JP2008095169A - Copper powder and its production method - Google Patents

Copper powder and its production method Download PDF

Info

Publication number
JP2008095169A
JP2008095169A JP2006281870A JP2006281870A JP2008095169A JP 2008095169 A JP2008095169 A JP 2008095169A JP 2006281870 A JP2006281870 A JP 2006281870A JP 2006281870 A JP2006281870 A JP 2006281870A JP 2008095169 A JP2008095169 A JP 2008095169A
Authority
JP
Japan
Prior art keywords
copper powder
copper
boron
powder
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281870A
Other languages
Japanese (ja)
Other versions
JP4888769B2 (en
Inventor
Koji Kajita
浩二 梶田
Kenji Tamaki
賢二 玉木
Masaru Suzuki
賢 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintobrator Ltd
Original Assignee
Sintobrator Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintobrator Ltd filed Critical Sintobrator Ltd
Priority to JP2006281870A priority Critical patent/JP4888769B2/en
Publication of JP2008095169A publication Critical patent/JP2008095169A/en
Application granted granted Critical
Publication of JP4888769B2 publication Critical patent/JP4888769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper powder having excellent electric conductivity, and to provide its production method. <P>SOLUTION: The copper powder contains 0.01 to 0.1 wt.% boron. In the method for producing copper powder, melted copper is admixed with boron in such a manner that its content reaches 0.01 to 0.1 wt.%, and thereafter, made into powder by an atomizing process. Further, using the copper powder obtained in this way, an electric circuit is formed on an electric circuit board by patterning. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性に優れた銅粉末およびその製造方法と、該銅粉末を用いて製造された電気回路基板の電気回路に関するものである。   The present invention relates to a copper powder having excellent electrical conductivity, a method for producing the same, and an electric circuit of an electric circuit board produced using the copper powder.

従来の、導電性に優れた銅粉末は、例えば、積層セラミックコンデンサの内部電極または外部電極の厚膜下地電極として、あるいは、AlN回路基板電気回路基板のスクリーン印刷により形成される電気回路に使用されている(特許文献1を参照)。
前記銅粉末は、良好な導電性が求められており、含有する元素構成が導電性に悪影響をおよぼさない元素である必要がある。更には、電気回路基板を製造する過程において導電性能を発揮する回路を形成するために、粒子形状は球形であることが望ましい。そのためには、球状化を阻害する酸化膜の形成を少なくする必要があり、金属粉末中の酸素濃度を低くする脱酸素効果がある元素を添加する必要がある。
Conventional copper powder having excellent conductivity is used, for example, as a thick film base electrode of an internal electrode or external electrode of a multilayer ceramic capacitor, or in an electric circuit formed by screen printing of an AlN circuit board electric circuit board. (See Patent Document 1).
The copper powder is required to have good conductivity, and it is necessary that the element composition contained is an element that does not adversely affect the conductivity. Furthermore, in order to form a circuit that exhibits conductive performance in the process of manufacturing an electric circuit board, the particle shape is preferably spherical. For this purpose, it is necessary to reduce the formation of an oxide film that inhibits spheroidization, and it is necessary to add an element having a deoxidation effect that lowers the oxygen concentration in the metal powder.

また、この種の銅粉末の製造方法としては、(1)銅溶融塩から還元剤により析出させる湿式還元法、(2)溶融した銅を、不活性ガスを使用しその圧力で破砕するガスアトマイズ法、(3)溶融した銅を、水を使用しその圧力で破砕する水アトマイズ法などが知られている。   In addition, as a method for producing this type of copper powder, (1) a wet reduction method in which a molten salt is precipitated from a copper molten salt, and (2) a gas atomization method in which molten copper is crushed using an inert gas at that pressure. (3) A water atomizing method is known in which molten copper is crushed by using water and its pressure.

前記(2)ガスアトマイズ法、(3)水アトマイズ法に代表されるアトマイズ法は、(1)湿式還元法と比較して生産性が大であり、広く利用されている。
アトマイズ法のひとつである(2)ガスアトマイズ法は、破砕媒体に不活性ガスを使用する方法であって、粉末中に含有する不純物が少なく、酸素濃度が極めて低いため酸化膜の生成が少なく、ほぼ球形の銅粉末を製造することができるという点で優れているが、製造できる粒子径に関し電気回路基板の回路形成をする際の最適の粒子径である粉末にするには、使用する窒素ガス等に代表される不活性ガス破砕力を大にする必要があり、当該不活性ガスを大量に消費するから、製造コスト高になるとなる問題点がある。
The atomization method represented by (2) gas atomization method and (3) water atomization method has a large productivity compared with (1) wet reduction method and is widely used.
(2) The gas atomization method, which is one of the atomization methods, uses an inert gas as a crushing medium, and contains little impurities in the powder, and the oxygen concentration is extremely low. Spherical copper powder is excellent in that it can be manufactured, but in order to make powder that is the optimal particle size when forming a circuit of an electric circuit board with respect to the particle size that can be manufactured, nitrogen gas to be used, etc. It is necessary to increase the inert gas crushing force represented by the above, and a large amount of the inert gas is consumed.

