JP2008094064A - Heat-resistant acrylic resin laminate used for forming transparent conductive film - Google Patents

Heat-resistant acrylic resin laminate used for forming transparent conductive film Download PDF

Info

Publication number
JP2008094064A
JP2008094064A JP2006281873A JP2006281873A JP2008094064A JP 2008094064 A JP2008094064 A JP 2008094064A JP 2006281873 A JP2006281873 A JP 2006281873A JP 2006281873 A JP2006281873 A JP 2006281873A JP 2008094064 A JP2008094064 A JP 2008094064A
Authority
JP
Japan
Prior art keywords
heat
acrylic resin
transparent conductive
resistant acrylic
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006281873A
Other languages
Japanese (ja)
Other versions
JP2008094064A5 (en
Inventor
Minoru Yamamoto
実 山本
Jun Yonezawa
順 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006281873A priority Critical patent/JP2008094064A/en
Publication of JP2008094064A publication Critical patent/JP2008094064A/en
Publication of JP2008094064A5 publication Critical patent/JP2008094064A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive laminate constituted by forming a transparent conductive film including tin-added indium oxide on a heat-resistant acrylic resin laminate having an inorganic barrier layer improved in surface hardness, optical characteristics and heat resistance by improving surface hardness by providing a hard coat layer and an inorganic barrier layer on a heat-resistant acrylic transparent resin substrate reduced in the change in double refraction caused by external force, that is, reduced in optical elastic modulus, that is, a transparent conductive laminate capable of used in a transparent electrode for display superior in optical characteristics, the stability of a resistance value and heat-resistance stability. <P>SOLUTION: The transparent conductive film is formed on the heat-resistant acrylic resin laminate, which is obtained by providing the hard coat layer and the inorganic barrier layer on a heat-resistant acrylic resin transparent substrate obtained by copolymerizing 40-90 mass% of a methyl methacrylate unit, 5-20 mass% of a maleic acid anhydride unit and 5-40 mass% of an aromatic vinyl compound to obtain the transparent conductive laminate superior in optical characteristics, the stability of the resistance value and heat-resistant stability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明の耐熱性アクリル系樹脂積層体は透明導電膜を形成するのに適しており、光学特性、抵抗値の安定性、耐熱安定性に優れた透明導電性積層体は、太陽電池の光電変換素子の窓電極、電磁シールドの電磁遮蔽膜、透明電波吸収体、透明タッチパネル等の入力装置の電極、液晶表示体,EL(エレクトロルミネセンス)発光体,EC(エレクトロクロミック)表示体等の透明電極などの基板を提供することにある。   The heat-resistant acrylic resin laminate of the present invention is suitable for forming a transparent conductive film, and the transparent conductive laminate excellent in optical characteristics, resistance value stability, and heat-resistant stability is used for photoelectric conversion of solar cells. Transparent electrodes such as element window electrodes, electromagnetic shielding films for electromagnetic shields, transparent electromagnetic wave absorbers, electrodes for input devices such as transparent touch panels, liquid crystal displays, EL (electroluminescence) emitters, EC (electrochromic) displays, etc. It is to provide a substrate such as.

アクリル系樹脂は、透明樹脂として他の透明樹脂よりその高い光透過率、耐候性、高い剛性に特徴があり、レンズ、自動車部品、照明部品、各種ディスプレイなどに使用され、中でも車両用部品、照明器具、建築用材料、看板、絵画や、表示装置の表示窓や銘板等広い用途で用いられている。携帯電話の表示窓は、内部の液晶表示を見やすくすると同時に、外からの衝撃や圧力から、内部の液晶を守り、平滑性が必要なことから、アクリル樹脂シートが広く用いられている。製造加工時には耐擦傷性のための表面硬度の硬いもの、さらに、アクリル樹脂は吸水性のためガスバリア性も望まれる。   As a transparent resin, acrylic resins are characterized by their high light transmittance, weather resistance, and high rigidity compared to other transparent resins, and are used in lenses, automotive parts, lighting parts, various displays, etc. It is used in a wide range of applications such as appliances, building materials, signboards, paintings, display windows and nameplates of display devices. For the display window of a mobile phone, an acrylic resin sheet is widely used because it makes the internal liquid crystal display easy to see and at the same time protects the internal liquid crystal from external impacts and pressures and requires smoothness. When manufacturing and processing, those having a high surface hardness for scratch resistance, and acrylic resins are also required to have gas barrier properties because they absorb water.

また、透明導電膜は可視光透過性と電気伝導性を兼ね備えた膜として広く知られており、その代表的なものとして、スズ添加酸化インジウム膜(以下「ITO膜」という)が挙げられる。ITO膜を透明基材上に積層した積層体は、電極、通電による発熱体、電磁波の遮蔽材や透光体として広く用いられている。透光体の用途としては、自動車、航空機や、建物の窓、スクリーン、モニター等の電磁波シールド板、液晶表示基板等がある。透光体の形状としては、使用する用途に応じた平面形状や曲面形状等がある。透明基材上にITO膜を形成する手段としては、スパッタリング法、真空蒸着法、イオンプレーティング法等が知られている。このような透光体の基材としては、これまでガラスが主に用いられてきたが、需要や用途が増えるにつれ、加工性や生産性の向上が求められるようになってきた。そのため近年、ガラスに比べ軽量で加工性・生産性に優れたプラスチックが注目されポリエチレンテレフタレートやポリカーボネート、環状オレフィン樹脂などが用いられるようになってきた。透明プラスチック基板に金属酸化物のガス・水蒸気バリア層を設けた透明導電性フィルムが知られている(例えば、特許文献1、特許文献2参照)。   Further, the transparent conductive film is widely known as a film having both visible light transmittance and electrical conductivity, and a typical example thereof is a tin-added indium oxide film (hereinafter referred to as “ITO film”). A laminate in which an ITO film is laminated on a transparent substrate is widely used as an electrode, a heating element by energization, an electromagnetic wave shielding material, or a translucent body. Applications of the light transmitting body include automobiles, aircraft, building windows, screens, electromagnetic wave shielding plates such as monitors, liquid crystal display substrates, and the like. Examples of the shape of the translucent body include a planar shape and a curved surface shape according to the intended use. As means for forming an ITO film on a transparent substrate, a sputtering method, a vacuum deposition method, an ion plating method, and the like are known. As a base material for such a light transmitting body, glass has been mainly used so far. However, as demand and applications increase, improvement in workability and productivity has been demanded. Therefore, in recent years, plastics that are lighter than glass and superior in workability and productivity have attracted attention, and polyethylene terephthalate, polycarbonate, cyclic olefin resins, and the like have been used. A transparent conductive film in which a metal oxide gas / water vapor barrier layer is provided on a transparent plastic substrate is known (see, for example, Patent Document 1 and Patent Document 2).

液晶ディスプレイに用いられる電極基板では、全光線透過率が同じであっても複屈折がより小さい高分子材料成形体が必要とされ、さらに近年、液晶ディスプレイが大型化し、それに必要な高分子光学材料成形品が大型化するにつれて、外力の偏りによって生じる複屈折の分布を小さくするために、外力による複屈折の変化、即ち光弾性係数の小さい材料が求められている。透明な光等方性ベースシートとしてポリアリレート、ポリカーボネートに酸化ケイ素の層を設けた電極基板が知られている(例えば、特許文献3参照)。
中でもアクリル系樹脂は、その透明性の高さから幅広く用いられており、基材に使用する場合、基材とITO膜との密着力不足を補うために、アクリル系樹脂基材とITO膜との間に3次元架橋したアクリル系樹脂系の中間層を介することが知られている(例えば、特許文献4、特許文献5参照)。しかし、アクリル系樹脂基材にITO膜を形成してなる透明導電膜基板は実用化には至っておらず、基材とITO膜との密着性不良、基材の変形によるITO膜の破壊のため、抵抗値の安定性が保たれないものと考えられる。
:特開昭55−105222号公報 :特開昭62−51740号公報 :特許第3305022号公報 :特開昭62−71111号公報 :特開昭62−173248号公報
For electrode substrates used in liquid crystal displays, a polymer material molded body having a smaller birefringence is required even if the total light transmittance is the same, and in recent years, the liquid crystal display has become larger in size and the polymer optical material necessary for it. In order to reduce the distribution of birefringence caused by the bias of external force as the molded product becomes larger, a material having a small change in birefringence due to external force, that is, a material having a small photoelastic coefficient is required. An electrode substrate in which a silicon oxide layer is provided on polyarylate or polycarbonate as a transparent optically isotropic base sheet is known (see, for example, Patent Document 3).
Among these, acrylic resins are widely used due to their high transparency. When used as a base material, acrylic resin base materials and ITO films are used to compensate for the lack of adhesion between the base material and the ITO film. It is known that a three-dimensionally cross-linked acrylic resin-based intermediate layer is interposed between them (see, for example, Patent Document 4 and Patent Document 5). However, the transparent conductive film substrate formed by forming the ITO film on the acrylic resin base material has not been put to practical use, due to poor adhesion between the base material and the ITO film, and destruction of the ITO film due to deformation of the base material. It is considered that the stability of the resistance value is not maintained.
: JP-A-55-105222 : JP 62-51740 A : Japanese Patent No. 3305022 : JP-A-62-71111 : JP 62-173248 A

本発明は、外力による複屈折の変化、即ち光弾性係数の小さい耐熱性アクリル系透明樹脂基板にハードコート層ならびに無機バリア層を有する事により表面硬度を改良して表面硬度、光学特性、耐熱性が良好な無機バリア層を有した耐熱性アクリル系樹脂積層体、ならびにこの耐熱性アクリル系樹脂積層体にスズ添加酸化インジウムをはじめとした透明導電膜を形成した透明導電性積層体、すなわち光学特性、抵抗値の安定性、耐熱安定性に優れた透明導電性積層体を提供することにある。   The present invention improves the surface hardness, optical properties, heat resistance by changing the birefringence due to external force, that is, having a hard coat layer and an inorganic barrier layer on a heat resistant acrylic transparent resin substrate having a small photoelastic coefficient. Heat-resistant acrylic resin laminate having a good inorganic barrier layer, and transparent conductive laminate in which a transparent conductive film including tin-added indium oxide is formed on this heat-resistant acrylic resin laminate, that is, optical characteristics An object of the present invention is to provide a transparent conductive laminate having excellent resistance value stability and heat resistance stability.

