JP2008088392A - Method for producing polyolefin microporous film - Google Patents

Method for producing polyolefin microporous film Download PDF

Info

Publication number
JP2008088392A
JP2008088392A JP2006301108A JP2006301108A JP2008088392A JP 2008088392 A JP2008088392 A JP 2008088392A JP 2006301108 A JP2006301108 A JP 2006301108A JP 2006301108 A JP2006301108 A JP 2006301108A JP 2008088392 A JP2008088392 A JP 2008088392A
Authority
JP
Japan
Prior art keywords
stretching
extraction
microporous membrane
plasticizer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006301108A
Other languages
Japanese (ja)
Other versions
JP4713441B2 (en
Inventor
Chang Ho Seo
暢浩・徐
Hae Sang Jeun
海尚・全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Materials Korea Inc
Original Assignee
Toray Saehan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Saehan Inc filed Critical Toray Saehan Inc
Publication of JP2008088392A publication Critical patent/JP2008088392A/en
Application granted granted Critical
Publication of JP4713441B2 publication Critical patent/JP4713441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means of improving dimensional stability at high temperatures and freely regulating permeation performances without deteriorating strength in a method for producing a polyolefin microporous film. <P>SOLUTION: A method, by which stretching before extraction and stretching after the extraction are used in combination and stretching processes in the longitudinal direction and width direction are carried out in the stretching after the extraction in separate steps, is adopted in the method for producing the polyolefin microporous film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば各種の円筒型電池、角型電池、薄型電池、ボタン型電池、電解コンデンサー等の電池材料に使用されるセパレーターを製造するにあたって好適な手段を提供するものである。   The present invention provides a suitable means for manufacturing separators used for battery materials such as various cylindrical batteries, square batteries, thin batteries, button batteries, and electrolytic capacitors.

微多孔膜は、浄水器等の濾材、通気性衣料用途、電池用セパレーターや電解コンデンサー用セパレーター等の材料として従来より使用されてきた。近年では、特にリチウムイオン2次電池用途の需要が伸びており、電池の高エネルギー密度化に伴って、セパレーターにも高性能が要求されるようになった。   Microporous membranes have been used in the past as materials for filter media such as water purifiers, breathable apparel, battery separators and electrolytic capacitor separators. In recent years, demand for lithium ion secondary battery applications has been increasing, and as the energy density of batteries has increased, separators have also been required to have high performance.

リチウムイオン2次電池には、電解液や正負極活物質等の薬剤が使用されているので、セパレーターの材質は、耐薬品性を考慮して、ポリオレフィン系ポリマーが一般に使用されており、特に安価なポリエチレンやポリプロピレンが使用されている。リチウムイオン2次電池等の非水電解液系電池用途のセパレーターに対しては、電極短絡防止機能、高イオン透過性、電池捲回時の組立加工性、電池安全性、および信頼性等が従来より基本性能として要求されてきた。更に近年では、多様化する電池グレードのニーズに応えるべく、孔構造や気孔率等の透過性能を自在に調節する技術や、高温における寸法安定性を調節できる技術の開発が急務となっている。   Since lithium ion secondary batteries use chemicals such as electrolytes and positive and negative electrode active materials, the separator material is generally a polyolefin-based polymer in consideration of chemical resistance, and is particularly inexpensive. Polyethylene and polypropylene are used. For separators for non-aqueous electrolyte batteries such as lithium ion secondary batteries, electrode short-circuit prevention, high ion permeability, assembly workability during battery winding, battery safety, reliability, etc. are conventional. It has been required as a basic performance. Furthermore, in recent years, in order to meet the diversifying needs of battery grades, there is an urgent need to develop a technique for freely adjusting the permeation performance such as the pore structure and porosity and a technique for adjusting the dimensional stability at high temperatures.

電極短絡防止機能とは、セパレーターが正負両極間に介在して内部短絡を防止する隔壁の役割を果たすことを意味する。内部短絡を防止するためには、セパレーターの高強度、小孔径、適当な膜厚が必要である。2次電池は、充放電によって内部の電極が膨張するため、場合によっては、数十kg/cm2 もの圧力がセパレーターにかかってしまうことがある。また、電極表面は平滑であるとは限らず、種々のサイズの活物質粒子が突起物となっている。このような場合にも、破断しない高強度がセパレーターには要求されている。セパレーターが角型電池や薄型電池用途として使用される場合には、電極とセパレーターを積層捲回したコイルを圧縮してケーシングするため、高強度に対する要求は更に強いと言える。 The electrode short-circuit prevention function means that a separator serves as a partition wall interposed between positive and negative electrodes to prevent an internal short circuit. In order to prevent an internal short circuit, the separator must have high strength, a small pore diameter, and an appropriate film thickness. In the secondary battery, the internal electrode expands due to charging / discharging, and in some cases, a pressure of several tens of kg / cm 2 may be applied to the separator. Further, the electrode surface is not necessarily smooth, and active material particles of various sizes are protrusions. Even in such a case, the separator is required to have high strength that does not break. When the separator is used as a prismatic battery or a thin battery, the coil with the electrode and separator laminated and wound is compressed and casing, so that the demand for high strength can be said to be even stronger.

イオン透過性とは、セパレーターが、活物質粒子は透過させず、イオンや電解液のみを透過させる能力を意味する。一般には、オーム損を低減し放電効率を高めるために、高気孔率、低透気度、低電気抵抗等の性能が要求される。しかし近年では、大電流放電を必要としない用途や、電池安全性に対する要求が特に高い用途に対しては、前記高透過性とは対局をなすような緻密なセパレーターが要求されるケースもある。したがって、いかなる要求に対しても、透過性を自在に調節できる柔軟な成形技術を開発することが有用である。   Ion permeability means the ability of the separator to transmit only ions and electrolyte without transmitting active material particles. In general, in order to reduce ohmic loss and increase discharge efficiency, performance such as high porosity, low air permeability, and low electrical resistance is required. However, in recent years, for applications that do not require large current discharge, or for applications that require particularly high battery safety, there is a case in which a dense separator that matches the high permeability is required. Therefore, it is useful to develop a flexible molding technique that can freely adjust the permeability for any requirement.

組立加工性としては、セパレーターに、機械方向に一定の張力をかけて電極とともに捲回する際、セパレーターが機械方向に伸びないことや、巾方向に寸法変化しないことが要求され、高弾性率が必要となる。電池安全性とは、電池が外部短絡や過充電等のトラブルにより発熱昇温した際に、セパレーターが自動的に電流を遮断して発熱を止めることにより、電池の暴走や爆発を抑える機能のことを意味する。電池内部の温度が、セパレーターを構成する樹脂の融点近傍まで昇温すると、セパレーターは、熱流動ないし熱変形や熱収縮により細孔を閉塞するか、あるいは電極表面に樹脂が吸着されて絶縁被膜を形成することにより、いわゆるシャットダウン機能を発現する。この機能を発現する温度が低いほど、低温で電流を遮断して発熱を抑える能力があるため、望ましい。 また、シャットダウン状態にある温度領域が広いほど、電流を遮断している時間が長くなるため、より激しい発熱による温度上昇にも耐えることができ望ましい。   As for assembly workability, when the separator is wound with an electrode by applying a constant tension in the machine direction, the separator is required not to extend in the machine direction or to change in dimension in the width direction, and a high elastic modulus is required. Necessary. Battery safety is a function that suppresses battery runaway and explosion by automatically shutting off the current when the battery heats up due to trouble such as external short circuit or overcharge. Means. When the temperature inside the battery rises to the vicinity of the melting point of the resin constituting the separator, the separator closes the pores due to thermal flow, thermal deformation, or thermal contraction, or the resin is adsorbed on the electrode surface to form an insulating coating. By forming, a so-called shutdown function is exhibited. The lower the temperature at which this function is manifested, the more desirable it is because it has the ability to cut off current at low temperatures to suppress heat generation. Further, the wider the temperature range in the shutdown state, the longer the time during which the current is cut off. Therefore, it is desirable that it can withstand the temperature rise due to more intense heat generation.