また、(3)水アトマイズ法は、溶融した金属をタンディッシュなどを介して定量落下させて形成された水膜で粉末化する方法であって、溶融した金属の破砕媒体として水を使用するために低コストであり、その水圧を高圧にするだけで容易に粉末を製造することができるが、銅が酸化されて粉末中に含有する酸素濃度が増加し、導電性が低下するという問題点がある。この問題点を解決するために、溶融した銅に燐を添加して脱酸素処理を行ない、アトマイズして得られた粉末を、さらに水素雰囲気中で還元処理して含有酸素濃度が少なく粒子形状が球形な銅粉末を得ることを可能とした報告が特許文献1(特開2004−169081号参照)により報告されている。しかしながら、添加する燐が、その添加量の増加に伴い導電率を低下させる元素である点について、「非鉄金属材料」17版(昭和57年11月15日/コロナ社発行)第1章:銅および銅合金の図1・2(銅の導電率に及ぼす不純物含有量の影響)により報告されていて、これを本出願の図8に示す。
特開2004−169081号公報
In addition, (3) the water atomization method is a method of pulverizing a molten metal by quantitatively dropping it through a tundish or the like, and using water as a molten metal crushing medium. However, it is easy to produce a powder simply by increasing the water pressure, but there is a problem that the concentration of oxygen contained in the powder increases due to the oxidation of copper and the conductivity decreases. is there. In order to solve this problem, phosphorus is added to molten copper, deoxygenation treatment is performed, and the powder obtained by atomization is further reduced in a hydrogen atmosphere to reduce the oxygen concentration and reduce the particle shape. A report that makes it possible to obtain a spherical copper powder is reported in Japanese Patent Application Laid-Open No. 2004-169081. However, about the point that the added phosphorus is an element that lowers the electrical conductivity with the increase of the added amount, “Nonferrous metal material” 17th edition (November 15, 1982 / issued by Corona) Chapter 1: Copper 1 and 2 for copper alloys (impact of impurity content on copper conductivity) and is shown in FIG. 8 of this application.
JP 2004-169081 A

本発明は、前記のような問題点を解決し、導電性に優れ、且つ安価な製造コストで容易に製造できる銅粉末およびその製造方法を提供することを目的としたものである。   An object of the present invention is to solve the above-mentioned problems, and to provide a copper powder that is excellent in conductivity and can be easily manufactured at a low manufacturing cost and a manufacturing method thereof.

上記課題を解決するためになされた本発明は、硼素を0.01〜0.1wt%含有することを特徴とする銅粉末である。
また、平均粒径が0.2〜100μmの範囲であることが好ましい。
また、溶融した銅に、含有量が0.01〜0.1wt%となるように硼素を添加後、アトマイズ法により粉末化したことを特徴とする銅粉末の製造方法である。
また、前記アトマイズ法は、水アトマイズ法であることことが好ましい。
更に、このようにして得られた銅粉末を用いて、基板上に回路をパターンニング形成し電気回路基板としたことを特徴とする電気回路である。
なお、本発明の銅粉末を用いて電気回路基板の回路を形成する方法には、当該銅粉末をブラスト装置により、高速噴射させて溶着形成する方法や、当該銅粉末をペースト状にして基板に回路パターン状に塗布した後、焼成する方法がある。
This invention made | formed in order to solve the said subject is a copper powder characterized by containing 0.01-0.1 wt% of boron.
Moreover, it is preferable that an average particle diameter is the range of 0.2-100 micrometers.
Moreover, after adding boron so that content may become 0.01-0.1 wt% to molten copper, it is pulverized by the atomizing method, It is the manufacturing method of the copper powder characterized by the above-mentioned.
The atomizing method is preferably a water atomizing method.
Furthermore, an electric circuit is characterized in that a circuit is formed by patterning on a substrate using the copper powder obtained as described above to form an electric circuit substrate.
In addition, the method for forming a circuit of an electric circuit board using the copper powder of the present invention includes a method in which the copper powder is sprayed at a high speed by a blasting device, or a method in which the copper powder is pasted into a substrate. There is a method of baking after applying in a circuit pattern.

前記のように、本発明は、溶融した銅に硼素を適量添加するようにしたことにより導電性に優れ、且つ、硼素の脱酸素効果による前記銅合金中の酸素濃度の低下により球状化を阻害する酸化膜の生成を少なくし、アトマイズ法(好ましくは、水アトマイズ法)により、球状化率を高くした銅粉末を得ることができる。
以上の製造方法で製造された銅粉末を使用して製造される電気回路は導電性に優れ消費電力の削減を図ることが可能となる。
As described above, the present invention has excellent conductivity by adding an appropriate amount of boron to molten copper, and inhibits spheroidization by reducing the oxygen concentration in the copper alloy due to the deoxygenation effect of boron. Thus, a copper powder having a high spheroidization rate can be obtained by an atomizing method (preferably a water atomizing method).
An electric circuit manufactured using the copper powder manufactured by the above manufacturing method is excellent in electrical conductivity and can reduce power consumption.

