy soil layer. Alternatively, the underground wall which is impermeable or hardly permeable may be formed.

この矢板の打設に際しては、前述の実施例と同様に、打設位置の捨石マウンドの捨石を除去して矢板打設部を形成する。捨石除去に際しては、1個ずつ取り除いてもよく切削機を使用して切り取ることによって除去しても良い。また、使用する矢板は鋼矢板、鋼管矢板等の鋼製矢板の他コンクリート製矢板が使用できる。   When the sheet pile is placed, the sheet pile placement portion is formed by removing the rubble of the rubble mound at the placement position, as in the above-described embodiment. When removing rubble, it may be removed one by one or by cutting using a cutting machine. Moreover, the sheet pile to use can use steel sheet piles, steel pipe sheet piles, etc. other than concrete sheet piles.

上述の実施例では、原地盤が砂質地盤であり、その砂質土層10上に築造した防波堤下の液状化対策について説明したが、図18、図19に示すように、原地盤が粘性土からなる支持力(N値)の小さい軟質原地盤90である場合において、その原地盤の1部を砂で置き換えた所謂置換砂で構成されている砂質土層10a上に築造されている防波堤下の液状化対策として、前述と同様に施工しても良い。尚、図18は図1に示す実施例と、図19は図13に示す実施例とそれぞれ同様に実施した場合を示しており。前述した実施例と同じ部分には同じ符号を付して重複説明を省略する。   In the above-described embodiment, the raw ground is sandy ground, and the countermeasure for liquefaction under the breakwater built on the sandy soil layer 10 has been described. However, as shown in FIGS. In the case of the soft base ground 90 having a small supporting force (N value) made of soil, it is built on a sandy soil layer 10a composed of so-called replacement sand in which a part of the base ground is replaced with sand. As a countermeasure against liquefaction under the breakwater, construction may be performed in the same manner as described above. 18 shows a case where the embodiment shown in FIG. 1 is performed, and FIG. 19 shows a case where the embodiment is executed similarly to the embodiment shown in FIG. The same parts as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

効果の確認
次に、有限要素法による地震応答解析による、本発明の液状化対策工法の効果の確認について述べる。この解析では、解析のための構造物のモデル化を行い、そのモデル化の材料定数を設定し、更に入力地震動(最大振幅、波形)を選定して地震応答計算を行った。解析結果として水平、鉛直方向の最大及び残留変位量等が算出される。
a.数値解析概要
数値解析の概要図: 図20
対象構造物: 防波堤(幅B=15.0m程度)
液状化対象層厚(砂質土層厚さ):H=20m程度
入力地震動:1968年十勝沖地震の際に八戸港で得られた記録より算定した八戸基盤入射波形。最大加速度400gal
液状化対策1:第1実施例の水平地盤改良層のみ設置
液状化対策2:第1実施例の水平地盤改良層と第2実施例の地中壁とを併用
水平地盤改良層厚さ:D=6.5m、D=3.5mの2種類
地中壁厚さ:L=1.5mの1種類
b.検討ケース
表1に示す通りの4ケースとした。
Confirmation of effect Next, confirmation of the effect of the liquefaction countermeasure method of the present invention by an earthquake response analysis by the finite element method will be described. In this analysis, the structure for the analysis was modeled, the material constants for the modeling were set, and the seismic response was calculated by selecting the input ground motion (maximum amplitude, waveform). As analysis results, horizontal and vertical maximums and residual displacements are calculated.
a. Outline of numerical analysis Outline diagram of numerical analysis: FIG.
Target structure: Breakwater (width B = 15.0m)
Liquefaction target layer thickness (sandy soil layer thickness): H = about 20m Input seismic motion: Hachinohe basement incident waveform calculated from records obtained at Hachinohe Port during the 1968 Tokachi-oki earthquake. Maximum acceleration 400gal
Liquefaction countermeasure 1: Installation of horizontal ground improvement layer of the first embodiment only Liquefaction countermeasure 2: Horizontal ground improvement layer of the first embodiment and underground wall of the second embodiment in combination Horizontal ground improvement layer thickness: D = 6.5 m, 2 types of D = 3.5 m Underground wall thickness: 1 type of L = 1.5 m b. Study Cases Four cases as shown in Table 1 were used.