これらの問題を解決するために鋭意研究を重ねた結果、メタクリル酸メチル単位40〜90質量%、無水マレイン酸単位5〜20質量%、及び芳香族ビニル化合物単位5〜40質量%を共重合して得られる耐熱性アクリル系樹脂透明基板にハードコート層ならびに無機バリア層を有する事で得た耐熱性アクリル系樹脂積層体に透明導電膜を形成することにより光学特性、抵抗値の安定性、耐熱安定性に優れた透明導電性積層体が出来ることを見出した。
すなわち、本発明は以下の通りである。
(1)メタクリル酸メチル単位40〜90質量%、無水マレイン酸単位5〜20質量%、及び芳香族ビニル化合物単位5〜40質量%を共重合して得られる耐熱性アクリル系樹脂透明基板の片面もしくは両面に、ハードコート処理を1種以上施すことを特徴とするハードコート層を被覆し、その少なくとも一表面上にスズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなる透明導電膜形成用耐熱性アクリル系樹脂積層体。
(2)メタクリル酸メチル単位40〜90質量%、無水マレイン酸単位5〜20質量%、及び芳香族ビニル化合物単位5〜40質量%を共重合して得られる耐熱性アクリル系樹脂透明基板の片面もしくは両面に、無機バリア層を1種以上有していることを特徴とし、さらにその少なくとも一表面上にスズ,ゲルマニウム,亜鉛,ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなる透明導電膜形成用耐熱性アクリル系樹脂積層体。
(3)該耐熱性アクリル系樹脂透明基板の片面もしくは両面の表面に、
A.ハードコート層
B.無機バリア層
で形成された多層膜を有し、さらにその少なくとも一表面上にスズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなることを特徴とする(1)または(2)に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。
(4)アクリル系樹脂透明基板の片面もしくは両面の表面に、
A.ハードコート層からなる第一層
B.無機バリア層からなる第二層
の順で形成された多層膜を有し、さらにその少なくとも一表面上にスズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなることを特徴とする(3)に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。
As a result of extensive research to solve these problems, 40 to 90% by mass of methyl methacrylate units, 5 to 20% by mass of maleic anhydride units, and 5 to 40% by mass of aromatic vinyl compound units were copolymerized. By forming a transparent conductive film on the heat-resistant acrylic resin laminate obtained by having a hard coat layer and an inorganic barrier layer on the heat-resistant acrylic resin transparent substrate obtained in this way, optical properties, stability of resistance value, heat resistance It discovered that the transparent conductive laminated body excellent in stability was made.
That is, the present invention is as follows.
(1) One side of a heat-resistant acrylic resin transparent substrate obtained by copolymerizing 40 to 90% by mass of methyl methacrylate units, 5 to 20% by mass of maleic anhydride units, and 5 to 40% by mass of aromatic vinyl compound units Alternatively, an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium is coated on at least one surface of the hard coat layer, which is characterized in that one or more hard coat treatments are performed on both sides. A heat-resistant acrylic resin laminate for forming a transparent conductive film.
(2) One side of a heat-resistant acrylic resin transparent substrate obtained by copolymerizing 40 to 90% by mass of methyl methacrylate units, 5 to 20% by mass of maleic anhydride units, and 5 to 40% by mass of aromatic vinyl compound units Or it has one or more kinds of inorganic barrier layers on both surfaces, and further comprises at least one surface of the transparent conductive film comprising an indium oxide film containing at least one of tin, germanium, zinc, gallium and magnesium. Heat-resistant acrylic resin laminate for film formation.
(3) On one or both surfaces of the heat resistant acrylic resin transparent substrate,
A. Hard coat layer B. (1) or a multilayer film formed of an inorganic barrier layer, and further comprising an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium on at least one surface thereof The heat resistant acrylic resin laminate for forming a transparent conductive film according to (2).
(4) On one or both surfaces of the acrylic resin transparent substrate,
A. First layer consisting of a hard coat layer. It has a multilayer film formed in the order of the second layer composed of an inorganic barrier layer, and further comprises an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium on at least one surface thereof. The heat-resistant acrylic resin laminate for forming a transparent conductive film as described in (3), which is characterized in that

(5)無機バリア層が、酸化ケイ素、窒化ケイ素、酸化窒化ケイ素又はこれらの2種以上からなる混合材料の薄膜である、(2)〜(4)のいずれかに記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。
(6)無機バリア層が酸化ケイ素であり、SiOx(ただし、1<x≦2)の膜である、(5)に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。
(7)該耐熱性アクリル系樹脂透明基板がフィルム、もしくはシートであることを特徴とする(1)〜(6)のいずれかに記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。
(8)全光線透過率が70%以上、シート抵抗値100Ω/□以下であることを特徴とする(1)〜(7)に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体のディスプレイ用透明電極への使用。
である。
(5) For forming a transparent conductive film according to any one of (2) to (4), wherein the inorganic barrier layer is a thin film of silicon oxide, silicon nitride, silicon oxynitride, or a mixed material composed of two or more thereof. Heat-resistant acrylic resin laminate.
(6) The heat-resistant acrylic resin laminate for forming a transparent conductive film according to (5), wherein the inorganic barrier layer is silicon oxide and is a film of SiOx (where 1 <x ≦ 2).
(7) The heat-resistant acrylic resin laminate for forming a transparent conductive film according to any one of (1) to (6), wherein the heat-resistant acrylic resin transparent substrate is a film or a sheet.
(8) Display of heat-resistant acrylic resin laminate for forming transparent conductive film according to (1) to (7), wherein total light transmittance is 70% or more and sheet resistance value is 100Ω / □ or less Use for transparent electrodes.
It is.

以下本発明をさらに詳細に説明する。本発明におけるアクリル系樹脂透明基板の耐熱アクリル系樹脂には、メタクリル酸エステルおよびまたはアクリル酸エステルと、スチレン及びo−メチルスチレン,p−メチルスチレン,2,4−ジメチルスチレン,o−エチルスチレン,p−エチルスチレン,p−tert−ブチルスチレン等の核アルキル置換スチレン、α−メチルスチレン,α−メチル−p−メチルスチレン等のα−アルキル置換スチレン等の芳香族ビニル化合物類、アクリロニトリル、メタクリルニトリル等のシアン化ビニル類、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド類、無水マレイン酸等の不飽和カルボン酸無水物類、アクリル酸、メタクリル酸、マレイン酸等の不飽和酸類との共重合体があげられる。好ましいものとしてはメタクリル酸メチル−無水マレイン酸−スチレン共重合体があり、共重合体中のメタクリル酸メチル単位が40から90重量%、無水マレイン酸単位が5〜20重量%、スチレン単位が5〜40重量%、かつ無水マレイン酸単位に対するスチレン単位の割合が1〜3倍であることが耐熱性、光弾性係数の点から好ましい。さらに好ましくは、共重合体中のメタクリル酸メチル単位が42〜83重量%、無水マレイン酸単位が5〜18重量%、スチレン単位が12〜40重量%であり、とりわけ好ましくは、共重合体中のメタクリル酸メチル単位が45〜ら78重量%、無水マレイン酸単位が6〜15重量%、スチレン単位が16〜40重量%である。この樹脂の特徴は、耐熱性はもちろん、耐湿性、ガス・水蒸気バリア性、光学特性、耐溶剤性に優れている。   The present invention is described in further detail below. In the heat-resistant acrylic resin of the acrylic resin transparent substrate in the present invention, methacrylic acid ester and / or acrylic acid ester, styrene and o-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o-ethylstyrene, Aromatic vinyl compounds such as p-ethyl styrene, p-tert-butyl styrene, etc., nuclear alkyl-substituted styrene, α-methyl styrene, α-alkyl-substituted styrene such as α-methyl-p-methyl styrene, acrylonitrile, methacrylonitrile Copolymerization with vinyl cyanides such as N-phenylmaleimide and N-cyclohexylmaleimide, unsaturated carboxylic acid anhydrides such as maleic anhydride, and unsaturated acids such as acrylic acid, methacrylic acid and maleic acid. A polymer. Preferred is a methyl methacrylate-maleic anhydride-styrene copolymer. The copolymer contains 40 to 90% by weight of methyl methacrylate units, 5 to 20% by weight of maleic anhydride units, and 5 styrene units. From the viewpoint of heat resistance and photoelastic coefficient, it is preferable that the ratio of styrene units to maleic anhydride units is 1 to 3 times. More preferably, the methyl methacrylate unit in the copolymer is 42 to 83% by weight, the maleic anhydride unit is 5 to 18% by weight, and the styrene unit is 12 to 40% by weight, and particularly preferably in the copolymer. Of methyl methacrylate units of 45 to 78% by weight, maleic anhydride units of 6 to 15% by weight, and styrene units of 16 to 40% by weight. This resin has excellent heat resistance, moisture resistance, gas / water vapor barrier properties, optical properties, and solvent resistance.