以下に、本発明の好ましい形態を示す。
本発明の目的は、導電性に優れた銅粉末の製造工程において、銅が有する導電性の低下(体積抵抗率の上昇)を最小限にするとともに、含有する酸素濃度を少なくして酸化膜の生成を少なくし、粉末粒子の球状粒子率を向上(球状化)させることにあって、該球状粒子率の向上は、当該銅粉末を用いて製造した成形体の導電性能を発揮させるためのもので、粒子間に形成される隙間を最小限にして高充填率の成形体を得るためのものである。
本発明者らは、前記の目的である導電性および粉末粒子の球状粒子率の向上の双方を兼ね備える銅粉末の製造に用いる脱酸素効果がある添加元素として、硼素(B:ボロン)が最も優れていることを突き止めた。
Below, the preferable form of this invention is shown.
The object of the present invention is to minimize the decrease in conductivity (increase in volume resistivity) of copper in the production process of copper powder having excellent conductivity, and reduce the concentration of oxygen contained in the oxide film. By reducing the generation and improving the spherical particle ratio (spheroidization) of the powder particles, the improvement of the spherical particle ratio is for exerting the conductive performance of the molded body produced using the copper powder. Thus, the gap formed between the particles is minimized to obtain a molded body having a high filling rate.
The inventors of the present invention have the most excellent boron (B: boron) as an additive element having a deoxygenating effect used in the production of copper powder having both the above-mentioned conductivity and the improvement of the spherical particle ratio of the powder particles. I found out.

図1に、溶融金属の脱酸素剤として使用される種々の添加元素を溶融銅に添加して鋳造材を作製した場合の脱酸素元素の濃度と酸素濃度の関係を示す。このグラフから、硼素ならびに燐に優れた脱酸素効果が得られることが確認できる。
次に、図2に、硼素ならびに燐をそれぞれ銅に添加して鋳造材を作製した場合の脱酸素元素の濃度と体積抵抗率の関係を示す。燐は添加量に比例して体積抵抗率を上昇させ導電性を低下させたが、硼素は添加量を増加させても体積抵抗率は殆ど変わらず、その結果、導電性も変わらないことが判明し、硼素は燐と比較しても脱酸素剤として使用する容易さ、安定性に優れていると判断できる。
FIG. 1 shows the relationship between the oxygen concentration and the concentration of deoxygenated elements when a cast material is produced by adding various additive elements used as a deoxidizer for molten metal to molten copper. From this graph, it can be confirmed that an excellent deoxygenation effect is obtained for boron and phosphorus.
Next, FIG. 2 shows the relationship between the concentration of deoxygenated elements and the volume resistivity when a cast material is prepared by adding boron and phosphorus to copper. Phosphorus increased the volume resistivity in proportion to the amount added and lowered the conductivity. However, boron increased the amount added and the volume resistivity hardly changed, and as a result, it turned out that the conductivity did not change. However, it can be judged that boron is excellent in ease and stability of being used as an oxygen scavenger even when compared with phosphorus.

硼素の含有範囲を0.01〜0.1wt%としたのは、0.01wt%未満では、脱酸素効果、ならびに粉末形状の球状化が得られないためであり、0.1wt%を超えると過剰添加となって製造コスト高となるからである。   The reason why the boron content range is 0.01 to 0.1 wt% is that if it is less than 0.01 wt%, the deoxidation effect and the spheroidization of the powder shape cannot be obtained. This is because excessive addition increases the manufacturing cost.

また、銅粉末の平均粒径は0.2〜100μmの範囲が好ましい。アトマイズ法で製造できる最小粒径が0.2μmであり、100μm以上では粉末成形時に粒子間の隙間が増加し、高体積率の成形体が得られ難くなるからである。特に、0.2〜20μmの範囲が好ましい。   The average particle size of the copper powder is preferably in the range of 0.2 to 100 μm. This is because the minimum particle size that can be produced by the atomizing method is 0.2 μm, and if it is 100 μm or more, the gaps between the particles are increased during powder molding, and it becomes difficult to obtain a high volume ratio molded product. In particular, the range of 0.2 to 20 μm is preferable.

以下、図3に示す水アトマイズ装置により、本発明の銅粉末を製造する方法を説明する。
図3において、1は溶解坩堝、2は誘導加熱コイル、3は溶湯ストッパー、4は溶融銅、5はオリフィス、6はアトマイズノズル、7はアトマイズ水膜、8は水である。
坩堝1内で銅地金を融点以上に加熱して溶融する。次いで、本発明範囲に成るよう秤量した硼素を溶融した銅4に添加して脱酸素処理を行う。この時に添加する硼素は、硼素単体、若しくは銅、硼素の合金のどちらであってもよい。次いで、溶湯ストッパー3を解除し、溶融した銅を坩堝下部に設けた溶湯オリフィス5より落下させ、更に下部に設置したアトマイズノズル7より噴射される水膜にて溶融した銅を急冷凝固させることで、酸素濃度が低く、粒子形状が球形な銅粉末を得ることができる。
Hereinafter, a method for producing the copper powder of the present invention using the water atomizer shown in FIG. 3 will be described.
In FIG. 3, 1 is a melting crucible, 2 is an induction heating coil, 3 is a molten metal stopper, 4 is molten copper, 5 is an orifice, 6 is an atomizing nozzle, 7 is an atomized water film, and 8 is water.
In the crucible 1, the copper metal is heated to the melting point or higher and melted. Next, boron that has been weighed so as to be within the scope of the present invention is added to the molten copper 4 to perform deoxidation treatment. The boron added at this time may be either boron alone or an alloy of copper and boron. Next, the molten metal stopper 3 is released, the molten copper is dropped from the molten metal orifice 5 provided in the lower part of the crucible, and the molten copper is rapidly cooled and solidified by a water film sprayed from the atomizing nozzle 7 installed in the lower part. A copper powder having a low oxygen concentration and a spherical particle shape can be obtained.