高温における寸法安定性とは、電池製造時の何らかの高温処理や、トラブルによって電池内部が昇温した場合を想定して、セパレーターが熱収縮等により寸法変形する程度を評価するものである。前者の場合にセパレーターが幅方向に収縮変形すると電極が露出して内部短絡するため、高温における幅方向の寸法安定性は重要である。後者の場合のように、電池暴走時に幅方向の寸法安定性が維持できないと、シャットダウン機能さえ無意味となり、極めて深刻な問題である。このように、シャットダウン機能を損なうことなく、かつ高温における使用に耐えうるセパレーターを製造する技術は確立されていない。
更に、多様化する電池の用途から、セパレーターに求められる特性も多様化しているが、従来技術では透過性能が比較的低い領域から高い領域までの広範囲に渡って調節することは不可能であった。
The dimensional stability at high temperature is an evaluation of the degree to which the separator undergoes dimensional deformation due to thermal contraction or the like, assuming that the temperature inside the battery has risen due to some high-temperature treatment during manufacturing of the battery or due to trouble. In the former case, when the separator shrinks and deforms in the width direction, the electrodes are exposed and short-circuited internally, so that dimensional stability in the width direction at high temperatures is important. If the dimensional stability in the width direction cannot be maintained during battery runaway as in the latter case, even the shutdown function becomes meaningless, which is a very serious problem. Thus, no technology has been established for producing a separator that can withstand use at high temperatures without impairing the shutdown function.
Furthermore, the characteristics required of separators are diversifying due to diversifying battery applications, but it has been impossible to adjust over a wide range from the relatively low to high permeation performance in the prior art. .

微多孔膜の製造技術において、ポリマーと可塑剤よりなる組成物から、相分離プロセスにより微多孔膜前駆体を形成せしめ、これに可塑剤抽出除去のプロセスや延伸薄膜化のプロセスを適用して微多孔膜とする技術は公知である。このような公知技術の中で、延伸を行う段階を抽出プロセスの前または後に実施するかによって、それぞれ抽出前延伸、または抽出後延伸と呼ぶものとする。   In microporous membrane manufacturing technology, a microporous membrane precursor is formed from a composition consisting of a polymer and a plasticizer by a phase separation process, and a plasticizer extraction removal process and a stretched thinning process are applied to this. A technique for forming a porous film is known. Among such known techniques, the stretching step is referred to as pre-extraction stretching or post-extraction stretching, respectively, depending on whether the stage of stretching is performed before or after the extraction process.

特開平06-240036号公報は、超高分子量成分を含有するポリオレフィン微多孔膜の透過性能の向上や孔径制御を目的として、抽出前延伸と抽出後延伸を組み合わせた技術を開示しているが、横方向のみの延伸の提案であり、高温における幅方向の寸法安定性に問題があった。また、縦方向の強度が不足する問題もあった。   JP 06-240036 discloses a technique combining stretching before extraction and stretching after extraction for the purpose of improving the permeation performance and pore size control of a polyolefin microporous membrane containing an ultra-high molecular weight component. This is a proposal for stretching only in the transverse direction, and there was a problem in dimensional stability in the width direction at high temperatures. There is also a problem that the strength in the vertical direction is insufficient.

特開平11-060789号公報は、横方向の延伸に加え、同時二軸延伸方式を提案しているが、同時二軸延伸方式では、幅広い延伸倍率の変更が不可能であり、調整可能な微多孔膜の透過性能の範囲は限定されたものであった。   Japanese Patent Application Laid-Open No. 11-060789 proposes a simultaneous biaxial stretching method in addition to the stretching in the transverse direction. However, the simultaneous biaxial stretching method does not allow a wide range of stretching ratios to be changed and is adjustable. The range of the permeation performance of the porous membrane was limited.

従来の微多孔膜の製造技術においては、微多孔膜の強度を損なうことなく、透過性能を自在に調節することは困難であった。すなわち、抽出前延伸のみによるプロセスの場合、効率的に配向を付与し強度を高めることが可能であるが、透過性能の点で自由度がないという欠点があった。一方、抽出後延伸のみによるプロセスの場合、延伸によって界面破壊が支配的に進むので、透過性能が高い微多孔膜を得ることはできるが、透過性能を調節することは困難であり、また強度的にも低いという欠点があった。   In the conventional microporous membrane manufacturing technology, it is difficult to freely adjust the permeation performance without impairing the strength of the microporous membrane. That is, in the case of a process using only pre-extraction stretching, it is possible to efficiently impart orientation and increase strength, but there is a drawback that there is no degree of freedom in terms of transmission performance. On the other hand, in the case of a process using only stretching after extraction, the interface fracture is dominantly progressed by stretching, so that it is possible to obtain a microporous membrane with high permeation performance, but it is difficult to adjust the permeation performance, and the strength However, there was a drawback of being low.

また、特開平06-240036号公報に開示されているように、抽出前延伸と抽出後横方向延伸を併用すれば透過性能を向上することは可能であるが、高温における幅方向の寸法安定性を改良して、熱収縮しにくい微多孔膜を得ることは不可能であった。
更に特開平11-060789号公報に開示されているように、抽出前延伸と抽出後同時二軸延伸を併用すれば透過性能を向上することと、高温における幅方向の寸法安定性を改良することが可能であるが、調整可能な微多孔膜の透過性能の範囲が限定されたものであった。
かくして、当業界においては、透過性能が比較的低い領域から高い領域までの広範囲に渡って調節でき、なおかつ高温における寸法安定性に優れた微多孔膜を得る技術の確立が課題として残されていた。
In addition, as disclosed in JP 06-240036 A, it is possible to improve the permeation performance by using the pre-extraction stretching and the post-extraction lateral stretching in combination, but the dimensional stability in the width direction at high temperatures. Thus, it was impossible to obtain a microporous film that hardly heat shrinks.
Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 11-060789, if pre-extraction stretching and post-extraction simultaneous biaxial stretching are used in combination, the permeation performance is improved and the dimensional stability in the width direction at high temperatures is improved. However, the range of permeation performance of the adjustable microporous membrane was limited.
Thus, the establishment of a technology for obtaining a microporous membrane that can be adjusted over a wide range from a relatively low region to a high region and has excellent dimensional stability at a high temperature has been left as a problem in the industry. .

本発明者は、前記課題を解決するために鋭意研究した結果、抽出前延伸と抽出後延伸を併用し、更に熱処理を施すことにより、強度を損なうことなく、自在に透過性能を調節でき、同時に高温における寸法安定性に優れたポリオレフィン微多孔膜を製造する方法を見出し、本発明をなすに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventor has made it possible to freely adjust the permeation performance without sacrificing the strength by using both pre-extraction stretching and post-extraction stretching in combination, and further performing heat treatment. The inventors have found a method for producing a polyolefin microporous membrane having excellent dimensional stability at high temperatures, and have made the present invention.

特開昭60−089333号公報JP 60-089333 A 特開昭60−228122号公報JP 60-228122 A 特開昭60−242035号公報Japanese Patent Laid-Open No. 60-242035 特開昭62−132943号公報Japanese Patent Laid-Open No. 62-132944 特開平06−016862号公報Japanese Patent Laid-Open No. 06-016862 特開平06−240036号公報Japanese Patent Laid-Open No. 06-240036 特開平06−336535号公報Japanese Patent Laid-Open No. 06-336535 特開平11−060789号公報Japanese Patent Laid-Open No. 11-060789 韓国特許第371390号明細書Korean Patent No. 371390 Specification 韓国特許第409019号明細書Korean Patent No. 409019 韓国特許第263919号明細書Korean Patent No. 263919 Specification 韓国公開特許第2000−51312号明細書Korean Open Patent 2000-51312 Specification 韓国公開特許第2000−51313号明細書Korean Published Patent No. 2000-51313

本発明の目的は、強度を損なうことなく、自在に透過性能を調節できると共に、高温における寸法安定性に優れたポリオレフィン微多孔膜の製造方法を提供することである。
また、本発明の目的は前記製造方法によって製造された、リチウムイオン2次電池用セパレーターで物性が最適化された、ポリオレフィン微多孔膜を提供することである。
An object of the present invention is to provide a method for producing a polyolefin microporous membrane that can freely adjust the permeation performance without impairing the strength and is excellent in dimensional stability at high temperatures.
Another object of the present invention is to provide a microporous polyolefin membrane manufactured by the above manufacturing method and having optimized properties with a separator for a lithium ion secondary battery.