耐熱アクリル系樹脂の重量平均分子量は5万〜20万のものが望ましい。重量平均分子量は成形品の強度の観点から5万以上が望ましく、成形加工性、流動性の観点から20万以下が望ましい。さらに望ましい範囲は7万〜15万である。また、本発明においてはアイソタクチックポリメタクリル酸エステルとシンジオタクチックポリメタクリル酸エステルを同時に用いることもできる。アクリル系樹脂を製造する方法として、例えばキャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、アニオン重合等の一般に行われている重合方法を用いることができるが、光学用途としては微小な異物の混入はできるだけ避けるのが好ましく、この観点からは懸濁剤や乳化剤を用いない塊状重合や溶液重合が望ましい。溶液重合を行う場合には、単量体の混合物をトルエン、エチルベンゼン等の芳香族炭化水素の溶媒に溶解して調整した溶液を用いることができる。塊状重合により重合させる場合には、通常行われるように加熱により生じる遊離ラジカルや電離性放射線照射により重合を開始させることができる。   The heat-resistant acrylic resin preferably has a weight average molecular weight of 50,000 to 200,000. The weight average molecular weight is desirably 50,000 or more from the viewpoint of the strength of the molded product, and desirably 200,000 or less from the viewpoint of molding processability and fluidity. A more desirable range is 70,000 to 150,000. In the present invention, isotactic polymethacrylate and syndiotactic polymethacrylate can be used simultaneously. As a method for producing an acrylic resin, for example, generally used polymerization methods such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, and anionic polymerization can be used. It is preferable to avoid mixing of foreign substances as much as possible. From this viewpoint, bulk polymerization or solution polymerization without using a suspending agent or an emulsifier is desirable. When solution polymerization is performed, a solution prepared by dissolving a mixture of monomers in an aromatic hydrocarbon solvent such as toluene or ethylbenzene can be used. In the case of polymerization by bulk polymerization, the polymerization can be started by irradiation with free radicals generated by heating or ionizing radiation as is usually done.

重合反応に用いられる開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えばアゾビスイソブチルニトリル等のアゾ化合物、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート等の有機過酸化物が用いられ、又特に90℃以上の高温下で重合を行わせる場合には、溶液重合が一般的であるので、10時間半減期温度が80℃以上でかつ用いる有機溶媒に可溶である過酸化物、アゾビス開始剤などが好ましく、具体的には1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、シクロヘキサンパーオキシド、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、1,1−アゾビス(1−シクロヘキサンカルボニトリル)、2−(カルバモイルアゾ)イソブチロニトリル等を挙げることができる。これらの開始剤は0.005−5質量%の範囲で用いられる。重合反応に必要に応じて用いられる分子量調節剤は、一般的なラジカル重合において用いる任意のものが使用され、例えばブチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、チオグリコール酸2−エチルヘキシル等のメルカプタン化合物が特に好ましいものとして挙げられる。これらの分子量調節剤は、重合度が上記の範囲内に制御されるような濃度範囲で添加される。耐熱アクリル系樹脂の製造方法は、特公昭63−1964等に記載されている方法等を用いることができる。アクリル系樹脂は、分子量、組成等がことなる2種以上のものを同時に用いることができる。   As the initiator used in the polymerization reaction, any initiator generally used in radical polymerization can be used. For example, an azo compound such as azobisisobutylnitrile, benzoyl peroxide, lauroyl peroxide, t-butylperoxy When an organic peroxide such as 2-ethylhexanoate is used and the polymerization is carried out particularly at a high temperature of 90 ° C. or higher, solution polymerization is common, so the 10-hour half-life temperature is 80 Peroxides and azobis initiators that are soluble in the organic solvent to be used are preferable, and specifically, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, cyclohexane par. Oxide, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 1,1-azobis (1-cyclohex Down-carbonitrile), and 2- (carbamoylazo) isobutyronitrile. These initiators are used in the range of 0.005 to 5% by mass. As the molecular weight regulator used as necessary for the polymerization reaction, any one used in general radical polymerization is used, for example, mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate, It is mentioned as preferable. These molecular weight regulators are added in a concentration range such that the degree of polymerization is controlled within the above range. As a method for producing the heat-resistant acrylic resin, the method described in JP-B-63-1964 can be used. Two or more kinds of acrylic resins having different molecular weights, compositions, etc. can be used at the same time.

本発明における耐熱性アクリル系樹脂透明基板を製造するには、必要に応じて染料、顔料、ヒンダードフェノール系やリン酸塩等の熱安定剤、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系、サリチル酸フェニルエステル系などの紫外線吸収剤、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系などの可塑剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸のモノ、ジ、またはトリグリセリド系などの離型剤、高級脂肪酸エステル、ポリオレフィン系などの滑剤、ポリエーテル系、ポリエーテルエステル系、ポリエーテルエステルアミド系、アルキルスフォン酸塩、アルキルベンゼンスルフォン酸塩などの帯電防止剤、リン系、リン/塩素系、リン/臭素系などの難燃剤、反射光のぎらつきを防止するためにメタクリル酸メチル/スチレン共重合体ビーズなどの有機系光拡散剤、硫酸バリウム、酸化チタン、炭酸カルシウム、タルクなどの無機系光拡散剤、補強剤として多段重号で得られるアクリル系ゴム等を使用しても良い。これらの添加剤を配合するときには、公知の方法で実施しうる。例えば、単量体混合物にあらかじめ添加剤を溶解しておき重合する方法や、溶融状態、ビーズ状あるいはペレット状の樹脂に添加剤をミキサー等でドライブレンドし、押出し機を用いて混練、造粒する方法などが挙げられる。ただし、透明導電膜の製膜時に高温で加熱処理される場合があり、揮発性のある添加剤を配合するのは好ましくない。   In order to produce the heat-resistant acrylic resin transparent substrate in the present invention, dyes, pigments, heat stabilizers such as hindered phenols and phosphates, benzotriazoles, 2-hydroxybenzophenones, phenyl salicylates as needed UV absorbers such as ester, plasticizers such as phthalate ester, fatty acid ester, trimellitic acid ester, phosphate ester, and polyester, higher fatty acid, higher fatty acid ester, higher fatty acid mono, di, or Mold release agents such as triglycerides, lubricants such as higher fatty acid esters and polyolefins, antistatic agents such as polyethers, polyether esters, polyether ester amides, alkyl sulfonates and alkylbenzene sulfonates, phosphorus Series, phosphorus / chlorine, phosphorus / bromine flame retardants, anti In order to prevent glare from irradiation, organic light diffusing agents such as methyl methacrylate / styrene copolymer beads, inorganic light diffusing agents such as barium sulfate, titanium oxide, calcium carbonate, talc, etc. Acrylic rubber obtained in (1) may be used. When these additives are blended, it can be carried out by a known method. For example, a method in which an additive is dissolved in a monomer mixture in advance and polymerized, or an additive is dry-blended with a mixer or the like in a molten state, bead-like or pellet-like resin, and kneaded and granulated using an extruder The method of doing is mentioned. However, it may be heat-treated at a high temperature when forming the transparent conductive film, and it is not preferable to add a volatile additive.

本発明におけるハードコート層としては、例えば、分子中に少なくとも2個の官能基を有する化合物からなる被膜を硬化したものが挙げられる。ハードコート層を形成するための官能基としては、例えば、(メタ)アクリロイルオキシ基のような不飽和二重結合を有する基、エポキシ基やシラノール基のような反応性の置換基などが挙げられる。なかでも、不飽和二重結合を有する基は、紫外線や電子線のような活性化エネルギー線の照射により容易に硬化しうるので、好ましく用いられる。不飽和二重結合を有する基を分子中に少なくとも2個有する化合物としては、例えば、多官能アクリレート化合物などが挙げられる。ここで、多官能アクリレート化合物とは、分子中に少なくとも2個のアクリロイルオキシ基及び/又はメタクロイルオキシ基を有する化合物をいう。以下、アクリロイルオキシ基とメタクロイルオキシ基とをまとめて(メタ)アクリロイルオキシ基と呼ぶ。   As a hard-coat layer in this invention, what hardened the film which consists of a compound which has at least 2 functional group in a molecule | numerator is mentioned, for example. Examples of the functional group for forming the hard coat layer include a group having an unsaturated double bond such as a (meth) acryloyloxy group, and a reactive substituent such as an epoxy group or a silanol group. . Among these, a group having an unsaturated double bond is preferably used because it can be easily cured by irradiation with an activation energy ray such as an ultraviolet ray or an electron beam. Examples of the compound having at least two groups having an unsaturated double bond in the molecule include polyfunctional acrylate compounds. Here, the polyfunctional acrylate compound refers to a compound having at least two acryloyloxy groups and / or methacryloyloxy groups in the molecule. Hereinafter, the acryloyloxy group and the methacryloyloxy group are collectively referred to as a (meth) acryloyloxy group.

多官能アクリレート化合物としては、例えば、次のようなものを挙げることができる。 エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、ホスファゼン化合物のホスファゼン環に(メタ)アクリロイルオキシ基が導入されたホスファゼン系(メタ)アクリレート化合物、分子中に少なくとも2個のイソシアネート基を有するポリイソシアネート化合物と少なくとも1個の(メタ)アクリロイルオキシ基及び少なくとも1個の水酸基を有するポリオール化合物とを反応させて得られるウレタン(メタ)アクリレート化合物、分子中に少なくとも2個のカルボニル基を有するカルボン酸ハロゲン化物と少なくとも1個の(メタ)アクリロイルオキシ基を有するポリオール化合物とを反応させて得られるポリエステル(メタ)アクリレート化合物などである。   Examples of the polyfunctional acrylate compound include the following. Ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetraacrylate, pentaglycerol Triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate Ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylolmethane trimethacrylate, tetramethylolmethane tetramethacrylate, pentaglycerol Trimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexamethacrylate, tris (acrylo (Luoxyethyl) isocyanurate, a phosphazene (meth) acrylate compound in which a (meth) acryloyloxy group is introduced into the phosphazene ring of the phosphazene compound, a polyisocyanate compound having at least two isocyanate groups in the molecule and at least one (meta ) A urethane (meth) acrylate compound obtained by reacting an acryloyloxy group and a polyol compound having at least one hydroxyl group, a carboxylic acid halide having at least two carbonyl groups in the molecule and at least one (meta ) A polyester (meth) acrylate compound obtained by reacting with a polyol compound having an acryloyloxy group.