図3に示す水アトマイズ装置を使用し、脱酸素剤として添加する硼素ならびに燐の配合比をそれぞれ調整し、銅粉末を作製した。
この時の水アトマイズ装置の粉末作製条件は、溶融銅の温度1400℃、オリフィス口径φ4mm、アトマイズ水膜の水圧80MPa、水量80リットル/minとした。
Using the water atomizer shown in FIG. 3, the mixing ratios of boron and phosphorus added as oxygen scavengers were adjusted to prepare copper powder.
The powder production conditions of the water atomizer at this time were as follows: molten copper temperature 1400 ° C., orifice diameter φ4 mm, atomized water film water pressure 80 MPa, water volume 80 liters / min.

燐ならびに硼素の配合比を調整して作製した夫々の銅粉末を、気流分級機(日清エンジニアリング製/ターボクラッシファイアTC25型)を使用して、粒度分布がD50=5μm、(D10=2μm、D90=9μm)となる粉末を採取し、硼素ならびに燐の元素濃度に対する酸素濃度を測定した結果を図4に示す。なお、酸素濃度及び各元素濃度は、誘導結合プラズマ発光分光分析法にて測定した。   Each copper powder prepared by adjusting the mixing ratio of phosphorus and boron was measured using a gas classifier (manufactured by Nisshin Engineering / Turbo Classifier TC25) with a particle size distribution of D50 = 5 μm, (D10 = 2 μm, D90 = 9 μm) was collected, and the results of measuring the oxygen concentration relative to the elemental concentrations of boron and phosphorus are shown in FIG. The oxygen concentration and each element concentration were measured by inductively coupled plasma emission spectroscopy.

図4の測定結果は、測定物が粉末状であるため表面積が大きく、酸素濃度の絶対値は鋳造材の時の結果より大きくなるが、硼素、燐の濃度の増加に伴い、粉末中の酸素濃度が低下する傾向が見られた。   The measurement result of FIG. 4 shows that the measurement object is powdery and has a large surface area, and the absolute value of the oxygen concentration is larger than that of the cast material. However, as the concentration of boron and phosphorus increases, the oxygen in the powder There was a tendency for the concentration to decrease.

上述により、硼素ならびに燐を添加して作製した銅粉末を500℃の熱間成形して焼結材を作製し、その焼結材を使用してJIS−C2525(金属抵抗材料の導体抵抗及び体積抵抗率試験方法)に基づく四端子法による体積抵抗率を測定して導電性の評価を行い、その結果を図5に示す。   As described above, copper powder prepared by adding boron and phosphorus is hot-formed at 500 ° C. to produce a sintered material, and the sintered material is used to make JIS-C2525 (conductor resistance and volume of metal resistance material). The volume resistivity by the four-terminal method based on the resistivity test method) is measured to evaluate the conductivity, and the result is shown in FIG.

図5に示すように、燐を添加した銅粉末の焼結体は、燐の濃度の増加に伴い体積抵抗率が増加して導電性が悪化する傾向にあるが、硼素を添加した銅粉末の焼結体は、硼素の濃度が増加しても体積抵抗率が殆ど変わらず、導電性に優れた状態が維持されることが確認できた。   As shown in FIG. 5, the sintered body of copper powder to which phosphorus is added tends to deteriorate in conductivity due to an increase in volume resistivity as the concentration of phosphorus increases. It was confirmed that the sintered body was maintained in a state of excellent conductivity with almost no change in volume resistivity even when the boron concentration was increased.

表1(実施例1〜4、比較例1〜6)に、添加元素が硼素ならびに燐でありその流度分布D50=5μm、(D10=2μm、D90=9μm)とした銅粉末の添加元素の添加濃度とその酸素濃度、粉末粒子の球状粒子率、およびその銅粉末を焼結材とした時の体積抵抗率の測定結果を示す。   Table 1 (Examples 1 to 4 and Comparative Examples 1 to 6) shows the additive elements of copper powder with additive elements of boron and phosphorus and a flow rate distribution D50 = 5 μm (D10 = 2 μm, D90 = 9 μm). The measurement results of the additive concentration and the oxygen concentration, the spherical particle ratio of the powder particles, and the volume resistivity when the copper powder is used as a sintered material are shown.

比較例1に示す硼素の添加濃度が少ない0.006wt%では、粉末酸素濃度が0.232wt%であって、他の実施例と比較して高いために体積抵抗率が3.5×10−8Ω・mとなり高くなって、導電性に適さないことが判り、また、球状粒子率(54%)も低いことが判る。 Addition concentration of boron shown in Comparative Example 1, a small 0.006 wt%, the powder of oxygen concentration be 0.232wt%, the volume resistivity of the order higher than the other examples is 3.5 × 10 - It becomes 8 Ω · m, which is high, indicating that it is not suitable for conductivity, and that the spherical particle ratio (54%) is also low.