Figure 2008019562

Figure 2008019562

c.解析結果
堤体の残留時の沈下量の算出結果を表2に示した。
c. Analysis results Table 2 shows the calculation results of the subsidence amount when the bank remains.


Figure 2008019562

Figure 2008019562

以上のように、本発明方法は、対策工を実施しなかった場合に比べ、水平地盤改良層のみを造成した場合に0.22及び0.40程度の沈下量に抑制でき、また、水平地盤改良層と地中壁とを共に造成した場合には0.17程度の沈下量に抑制できた。   As described above, the method of the present invention can suppress the subsidence amount to about 0.22 and 0.40 when only the horizontal ground improvement layer is formed, compared with the case where no countermeasure work is performed, and the horizontal ground. When both the improved layer and the underground wall were constructed, the amount of subsidence could be suppressed to about 0.17.

この結果より、本発明による対策は、水平地盤改良層のみの場合及びこれと地中壁との併用した場合の何れも、対策を施さない場合に比べて大きな効果を発揮することが確認できたとともに、水平地盤改良層のみを設ける場合において、砂質土層厚さに対する水平地盤改良層厚さの比が、20:3.5以上あれば充分な沈下抑制効果が得られることが判明した。   From this result, it was confirmed that the measures according to the present invention exerted a great effect compared to the case where only the horizontal ground improvement layer and the combination of this and the underground wall were not taken. In addition, when only the horizontal ground improvement layer is provided, it has been found that if the ratio of the horizontal ground improvement layer thickness to the sandy soil layer thickness is 20: 3.5 or more, a sufficient settlement suppression effect can be obtained.

尚、水平地盤改良層と地中壁とを併用したケース3は、大きい厚さの水平地盤改良層のみを用いたケース2よりコストが低くなる可能性があり、水平地盤改良層と地中壁とを併用した断面門型に地盤改良を施す液状化対策の効果は大きい。   In addition, the case 3 using the horizontal ground improvement layer and the underground wall in combination may be lower in cost than the case 2 using only the horizontal ground improvement layer having a large thickness, and the horizontal ground improvement layer and the underground wall The effect of liquefaction countermeasures to improve the ground on the cross-sectional gate type using both and is great.