これらの化合物は、それぞれ単独で又は2種以上混合して用いることができる。またこれら各化合物の2量体、3量体などのオリゴマーであってもよい。
ハードコート層は、通常の方法、例えば、ハードコート剤を樹脂基材の表面に塗布することにより被膜とし、これに活性化エネルギー線を照射することにより設けることができる。塗布方法としては、例えば、マイクログラビアコート法、ロールコート法、ディッピングコート法、スピンコート法、ダイコート法、フローコート法、スプレーコート法などが挙げられる。ハードコート層の厚みは、通常0.5〜50μm 程度、好ましくは1〜20μm 程度である。さらに好ましくは2〜10μm程度である。その厚みが0.5μm 以上50μm以下であると、耐擦傷性が良く、亀裂の発生が起こりにくくなる。
These compounds can be used alone or in admixture of two or more. Further, oligomers such as dimers and trimers of these compounds may be used.
The hard coat layer can be provided by a usual method, for example, by applying a hard coat agent to the surface of the resin base material to form a coating film and irradiating it with an activation energy ray. Examples of the coating method include a micro gravure coating method, a roll coating method, a dipping coating method, a spin coating method, a die coating method, a flow coating method, and a spray coating method. The thickness of the hard coat layer is usually about 0.5 to 50 μm, preferably about 1 to 20 μm. More preferably, it is about 2-10 micrometers. When the thickness is not less than 0.5 μm and not more than 50 μm, the scratch resistance is good and cracks are less likely to occur.

かかるハードコート層は、帯電防止性のハードコート層であってもよい。帯電防止性のハードコート層としては、例えば、導電性粒子が分散されたハードコート層、界面活性剤を含有するハードコート層などが挙げられる。導電性粒子が分散されたハードコート層としては、不飽和二重結合を少なくとも2個有する化合物が硬化されてなる硬化被膜に、導電性粒子が分散されてなる層などが挙げられる。導電性粒子としては、例えば、スズ、アンチモン、チタン、インジウムの如き金属の酸化物や、これらの金属の複合酸化物、例えば、インジウムスズ複合酸化物(ITO)やアンチモンドープ酸化スズなどの粒子が挙げられる。導電性粒子の粒子径は、一次粒子径で通常、0.001〜0.1μm 程度である。導電性粒子の粒子径は、一次粒子径で通常、0.001〜0.1μm 程度である。この範囲内では、透明性が維持される傾向にある。   Such a hard coat layer may be an antistatic hard coat layer. Examples of the antistatic hard coat layer include a hard coat layer in which conductive particles are dispersed and a hard coat layer containing a surfactant. Examples of the hard coat layer in which conductive particles are dispersed include a layer in which conductive particles are dispersed in a cured coating obtained by curing a compound having at least two unsaturated double bonds. Examples of the conductive particles include oxides of metals such as tin, antimony, titanium, and indium, and composite oxides of these metals such as particles of indium tin composite oxide (ITO) and antimony-doped tin oxide. Can be mentioned. The particle diameter of the conductive particles is usually about 0.001 to 0.1 μm in terms of primary particle diameter. The particle diameter of the conductive particles is usually about 0.001 to 0.1 μm in terms of primary particle diameter. Within this range, transparency tends to be maintained.

また、塗膜の耐摩耗性の向上と硬化時における体積収縮率の減少のために、無機微粒子を含有させても構わない。無機微粒子としては、シリカ、酸化チタン等の金属酸化物よりなる微粒子が好ましい。かかる無機微粒子の含有量は20〜60重量%が好ましく、無機微粒子の平均粒径は100μm以下のものが好ましい。この含有量の範囲内では、製品フィルムのカール発生を抑えられ、ハードコート樹脂の伸縮性不良と屈曲によるクラックの発生も低減できる。また、この平均粒径は100nm以上であることが好ましい。
反射防止層のハードコート性(傷防止性)向上のために、無機微粒子表面に光重合反応性を有する感光性基を導入したものが好ましい。この感光性基としては単官能性または多官能性アクリレートが好ましい。
このハードコート層は、その表面が鉛筆硬度で4H以上の硬さを有することが好ましい。
In addition, inorganic fine particles may be contained in order to improve the abrasion resistance of the coating film and to reduce the volume shrinkage rate during curing. As the inorganic fine particles, fine particles made of a metal oxide such as silica and titanium oxide are preferable. The content of the inorganic fine particles is preferably 20 to 60% by weight, and the average particle size of the inorganic fine particles is preferably 100 μm or less. Within this content range, the curling of the product film can be suppressed, and the occurrence of cracks due to poor stretchability and bending of the hard coat resin can also be reduced. The average particle size is preferably 100 nm or more.
In order to improve the hard coat property (scratch prevention property) of the antireflection layer, it is preferable to introduce a photosensitive group having photopolymerization reactivity on the surface of the inorganic fine particles. This photosensitive group is preferably a monofunctional or polyfunctional acrylate.
The hard coat layer preferably has a pencil hardness of 4H or higher.

本発明における無機バリア層は、アクリル樹脂透明基板の表面硬度を強くするだけでなく、透明性、透明導電膜との密着性の向上、アクリル樹脂透明基板の耐久性の向上或いは、ガス・水蒸気バリア性能を向上させる効果が期待できる。
無機バリア層としては、金属酸化物、金属窒化物、若しくはこれらの混合物で構成された薄膜であることが好ましい。具体的な無機バリア層の構成成分としては、一般的に真空成膜される材料であれば原則的に使用可能であり、中でもセラミック材料を用いると、透明性の高い薄膜を形成することができる。セラミック材料としては、SiOx、AlOx、SiOxNy、SiNx、SiOxNyCz,SiNxCy,AlOxNy,AlNx,AlOxNyCz,及びAlNxCy等を例示することができる。ここで、x、y、zは、それぞれ数を表す。これらの金属化合物材料の中でも、酸化珪素、窒化珪素、酸化窒化珪素、及び、これらの混合材料が無機バリア層として好ましい。さらに好ましくは、SiOx(ただし、1<x≦2)膜であり、表面硬度は硬く、非導電性である。この中で、ガスバリア性、透明性、表面平滑性、屈曲性、膜応力、コスト等の点から珪素原子数に対する酸素原子数の割合が1.5〜2.0の珪素酸化物を主成分とする金属酸化物が良好である。珪素酸化物の珪素原子数に対する酸素原子数の割合は、X線光電子分光法、X線マイクロ分光法、オージェ電子分光法、ラザホード後方散乱法等により分析、決定される。この割合の範囲であると、透明性が良好である。更に上記珪素酸化物中に、酸化マグネシウム及び/又はフッ化マグネシウムを全体の重量に対して5〜30質量%含有すると、透明性をより高くすることができる。
The inorganic barrier layer in the present invention not only enhances the surface hardness of the acrylic resin transparent substrate, but also improves transparency, adhesion to the transparent conductive film, improvement of durability of the acrylic resin transparent substrate, or gas / water vapor barrier. The effect of improving performance can be expected.
The inorganic barrier layer is preferably a thin film composed of a metal oxide, a metal nitride, or a mixture thereof. As a specific component of the inorganic barrier layer, in general, any material that can be vacuum-deposited can be used in principle. In particular, when a ceramic material is used, a highly transparent thin film can be formed. . Examples of the ceramic material include SiOx, AlOx, SiOxNy, SiNx, SiOxNyCz, SiNxCy, AlOxNy, AlNx, AlOxNyCz, and AlNxCy. Here, x, y, and z each represent a number. Among these metal compound materials, silicon oxide, silicon nitride, silicon oxynitride, and mixed materials thereof are preferable as the inorganic barrier layer. More preferably, it is a SiOx (where 1 <x ≦ 2) film, the surface hardness is hard, and it is non-conductive. Among these, the main component is silicon oxide having a ratio of the number of oxygen atoms to the number of silicon atoms of 1.5 to 2.0 in terms of gas barrier properties, transparency, surface smoothness, flexibility, film stress, cost, etc. Good metal oxide. The ratio of the number of oxygen atoms to the number of silicon atoms in the silicon oxide is analyzed and determined by X-ray photoelectron spectroscopy, X-ray microspectroscopy, Auger electron spectroscopy, Rutherford backscattering, and the like. When it is within this range, the transparency is good. Further, when the silicon oxide contains 5 to 30% by mass of magnesium oxide and / or magnesium fluoride with respect to the total weight, the transparency can be further increased.

無機バリア層はイオンプレーティング法、スパッタリング法、CVD(化学気相蒸着)法、プラズマCVD法、物理蒸着法等の真空成膜法で作成することができる。なかでも、樹脂基板上に優れたガスバリア性が得られるという観点から、高速成膜で大面積を均一に成膜できるイオンプレーティング法が好ましい。
無機バリア層の厚さは1〜1000nmが好ましく、より好ましくは2〜100nm、さらに好ましくは3〜50nmである。
The inorganic barrier layer can be formed by a vacuum film forming method such as an ion plating method, a sputtering method, a CVD (chemical vapor deposition) method, a plasma CVD method, or a physical vapor deposition method. Among these, from the viewpoint of obtaining an excellent gas barrier property on a resin substrate, an ion plating method capable of uniformly forming a large area by high-speed film formation is preferable.
As for the thickness of an inorganic barrier layer, 1-1000 nm is preferable, More preferably, it is 2-100 nm, More preferably, it is 3-50 nm.

本発明における耐熱性アクリル系樹脂透明基板のフィルム・シートは、厚さの違いのみであり、フィルムは300μm以下の厚さのものを言い、シートは300μmを超えるものである。耐熱性アクリル系透明樹脂基板の厚さは、0.01〜10.0mmの範囲のフィルムまたはシートであることが好ましい。0.01〜10.0mmの範囲のフィルムまたはシートは、パネル加工時に変形しにくく取り扱いやすい。また、基板の荷重による変形も生じにくくなるので、液晶表示素子を組み立てた際に、二重像が顕著になり表示品位が損なわれにくくなる。さらに好ましい厚さは0.1〜5.0mmの範囲である。   The film / sheet of the heat-resistant acrylic resin transparent substrate in the present invention is only a difference in thickness, the film is a thickness of 300 μm or less, and the sheet is more than 300 μm. The thickness of the heat-resistant acrylic transparent resin substrate is preferably a film or sheet in the range of 0.01 to 10.0 mm. A film or sheet in the range of 0.01 to 10.0 mm is hard to be deformed during panel processing and easy to handle. Further, since deformation due to the load on the substrate is less likely to occur, a double image becomes prominent when the liquid crystal display element is assembled, and the display quality is unlikely to be impaired. A more preferred thickness is in the range of 0.1 to 5.0 mm.