実施例1に示す硼素の添加濃度が0.015wt%では、体積抵抗率が2.5×10−8Ω・mとなり、前記比較例1より低下し、導電性が良好な銅粉末を得ることができ、球状粒子率が81%となって粉末粒子の球状化効果もあることが確認できた。 When the additive concentration of boron shown in Example 1 is 0.015 wt%, the volume resistivity is 2.5 × 10 −8 Ω · m, which is lower than that of Comparative Example 1 and a copper powder having good conductivity is obtained. It was confirmed that the spherical particle ratio was 81% and there was an effect of spheroidizing the powder particles.

比較例2に示す硼素の添加濃度が多い0.109wt%では、粉末酸素濃度が0.048wt%であって、他の実施例、比較例と比較して最も低く、球状粒子率が91%となって粉末粒子の球状化効果が最もあり導電性も良好な範囲となる銅粉末を得ることができた。前記比較例2の球状粒子率、粉末酸素濃度、体積抵抗率は、硼素の添加濃度が0.097wt%である実施例4の球状粒子率、粉末酸素濃度、体積抵抗率と比較して有意な差がないことから、前記比較例2は、硼素の添加量が過剰傾向にあり、製造コスト高とする要因となる。
以上により、硼素の添加濃度は、0.01〜0.1wt%の範囲が望ましい。
In the case of 0.109 wt% where the boron addition concentration shown in Comparative Example 2 is large, the powder oxygen concentration is 0.048 wt%, which is the lowest compared with other examples and comparative examples, and the spherical particle ratio is 91%. Thus, a copper powder having the best spheroidizing effect of the powder particles and having a good conductivity range could be obtained. The spherical particle ratio, powder oxygen concentration, and volume resistivity of Comparative Example 2 are significant compared to the spherical particle ratio, powder oxygen concentration, and volume resistivity of Example 4 in which the boron addition concentration is 0.097 wt%. Since there is no difference, the amount of boron added in Comparative Example 2 tends to be excessive, which causes a high manufacturing cost.
As described above, the boron concentration is preferably in the range of 0.01 to 0.1 wt%.

一方、比較例3〜6に示すように、添加元素が燐の場合、添加濃度を増加させるに伴い粉末酸素濃度が低下して球状粒子率が増加するが、体積抵抗率も増加する傾向にあり、且つ、実施例1〜4の体積抵抗率2.5〜3.0×10−8Ω・mより大きく、導電性に優れた銅粉末の製造に使用する脱酸素剤としては適していないことが判る。 On the other hand, as shown in Comparative Examples 3 to 6, when the additive element is phosphorus, the powder oxygen concentration decreases and the spherical particle ratio increases as the additive concentration increases, but the volume resistivity also tends to increase. In addition, the volume resistivity of Examples 1 to 4 is larger than 2.5 to 3.0 × 10 −8 Ω · m, and is not suitable as an oxygen scavenger used in the production of copper powder having excellent conductivity. I understand.

なお、粉末粒子の球状粒子率については、下記の方法にて測定したものである。
[球状粒子率測定方法]
A.所定粒度に分級された粉末を、走査電子顕微鏡(日立製作所製S−3000N)を使用し写真撮影する。
B.Aで撮影した画像より、n=300個以上の粒子形状を、図6に示す判定基準に基づいて、球状粒子と不定形状粒子の個数を測定する。
C.B.で測定した各粒子数から[球状粒子数/(球状粒子数+不定形状粒子数)]×100を算出して球状粒子率とする。
The spherical particle ratio of the powder particles is measured by the following method.
[Spherical particle ratio measurement method]
A. The powder classified to a predetermined particle size is photographed using a scanning electron microscope (S-3000N manufactured by Hitachi, Ltd.).
B. From the image taken in A, the number of spherical particles and irregularly shaped particles is measured based on the determination criteria shown in FIG.
C. B. [Spherical particle number / (spherical particle number + indefinite shape particle number)] × 100 is calculated from the number of particles measured in step 1 to obtain the spherical particle ratio.

次に、表2(実施例5〜8、比較例7〜10)に、前記表1の実施例1〜4、比較例1〜6と同様に、図3に示した水アトマイズ装置を使用し、添加元素が硼素ならびに燐であり、その粒度分布をD50=1.5μm、(D10=0.8μm、D90=3.2μm)とした夫々の銅粉末を作製し採取して、添加元素の添加濃度とその酸素濃度、粉末粒子の球状粒子率、およびその銅粉末を焼結材とした時の体積抵抗率の測定結果を示す。   Next, the water atomizer shown in FIG. 3 is used for Table 2 (Examples 5-8, Comparative Examples 7-10) similarly to Examples 1-4 and Comparative Examples 1-6 of the said Table 1. The additive elements are boron and phosphorus, and the respective copper powders having a particle size distribution of D50 = 1.5 μm (D10 = 0.8 μm, D90 = 3.2 μm) are prepared and collected, and the additive elements are added. The measurement results of concentration and oxygen concentration, spherical particle ratio of powder particles, and volume resistivity when copper powder is used as a sintered material are shown.