本発明は、ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押し出して冷却固化させシート状に成形し、少なくとも1軸方向に少なくとも1回の延伸を行った後、前記可塑剤を抽出し、可塑剤抽出後に長さ方向に延伸を行うことを特徴とするポリオレフィン微多孔膜の製造方法に関する。   In the present invention, a composition comprising a polyolefin resin and a plasticizer is melt-kneaded, extruded, cooled and solidified, formed into a sheet shape, stretched at least once in at least one axial direction, and then the plasticizer is extracted. Further, the present invention relates to a method for producing a polyolefin microporous film, which is stretched in the length direction after extraction of a plasticizer.

ポリアクリレートリオレフィン樹脂と可塑剤を溶融混練する第一の方法は、ポリオレフィン樹脂を押出機等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更にポリオレフィン樹脂と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法である。投入するポリオレフィン樹脂の形態は、粉末状、顆粒状、ペレット状の何れでも良い。また、このような方法によって混練する場合は、可塑剤の形態は常温液体であることが好ましい。押出機としては、単軸スクリュー式押出機、二軸異方向スクリュー式押出機、二軸同方向スクリュー式押出機等が使用できる。   The first method of melting and kneading a polyacrylate-reolefin resin and a plasticizer is to introduce a polyolefin resin into a resin kneading apparatus such as an extruder, introduce a plasticizer at an arbitrary ratio while heating and melting the resin, and further polyolefin This is a method of obtaining a uniform solution by kneading a composition comprising a resin and a plasticizer. The polyolefin resin to be introduced may be in any form of powder, granules, and pellets. Moreover, when knead | mixing by such a method, it is preferable that the form of a plasticizer is a normal temperature liquid. As an extruder, a single screw type extruder, a biaxial different direction screw type extruder, a biaxial same direction screw type extruder, etc. can be used.

ポリオレフィン樹脂と可塑剤を溶融混練する第二の方法は、樹脂と可塑剤を予め常温にて混合して分散させ、得られた混合組成物を押出機等の樹脂混練装置に投入して混練することにより、均一溶液を得る方法である。投入する混合組成物の形態については、可塑剤が常温液体である場合はスラリー状とし、可塑剤が常温固体である場合は粉末状等とすれば良い。第一、第二の方法においては、何れもポリオレフィンと可塑剤とを押出機等の混練装置内で混練し均一溶液を得るようにすることが肝要であり、これにより生産性を良くすることができる。   The second method of melt-kneading a polyolefin resin and a plasticizer is to mix and disperse the resin and the plasticizer at room temperature in advance, and put the obtained mixed composition into a resin kneading apparatus such as an extruder and knead. This is a method for obtaining a uniform solution. The form of the mixed composition to be added may be a slurry when the plasticizer is a liquid at room temperature, and may be a powder or the like when the plasticizer is a solid at room temperature. In the first and second methods, it is important to obtain a uniform solution by kneading polyolefin and a plasticizer in a kneading apparatus such as an extruder, thereby improving productivity. it can.

押し出して冷却固化させシート状の微多孔膜前駆体を製造する第一の方法は、樹脂と可塑剤の均一溶液をTダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行う。用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。   The first method of producing a sheet-like microporous membrane precursor by extruding and cooling and solidifying is to extrude a uniform solution of resin and plasticizer into a sheet form via a T-die, etc. It is carried out by cooling to a temperature well below the crystallization temperature. As the heat conductor to be used, metal, water, air, or the plasticizer itself can be used. In particular, a method of cooling by contacting with a metal roll is most preferable because of high heat conduction efficiency.

シート状の微多孔膜前駆体を製造する第二の方法は、樹脂と可塑剤の均一溶液をサーキュラーダイ等を介して筒状に押し出し、続いてシート状に加工する方法である。   The second method for producing a sheet-like microporous membrane precursor is a method in which a uniform solution of a resin and a plasticizer is extruded into a cylindrical shape via a circular die and then processed into a sheet shape.

可塑剤を抽出する方法は、抽出溶剤で満たされた槽の中に連続的に微多孔膜を送り込み、可塑剤を除去するのに充分な時間をかけて槽中に浸漬し、しかる後に付着した溶剤を乾燥させることにより行う。この際、槽内部を多段分割することにより濃度差がついた各槽に順次微多孔膜を送り込む多段法や、微多孔膜の走行方向に対し逆方向から抽出溶剤を供給して濃度勾配をつけるための向流法のような公知の手段を適用すると、抽出効率が高められ好ましい。可塑剤を微多孔膜から実質的に除去することが肝要である。また、抽出溶剤の温度を、溶剤の沸点未満の範囲内で加温すると、可塑剤と溶剤との拡散を促進することができるので抽出効率を高められ更に好ましい。   The method for extracting the plasticizer is to continuously feed the microporous membrane into a tank filled with the extraction solvent, soak it in the tank for a sufficient time to remove the plasticizer, and then adhere to it. This is done by drying the solvent. At this time, the inside of the tank is divided into multiple stages, and a multistage method in which the microporous membrane is sequentially fed to each tank having a concentration difference, or an extraction solvent is supplied from the opposite direction to the traveling direction of the microporous film to create a concentration gradient. Therefore, it is preferable to apply a known means such as a countercurrent method for increasing the extraction efficiency. It is important to substantially remove the plasticizer from the microporous membrane. Further, it is more preferable to heat the extraction solvent within the range below the boiling point of the solvent, since the diffusion between the plasticizer and the solvent can be promoted, and the extraction efficiency is increased.

本発明の製造方法においては、抽出工程の前に行う延伸を抽出前延伸と呼び、少なくとも1軸方向に、少なくとも1回の延伸操作が必須である。少なくとも1軸方向とは、機械方向1軸延伸、幅方向1軸延伸、同時2軸延伸、及び逐次2軸延伸を指すものである。また、少なくとも1回の延伸操作とは、1段延伸、多段延伸、多数回延伸のことを指す。
本発明における抽出前延伸は、可塑剤が微多孔膜の微孔内部、結晶間隙、及び非晶部に高次に分散された状態で延伸するので、可塑化効果により延伸性が良くなるとともに、微多孔膜の気孔率の増大を抑制する効果があり、高倍率延伸が実現できるため高強度化が可能である。さらに高強度を実現するためには2軸延伸が好ましく、特に同時2軸延伸が工程の簡略化ができるので最も好ましい。
In the production method of the present invention, stretching performed before the extraction step is referred to as pre-extraction stretching, and at least one stretching operation is essential in at least one axial direction. The at least uniaxial direction refers to machine direction uniaxial stretching, width direction uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching. Further, at least one stretching operation refers to one-stage stretching, multi-stage stretching, and multi-stage stretching.
In the stretch before extraction in the present invention, the plasticizer is stretched in a highly dispersed state in the micropores of the microporous membrane, in the crystal gaps, and in the amorphous part. It has the effect of suppressing the increase in the porosity of the microporous membrane, and can achieve high strength because high-stretching can be realized. Furthermore, biaxial stretching is preferable for achieving high strength, and simultaneous biaxial stretching is most preferable because the process can be simplified.

延伸温度は、ポリオレフィン微多孔膜の融点Tmより50℃低い温度以上Tm未満が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tmより40℃低い温度以上Tmより5℃低い温度未満で行う。延伸温度がTmより50℃低い温度未満であると延伸性が悪くなり、また、延伸後の歪み成分が残り、高温における寸法安定性が低下するので好ましくない。延伸温度がTm以上であると、微多孔膜が融解し透過性能を損なうので好ましくない。   The stretching temperature is preferably 50 ° C. lower than the melting point Tm of the polyolefin microporous membrane and less than Tm, more preferably 40 ° C. lower than the melting point Tm of the polyolefin microporous membrane and less than 5 ° C. lower than Tm. If the stretching temperature is less than 50 ° C. lower than Tm, the stretchability is deteriorated, the strain component after stretching remains, and the dimensional stability at high temperature is lowered, which is not preferable. If the stretching temperature is Tm or higher, the microporous membrane melts and impairs the permeation performance, which is not preferable.