耐熱性アクリル系樹脂透明基板のフィルムまたはシートは透明性が必須であり、その透明性の指標として全光線透過率が80%以上、ヘイズ値が5%以下であることが好ましい。さらに好ましくは全光線透過率が85%以上、ヘイズ値が2%以下である。
耐熱性アクリル系樹脂透明基板のフィルムまたはシートは光学等方性が優れるものが好ましく、リタデーション値が30nm以下、遅相軸のバラツキが40度以内、より好ましくはリタデーション値が20nm以下、遅相軸のバラツキが20度以内のものが好適である。ここで、リタデーション値は、公知の測定装置を用いて測定した波長590nmにおける複屈折の屈折率の差△nと膜厚dとの積△n・dで表されるものである。
耐熱性アクリル系樹脂透明基板のフィルムまたはシートはその表面にスパッタ法や真空蒸着法などにより金属蒸着膜を形成する際に、その操作温度に耐え得る耐熱性を有していることが必要である。その耐熱性の指標として、温度80℃の雰囲気下で約30分間静置した際、そり・変形がないことが好ましい。
The film or sheet of the heat-resistant acrylic resin transparent substrate must have transparency, and as its transparency index, it is preferable that the total light transmittance is 80% or more and the haze value is 5% or less. More preferably, the total light transmittance is 85% or more and the haze value is 2% or less.
The film or sheet of the heat-resistant acrylic resin transparent substrate is preferably one having excellent optical isotropy, the retardation value is 30 nm or less, the variation of the slow axis is within 40 degrees, more preferably the retardation value is 20 nm or less, and the slow axis A variation within 20 degrees is preferred. Here, the retardation value is represented by a product Δn · d of a refractive index difference Δn of birefringence at a wavelength of 590 nm and a film thickness d measured using a known measuring apparatus.
The film or sheet of a heat-resistant acrylic resin transparent substrate must have heat resistance that can withstand the operating temperature when a metal vapor deposition film is formed on the surface by sputtering or vacuum vapor deposition. . As an index of the heat resistance, it is preferable that there is no warpage or deformation when left for about 30 minutes in an atmosphere at a temperature of 80 ° C.

本発明における透明導電膜に用いる材料としては、スズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜を利用することができる。
酸化インジウム膜に添加されるスズ,ゲルマニウム,亜鉛,ガリウム、マグネシウムの含有量は、これらのうち1種類を添加する場合は、インジウムに対するこれらの材料の原子比(Sn/In,Ge/In,Zn/In,Ga/In,Mg/In)をいずれも0.5〜20.0%が好ましい。より好ましくは5〜10%が好ましい。中でも導電性と透明性のバランスがよいスズが最も好ましい。このような比率で添加すると、膜の導電性及び透明性を良好に維持できる。また、これらの材料の複数種類を添加する場合は、添加する材料の全体の添加量をインジウムに対して20.0%以下とするとよい。
As a material used for the transparent conductive film in the present invention, an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium can be used.
The content of tin, germanium, zinc, gallium, and magnesium added to the indium oxide film is the atomic ratio of these materials to indium (Sn / In, Ge / In, Zn) when one of these is added. / In, Ga / In, Mg / In) are all preferably 0.5 to 20.0%. More preferably, it is 5 to 10%. Of these, tin having the best balance between conductivity and transparency is most preferable. When added at such a ratio, the conductivity and transparency of the film can be maintained well. In addition, when a plurality of types of these materials are added, the total amount of materials to be added is preferably 20.0% or less with respect to indium.

透明導電膜の膜厚は、10nm〜1000nmの範囲に設定するとよい。この膜厚の範囲では、用途によって異なるが、可撓性が保たれた連続的な膜を得る事が出来る。さらに、本発明の透明導電膜の膜厚は用途に応じて20〜500nmとすることが望ましい。
透明導電性積層体は、全光線透過率が70%以上、ヘイズ値が10%以下であることが必要であり、この範囲では、透明感が良好である。さらに好ましくは全光線透過率が80%以上、ヘイズ値が5%以下である。ただしディスプレイ用透明電極の場合、70%以上であれば適用できる。
透明導電性積層体のシート抵抗値は、用途によって異なるが、5〜10000Ω/□の範囲のものが導電性材料として好ましい。さらに好ましくは10〜300Ω/□の範囲のものが好ましい。ただし、ディスプレイ用透明電極に適しているのは10〜100Ω/□の範囲のものが好ましい。
透明導電性積層体の製造方法において、成膜法は、特に限定するものではなく、スパッタリング法、EB蒸着法、イオンプレーデイング法、CVD法を用いることもできるが、より好ましくは、スパッタリング法により成膜する。
The film thickness of the transparent conductive film is preferably set in the range of 10 nm to 1000 nm. In this film thickness range, although it varies depending on the application, it is possible to obtain a continuous film in which flexibility is maintained. Furthermore, the film thickness of the transparent conductive film of the present invention is desirably 20 to 500 nm depending on the application.
The transparent conductive laminate needs to have a total light transmittance of 70% or more and a haze value of 10% or less. In this range, the transparency is good. More preferably, the total light transmittance is 80% or more and the haze value is 5% or less. However, in the case of a transparent electrode for display, 70% or more can be applied.
Although the sheet resistance value of a transparent conductive laminated body changes with uses, the thing of the range of 5-10000 ohms / square is preferable as an electroconductive material. More preferably, the range of 10 to 300Ω / □ is preferable. However, those suitable for the transparent electrode for display are preferably in the range of 10 to 100Ω / □.
In the method for producing a transparent conductive laminate, the film forming method is not particularly limited, and a sputtering method, an EB vapor deposition method, an ion plating method, and a CVD method can also be used, but more preferably by a sputtering method. Form a film.

本発明の耐熱性アクリル系樹脂積層体は、ハードコート層、無機バリア層の層構成を有する多層積層シート上にITO膜を形成したものである。この多層積層体の層構成は、透明基板に第一層:ハードコート層、第二層:無機バリア層、もしくは、第一層:無機バリア層、第二層:ハードコート層のいずれでも構わない。さらに、透明基板の片面もしくは両面に層構成を有しても構わない。好ましくは、透明基板に第一層:ハードコート層、第二層:無機バリア層の構成である。   The heat resistant acrylic resin laminate of the present invention is obtained by forming an ITO film on a multilayer laminate sheet having a hard coat layer and an inorganic barrier layer. The layer structure of the multilayer laminate may be any of a first layer: a hard coat layer, a second layer: an inorganic barrier layer, a first layer: an inorganic barrier layer, and a second layer: a hard coat layer on a transparent substrate. . Furthermore, you may have a layer structure in the single side | surface or both surfaces of a transparent substrate. Preferably, the transparent substrate has a first layer: hard coat layer and a second layer: inorganic barrier layer.

ハードコート層は、透明基板に耐スクラッチ性、表面硬度、耐透湿性、耐熱性、耐溶剤性等の性質を付与するのに貢献する。無機バリア層は、透明基板に耐スクラッチ性、表面硬度、耐透湿性、耐透気性、耐熱性、耐溶剤性等の性質を付与するのに貢献する。好ましくは第一層:中間層を構成するハードコート層と、第二層:最外層を構成する無機バリア層の組合せは、一段と耐スクラッチ性および表面硬度を向上させる役割を果たすと共に、ITO膜の形成時、熱によるダメージを軽減化させていると考えられる。
さらに本発明の酸化亜鉛系透明導電積層体に最外層として、任意の樹脂又は無機化合物の層を1層又は2層以上積層してもよい。このような最外層には、保護膜、反射防止膜、フィルター等の役割、又は、液晶の視野角の調整、曇り止め等の機能を持たせることができる。
The hard coat layer contributes to imparting properties such as scratch resistance, surface hardness, moisture permeability resistance, heat resistance, and solvent resistance to the transparent substrate. The inorganic barrier layer contributes to imparting properties such as scratch resistance, surface hardness, moisture permeability resistance, gas resistance, heat resistance, and solvent resistance to the transparent substrate. Preferably, the combination of the hard coat layer constituting the first layer: the intermediate layer and the inorganic barrier layer constituting the second layer: the outermost layer serves to further improve the scratch resistance and surface hardness, and It is thought that damage due to heat is reduced during formation.
Furthermore, you may laminate | stack the layer of arbitrary resin or an inorganic compound 1 layer or 2 layers or more as an outermost layer in the zinc oxide type transparent conductive laminated body of this invention. Such an outermost layer can have a role of a protective film, an antireflection film, a filter, or the like, or functions such as adjustment of the viewing angle of liquid crystal and anti-fogging.

以下に実施例、比較例を用いて本発明をさらに具体的に説明する。単位を部で表示しているところは、重量部を表す。
<評価法>
(A)ハードコート層を被覆した樹脂積層体の評価
(A−1)全光線透過率、ヘイズ
JIS K 6711に準拠して評価した。
(A−2)面内レタデーション(Re)の測定
大塚電子(株)社製複屈折測定装置RETS−100を用いて、回転検光子法により23℃における面内レタデーション(Re)を測定した。
(A−3)ハードコート層の外観評価
蛍光灯がついている部屋で、蛍光灯が上からハードコート層を被覆した樹脂積層体表面に写りこむ(反射する)ようにし、表示部分を斜めから見て蛍光灯の像がゆがむ個所で凹凸の有無を目視で観察し、凹凸が無い場合は「○」(良好)とし、凹凸が生じた場合は「×」(不良)と評価した。
(A−4)耐久性試験1の密着性:
ハードコート層を被覆した樹脂積層体を80℃の恒温室槽で24時間放置し、密着性の評価方法として粘着テープ(ニチバン製1.8cm幅のセロハンテープ)の粘着面を樹脂積層体のハードコート層表面に密着させ、引き剥がす剥離テストにより評価する。ハードコート層が全く剥離しない場合を「○」(良好)とし、全面剥離した場合を「×」(不良)と表示する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The unit displayed in parts represents parts by weight.
<Evaluation method>
(A) Evaluation of a resin laminate coated with a hard coat layer (A-1) Total light transmittance, haze Evaluation was performed according to JIS K 6711.
(A-2) Measurement of in-plane retardation (Re) In-plane retardation (Re) at 23 ° C. was measured by a rotating analyzer method using a birefringence measuring apparatus RETS-100 manufactured by Otsuka Electronics Co., Ltd.
(A-3) Appearance evaluation of hard coat layer In a room with a fluorescent lamp, the fluorescent lamp is reflected (reflected) on the surface of the resin laminate coated with the hard coat layer from above, and the display portion is viewed obliquely. When the image of the fluorescent lamp was distorted, the presence or absence of unevenness was visually observed, and when there was no unevenness, it was evaluated as “◯” (good), and when the unevenness occurred, it was evaluated as “x” (bad).
(A-4) Adhesiveness of durability test 1:
The resin laminate coated with the hard coat layer is allowed to stand in a thermostatic chamber at 80 ° C. for 24 hours, and the adhesive surface of the adhesive tape (1.8 cm wide cellophane tape made by Nichiban) is used as the adhesion evaluation method. Evaluation is made by a peel test in which the coat layer is brought into close contact with and peeled off. A case where the hard coat layer does not peel at all is indicated as “◯” (good), and a case where the hard coat layer is peeled off is indicated as “x” (defective).