なお、本実施例5〜8、比較例7〜10に使用する銅粉末の粒度分布を前記表1の実施例1〜4、比較例1〜6より微細な粉末にするために、水アトマイズ装置の粉末作製条件を、溶融銅の温度1400℃は同様とし、オリフィス口径φ3mm、アトマイズ水膜の水圧140MPa、水量110リットル/minに変更し、水の破砕圧力を強めて作製した。   In addition, in order to make the particle size distribution of the copper powder used in Examples 5 to 8 and Comparative Examples 7 to 10 finer than Examples 1 to 4 and Comparative Examples 1 to 6 in Table 1, a water atomizer is used. The powder was prepared under the same conditions as the molten copper temperature of 1400 ° C., the orifice diameter φ3 mm, the water pressure of the atomized water film 140 MPa, and the amount of water 110 liters / min.

粒度分布をD50=1.5μm、(D10=0.8μm、D90=3.2μm)とした表2に示す実施例5〜8、比較例7〜10において、添加元素である硼素ならびに燐とも、その添加濃度の増加に伴い粉末酸素濃度が低下傾向にあるが、硼素は実施例5〜8に示すように、体積抵抗率2.7〜3.0×10−8Ω・mの微少な増加はあったものの導電性能の低下に影響を及ぼすに至る変化が見られなかったことから、硼素は粒度分布がD50=1.5μmにおいても導電性が優れた銅粉末の脱酸素剤として好適であることが確認できた。一方、燐は比較例9、10に示すように、体積抵抗率が高いこと、およびその添加量に伴う体積抵抗率の変化(4.4〜6.6×10−8Ω・m)も大きくあって、導電性の低下、および添加量に伴い悪影響を及ぼすことが示唆された。 In Examples 5 to 8 and Comparative Examples 7 to 10 shown in Table 2 where the particle size distribution is D50 = 1.5 μm (D10 = 0.8 μm, D90 = 3.2 μm), both boron and phosphorus which are additive elements, The oxygen concentration of the powder tends to decrease with the increase of the added concentration, but boron has a slight increase in volume resistivity of 2.7 to 3.0 × 10 −8 Ω · m as shown in Examples 5 to 8. However, boron was suitable as an oxygen scavenger for copper powder with excellent conductivity even when the particle size distribution was D50 = 1.5 μm because no change was observed that had an effect on the deterioration of the conductive performance. I was able to confirm. On the other hand, as shown in Comparative Examples 9 and 10, phosphorus has a high volume resistivity and a large change in volume resistivity (4.4 to 6.6 × 10 −8 Ω · m) with the addition amount thereof. Thus, it has been suggested that the conductivity is adversely affected and the adverse effect is accompanied by the addition amount.

次に、表3(実施例9〜12、比較例11〜13)に、前記と同様に、図3に示した水アトマイズ装置を使用し、添加元素が硼素ならびに燐でありその粒度分布をD50=20μm、(D10=12μm、D90=40μm)とした夫々の銅粉末を作製し採取して、添加元素の添加濃度とその酸素濃度、粉末粒子の球状粒子率、およびその銅粉末を焼結材とした時の体積抵抗率の測定結果を示す。   Next, in Table 3 (Examples 9 to 12 and Comparative Examples 11 to 13), similarly to the above, the water atomizer shown in FIG. 3 was used, and the additive elements were boron and phosphorus, and the particle size distribution was D50. = 20 μm, (D10 = 12 μm, D90 = 40 μm), each copper powder was prepared and collected, and the additive element concentration and oxygen concentration, the spherical particle ratio of the powder particles, and the copper powder were sintered. The measurement result of volume resistivity is shown.

なお、本実施例9〜12、比較例11〜13に使用する銅粉末の粒度分布を前記の実施例、比較例より粗い粉末を得るために、水アトマイズ装置による粉末作製条件は、溶融銅の温度1400℃は同様とし、オリフィス口径φ4mm、アトマイズ水膜の水圧40MPa、水量60リットル/minに変更し水の破砕力を弱めて作製した。   In addition, in order to obtain a coarser powder particle size distribution of the copper powders used in Examples 9 to 12 and Comparative Examples 11 to 13 than in the above Examples and Comparative Examples, the powder preparation conditions by the water atomizer were: The temperature was the same as 1400 ° C., and the orifice diameter was changed to 4 mm, the water pressure of the atomized water film was changed to 40 MPa, and the amount of water was 60 liters / min.

粒度分布をD50=20μm、(D10=12μm、D90=40μm)とした表3に示す本実施例9〜12、比較例11において、添加元素である硼素の添加濃度の増加に伴い粉末酸素濃度が低下傾向にあり、本実施例9〜12の体積抵抗率が2.3〜2.8×10−8Ω・mの微少な増加はあったものの、導電性の変化が見られなかったことから、硼素は粒度分布がD50=20μmにおいても導電性が優れた銅粉末の脱酸素剤として好適であることが確認できた。なお、比較例12、13に示す添加元素が燐である銅粉末は、前記と同様に、添加量と粉末酸素濃度に関して硼素と同様の傾向を示すが、体積抵抗率は3.4〜4.1×10−8Ω・mであって、硼素を添加した銅粉末と比較して高い体積抵抗率を示し導電性が劣ることが示唆された。 In Examples 9 to 12 and Comparative Example 11 shown in Table 3 where the particle size distribution is D50 = 20 μm (D10 = 12 μm, D90 = 40 μm), the powder oxygen concentration increases with an increase in the additive concentration of boron as an additive element. The volume resistivity of Examples 9 to 12 was slightly increased by 2.3 to 2.8 × 10 −8 Ω · m, but no change in conductivity was observed. Boron was confirmed to be suitable as an oxygen scavenger for copper powder having excellent conductivity even when the particle size distribution is D50 = 20 μm. In addition, the copper powder whose addition element shown to Comparative Examples 12 and 13 is phosphorus shows the same tendency as boron regarding addition amount and powder oxygen concentration similarly to the above, but volume resistivity is 3.4-4. It was 1 × 10 −8 Ω · m, indicating a higher volume resistivity than the copper powder added with boron, suggesting that the conductivity is inferior.