本発明の第1実施例の液状化対策を施した防波堤及びその下の地盤の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the breakwater which applied the countermeasure against liquefaction of 1st Example of this invention, and the ground under it. 図1に示す第1実施例を新設の防波堤築造前に施工する一例を示すフロー図である。It is a flowchart which shows an example which constructs 1st Example shown in FIG. 1 before construction of a new breakwater. 同上の敷砂工を示す断面図である。It is sectional drawing which shows a laying sand work same as the above. 同上の薬液注入工の概略構成を示す断面図であるIt is sectional drawing which shows schematic structure of a chemical | medical solution injection work same as the above. 同上の薬液注入工を昇降式作業船によって行う場合を示す断面図である。It is sectional drawing which shows the case where the chemical | medical solution injection | pouring work same as the above is performed with a raising / lowering type work boat. 同上の薬液注入工における削孔工程を示す断面図である。It is sectional drawing which shows the drilling process in a chemical | medical solution injection | pouring work same as the above. (a)は同上の薬液注入工における削孔内への外管挿入状態を示す断面図、(b)は同削孔内への外管固定状態を示す断面図である。(A) is sectional drawing which shows the outer tube insertion state in the drilling hole in the chemical | medical solution injection | pouring work same as the above, (b) is sectional drawing which shows the outer tube fixing state in the drilling hole. 同上の薬液注入工における薬液注入状態を示す断面図である。It is sectional drawing which shows the chemical | medical solution injection | pouring state in a chemical | medical solution injection | pouring work same as the above. 同上の薬液注入工における薬液浸透状態を示す断面図である。It is sectional drawing which shows the chemical | medical solution penetration state in a chemical | medical solution injection | pouring work same as the above. 図1に示す第1実施例を既設防波堤下への施工に使用する曲がり削孔及び薬液注入の概要を示す断面図である。FIG. 2 is a cross-sectional view showing an outline of a curved hole used for construction under an existing breakwater according to the first embodiment shown in FIG. 同上の曲がり削孔装置による削孔状態を示す断面図である。It is sectional drawing which shows the drilling state by the bending drilling apparatus same as the above. 同上の薬液注入ホースによる薬液注入状態を示す断面図である。It is sectional drawing which shows the chemical | medical solution injection | pouring state by a chemical | medical solution injection hose same as the above. 本発明の第2実施例の液状化対策を施した防波堤及びその下の地盤の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the breakwater which applied the countermeasure against liquefaction of 2nd Example of this invention, and the ground under it. 第2実施例の液状化対策に使用する地盤改良機の一例を示す正面図である。It is a front view which shows an example of the ground improvement machine used for the liquefaction countermeasure of 2nd Example. (a)図14の地盤改良機を作業台船に設置して本発明工法を新設の防波堤築造前に施工している状態を示す縦断面図、(b)は造成される地中壁を示す横断面図である。(A) Longitudinal sectional view showing a state where the ground improvement machine of FIG. 14 is installed on a work boat and the present invention construction method is being constructed before construction of a new breakwater, (b) shows the underground wall to be created It is a cross-sectional view. (イ)〜(ハ)は、第2実施例を既設の防波堤下に施工する場合の施工工程を説明する略図的断面図である。(A)-(c) is schematic sectional drawing explaining the construction process in the case of constructing 2nd Example under the existing breakwater. 図16(イ)に示す地盤改良機挿入部の形成方法の他の例を示す断面図である。It is sectional drawing which shows the other example of the formation method of the ground improvement machine insertion part shown to FIG. 本発明方法を、軟質原地盤の一部を砂で置き換えた置換砂からなる砂質土層上に築造された防波堤下に、図1に示す実施例と同様に実施した場合を示す断面図である。FIG. 2 is a cross-sectional view showing a case where the method of the present invention is carried out in the same manner as the embodiment shown in FIG. 1 on a breakwater built on a sandy soil layer made of replacement sand in which a part of soft ground is replaced with sand. is there. 本発明方法を、軟質原地盤の一部を砂で置き換えた置換砂からなる砂質土層上に築造された防波堤下に、図13に示す実施例と同様に実施した場合を示す断面図である。Sectional drawing which shows the case where the method of this invention is implemented similarly to the Example shown in FIG. 13 on the breakwater built on the sandy soil layer which consists of substitution sand which replaced a part of soft ground with sand. is there. 本発明の効果の確認に用いた数値解析の概要図である。It is a schematic diagram of the numerical analysis used for confirmation of the effect of the present invention. 従来の防波堤下の液状化対策の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the conventional liquefaction countermeasure under a breakwater. 従来の既設防波堤に対する液状化対策の一例を示す断面図である。It is sectional drawing which shows an example of the liquefaction countermeasure with respect to the existing existing breakwater.

符号の説明Explanation of symbols

A 水平地盤改良層
B 地中壁
10 砂質土層
10a 砂質土層
11 捨石マウンド
12 堤体
20 地盤改良機
20a 柱状体
21 オーガ
22 回転軸
23 攪拌翼
24 回転駆動機
25 深層混合処理船
26 リーダー
27 地盤改良機挿入部
30 敷砂
31 グラブ付き自航運搬船
40 作業台船
40a 支柱
41 ドリリングマシン
42 ケーシング
43 孔
45 外管
46 薬液吐出孔
47 布スリーブ
47a セメントベントナイト注入孔
48 セメントベントナイト
49 セメントベントナイト注入用ホース
50 セメントベントナイト吐出孔
51 パッカー
55 薬液注入ホース
56 薬液吐出孔
57 パッカー
60 薬液浸透部
70 曲がり削孔装置
71 作業孔
72 鞘管
73 削孔刃
73a 傾斜面
75 曲がりセンサー
76 ジェット水噴射ノズル
80 薬液注入ホース
81 薬液吐出ノズル
82 パッカー
90 軟質原地盤
A horizontal ground improvement layer B underground wall 10 sandy soil layer 10a sandy soil layer 11 rubble mound 12 levee body 20 ground improvement machine 20a columnar body 21 auger 22 rotary shaft 23 stirring blade 24 rotary drive machine 25 deep mixing processing ship 26 Leader 27 Ground improvement machine insertion part 30 Sediment sand 31 Self-propelled carrier ship with grab 40 Work table ship 40a Prop 41 Drilling machine 42 Casing 43 Hole 45 Outer pipe 46 Chemical solution discharge hole 47 Cloth sleeve 47a Cement bentonite injection hole 48 Cement bentonite 49 Cement bentonite Injection hose 50 Cement bentonite discharge hole 51 Packer 55 Chemical solution injection hose 56 Chemical solution discharge hole 57 Packer 60 Chemical solution penetration part 70 Curved hole drilling device 71 Work hole 72 Sheath tube 73 Hole hole 73a Inclined surface 75 Curved sensor 76 Jet water injection nozzle 80 Chemical injection hose 81 Chemical discharge nozzle 82 Packer 90 Soft ground