延伸倍率は任意の倍率に設定できるが、1軸方向の倍率で好ましくは2〜20倍、さらに好ましくは4〜10倍、また、2軸方向の面積倍率で好ましくは2〜400倍、さらに好ましくは4〜100倍である。   The draw ratio can be set to an arbitrary ratio, but it is preferably 2 to 20 times, more preferably 4 to 10 times in terms of the uniaxial direction, and preferably 2 to 400 times, more preferably in terms of the area ratio in the biaxial direction. Is 4 to 100 times.

本発明の製造方法においては、抽出工程の後に行う延伸を抽出後延伸と呼び、長さ方向に延伸する。また、抽出工程の後に行う延伸において、前述の長さ方向の延伸とは別の工程で幅方向にも延伸を行うことがより好ましい。抽出後延伸は、可塑剤を微多孔膜から実質的に除去した状態で延伸するので、延伸に伴ってポリマー界面の破壊が支配的に生じ、微多孔膜の気孔率を増大させる効果がある。したがって、本発明において必須である抽出前延伸を行わずして抽出後延伸のみを行うと、いたずらに気孔率の過度の増大を来たし、延伸配向を微多孔膜に付与できず、結果、低強度となってしまう。   In the production method of the present invention, the stretching performed after the extraction step is called post-extraction stretching, and the stretching is performed in the length direction. In the stretching performed after the extraction step, it is more preferable to perform stretching in the width direction in a step different from the above-described stretching in the length direction. Since the stretching after the extraction is performed in a state where the plasticizer is substantially removed from the microporous membrane, the polymer interface breaks predominantly with the stretching, and has an effect of increasing the porosity of the microporous membrane. Therefore, if only the post-extraction stretching is performed without performing the pre-extraction stretching which is essential in the present invention, the porosity is excessively increased, and the stretching orientation cannot be imparted to the microporous film, resulting in low strength. End up.

これに比して、抽出前延伸及び抽出後延伸を併用した本発明の製造方法の場合、微多孔膜の強度を損なうことなく、気孔率を増加させることができるので有用である。延伸温度は、ポリオレフィン微多孔膜の融点Tmより50℃低い温度以上Tm未満が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tmより40℃低い温度以上Tmより5℃低い温度未満で行う。延伸温度がTmより50℃低い温度未満であると延伸性が悪くなり、また延伸後の歪み成分が残り、高温における寸法安定性が低下するので好ましくない。延伸倍率は任意の倍率に設定できるが、1軸方向の倍率で5倍以内、2軸方向の面積倍率で20倍以内が好ましい。   Compared to this, the production method of the present invention using both pre-extraction stretching and post-extraction stretching is useful because the porosity can be increased without impairing the strength of the microporous membrane. The stretching temperature is preferably 50 ° C. lower than the melting point Tm of the polyolefin microporous membrane and less than Tm, more preferably 40 ° C. lower than the melting point Tm of the polyolefin microporous membrane and less than 5 ° C. lower than Tm. If the stretching temperature is less than 50 ° C. lower than Tm, the stretchability is deteriorated, the strain component after stretching remains, and the dimensional stability at high temperature is lowered, which is not preferable. The stretching ratio can be set to an arbitrary ratio, but it is preferably within 5 times in the uniaxial direction and within 20 times in the area ratio in the biaxial direction.

長さ方向の延伸は、高温における幅方向の寸法安定性を損なうことなく、透過性能を高めることができる。 更に幅方向の延伸と組み合わせることで、透過性能をより好ましいものとすることができると共に、長さ方向と幅方向の強度のバランスを改善することもできる。   The stretching in the length direction can improve the transmission performance without impairing the dimensional stability in the width direction at a high temperature. Furthermore, by combining with stretching in the width direction, the transmission performance can be made more favorable, and the balance between the strength in the length direction and the width direction can be improved.

更に、長さ方向の延伸と幅方向の延伸を別の工程とすることで、各々の延伸倍率の変更が広範に可能となる。従って、透過性能を比較的低い領域から高い領域までの広範囲に渡って調節することが可能となる。   Furthermore, by making the stretching in the length direction and the stretching in the width direction as separate steps, each stretching ratio can be changed widely. Therefore, the transmission performance can be adjusted over a wide range from a relatively low region to a high region.

長さ方向に延伸する方法は、ロール式延伸機を使用する方法が挙げられる。ここで、抽出前延伸の残留応力による幅方向の収縮を防止することが重要である。ロール上で微多孔膜を余熱する際に、微多孔膜の両端を把持すること等により、微多孔膜の幅を機械的に拘束することが必要となる。余熱後速やかに、長さ方向の延伸を行うことが好ましい。ロール式延伸機の延伸倍率は、広範囲に変更可能であると同時に、後述の熱緩和を行うこともできる。   Examples of the method of stretching in the length direction include a method using a roll type stretching machine. Here, it is important to prevent shrinkage in the width direction due to residual stress of stretching before extraction. When preheating the microporous membrane on the roll, it is necessary to mechanically constrain the width of the microporous membrane by gripping both ends of the microporous membrane. It is preferable to perform stretching in the length direction immediately after the preheating. The draw ratio of the roll-type stretching machine can be changed over a wide range, and at the same time, thermal relaxation described later can be performed.

ここで、ロール上で微多孔膜を余熱する際に微多孔膜の幅を機械的に拘束しない場合は、ロールと微多孔膜の間の摩擦のみでは収縮を防止できずに、微多孔膜が幅方向に収縮し、透過性を悪化させることとなる。余熱終了後は幅方向の残留応力が緩和しており、ロールと微多孔膜の間の摩擦のみで収縮を防止できる。   Here, if the width of the microporous film is not mechanically constrained when the microporous film is preheated on the roll, the shrinkage cannot be prevented only by friction between the roll and the microporous film, It shrinks in the width direction and deteriorates permeability. After the end of the preheating, the residual stress in the width direction is relaxed, and shrinkage can be prevented only by friction between the roll and the microporous film.

微多孔膜の幅を機械的に拘束する方法としては、ロール端部にクリップを設け微多孔膜をロールとクリップで挟む方法、ベルト状のもので微多孔膜をロールに押さえ付ける方法、微多孔膜の端部を吸引により固定する方法等が挙げられる。   Methods for mechanically constraining the width of the microporous membrane include a method in which a clip is provided at the end of the roll and the microporous membrane is sandwiched between the roll and the clip, a method in which the microporous membrane is pressed against the roll with a belt-like one, Examples include a method of fixing the end of the membrane by suction.

幅方向に延伸する方法は、テンター式延伸機を使用する方法が挙げられる。テンター式延伸機の延伸倍率は、広範囲に変更可能であると同時に、後述の熱緩和を行うこともできる。   Examples of the method of stretching in the width direction include a method using a tenter type stretching machine. The stretching ratio of the tenter type stretching machine can be changed over a wide range, and at the same time, thermal relaxation described later can be performed.

本発明の製造方法において、熱処理を、各々の抽出後延伸に引き続いて、または抽出後延伸の後に行うことがより好ましい。ここで熱処理とは、熱固定または熱緩和の何れかを指すものである。熱固定とは、抽出後延伸時の設定延伸倍率を維持するか、または拘束したまま緊張状態にて熱処理を行う工程を意味し、これに比して、熱緩和とは、緩和状態にて熱処理を行う工程を意味する。熱固定及び熱緩和は、何れも延伸時に発生すると考えられる残留応力や歪み成分を除去して、高温における寸法安定性を高めるとともに、気孔率や透気度に代表される透過性能を調節する機能を有するものである。   In the production method of the present invention, it is more preferable that the heat treatment is performed following each post-extraction stretching or after the post-extraction stretching. Here, heat treatment refers to either heat fixation or heat relaxation. Heat setting means a process of performing heat treatment in a tensioned state while maintaining a set drawing ratio at the time of stretching after extraction or restraining, and thermal relaxation is heat treatment in a relaxed state. Means the process of performing. Both heat fixation and thermal relaxation remove residual stress and strain components that are considered to occur during stretching, improve dimensional stability at high temperatures, and adjust the permeation performance represented by porosity and air permeability. It is what has.