本発明は、以上の説明から明らかなように、導電性に優れた銅粉末の製造において、脱酸素剤として添加する元素を硼素とし、その製造装置を水アトマイズ法にすることより、製造コストを安価にし、且つその粒子の球状粒子率の向上を容易にした球状の粉末を製造することができるから、当該銅粉末を用いて電気回路基板の回路を形成した場合に、その成形が均一にできるもので、電気特性に優れた電気回路を形成することができるものである。   As is apparent from the above description, in the production of copper powder excellent in conductivity, the present invention uses boron as the element to be added as an oxygen scavenger, and uses a water atomizing method for the production apparatus, thereby reducing the production cost. Since it is possible to produce a spherical powder that is inexpensive and facilitates the improvement of the spherical particle ratio of the particles, when the circuit of the electric circuit board is formed using the copper powder, the molding can be made uniform. Therefore, an electric circuit having excellent electric characteristics can be formed.

各脱酸元素を添加して銅の鋳造材を作製した時の鋳造材中に含まれる各添加元素の濃度と酸素濃度の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of each additive element contained in a casting material, and oxygen concentration when adding each deoxidation element and producing the copper casting material. 燐と硼素を添加して銅の鋳造材を作製した時の、鋳造材に含まれる各元素濃度と体積抵抗率の関係を示すグラフである。It is a graph which shows the relationship between each element concentration contained in a cast material, and volume resistivity when producing a cast material of copper by adding phosphorus and boron. 本発明品を作製するための水アトマイズ装置を示す概略図である。It is the schematic which shows the water atomizer for producing this invention product. 図3のアトマイズ装置により作製した銅粉末5μm分級品に於ける、燐と硼素の濃度と酸素濃度の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of phosphorus and boron, and oxygen concentration in the copper powder 5 micrometer classification | category produced with the atomizing apparatus of FIG. 図3のアトマイズ装置により作製した銅粉末5μm分級品の焼結体に於ける燐と硼素の濃度と体積抵抗率の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of phosphorus and a boron, and volume resistivity in the sintered compact of the copper powder 5 micrometer classification | category produced with the atomizing apparatus of FIG. 球状粒子率の判定基準を示す説明図である。It is explanatory drawing which shows the criterion of a spherical particle ratio. 本発明で得た硼素を含有した銅粉末の粒子形状を示すSEM写真である。It is a SEM photograph which shows the particle shape of the copper powder containing the boron obtained by this invention. 銅に各種元素を添加して銅合金を作製し、その各種元素の含有量と導電率の関係を示すグラフである。It is a graph which shows the relationship between content of the various elements, and electrical conductivity by adding various elements to copper and producing a copper alloy.

符号の説明Explanation of symbols

1 溶解坩堝
2 誘導加熱コイル
3 溶湯ストッパー
4 溶融銅
5 オリフィス
6 アトマイズノズル
7 アトマイズ水膜
8 水
1 Melting crucible 2 Induction heating coil 3 Molten metal stopper 4 Molten copper 5 Orifice 6 Atomizing nozzle 7 Atomized water film 8 Water

Claims (5)

硼素を0.01〜0.1wt%含有することを特徴とする銅粉末。   A copper powder containing 0.01 to 0.1 wt% of boron. 平均粒径が0.2〜100μmの範囲であることを特徴とする請求項1記載の銅粉末。   2. The copper powder according to claim 1, wherein the average particle size is in the range of 0.2 to 100 [mu] m. 溶融した銅に、含有量が0.01〜0.1wt%となるように硼素を添加後、アトマイズ法により粉末化したことを特徴とする銅粉末の製造方法。   A method for producing a copper powder, characterized in that boron is added to molten copper so as to have a content of 0.01 to 0.1 wt% and then pulverized by an atomizing method. アトマイズ法が、水アトマイズ法であることを特徴とする請求項3記載の銅粉末の製造方法。   The method for producing a copper powder according to claim 3, wherein the atomizing method is a water atomizing method. 前記請求項1または2に記載の銅粉末を用いて、基板上に回路をパターンニング形成し電気回路基板としたことを特徴とする電気回路。   An electric circuit comprising a circuit pattern formed on a substrate using the copper powder according to claim 1 or 2 to form an electric circuit substrate.
JP2006281870A 2006-10-16 2006-10-16 Copper powder and method for producing the same Active JP4888769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281870A JP4888769B2 (en) 2006-10-16 2006-10-16 Copper powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281870A JP4888769B2 (en) 2006-10-16 2006-10-16 Copper powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008095169A true JP2008095169A (en) 2008-04-24
JP4888769B2 JP4888769B2 (en) 2012-02-29