(A−5)光弾性係数の測定
Macromolecules 2004,37,1062-1066に詳細の記載のある複屈折測定装置を用いた。レーザー光の経路にシート片の引張装置を配置し、23℃で伸張応力をかけながら複屈折を測定した。伸張時の歪速度は20%/分(チャック間:30mm、チャック移動速度:6mm/分)、試験片幅は7mmで測定を行った。複屈折(Δn)と伸張応力(σR)の関係から、最小二乗近似により線形領域の直線の傾きをもとめ光弾性係数(CR)を計算し、光惰性係数の絶対値(|CR|)を求めた。傾きの絶対値が小さいほど光弾性係数が0に近いことを示し、好ましい光学特性であることを示す。
|CR|=|Δn|/σR
(CR:光弾性係数、σR:伸張応力、Δn:複屈折、n1:伸張方向の屈折率、n
2:伸張方向と垂直な屈折率)
(A-5) Measurement of photoelastic coefficient
A birefringence measuring apparatus described in detail in Macromolecules 2004, 37, 1062-1066 was used. A sheet piece tensioning device was placed in the laser beam path, and birefringence was measured while applying an extensional stress at 23 ° C. The strain rate during stretching was 20% / min (chuck interval: 30 mm, chuck moving speed: 6 mm / min), and the test piece width was 7 mm. From the relationship between birefringence (Δn) and tensile stress (σR), the photoelastic coefficient (CR) is calculated by finding the slope of the straight line in the linear region by least square approximation, and the absolute value (| CR |) of the optical inertia coefficient is obtained. It was. The smaller the absolute value of the slope is, the closer the photoelastic coefficient is to 0, indicating a preferable optical characteristic.
| CR | = | Δn | / σR
(CR: photoelastic coefficient, σR: stretching stress, Δn: birefringence, n1: refractive index in stretching direction, n
2: Refractive index perpendicular to the stretching direction)

(B)SiOx膜を有したアクリル系樹脂積層体の評価
(B−1)全光線透過率、ヘイズ
上記(A−1)と同様に測定した。
(B−2)面内レタデーション(Re)の測定
上記(A−2)と同様に測定した。
(B−3)SiOx膜の状態
SiOx膜を有したアクリル系樹脂積層体表面を顕微鏡で800倍に拡大し、SiOx膜の亀裂が認められない場合は「○」(良好)と評価し、亀裂が認められる場合は「×」(不良)と評価した。
(B−4)密着性評価
密着性の評価方法として粘着テープ(ニチバン製1.8cm幅のセロハンテープ)の粘着面を透明導電性積層体のSiOx膜に密着させ、引き剥がす剥離テストにより評価する。SiOx膜が全く剥離しない場合を「○」(良好)とし、全面剥離した場合を「×」(不良)と表示した。
(B−5)光弾性係数の測定
上記(A−5)と同様に測定した。
(B) Evaluation of acrylic resin laminate having SiOx film (B-1) Total light transmittance, haze Measured in the same manner as (A-1) above.
(B-2) Measurement of in-plane retardation (Re) Measurement was performed in the same manner as in (A-2) above.
(B-3) State of SiOx film The surface of the acrylic resin laminate having the SiOx film was magnified 800 times with a microscope, and when no crack of the SiOx film was observed, it was evaluated as “◯” (good). Was evaluated as “x” (defect).
(B-4) Adhesion evaluation As an adhesion evaluation method, an adhesive tape (1.8 cm wide cellophane tape made of Nichiban) is adhered to the SiOx film of the transparent conductive laminate and evaluated by a peeling test. . The case where the SiOx film did not peel at all was indicated as “◯” (good), and the case where the entire surface was peeled off was indicated as “x” (defective).
(B-5) Measurement of photoelastic coefficient It measured similarly to said (A-5).

(C)透明導電膜を形成してなる透明導電性積層体の評価
(C−1)全光線透過率、ヘイズ
上記(A−1)と同様に測定した。
(C−2)面内レタデーション(Re)の測定
上記(A−2)と同様に測定した。
(C−3)ITO膜の外観評価:
透明導電性積層体表面を顕微鏡で800倍に拡大し、ITO膜の亀裂が認められない場合は「○」(良好)と評価し、亀裂が認められる場合は「×」(不良)と評価した。
(C−4)密着性評価
密着性の評価方法として粘着テープ(ニチバン製1.8cm幅のセロハンテープ)の粘着面を透明導電性積層体のITO膜に密着させ、引き剥がす剥離テストにより評価する。ITOO膜が全く剥離しない場合を「○」(良好)とし、全面剥離した場合を「×」(不良)と表示した。
(C) Evaluation of a transparent conductive laminate formed by forming a transparent conductive film (C-1) Total light transmittance, haze Measured in the same manner as in the above (A-1).
(C-2) Measurement of in-plane retardation (Re) Measurement was performed in the same manner as in (A-2) above.
(C-3) Appearance evaluation of ITO film:
The surface of the transparent conductive laminate was magnified 800 times with a microscope, and when a crack of the ITO film was not observed, it was evaluated as “◯” (good), and when a crack was observed, it was evaluated as “×” (bad). .
(C-4) Adhesion evaluation As a method for evaluating adhesion, an adhesive tape (1.8 cm wide cellophane tape made of Nichiban) is adhered to the ITO film of the transparent conductive laminate and evaluated by a peeling test. . The case where the ITOO film did not peel at all was indicated as “◯” (good), and the case where the ITO film was peeled off was indicated as “x” (defective).

(C−5)シート抵抗値の経時変化測定
4探針法(接触型):JIS R 1637に準拠して評価した。
透明導電性積層体のシート抵抗値は、成膜直後と50日後実験室内で静置したものについて測定した。
(C−6)耐久性試験1:耐熱試験後のシート抵抗値の経時変化測定
80℃の恒温室槽で200時間静置した後、室温に戻してから(B−5)と同様の方法にて測定した。
(C−7)耐久性試験2:耐寒試験後のシート抵抗値の経時変化測定
−20℃の冷凍庫で200時間静置した後、室温に戻してから(B−5)と同様の方法にて測定した。
(C−8)耐久性試験3:耐湿熱試験後のシート抵抗値の経時変化測定
60℃、90%RHの恒温室槽で200時間静置した後、室温に戻してから(B−5)と同様の方法にて測定した。
(C-5) Measurement of change in sheet resistance with time 4-probe method (contact type): Evaluated according to JIS R 1637.
The sheet resistance value of the transparent conductive laminate was measured with respect to what was left in the laboratory immediately after film formation and after 50 days.
(C-6) Durability test 1: Measurement of time-dependent change in sheet resistance after heat resistance test After standing at 80 ° C. in a thermostatic chamber for 200 hours, after returning to room temperature, the same method as in (B-5) is applied. Measured.
(C-7) Durability test 2: Measurement of time-dependent change in sheet resistance value after cold resistance test After leaving it to stand at −20 ° C. freezer for 200 hours and then returning to room temperature, the same method as in (B-5) It was measured.
(C-8) Durability test 3: Measurement of time-dependent change in sheet resistance value after wet heat resistance test After leaving at room temperature in a thermostatic chamber at 60 ° C. and 90% RH for 200 hours, after returning to room temperature (B-5) It measured by the same method.

(C−9)基板の変形評価1:熱オーブンテスト
温度80℃の雰囲気下、約30分間静置して目視でそり・変形を評価した。透明導電性積層体が全く変形・そりがない場合を「○」(良好)、変形・そりがわずかに認められる場合を「△」(可)とし、変形・そりが認められる場合を「×」(不良)と表示する。
(C−10)基板の変形評価2:熱オーブンテスト
温度90℃の雰囲気下、約1時間静置して目視でそり・変形を評価した。透明導電性積層体が全く変形・そりがない場合を「○」(良好)、変形・そりがわずかに認められる場合を「△」(可)とし、変形・そりが認められる場合を「×」(不良)と表示する。
(C-9) Deformation Evaluation of Substrate 1: Thermal Oven Test The substrate was left to stand for about 30 minutes in an atmosphere at a temperature of 80 ° C., and the warpage and deformation were evaluated visually. When the transparent conductive laminate is not deformed or warped at all, “◯” (good), when it is slightly deformed / warped, “△” (possible), and when deformed / warped, “×”. (Bad) is displayed.
(C-10) Deformation Evaluation 2 of Substrate 2: Thermal Oven Test The substrate was left to stand for about 1 hour in an atmosphere at a temperature of 90 ° C., and the warpage and deformation were evaluated visually. When the transparent conductive laminate is not deformed or warped at all, “◯” (good), when it is slightly deformed / warped, “△” (possible), and when deformed / warped, “×”. (Bad) is displayed.