Claims (7)

海底の砂質土層上に捨石マウンドを造成し、該捨石マウンド上にコンクリート製の堤体を設置して構成された防波堤下の液状化対策工法であって、
前記堤体直下の前記砂質土層の表面から所望の深さに至る部分に、地盤改良用の薬液又はセメント系固化材を注入させることにより、液状化現象の生じない所望厚さの盤状をした水平地盤改良層を造成することを特徴としてなる防波堤下の液状化対策工法。
A liquefaction countermeasure method under a breakwater constructed by creating a rubble mound on a sandy soil layer on the seabed and installing a concrete dam body on the rubble mound,
By injecting a chemical solution for improving the ground or a cement-based solidifying material into a portion from the surface of the sandy soil layer directly below the dam body to a desired depth, a plate shape having a desired thickness without causing a liquefaction phenomenon. A liquefaction countermeasure method under a breakwater, characterized by creating a horizontal ground improvement layer.
前記地盤改良用の薬液は、水ガラス系、特殊シリカ系又は高分子系の地盤改良用薬液を使用する請求項1に記載の薬液注入による防波堤下の液状化対策工法。   2. The liquefaction countermeasure method under a breakwater by injecting a chemical solution according to claim 1, wherein the chemical solution for ground improvement uses a water glass-based, special silica-based, or polymer-based chemical solution for ground improvement. 前記防波堤が新設の防波堤であり、前記捨石マウンド造成前に防波堤下となる前記砂質地盤に前記盤状をした水平地盤改良層を造成する請求項1又は2に記載の防波堤下の液状化対策工法。   The countermeasure for liquefaction under a breakwater according to claim 1 or 2, wherein the breakwater is a newly installed breakwater, and the horizontal ground improvement layer having the disk shape is formed on the sandy ground that becomes the breakwater before the rubble mound is formed. Construction method. 前記防波堤が、既設の防波堤であり、該既設の防波堤下の砂質土層に前記盤状をした水平地盤改良層を造成する請求項1又は2に記載の防波堤下の液状化対策工法。   The liquefaction countermeasure construction method under a breakwater according to claim 1 or 2, wherein the breakwater is an existing breakwater, and the plate-like horizontal ground improvement layer is formed on a sandy soil layer under the existing breakwater. 前記堤体直下に前記盤状をした水平地盤改良層を造成するとともに、前記堤体の前後両縁部に沿ってそのやや外側下の前記砂質土層内に、一対の不透水性又は難透水性の地中壁を造成する請求項1又は2に記載の防波堤下の液状化対策工法。   A horizontal ground improvement layer having the shape of a plate is formed immediately below the bank body, and a pair of impervious or difficult water is formed in the sandy soil layer slightly below the front and rear edges of the bank body. The liquefaction countermeasure construction method under a breakwater according to claim 1 or 2, wherein a permeable underground wall is constructed. 上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内に、地盤改良用の薬液又はセメント系固化材を注入させることにより造成する請求項5に記載の防波堤下の液状化対策工法。   The pair of impervious or hardly permeable underground walls are formed by injecting a chemical solution or cement-based solidifying material for ground improvement into the sandy soil layer. Liquefaction countermeasure method. 上記一対の不透水性又は難透水性の地中壁は、前記砂質土層内に矢板を打設することによって造成する請求項5に記載の防波堤下の液状化対策工法。   6. The liquefaction countermeasure method under a breakwater according to claim 5, wherein the pair of impermeable or hardly permeable underground walls are formed by placing a sheet pile in the sandy soil layer.
JP2006190049A 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater Active JP4982632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190049A JP4982632B2 (en) 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190049A JP4982632B2 (en) 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater

Publications (2)