Family

ID=39378332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281870A Active JP4888769B2 (en) 2006-10-16 2006-10-16 Copper powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4888769B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174144A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Fine powder of copper and method for producing the same
JP2013258128A (en) * 2012-05-18 2013-12-26 Tohoku Univ Conductive paste
WO2018123809A1 (en) * 2016-12-28 2018-07-05 Dowaエレクトロニクス株式会社 Copper powder and method for manufacturing same
JP2018109225A (en) * 2016-12-28 2018-07-12 Dowaエレクトロニクス株式会社 Copper powder and method for producing same
US20180243831A1 (en) * 2015-09-03 2018-08-30 Dowa Electronics Materials Co., Ltd. Phosphorus-containing copper powder and method for producing the same
WO2019168166A1 (en) * 2018-03-01 2019-09-06 三菱マテリアル株式会社 Copper alloy powder having excellent laser absorptivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11667991B2 (en) 2017-06-21 2023-06-06 Fukuda Metal Foil & Powder Co., Ltd. Lamination shaping copper powder and laminated and shaped product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131341A (en) * 1990-09-21 1992-05-06 Fukuda Metal Foil & Powder Co Ltd Cu-base alloy powder for laser build-up welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131341A (en) * 1990-09-21 1992-05-06 Fukuda Metal Foil & Powder Co Ltd Cu-base alloy powder for laser build-up welding

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174144A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Fine powder of copper and method for producing the same
JP2013258128A (en) * 2012-05-18 2013-12-26 Tohoku Univ Conductive paste
US20180243831A1 (en) * 2015-09-03 2018-08-30 Dowa Electronics Materials Co., Ltd. Phosphorus-containing copper powder and method for producing the same
US10773311B2 (en) * 2015-09-03 2020-09-15 Dowa Electronics Materials Co., Ltd. Phosphorus-containing copper powder and method for producing the same
JP7039126B2 (en) 2016-12-28 2022-03-22 Dowaエレクトロニクス株式会社 Copper powder and its manufacturing method
WO2018123809A1 (en) * 2016-12-28 2018-07-05 Dowaエレクトロニクス株式会社 Copper powder and method for manufacturing same
JP2018109225A (en) * 2016-12-28 2018-07-12 Dowaエレクトロニクス株式会社 Copper powder and method for producing same
CN110114174A (en) * 2016-12-28 2019-08-09 同和电子科技有限公司 Copper powder and its manufacturing method
KR20190103237A (en) * 2016-12-28 2019-09-04 도와 일렉트로닉스 가부시키가이샤 Copper powder and its manufacturing method
US11692241B2 (en) * 2016-12-28 2023-07-04 Dowa Electronics Materials Co., Ltd. Copper powder and method for producing same
TWI778997B (en) * 2016-12-28 2022-10-01 日商同和電子科技有限公司 Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
KR102397204B1 (en) * 2016-12-28 2022-05-11 도와 일렉트로닉스 가부시키가이샤 Copper powder and its manufacturing method
JP2019151872A (en) * 2018-03-01 2019-09-12 三菱マテリアル株式会社 Copper alloy powder excellent in laser absorptivity
JP7015976B2 (en) 2018-03-01 2022-02-04 三菱マテリアル株式会社 Copper alloy powder for metal laminate modeling with excellent laser absorption
EP3760342A4 (en) * 2018-03-01 2021-11-24 Mitsubishi Materials Corporation Copper alloy powder having excellent laser absorptivity
EP3760342A1 (en) * 2018-03-01 2021-01-06 Mitsubishi Materials Corporation Copper alloy powder having excellent laser absorptivity
US11351601B2 (en) 2018-03-01 2022-06-07 Mitsubishi Materials Corporation Copper alloy powder having excellent laser absorptivity
CN111699061A (en) * 2018-03-01 2020-09-22 三菱综合材料株式会社 Copper alloy powder having excellent laser absorptivity
WO2019168166A1 (en) * 2018-03-01 2019-09-06 三菱マテリアル株式会社 Copper alloy powder having excellent laser absorptivity

Also Published As

Publication number Publication date
JP4888769B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4888769B2 (en) Copper powder and method for producing the same
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
JP5826435B1 (en) Copper powder
JP3984534B2 (en) Copper powder for conductive paste and method for producing the same
JP4613362B2 (en) Metal powder for conductive paste and conductive paste
JP5181434B2 (en) Fine copper powder and method for producing the same
JP5156328B2 (en) Copper alloy powder for conductive material paste
JP2010013726A (en) Copper powder for electroconductive paste, and electroconductive paste
WO2010050352A1 (en) Electrode material for vacuum circuit breaker and method for producing same
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
KR102430857B1 (en) Silver powder and manufacturing method thereof
JP2011006740A (en) Copper powder for conductive paste, and conductive paste
JP5576199B2 (en) Copper powder for conductive paste and conductive paste
KR20110041432A (en) Copper powder for conductive paste, and conductive paste
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
JP2019183268A (en) Silver powder and manufacturing method therefor
JP2005008930A (en) Metallic powder, and apparatus and method for manufacturing metallic powder
JP2008106334A (en) Flat metal powdery mixture having low coercive force and high permeability, and electromagnetic interference suppressor containing the flat metal powdery mixture
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
JP2011006739A (en) Copper powder for conductive paste, and conductive paste
TWI755565B (en) Silver powder and method for producing same
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP5969118B2 (en) Copper powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4888769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250