<用いた原材料>
(a)アクリル系樹脂
メタクリル酸メチル96.7質量部、アクリル酸メチル2.1重量部、及びキシレン1重量部からなる単量体混合物に、1,1-ジ-t-ブチルパーオキシ-3,3,3-トリメチルシクロヘキサン0.0294重量部、及びn-オクチルメルカプタン0.28重量部を添加し、均一に混合する。この溶液を内容積10リットルの密閉耐圧反応器に連続的に供給し、攪拌下に平均温度130℃、平均滞留時間2時間で重合した後、反応器に接続された貯層に連続的に送り出し、一定条件下で揮発分を除去し、さらに押出機に連続的に溶融状態で移送し、以下の実施例に使用したアクリル系樹脂である(メタクリル酸メチル/アクリル酸メチル)共重合体ペレットを得た。得られた共重合体のアクリル酸メチル含量は2.0%、重量平均分子量は102,000、ASTM-D1238に準拠して測定した230℃、3.8kg荷重のメルトフローレート値は2.0g/10分であった。
<Raw materials used>
(A) Acrylic resin 1,1-di-t-butylperoxy-3 was added to a monomer mixture consisting of 96.7 parts by weight of methyl methacrylate, 2.1 parts by weight of methyl acrylate, and 1 part by weight of xylene. , 3,3-trimethylcyclohexane 0.0294 parts by weight and n-octyl mercaptan 0.28 parts by weight are added and mixed uniformly. This solution is continuously supplied to a closed pressure-resistant reactor having an internal volume of 10 liters, polymerized with stirring at an average temperature of 130 ° C. and an average residence time of 2 hours, and then continuously sent to a reservoir connected to the reactor. The volatile matter is removed under a certain condition, and further transferred to the extruder in a molten state. The acrylic resin (methyl methacrylate / methyl acrylate) copolymer pellets used in the following examples Obtained. The resulting copolymer had a methyl acrylate content of 2.0%, a weight average molecular weight of 102,000, and a melt flow rate value of 230 g at a load of 3.8 kg measured in accordance with ASTM-D1238 was 2.0 g. / 10 minutes.

(b)耐熱アクリル系樹脂
特公昭63-1964に記載の方法で、メタクリル酸メチル-無水マレイン酸-スチレン共重合体を得た。得られた共重合体の組成は、メタクリル酸メチル74質量%、無水マレイン酸10質量%、スチレン16質量%であり、共重合体メルトフローレート値(ASTM-D1238;230℃、3.8kg荷重)は1.6g/10分であった。
(c)各樹脂透明基板の作成
クロックナー社製 F40の射出成形機を利用し、各樹脂について平板(80×80×2mmt)を作成した。それぞれの樹脂の成形温度は、アクリル系樹脂:260℃、耐熱アクリル系樹脂:270℃、ポリカーボネート樹脂:300℃で行った。
(B) Heat-resistant acrylic resin A methyl methacrylate-maleic anhydride-styrene copolymer was obtained by the method described in JP-B 63-1964. The composition of the obtained copolymer was methyl methacrylate 74% by mass, maleic anhydride 10% by mass, styrene 16% by mass, copolymer melt flow rate value (ASTM-D1238; 230 ° C., 3.8 kg load). ) Was 1.6 g / 10 min.
(C) Preparation of each resin transparent substrate A flat plate (80 × 80 × 2 mmt) was prepared for each resin using an F40 injection molding machine manufactured by Crockner. The molding temperature of each resin was as follows: acrylic resin: 260 ° C., heat-resistant acrylic resin: 270 ° C., polycarbonate resin: 300 ° C.

[実施例1および比較例1]
(b)耐熱アクリル系樹脂、ポリカーボネート樹脂(旭美化成(株)社製、製品名WONDERLITE PC175)を各々射出成形した樹脂透明基板のシート(80×80×2mmt)について、市販のJPC製ハードコート液TKH-36Aに、各シートを浸漬し、引き上げて、紫外線を照射し、ハードコート層をシート表面に形成した。ハードコート層の膜厚はいずれも約5μmに調整した。各樹脂積層体の評価結果を表1に併記した。
[Example 1 and Comparative Example 1]
(B) Commercially available JPC hard coats for resin transparent substrate sheets (80 × 80 × 2 mmt) obtained by injection-molding each of heat-resistant acrylic resin and polycarbonate resin (product name WONDERLITE PC175 manufactured by Asahi Kasei Co., Ltd.) Each sheet was immersed in liquid TKH-36A, pulled up, and irradiated with ultraviolet rays to form a hard coat layer on the sheet surface. The thickness of each hard coat layer was adjusted to about 5 μm. The evaluation results of each resin laminate are also shown in Table 1.

[実施例2および比較例2]
実施例1および比較例1のハードコート層を形成した各樹脂積層体に、さらにSiOx(ただし、1<x≦2)膜をスパッタリング法により製膜した。SiOx膜の膜厚は約30nmに調整した。
アクリル系樹脂積層体の評価結果を表2に併記した。
[Example 2 and Comparative Example 2]
A SiOx (where 1 <x ≦ 2) film was further formed by sputtering on each of the resin laminates on which the hard coat layers of Example 1 and Comparative Example 1 were formed. The thickness of the SiOx film was adjusted to about 30 nm.
The evaluation results of the acrylic resin laminate are also shown in Table 2.

[実施例3および比較例3、4]
実施例1、比較例1のハードコート層を形成した各樹脂積層体のシートおよび(a)アクリル系樹脂のシート上に、DCマグネトロンスパッタリング法により透明導電膜としてITOを製膜し、透明導電性積層体を得た。透明導電膜の膜厚は約400nmに調整した。また、このスパッタリングにおいては、質量比90/10のIn23/SnO2をターゲットとし、10−3Paまで排気し、体積比92.5/7.5のアルゴン/酸素を導入ガスとし、室温下でDCマグネトロンスパッタリングを行った。成膜時間は約10分とした。透明導電性積層体の評価結果を表3に併記した。
[Example 3 and Comparative Examples 3 and 4]
On the sheet of each resin laminate on which the hard coat layer of Example 1 and Comparative Example 1 was formed and (a) an acrylic resin sheet, ITO was formed as a transparent conductive film by a DC magnetron sputtering method, and transparent conductive A laminate was obtained. The film thickness of the transparent conductive film was adjusted to about 400 nm. In this sputtering, In 2 O 3 / SnO 2 with a mass ratio of 90/10 is used as a target, exhausted to 10 −3 Pa, argon / oxygen with a volume ratio of 92.5 / 7.5 is used as an introduction gas, DC magnetron sputtering was performed at room temperature. The film formation time was about 10 minutes. The evaluation results of the transparent conductive laminate are also shown in Table 3.

[実施例4]
実施例1で得られた各樹脂積層体のシート上に、DCマグネトロンスパッタリング法により透明導電膜としてITOを製膜し、透明導電性積層体を得た。透明導電膜の膜厚は約1200nmに調整した。また、このスパッタリングにおいては、質量比90/10のIn23/SnO2をターゲットとし、10−3Paまで排気し、体積比92.5/7.5のアルゴン/酸素を導入ガスとし、室温下でDCマグネトロンスパッタリングを行った。成膜時間は約30分とした。
耐熱アクリル系樹脂積層体に製膜した透明導電性積層体の全光線透過率は83.5%、シート抵抗値は約55Ω/□であった。
[Example 4]
On the sheet | seat of each resin laminated body obtained in Example 1, ITO was formed into a film as a transparent conductive film by DC magnetron sputtering method, and the transparent conductive laminated body was obtained. The film thickness of the transparent conductive film was adjusted to about 1200 nm. In this sputtering, In 2 O 3 / SnO 2 with a mass ratio of 90/10 is used as a target, exhausted to 10 −3 Pa, argon / oxygen with a volume ratio of 92.5 / 7.5 is used as an introduction gas, DC magnetron sputtering was performed at room temperature. The film formation time was about 30 minutes.
The transparent conductive laminate formed into a heat-resistant acrylic resin laminate had a total light transmittance of 83.5% and a sheet resistance value of about 55Ω / □.

[実施例5および比較例5]
実施例2および比較例2で得られた各樹脂積層体のシート上に、DCマグネトロンスパッタリング法により透明導電膜としてITOを製膜し、透明導電性積層体を得た。透明導電膜の膜厚は約400nmに調整した。また、このスパッタリングにおいては、質量比90/10のIn23/SnO2をターゲットとし、10−3Paまで排気し、体積比92.5/7.5のアルゴン/酸素を導入ガスとし、室温下でDCマグネトロンスパッタリングを行った。成膜時間は約10分とした。透明導電性積層体の評価結果を表4に併記した。
[Example 5 and Comparative Example 5]
On the sheet of each resin laminate obtained in Example 2 and Comparative Example 2, ITO was formed as a transparent conductive film by a DC magnetron sputtering method to obtain a transparent conductive laminate. The film thickness of the transparent conductive film was adjusted to about 400 nm. In this sputtering, In 2 O 3 / SnO 2 with a mass ratio of 90/10 is used as a target, exhausted to 10 −3 Pa, argon / oxygen with a volume ratio of 92.5 / 7.5 is used as an introduction gas, DC magnetron sputtering was performed at room temperature. The film formation time was about 10 minutes. The evaluation results of the transparent conductive laminate are also shown in Table 4.

Figure 2008094064
Figure 2008094064

Figure 2008094064
Figure 2008094064

Figure 2008094064
Figure 2008094064

Figure 2008094064
Figure 2008094064

本発明の耐熱性アクリル系樹脂積層体は、表面硬度が非常に良好であり、透明導電膜を形成した透明導電性積層体、すなわち光学特性、耐熱性に優れた透明導電性積層体は、太陽電池の光電変換素子の窓電極、電磁シールドの電磁遮蔽膜、透明電波吸収体、透明タッチパネル等の入力装置の電極、液晶表示体,EL(エレクトロルミネセンス)発光体,EC(エレクトロクロミック)表示体等の透明電極などの基板を提供することが可能となる。   The heat-resistant acrylic resin laminate of the present invention has very good surface hardness, and a transparent conductive laminate having a transparent conductive film, that is, a transparent conductive laminate excellent in optical properties and heat resistance is Battery photoelectric conversion element window electrode, electromagnetic shielding electromagnetic shielding film, transparent electromagnetic wave absorber, electrode of input device such as transparent touch panel, liquid crystal display, EL (electroluminescence) illuminant, EC (electrochromic) display It is possible to provide a substrate such as a transparent electrode.