本発明の製造方法においては、本発明の利点を害さない範囲内で、すなわち、高温における寸法安定性の改良や透過性能の調節を行う上で、これを損なわない程度であれば、後処理を行っても良い。後処理としては、例えば、界面活性剤等による親水化処理、および電離性放射線等による架橋処理が挙げられる。本発明において使用するポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形に使用する樹脂を指し、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテンのホモ重合体及び共重合体を使用することができる。また、これらのホモ重合体及び共重合体の群から選んだポリオレフィンを混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられる。本発明の製造方法によって得られた微多孔膜を電池セパレーターとして使用する場合、低融点樹脂であり、かつ高強度の要求性能から、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。   In the production method of the present invention, within the range that does not impair the advantages of the present invention, that is, when improving the dimensional stability at high temperature and adjusting the permeation performance, post-treatment is performed as long as this is not impaired. You can go. Examples of the post-treatment include a hydrophilic treatment with a surfactant and the like, and a crosslinking treatment with ionizing radiation and the like. The polyolefin resin used in the present invention refers to a resin used for normal extrusion, injection, inflation, and blow molding. Ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1 -Octene homopolymers and copolymers can be used. In addition, polyolefins selected from the group of these homopolymers and copolymers can be mixed and used. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, and ethylene propylene rubber. . When the microporous membrane obtained by the production method of the present invention is used as a battery separator, it is preferable to use a resin having a high melting point polyethylene as a main component because it is a low melting point resin and high strength required performance. .

本発明において使用するポリオレフィン樹脂の平均分子量は、5万以上100万未満が好ましく、さらに好ましくは10万以上70万未満、そして最も好ましくは20万以上50万未満である。この平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)測定等により得られる重量平均分子量を指すものであるが、一般に平均分子量が100万を越えるような樹脂については、正確なGPC測定が困難であるので、その代用として粘度法による粘度平均分子量をあてることができる。平均分子量が5万より小さいと、溶融成形の際のメルトテンションが無くなり成形性が悪くなったり、また延伸性が悪くなり低強度となったりするので好ましくない。平均分子量が100万を越えると、均一な樹脂組成物を得難くなる傾向があるので、使用しない方が好ましい。   The average molecular weight of the polyolefin resin used in the present invention is preferably from 50,000 to less than 1,000,000, more preferably from 100,000 to less than 700,000, and most preferably from 200,000 to less than 500,000. This average molecular weight refers to a weight average molecular weight obtained by GPC (gel permeation chromatography) measurement or the like, but it is generally difficult to accurately measure GPC for resins having an average molecular weight exceeding 1,000,000. Therefore, as an alternative, the viscosity average molecular weight determined by the viscosity method can be applied. If the average molecular weight is less than 50,000, the melt tension at the time of melt molding is lost and the moldability is deteriorated, and the stretchability is deteriorated and the strength is lowered. If the average molecular weight exceeds 1,000,000, it tends to be difficult to obtain a uniform resin composition.

本発明において使用するポリオレフィン樹脂の分子量分布は、1以上10未満が好ましく、さらに好ましくは2以上9未満、そして最も好ましくは3以上8未満である。該分子量分布は、GPC測定により得られる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw /Mn )で表す。分子量分布が10を越えると、延伸性が悪くなる傾向があり、膜厚の局部的な分布や強度低下を来す恐れがある。   The molecular weight distribution of the polyolefin resin used in the present invention is preferably from 1 to less than 10, more preferably from 2 to less than 9, and most preferably from 3 to less than 8. The molecular weight distribution is represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) obtained by GPC measurement. When the molecular weight distribution exceeds 10, the stretchability tends to deteriorate, and there is a risk of local distribution of film thickness and strength reduction.

本発明において使用する可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であれば良い。例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコールが挙げられる。   The plasticizer used in the present invention may be any non-volatile solvent that can form a uniform solution above the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples thereof include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol.

本発明において使用するポリオレフィン樹脂と可塑剤の比率については、ミクロ相分離を生じせしめ、シート状の微多孔膜前駆体を形成しうるのに充分な比率であり、かつ生産性を損なわない程度であれば良い。具体的には、ポリオレフィン樹脂と可塑剤からなる組成物中に占めるポリオレフィン樹脂の重量分率は、好ましくは20〜70%、更に好ましくは30〜60%である。ポリオレフィン樹脂の重量分率が20%より小さいと、溶融成形時のメルトテンションが不足し、成形性に劣るものとなる。ポリオレフィン樹脂の重量分率を20%より小さい比率で実施することも可能であるが、この場合、メルトテンションを高めるために、超高分子量ポリオレフィンを大量に混合する必要が生じてしまい、均一分散性が低下するので好ましくない。   The ratio of the polyolefin resin and the plasticizer used in the present invention is a ratio sufficient to cause microphase separation and form a sheet-like microporous membrane precursor, and does not impair productivity. I just need it. Specifically, the weight fraction of the polyolefin resin in the composition comprising the polyolefin resin and the plasticizer is preferably 20 to 70%, more preferably 30 to 60%. When the weight fraction of the polyolefin resin is less than 20%, the melt tension at the time of melt molding is insufficient and the moldability is poor. Although it is possible to carry out the polyolefin resin at a weight fraction of less than 20%, in this case, in order to increase the melt tension, it becomes necessary to mix a large amount of ultra-high molecular weight polyolefin, and uniform dispersibility Is unfavorable because it decreases.

本発明において使用する抽出溶剤は、ポリオレフィンに対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等のハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2−ブタノン等のケトン類が挙げられる。さらに、環境適応性、安全性、衛生性を考慮すると、前記溶剤の中でもアルコール類およびケトン類が好適である。
本発明において使用する組成物には、さらに目的に応じて、酸化防止剤、結晶核剤、帯電防止剤、難燃剤、滑剤、紫外線吸収剤等の添加剤を混合しても差し支えない。本発明の微多孔膜とは、実質的にポリオレフィンから構成される多孔体シートまたはフィルムを指し、例えば、セパレーター等の電池材料として使用されるものである。電池の形態は特に限定されず、例えば円筒型電池をはじめとして、角型電池、薄型電池、ボタン型電池、電解コンデンサー等への用途に適するものである。
The extraction solvent used in the present invention is preferably a poor solvent for polyolefin and a good solvent for plasticizer, and its boiling point is preferably lower than the melting point of the polyolefin microporous membrane. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, diethyl ether, Examples include ethers such as tetrahydrofuran and ketones such as acetone and 2-butanone. Furthermore, in consideration of environmental adaptability, safety, and hygiene, alcohols and ketones are preferable among the solvents.
The composition used in the present invention may further contain additives such as an antioxidant, a crystal nucleating agent, an antistatic agent, a flame retardant, a lubricant, and an ultraviolet absorber depending on the purpose. The microporous membrane of the present invention refers to a porous sheet or film substantially composed of polyolefin, and is used as a battery material such as a separator, for example. The form of the battery is not particularly limited, and is suitable for use in, for example, a cylindrical battery, a square battery, a thin battery, a button battery, an electrolytic capacitor, and the like.

本発明は前記製造方法によって製造されたポリオレフィン微多孔膜を提供する。
本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の膜厚は、1〜500μmとするのが好ましく、5〜100μmとするのがさらに好ましい。膜厚が1μmより小さいと機械強度が不十分となり、また、500μmより大きいとセパレーターの占有体積が増えるため、電池の高容量化の点において不利となり好ましくない。
The present invention provides a polyolefin microporous membrane produced by the production method.
When manufacturing a microporous film using the manufacturing method of this invention, it is preferable that the film thickness of a microporous film shall be 1-500 micrometers, and it is more preferable to set it as 5-100 micrometers. If the film thickness is smaller than 1 μm, the mechanical strength becomes insufficient, and if it is larger than 500 μm, the occupied volume of the separator increases, which is disadvantageous in terms of increasing the capacity of the battery.