Publication Number Publication Date
JP2008019562A true JP2008019562A (en) 2008-01-31
JP4982632B2 JP4982632B2 (en) 2012-07-25

Family

ID=39075729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190049A Active JP4982632B2 (en) 2006-07-11 2006-07-11 Liquefaction countermeasure method under breakwater

Country Status (1)

Country Link
JP (1) JP4982632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089386A (en) * 2010-09-30 2011-05-06 Toa Harbor Works Co Ltd Sea-bed foundation improvement method and outer pipe for chemical injection
CN104594331A (en) * 2015-01-30 2015-05-06 湖北工业大学 Method for reinforcing road high-stacked culvert foundation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119016A (en) * 1981-01-19 1982-07-24 Taisei Corp Method and device for ground improvement
JPH0645929B2 (en) * 1986-12-05 1994-06-15 五洋建設株式会社 Ground liquefaction prevention method
JPH08284126A (en) * 1995-04-18 1996-10-29 Ohbayashi Corp Repairing method of quay and quay structure
JP2000248527A (en) * 1999-02-25 2000-09-12 Kajima Corp Earthquake resistant reinforcing method for existing structure
JP2002121721A (en) * 2000-10-18 2002-04-26 Penta Ocean Constr Co Ltd Sand suction and outflow preventing construction method for seashore structure foundation ground

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119016A (en) * 1981-01-19 1982-07-24 Taisei Corp Method and device for ground improvement
JPH0645929B2 (en) * 1986-12-05 1994-06-15 五洋建設株式会社 Ground liquefaction prevention method
JPH08284126A (en) * 1995-04-18 1996-10-29 Ohbayashi Corp Repairing method of quay and quay structure
JP2000248527A (en) * 1999-02-25 2000-09-12 Kajima Corp Earthquake resistant reinforcing method for existing structure
JP2002121721A (en) * 2000-10-18 2002-04-26 Penta Ocean Constr Co Ltd Sand suction and outflow preventing construction method for seashore structure foundation ground

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089386A (en) * 2010-09-30 2011-05-06 Toa Harbor Works Co Ltd Sea-bed foundation improvement method and outer pipe for chemical injection
CN104594331A (en) * 2015-01-30 2015-05-06 湖北工业大学 Method for reinforcing road high-stacked culvert foundation

Also Published As

Publication number Publication date
JP4982632B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN105040595B (en) Main Pier of Bridges cushion cap foundation pit supporting construction on riverbed, gentle slope basement rock and construction method thereof
CN205134193U (en) Bridge owner mound cushion cap underground structure on gentle slope riverbed basement rock
JP2003020631A (en) Impervious structure and construction method for fill dam
CN101481911A (en) Construction method for special underground continuous wall
JP4982631B2 (en) Liquefaction countermeasure method under breakwater by underground wall construction
JP4982632B2 (en) Liquefaction countermeasure method under breakwater
CN105155421B (en) Complete embedding circular construction method in a kind of single pile Single column pier river course shallow water
Milanovic Prevention and remediation in karst engineering
JPH03281826A (en) Excavation method in cohesive soil ground
JP4066340B2 (en) Ground improvement method
KR101008012B1 (en) Ground improving method running parallel ground solidification and excavation replacement
JP2005146756A (en) Earth retaining impervious wall construction method and earth retaining impervious wall formed by it
JP4058551B2 (en) Seismic reinforcement method for existing structures
JP2784314B2 (en) How to set up an open caisson
CN108487273A (en) A kind of foundation in water construction method
JP5468052B2 (en) Gravity structure deepening method and gravity structure
Bauer Dewatering, hydraulic failure and subsequent analysis of a sheeted excavation
JP2007231641A (en) Collapse prevention construction method for dike
Gosden Binnie lecture 2020: 45 years of dam engineering, part 1
Bruce et al. Pile Wall Cuts Off Seepage
JPH1121872A (en) Method and device for improving weak layer ground of lower part of stone bond layer
Cashman et al. Groundwater Problems for Excavations in Soils
Essler Applications of jet grouting in civil engineering
Stark et al. Jet grouting and safety of Tuttle Creek Dam
Wen-wei Experiments, methods of applying grouted jetted precast concrete sheet piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

R150 Certificate of patent or registration of utility model

Ref document number: 4982632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250