Claims (8)

メタクリル酸メチル単位40〜90質量%、無水マレイン酸単位5〜20質量%、及び芳香族ビニル化合物単位5〜40質量%を共重合して得られる耐熱性アクリル系樹脂透明基板の片面もしくは両面に、ハードコート処理を1種以上施すことを特徴とするハードコート層を被覆し、その少なくとも一表面上にスズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなる透明導電膜形成用耐熱性アクリル系樹脂積層体。   On one or both sides of a heat-resistant acrylic resin transparent substrate obtained by copolymerizing 40 to 90% by mass of methyl methacrylate units, 5 to 20% by mass of maleic anhydride units and 5 to 40% by mass of aromatic vinyl compound units A transparent conductive film comprising an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium on at least one surface thereof, wherein the hard coat layer is coated with at least one hard coat treatment. Heat-resistant acrylic resin laminate for film formation. メタクリル酸メチル単位40〜90質量%、無水マレイン酸単位5〜20質量%、及び芳香族ビニル化合物単位5〜40質量%を共重合して得られる耐熱性アクリル系樹脂透明基板の片面もしくは両面に、無機バリア層を1種以上有していることを特徴とし、さらにその少なくとも一表面上にスズ,ゲルマニウム,亜鉛,ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなる透明導電膜形成用耐熱性アクリル系樹脂積層体。   On one or both sides of a heat-resistant acrylic resin transparent substrate obtained by copolymerizing 40 to 90% by mass of methyl methacrylate units, 5 to 20% by mass of maleic anhydride units and 5 to 40% by mass of aromatic vinyl compound units For forming a transparent conductive film comprising an indium oxide film containing at least one of tin, germanium, zinc, gallium and magnesium on at least one surface thereof, characterized by having at least one inorganic barrier layer Heat-resistant acrylic resin laminate. 該耐熱性アクリル系樹脂透明基板の片面もしくは両面の表面に、
A.ハードコート層
B.無機バリア層
で形成された多層膜を有し、さらにその少なくとも一表面上にスズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなることを特徴とする請求項1または2に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。
On one or both surfaces of the heat-resistant acrylic resin transparent substrate,
A. Hard coat layer B. 2. A multilayer film formed of an inorganic barrier layer, and further comprising an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium on at least one surface thereof. 2. A heat-resistant acrylic resin laminate for forming a transparent conductive film according to 2.
アクリル系樹脂透明基板の片面もしくは両面の表面に、
A.ハードコート層からなる第一層
B.無機バリア層からなる第二層
の順で形成された多層膜を有し、さらにその少なくとも一表面上にスズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜からなることを特徴とする請求項3に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。
On one or both surfaces of the acrylic resin transparent substrate,
A. First layer consisting of a hard coat layer. It has a multilayer film formed in the order of the second layer composed of an inorganic barrier layer, and further comprises an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium on at least one surface thereof. The heat-resistant acrylic resin laminate for forming a transparent conductive film according to claim 3.
無機バリア層が、酸化ケイ素、窒化ケイ素、酸化窒化ケイ素又はこれらの2種以上からなる混合材料の薄膜である、請求項2〜請求項4のいずれかに記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。   The heat-resistant acrylic for forming a transparent conductive film according to any one of claims 2 to 4, wherein the inorganic barrier layer is a thin film of silicon oxide, silicon nitride, silicon oxynitride, or a mixed material composed of two or more thereof. -Based resin laminate. 無機バリア層が酸化ケイ素であり、SiOx(ただし、1<x≦2)の膜である、請求項5に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。   The heat-resistant acrylic resin laminate for forming a transparent conductive film according to claim 5, wherein the inorganic barrier layer is silicon oxide and is a film of SiOx (where 1 <x ≦ 2). 該耐熱性アクリル系樹脂透明基板がフィルム、もしくはシートであることを特徴とする請求項1〜請求項6のいずれかに記載の透明導電膜形成用耐熱性アクリル系樹脂積層体。   The heat-resistant acrylic resin laminate for forming a transparent conductive film according to any one of claims 1 to 6, wherein the heat-resistant acrylic resin transparent substrate is a film or a sheet. 全光線透過率が70%以上、シート抵抗値100Ω/□以下であることを特徴とする請求項1〜請求項7に記載の透明導電膜形成用耐熱性アクリル系樹脂積層体のディスプレイ用透明電極への使用。   The transparent electrode for display of a heat-resistant acrylic resin laminate for forming a transparent conductive film according to claim 1, wherein the total light transmittance is 70% or more and a sheet resistance value is 100Ω / □ or less. Use for.
JP2006281873A 2006-10-16 2006-10-16 Heat-resistant acrylic resin laminate used for forming transparent conductive film Pending JP2008094064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281873A JP2008094064A (en) 2006-10-16 2006-10-16 Heat-resistant acrylic resin laminate used for forming transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281873A JP2008094064A (en) 2006-10-16 2006-10-16 Heat-resistant acrylic resin laminate used for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JP2008094064A true JP2008094064A (en) 2008-04-24
JP2008094064A5 JP2008094064A5 (en) 2009-12-03

Family

ID=39377423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281873A Pending JP2008094064A (en) 2006-10-16 2006-10-16 Heat-resistant acrylic resin laminate used for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JP2008094064A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123178A1 (en) 2008-03-31 2009-10-08 ユニ・チャーム株式会社 Manufacturing method for absorbent products and manufacturing device for absorbent products
JP2010271509A (en) * 2009-05-21 2010-12-02 Mitsubishi Gas Chemical Co Inc Light-transmissive electromagnetic wave shield material having curved face excellent in mitigating property on interference fringe of light
WO2013081106A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Transparent conductive film
WO2013108614A1 (en) * 2012-01-20 2013-07-25 東洋インキScホールディングス株式会社 Steam barrier resin, steam barrier coating agent, steam barrier film, and steam barrier laminate
TWI488747B (en) * 2009-09-30 2015-06-21 Dainippon Printing Co Ltd Optical laminates and optical laminates
JP2019003900A (en) * 2017-06-19 2019-01-10 学校法人 工学院大学 Transparent conductive film, transparent substrate with transparent conductive film, method for producing transparent substrate with transparent conductive film, and touch panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631964A (en) * 1986-06-20 1988-01-06 Fuji Photo Film Co Ltd Medium material for electrophoresis
JPH11216794A (en) * 1998-02-02 1999-08-10 Teijin Ltd Base for transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631964A (en) * 1986-06-20 1988-01-06 Fuji Photo Film Co Ltd Medium material for electrophoresis
JPH11216794A (en) * 1998-02-02 1999-08-10 Teijin Ltd Base for transparent conductive film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123178A1 (en) 2008-03-31 2009-10-08 ユニ・チャーム株式会社 Manufacturing method for absorbent products and manufacturing device for absorbent products
JP2010271509A (en) * 2009-05-21 2010-12-02 Mitsubishi Gas Chemical Co Inc Light-transmissive electromagnetic wave shield material having curved face excellent in mitigating property on interference fringe of light
TWI488747B (en) * 2009-09-30 2015-06-21 Dainippon Printing Co Ltd Optical laminates and optical laminates
WO2013081106A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Transparent conductive film
WO2013108614A1 (en) * 2012-01-20 2013-07-25 東洋インキScホールディングス株式会社 Steam barrier resin, steam barrier coating agent, steam barrier film, and steam barrier laminate
CN104080820A (en) * 2012-01-20 2014-10-01 东洋油墨Sc控股株式会社 Steam barrier resin, steam barrier coating agent, steam barrier film, and steam barrier laminate
JPWO2013108614A1 (en) * 2012-01-20 2015-05-11 東洋インキScホールディングス株式会社 Water vapor barrier resin, water vapor barrier coating agent, water vapor barrier film, and water vapor barrier laminate
JP2019003900A (en) * 2017-06-19 2019-01-10 学校法人 工学院大学 Transparent conductive film, transparent substrate with transparent conductive film, method for producing transparent substrate with transparent conductive film, and touch panel

Similar Documents

Publication Publication Date Title
JP5439717B2 (en) Transparent conductive film
KR20130135155A (en) Hard coating film
JP6482837B2 (en) Resin laminate and scratch-resistant resin laminate using the same
KR20090102779A (en) Fluidity improving agent, aromatic polycarbonate resin composition, and molded article thereof
KR101617387B1 (en) Coating composition and plastic film prepared therefrom
JP2008094063A (en) Metal oxide laminate
KR102066759B1 (en) Hard coating composition and composition for forming high refractive index anti-blocking layer
JP2008094064A (en) Heat-resistant acrylic resin laminate used for forming transparent conductive film
JP2007230208A (en) Electroconductive transparent film and its use
WO2005095098A1 (en) Thin film laminate
JP5230011B2 (en) Transparent plastic substrate
JP2007113110A (en) Zinc oxide transparent conductive multilayer body and method for producing the same
JP2008094062A (en) Metal oxide laminated substrate
JP2012031351A (en) Method for manufacturing acrylic resin plate, acrylic resin plate, acrylic resin laminate, and display device
JP2008100368A (en) Zinc oxide based transparent conductive laminate and its manufacturing method
JP2016122097A (en) Cover for display device
WO2012029905A1 (en) Hard coat film and front surface protective plate
JP2012052023A (en) Optical film
JP2007113109A (en) Zinc oxide transparent conductive multilayer body by ion-plating process and method for producing the same
JP2000062074A (en) Conductive plastic laminate
WO2016199828A1 (en) Molded body
JP3666222B2 (en) Plastic laminate
JP6435597B2 (en) Transparent conductive film and method for producing the same
JP3482815B2 (en) Transparent conductive sheet
JP5324023B2 (en) Display window protection sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920