本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の透気度は、3000秒/100cc/25μm以下とするのが好ましく、1000秒/100cc/25μm以下とするのがさらに好ましい。該透気度は、透気時間と膜厚との比によって定義される。透気度が3000秒/100cc/25μmより大きいとイオン透過性が悪くなるか、または孔径が極めて小さくなるので、透過性能上、いずれにしても好ましくない。
本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の気孔率は、20〜80%とするのが好ましく、30〜70%とするのがさらに好ましい。気孔率が20%より小さいと、透気度や電気抵抗に代表されるイオン透過性が不十分となり、80%より大きいと、突き刺し強度や引張強度に代表される強度が不十分となる。
When producing a microporous membrane using the production method of the present invention, the air permeability of the microporous membrane is preferably 3000 sec / 100 cc / 25 μm or less, more preferably 1000 sec / 100 cc / 25 μm or less. preferable. The air permeability is defined by the ratio between the air permeability time and the film thickness. If the air permeability is larger than 3000 seconds / 100 cc / 25 μm, the ion permeability is deteriorated or the pore diameter is extremely small.
When producing a microporous membrane using the production method of the present invention, the porosity of the microporous membrane is preferably 20 to 80%, and more preferably 30 to 70%. When the porosity is less than 20%, ion permeability represented by air permeability and electrical resistance is insufficient, and when it is greater than 80%, strength represented by piercing strength and tensile strength is insufficient.

本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の突き刺し強度は、300g/25μm以上とすることが好ましく、400g/25μm以上とすることがさらに好ましい。突き刺し強度は、突き刺し試験における最大荷重と膜厚の比によって定義される。突き刺し強度が300g/25μmより小さいと、電池を捲回する際に短絡不良等の欠陥が増加するため好ましくない。   When the microporous membrane is produced using the production method of the present invention, the puncture strength of the microporous membrane is preferably 300 g / 25 μm or more, and more preferably 400 g / 25 μm or more. The piercing strength is defined by the ratio between the maximum load and the film thickness in the piercing test. When the piercing strength is smaller than 300 g / 25 μm, defects such as short circuit failure increase when winding the battery, which is not preferable.

本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の熱収縮率は、微多孔膜の高温における寸法安定性を評価する指標であり、微多孔膜の幅方向について、好ましくは10%以下、さらに好ましくは5%以下とすることがさらに好ましい。熱収縮率が10%を越えると電池内部での短絡等の安全上のトラブルが発生する原因となるので好ましくない。   When producing a microporous membrane using the production method of the present invention, the thermal shrinkage rate of the microporous membrane is an index for evaluating the dimensional stability of the microporous membrane at a high temperature, preferably in the width direction of the microporous membrane. Is preferably 10% or less, more preferably 5% or less. If the thermal shrinkage rate exceeds 10%, it causes a safety trouble such as a short circuit inside the battery, which is not preferable.

本発明のポリオレフィン微多孔膜の製造方法によれば、高温における寸法安定性を向上することができ、また同時に透過性能を自在に調節することができる柔軟な側面をも有する。さらに、微多孔膜の長さ方向と幅方向の強度のバランスをも調整できる。かくして、本発明によって製造された微多孔膜が、特に電池セパレーターとして使用される場合には、高い電池安全性を持ち、また、多様化する電池ニーズに応えるべく、様々な透過性能を持つ微多孔膜を製造することができる。   According to the method for producing a microporous polyolefin membrane of the present invention, the dimensional stability at high temperatures can be improved, and at the same time, it has a flexible side surface that can freely adjust the permeation performance. Furthermore, the balance of strength in the length direction and width direction of the microporous membrane can be adjusted. Thus, when the microporous membrane produced by the present invention is used as a battery separator, the microporous membrane has high battery safety and various permeation performances to meet diversifying battery needs. Membranes can be manufactured.

以下、実施例を挙げて本発明をより詳しく説明するが、これら実施例は、本発明をより具体的に説明するために例示されたもので、本発明の範囲を限定するためのものでない。
(1)膜厚
ダイヤルゲージ(尾崎製作所製PEACOCK NO.25)にて測定した。
(2)気孔率
20cm角の試料を微多孔膜から切り取り、該試料の体積(cm3)と重量(g)を測定し、得られた結果から次式を用いて、気孔率(%)を計算した。
気孔率=100×(1−重量÷(樹脂の密度×体積))
(3)透気度
JISP−8117に準拠し、ガーレー式透気度計にて測定して求めた透気時間(秒/100cc)、および膜厚(μm)より、次式の通りに膜厚換算し、透気度(秒/100cc/25μm)とした。
透気度=透気時間×25÷膜厚
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, these Examples are illustrated in order to demonstrate this invention more concretely, and are not for limiting the scope of the present invention.
(1) Film thickness It measured with the dial gauge (PEACOCK NO.25 by Ozaki Seisakusho).
(2) Porosity A 20 cm square sample was cut from the microporous membrane, and the volume (cm 3 ) and weight (g) of the sample were measured. From the obtained results, the porosity (%) was calculated using the following equation. Calculated.
Porosity = 100 × (1−weight ÷ (resin density × volume))
(3) Air permeability Based on JISP-8117, from the air permeability time (seconds / 100 cc) and the film thickness (μm) obtained by measuring with a Gurley type air permeability meter, the film thickness is as follows: Converted to air permeability (seconds / 100 cc / 25 μm).
Air permeability = air permeability time × 25 ÷ film thickness

(4)突き刺し強度
圧縮試験機(カトーテック製KES−G5)を用いて、針先端の曲率半径0.5mm、突き刺し速度2mm/秒の条件で突き刺し試験を行い、最大突き刺し荷重(g)および膜厚(μm)より次式の通りに膜厚換算し、突き刺し強度(g/25μm)とした。
突き刺し強度=最大突き刺し荷重×25÷膜厚
(5)破断強度
幅15mmの短冊状試験片に対して、ASTM D882に準拠して測定した。
(6)熱収縮率
20cm角の試料を微多孔膜から切り取り、該試料の四方を拘束しない状態で100℃に加熱された熱風循環式オーブン中に入れ、2時間の加熱処理を行った。微多孔膜の機械方向および幅方向の寸法を、加熱の前後において計測し、次式の通りに熱収縮率(%)を計算した。
熱収縮率=100×(1−(加熱後の寸法÷加熱前の寸法))
(4) Puncture strength Using a compression tester (Kato-Tech KES-G5), a puncture test was carried out under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / second, and the maximum puncture load (g) and membrane The film thickness was converted from the thickness (μm) according to the following formula to obtain the piercing strength (g / 25 μm).
Puncture strength = maximum puncture load × 25 ÷ film thickness (5) Breaking strength A strip-shaped test piece having a width of 15 mm was measured according to ASTM D882.
(6) Thermal Shrinkage A 20 cm square sample was cut from the microporous membrane, placed in a hot air circulation oven heated to 100 ° C. without restraining the four sides of the sample, and heat-treated for 2 hours. The dimensions of the microporous membrane in the machine direction and the width direction were measured before and after heating, and the thermal shrinkage rate (%) was calculated according to the following formula.
Thermal shrinkage = 100 × (1- (dimension after heating ÷ dimension before heating))

(7)平均分子量および分子量分布
次の条件により、GPC(ゲルパーミエーションクロマトグラフィー)測定を行い、重量平均分子量(Mw)および数平均分子量(Mn)を求め、平均分子量にはMwを、また分子量分布にはMw/Mnをあてた。
機器:WATERS 150−GPC
温度:140℃
溶媒:1,2,4−トリクロロベンゼン
濃度:0.05%(インジェクション量:500μl)
カラム:Shodex GPC AT−807/S 1本、
Tosoh TSK−GELGMH6 −HT 2本
溶解条件:160℃、2.5時間
キャリブレーションカーブ:
ポリスチレン標準試料に対してポリエチレン換算定数0.48を用い3次で計算
(7) Average molecular weight and molecular weight distribution Under the following conditions, GPC (gel permeation chromatography) measurement is performed to determine the weight average molecular weight (Mw) and the number average molecular weight (Mn). The average molecular weight is Mw and the molecular weight The distribution was assigned Mw / Mn.
Equipment: WATERS 150-GPC
Temperature: 140 ° C
Solvent: 1,2,4-trichlorobenzene concentration: 0.05% (injection amount: 500 μl)
Column: One Shodex GPC AT-807 / S,
Tosoh TSK-GELGMH 6 -HT 2 dissolution conditions: 160 ° C., 2.5 hours Calibration curve:
3rd order calculation using polyethylene conversion constant 0.48 for polystyrene standard sample

(8)融点
(株)セイコー電子工業製、示差走査熱量計DSC−210を用い、試料約7mgを窒素気流下に置き、室温から速度10℃/分の割合で昇温した時の吸熱ピーク温度より評価した。
(9)緩和率
抽出後延伸の前の微多孔膜の寸法に対して、抽出後延伸時の設定倍率と、熱処理時の設定倍率の差から、次式のように緩和率(%)を定義した。
緩和率=100×(抽出後延伸設定倍率−熱処理設定倍率)
(8) Melting point Endothermic peak temperature when using a differential scanning calorimeter DSC-210, manufactured by Seiko Denshi Kogyo Co., Ltd., and placing about 7 mg of the sample in a nitrogen stream and raising the temperature from room temperature at a rate of 10 ° C / min. More evaluated.
(9) Relaxation rate The relaxation rate (%) is defined as the following equation based on the difference between the set magnification at the time of stretching after extraction and the set magnification at the time of heat treatment with respect to the dimension of the microporous membrane before stretching after extraction. did.
Relaxation rate = 100 × (stretching setting magnification after extraction−heat treatment setting magnification)

<実施例1>
高密度ポリエチレン(重量平均分子量30万、分子量分布7、密度0.956)および該ポリエチレンに対して0.3重量部の2,6−ジ−t−ブチル−p−クレゾールをヘンシェルミキサーを用いてドライブレンドし、35mm二軸押出機に投入した。さらに、押出機に流動パラフィン(37.78℃における動粘度75.9cSt)を注入して200℃で溶融混練し、コートハンガーダイを経て表面温度40℃に制御された冷却ロール上に押出キャストすることにより、厚み1.4mmのシートを得た。ここで組成物の比率は、ポリエチレン30重量%に対して、流動パラフィン70重量%となるように調節した。得られたシートをテンター式同時2軸延伸機を用いて抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し、その後付着した塩化メチレンを乾燥除去した。さらに微多孔膜の両端を把持した状態で余熱するロール式延伸機を使用し長さ方向に抽出後延伸し、続いて長さ方向に緩和させつつ熱処理した。さらにテンター式熱固定機を用いて熱固定した。
以下、成形条件を表1に、また、得られた微多孔膜の物性を表2に記載した。 尚、得られた微多孔膜の融点は、133.4℃であった。
<Example 1>
High density polyethylene (weight average molecular weight 300,000, molecular weight distribution 7, density 0.956) and 0.3 part by weight of 2,6-di-t-butyl-p-cresol with respect to the polyethylene using a Henschel mixer Dry blended and put into a 35 mm twin screw extruder. Furthermore, liquid paraffin (kinematic viscosity 75.9 cSt at 37.78 ° C.) is injected into the extruder, melted and kneaded at 200 ° C., and extruded and cast on a cooling roll controlled to a surface temperature of 40 ° C. through a coat hanger die. As a result, a sheet having a thickness of 1.4 mm was obtained. Here, the ratio of the composition was adjusted to be 70% by weight of liquid paraffin with respect to 30% by weight of polyethylene. The obtained sheet was stretched before extraction using a tenter type simultaneous biaxial stretching machine, and then immersed in methylene chloride to extract and remove liquid paraffin, and then the attached methylene chloride was removed by drying. Furthermore, using a roll type stretching machine that preheats while holding both ends of the microporous membrane, the film was extracted in the length direction and then stretched, followed by heat treatment while relaxing in the length direction. Furthermore, it heat-fixed using the tenter type | mold heat fixing machine.
Hereinafter, the molding conditions are shown in Table 1, and the physical properties of the obtained microporous film are shown in Table 2. In addition, melting | fusing point of the obtained microporous film was 133.4 degreeC.

<実施例2>
抽出後延伸、及び熱処理の条件を表1に記載した条件に変更したこと以外は、実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性を表2に記載した。
<Example 2>
A microporous membrane was obtained in the same manner as in Example 1 except that the conditions for stretching after extraction and heat treatment were changed to the conditions described in Table 1. Table 2 shows the physical properties of the obtained microporous membrane.

<実施例3>
実施例1と同様にシートを得た後、テンター式同時2軸延伸機を用いて抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し、その後付着した塩化メチレンを乾燥除去した。さらに微多孔膜の両端を把持した状態で余熱するロール式延伸機を使用し長さ方向に抽出後延伸し、続いて長さ方向に緩和させつつ熱処理した。さらにテンター式延伸機を用いて幅方向に抽出後延伸し、続いて幅方向に緩和させつつ熱処理した。
以下、成形条件を表1に、また、得られた微多孔膜の物性を表2に記載した。
<Example 3>
After obtaining a sheet in the same manner as in Example 1, it was stretched before extraction using a tenter-type simultaneous biaxial stretching machine, followed by immersion in methylene chloride to extract and remove liquid paraffin, and then the adhered methylene chloride was dried. Removed. Furthermore, using a roll type stretching machine that preheats while holding both ends of the microporous membrane, the film was extracted in the length direction and then stretched, followed by heat treatment while relaxing in the length direction. Furthermore, it extracted after extending | stretching in the width direction using the tenter type extending | stretching machine, Then, it heat-processed, making it ease in the width direction.
Hereinafter, the molding conditions are shown in Table 1, and the physical properties of the obtained microporous film are shown in Table 2.

<実施例4>
抽出後延伸、及び熱処理の条件を表1に記載した条件に変更したこと以外は、実施例2と同様にして微多孔膜を得た。得られた微多孔膜の物性を表2に記載した。
<Example 4>
A microporous membrane was obtained in the same manner as in Example 2 except that the conditions for stretching after extraction and heat treatment were changed to the conditions described in Table 1. Table 2 shows the physical properties of the obtained microporous membrane.

<比較例1>
実施例1と同様にシートを得た後、テンター式同時2軸延伸機を用いて抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し、その後付着した塩化メチレンを乾燥除去した。さらにテンター式熱固定機を用いて熱固定した。
以下、成形条件を表1に、また、得られた微多孔膜の物性を表2に記載した。
<Comparative Example 1>
After obtaining a sheet in the same manner as in Example 1, it was stretched before extraction using a tenter-type simultaneous biaxial stretching machine, followed by immersion in methylene chloride to extract and remove liquid paraffin, and then the adhered methylene chloride was dried. Removed. Furthermore, it heat-fixed using the tenter type | mold heat fixing machine.
Hereinafter, the molding conditions are shown in Table 1, and the physical properties of the obtained microporous film are shown in Table 2.

<比較例2>
実施例1と同様にシートを得た後、テンター式同時2軸延伸機を用いて抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し、その後付着した塩化メチレンを乾燥除去した。さらにテンター式延伸機を用いて幅方向に抽出後延伸し、続いて幅方向に緩和させつつ熱処理した。
以下、成形条件を表1に、また、得られた微多孔膜の物性を表2に記載した。
<Comparative Example 2>
After obtaining a sheet in the same manner as in Example 1, it was stretched before extraction using a tenter-type simultaneous biaxial stretching machine, followed by immersion in methylene chloride to extract and remove liquid paraffin, and then the adhered methylene chloride was dried. Removed. Furthermore, it extracted after extending | stretching in the width direction using the tenter type extending | stretching machine, Then, it heat-processed, making it ease in the width direction.
Hereinafter, the molding conditions are shown in Table 1, and the physical properties of the obtained microporous film are shown in Table 2.

<比較例3>
抽出後延伸、及び熱処理の条件を表1に記載した条件に変更したこと以外は、比較例2と同様にして微多孔膜を得た。得られた微多孔膜の物性を表2に記載した。
<Comparative Example 3>
A microporous membrane was obtained in the same manner as in Comparative Example 2 except that the conditions for stretching after extraction and heat treatment were changed to the conditions described in Table 1. Table 2 shows the physical properties of the obtained microporous membrane.

<比較例4>
実施例1と同様にシートを得た後、テンター式同時2軸延伸機を用いて抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し、その後付着した塩化メチレンを乾燥除去した。さらに微多孔膜の両端を把持しない状態で余熱するロール式延伸機を使用し長さ方向に抽出後延伸し、続いて長さ方向に緩和させつつ熱処理した。さらにテンター式熱固定機を用いて熱固定した。
<Comparative Example 4>
After obtaining a sheet in the same manner as in Example 1, it was stretched before extraction using a tenter-type simultaneous biaxial stretching machine, followed by immersion in methylene chloride to extract and remove liquid paraffin, and then the adhered methylene chloride was dried. Removed. Furthermore, using a roll type stretching machine that preheats without holding both ends of the microporous membrane, the film was extracted in the length direction and then stretched, and subsequently heat treated while relaxing in the length direction. Furthermore, it heat-fixed using the tenter type | mold heat fixing machine.

Figure 2008088392
Figure 2008088392

Figure 2008088392
Figure 2008088392

Claims (5)

ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押し出して冷却固化させシート状に成形し、少なくとも1軸方向に少なくとも1回の延伸を行った後、前記可塑剤を抽出し、可塑剤抽出後に長さ方向に延伸を行うことを特徴とするポリオレフィン微多孔膜の製造方法。   A composition comprising a polyolefin resin and a plasticizer is melt-kneaded, extruded, cooled and solidified, formed into a sheet, and stretched at least once in at least one axial direction. Then, the plasticizer is extracted, and the plasticizer is extracted. A method for producing a polyolefin microporous membrane, which is stretched in the length direction later. ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押し出して冷却固化させシート状に成形し、少なくとも1軸方向に少なくとも1回の延伸を行った後、前記可塑剤を抽出し、可塑剤抽出後に長さ方向と幅方向の延伸を別の工程で行うことを特徴とするポリオレフィン微多孔膜の製造方法。   A composition comprising a polyolefin resin and a plasticizer is melt-kneaded, extruded, cooled and solidified, formed into a sheet, and stretched at least once in at least one axial direction. Then, the plasticizer is extracted, and the plasticizer is extracted. A method for producing a polyolefin microporous membrane, wherein the stretching in the length direction and the width direction is performed in separate steps later. 可塑剤抽出後の長さ方向に延伸を行う工程に於いて、フィルムの幅を機械的に拘束した状態で余熱した後に、延伸することを特徴とする請求項1又は請求項2記載のポリオレフィン微多孔膜の製造方法。   3. The polyolefin fine film according to claim 1, wherein in the step of stretching in the length direction after the plasticizer extraction, the film is stretched after preheating in a state where the width of the film is mechanically restricted. A method for producing a porous membrane. 可塑剤抽出後の長さ方向に延伸を行う工程に於いて、ロール上でフィルムの幅を機械的に拘束した状態で余熱した後に、ロールで延伸することを特徴とする請求項1又は請求項2記載のポリオレフィン微多孔膜の製造方法。   In the step of stretching in the length direction after the plasticizer extraction, the film is stretched with a roll after preheating in a state where the width of the film is mechanically constrained on the roll. 2. A process for producing a microporous polyolefin membrane according to 2. 請求項3又は請求項4記載のシート又はフィルムの幅を機械的に拘束した状態で加熱することを特徴とする加熱機。   5. A heater that heats the sheet or film according to claim 3 or 4 in a state in which the width of the sheet or film is mechanically constrained.
JP2006301108A 2006-09-29 2006-11-07 Method for producing polyolefin microporous membrane Expired - Fee Related JP4713441B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060095533A KR100873851B1 (en) 2006-09-29 2006-09-29 Manufacturing method of polyolefin microporous membrane
KR10-2006-0095533 2006-09-29

Publications (2)

Publication Number Publication Date
JP2008088392A true JP2008088392A (en) 2008-04-17
JP4713441B2 JP4713441B2 (en) 2011-06-29

Family

ID=39372865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301108A Expired - Fee Related JP4713441B2 (en) 2006-09-29 2006-11-07 Method for producing polyolefin microporous membrane

Country Status (2)

Country Link
JP (1) JP4713441B2 (en)
KR (1) KR100873851B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083766A (en) * 2011-10-07 2013-05-09 Hamamatsu Photonics Kk Method for manufacturing microphase separated structure film
EP2612702A1 (en) 2012-01-06 2013-07-10 SK Innovation Co. Ltd. Microporous polyolefin film and method for preparing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140159271A1 (en) * 2011-07-22 2014-06-12 Toray Battery Separator Film Co., Ltd. Method of manufacturing a microporous polyethylene film
KR101350602B1 (en) * 2013-02-12 2014-01-13 삼성토탈 주식회사 The production methods of polyolefin separators including far-infrared and/or tenter annealing devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
JP2000204188A (en) * 1999-01-11 2000-07-25 Asahi Chem Ind Co Ltd Finely porous membrane of polyethylene
JP2001019791A (en) * 1999-07-08 2001-01-23 Mitsubishi Chemicals Corp Porous film and its production
JP2003105122A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2006523151A (en) * 2003-03-31 2006-10-12 ダルレ・マーシャント・テクノロジー・ソシエテ・アノニム Longitudinal film stretcher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
JP2000204188A (en) * 1999-01-11 2000-07-25 Asahi Chem Ind Co Ltd Finely porous membrane of polyethylene
JP2001019791A (en) * 1999-07-08 2001-01-23 Mitsubishi Chemicals Corp Porous film and its production
JP2003105122A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2006523151A (en) * 2003-03-31 2006-10-12 ダルレ・マーシャント・テクノロジー・ソシエテ・アノニム Longitudinal film stretcher

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083766A (en) * 2011-10-07 2013-05-09 Hamamatsu Photonics Kk Method for manufacturing microphase separated structure film
EP2612702A1 (en) 2012-01-06 2013-07-10 SK Innovation Co. Ltd. Microporous polyolefin film and method for preparing the same
JP2013142156A (en) * 2012-01-06 2013-07-22 Sk Innovation Co Ltd Polyolefin-based microporous film and method for producing the same

Also Published As

Publication number Publication date
KR100873851B1 (en) 2008-12-15
JP4713441B2 (en) 2011-06-29
KR20080029427A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP3917721B2 (en) Method for producing microporous membrane
KR101723275B1 (en) Polyolefin microporous membrane
JP4753446B2 (en) Polyolefin microporous membrane
JP4397121B2 (en) Polyolefin microporous membrane
JP5497635B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP5216327B2 (en) Polyolefin microporous membrane
JP5403633B2 (en) Microporous membrane, battery separator and battery
WO2009136648A1 (en) Separator for high power density lithium‑ion secondary cell
JP2007063547A (en) Polyethylene microporous membrane, process for production thereof, and battery separator
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP6548430B2 (en) METHOD FOR PRODUCING POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP4606532B2 (en) Polyolefin microporous membrane
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP6596270B2 (en) Method for producing polyolefin microporous membrane
WO2020203908A1 (en) Microporous polyolefin film, separator for battery, and secondary battery
KR20120063876A (en) Manufacturing method of polyolefin separator for lithium secondary battery and polyolefin separator therefrom
KR20120063877A (en) Manufacturing method of high safety polyolefin micro-porous film and high safety polyolefin micro-porous film therefrom
JP2008013730A (en) Porous film
JP2004010701A (en) Polyolefin membrane
JPH1067871A (en) Production of microporous polyethylene film
JP2020164858A (en) Polyolefin microporous membrane, battery separator and secondary battery
KR20230160224A (en) Polyolefin microporous membrane, battery separator and secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees