JP2008087980A - Wafer production method - Google Patents

Wafer production method Download PDF

Info

Publication number
JP2008087980A
JP2008087980A JP2006267235A JP2006267235A JP2008087980A JP 2008087980 A JP2008087980 A JP 2008087980A JP 2006267235 A JP2006267235 A JP 2006267235A JP 2006267235 A JP2006267235 A JP 2006267235A JP 2008087980 A JP2008087980 A JP 2008087980A
Authority
JP
Japan
Prior art keywords
wafer
crystal
block body
block
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006267235A
Other languages
Japanese (ja)
Other versions
JP4847836B2 (en
Inventor
Hiroaki Akagawa
宏明 赤川
Katsumi Goto
克己 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2006267235A priority Critical patent/JP4847836B2/en
Publication of JP2008087980A publication Critical patent/JP2008087980A/en
Application granted granted Critical
Publication of JP4847836B2 publication Critical patent/JP4847836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the productivity for components used in electronic devices or the like. <P>SOLUTION: The disclosed method for wafer production is characterized by comprising a block body-joining process for joining a plurality of block bodies which comprise crystals processed in a quadratic prism shape in a ranged state while stacking and a cutting process for cutting the outer periphery of a plurality of joined block bodies to form a wafer having a prescribed thickness. The crystal comprises an as-grown artificial quartz crystal, and the block bodies are joined directly or by using a UV-curing adhesive. Cutting is performed at the angle of AT cut. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ウェハの製造方法に関する。   The present invention relates to a method for manufacturing a wafer.

従来から、電子デバイス等に用いられる部品の製造は、1枚のウェハに複数の素子又は部品を形成し、その後、個片に分割することにより行われる場合がある。
例えば、電子デバイスの部品を水晶片とすると、この水晶片は、水晶からなるウェハに複数の水晶片を形成し、折り取り、ダイシングやレーザー切断などの手法を用いて個片にされることで形成される。
ここで、ウェハは、例えば、育成されたアズグロウン人工水晶をランバート加工し、所定のカットアングルでかつ所定の厚さで板状にスライスされて形成される。
このウェハの大きさは、育成された人工水晶の大きさに依存する。そして人工水晶は、育成速度や育成期間などにより育成できる大きさに限界がある。したがって、従来より用いられるウェハの大きさは、例えば、最大で1辺が4インチ以下のものとなっていた。
特開2000−264786号公報(段落0020〜0027)
2. Description of the Related Art Conventionally, manufacture of components used for electronic devices and the like is sometimes performed by forming a plurality of elements or components on a single wafer and then dividing them into individual pieces.
For example, if a part of an electronic device is a crystal piece, the crystal piece is formed by forming a plurality of crystal pieces on a wafer made of crystal, and then using a technique such as folding, dicing or laser cutting. It is formed.
Here, the wafer is formed, for example, by laminating grown as-grown artificial quartz and slicing it into a plate shape with a predetermined cut angle and a predetermined thickness.
The size of this wafer depends on the size of the grown artificial quartz. Artificial quartz has a limit in the size that can be grown depending on the growth speed and the growth period. Therefore, the size of the wafer used conventionally has been, for example, a maximum of 4 inches per side.
JP 2000-264786 A (paragraphs 0020 to 0027)

しかしながら、ウェハの面積を大きくしようとする場合、種水晶を大きくしたり人工水晶の育成のための期間を長くする等の必要がある。
例えば、種水晶を大きくすると、結晶育成に用いる圧力容器内に装架できる数が少なくなる。そのため、育成期間を長くして種水晶から大きな人工水晶を得ることが考えられるが、育成期間を長くすると生産性が悪くなるという問題がある。
また、人工水晶以外の他の結晶体において、育成後の結晶状態でウェハを製造する場合に、ウェハを大きく形成しようとすれば育成する結晶体を大きくしなければならないため、結晶体の育成に手間がかかり、結晶体の生産性が悪くなってしまう。
これにより、人工水晶(結晶体)の生産性が悪くなると、電子デバイス等に用いられる部品の生産性も悪くなるという問題がある。
However, when trying to increase the area of the wafer, it is necessary to increase the seed crystal or lengthen the period for growing the artificial crystal.
For example, when the seed crystal is enlarged, the number that can be mounted in the pressure vessel used for crystal growth decreases. Therefore, it is conceivable to obtain a large artificial crystal from the seed crystal by lengthening the growing period, but there is a problem that productivity becomes worse when the growing period is lengthened.
In addition, when a wafer is manufactured in a crystal state after growth in a crystal other than artificial quartz, if the wafer is to be formed larger, the crystal to be grown must be enlarged. It takes time and the productivity of the crystal becomes worse.
As a result, when the productivity of the artificial crystal (crystal) is deteriorated, there is a problem that the productivity of components used in an electronic device and the like is also deteriorated.

そこで、本発明は、前記した問題を解決し、電子デバイス等に用いられる部品の生産性を向上させるウェハの製造方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a wafer manufacturing method that solves the above-described problems and improves the productivity of components used in electronic devices and the like.

前記課題を解決するため、本発明は、ウェハの製造方法であって、長さ方向を向く断面の形状が矩形形状となるように加工された結晶体からなる複数のブロック体を積み重ねつつ並べた状態に接合するブロック体接合工程と、接合された前記複数のブロック体の外周を切断して所定の厚さのウェハを形成する切断工程と、から構成されることを特徴とする。   In order to solve the above-mentioned problems, the present invention is a method for manufacturing a wafer, in which a plurality of block bodies made of crystal bodies processed so that the shape of a cross section facing the length direction is a rectangular shape are stacked and arranged. A block body joining step for joining in a state, and a cutting step for forming a wafer having a predetermined thickness by cutting the outer periphery of the plurality of joined block bodies.

また、本発明は、前記ブロック体となる前記結晶体をランバード人工水晶としても良い。また、本発明は、接合される前記ブロック体において、一方のブロック体の+X面と他方のブロック体の−X面とが向かい合うように接合されることを特徴とする。   In the present invention, the crystal body serving as the block body may be a Lambert artificial crystal. In the block body to be joined, the + X plane of one block body and the -X plane of the other block body are joined to face each other.

このようなウェハの製造方法によれば、従来から用いられているウェハよりも表面積を大きくすることができる。このため、このウェハに形成できる部品の数が増大するので、電子デバイス等に用いられる部品の生産性を向上させることができる。   According to such a wafer manufacturing method, the surface area can be made larger than that of a conventionally used wafer. For this reason, since the number of components that can be formed on the wafer increases, the productivity of components used in electronic devices and the like can be improved.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。なお、各実施形態について同一の構成要素については同一の符号を付し、重複する説明を省略する。また、結晶体を人工水晶として説明する。   Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate. In addition, about the same component about each embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted. The crystal body is described as an artificial crystal.

(第一の実施形態)
図1(a)は断面を矩形形状にする前の状態のブロック体の一例を示す斜視図であり、図1(b)は断面を矩形形状にした状態のブロック体の一例を示す斜視図である。図2はブロック体を接合した状態を示す斜視図である。図3は、ウェハの一例を示す図である。
本発明の第一の実施形態に係るウェハの製造方法は、ブロック体1(図1参照)としてアズグロウン人工水晶にランバート加工を施したランバート人工水晶を用い、このブロック体1を積み重ねつつ並べた状態で接合し(図2参照)、接合された複数のブロック体1,1・・・の外周を切断してウェハ10(図3参照)を得る。このようなウェハ10の製造方法について詳細に説明する。
(First embodiment)
FIG. 1A is a perspective view showing an example of a block body in a state before the cross section is made into a rectangular shape, and FIG. 1B is a perspective view showing an example of the block body in a state where the cross section is made into a rectangular shape. is there. FIG. 2 is a perspective view showing a state in which the block bodies are joined. FIG. 3 is a diagram illustrating an example of a wafer.
In the wafer manufacturing method according to the first embodiment of the present invention, a Lambert artificial crystal obtained by applying Lambert processing to an as-grown artificial quartz is used as the block body 1 (see FIG. 1), and the block bodies 1 are arranged while being stacked. Are joined together (see FIG. 2), and the outer circumferences of the joined block bodies 1, 1... Are cut to obtain the wafer 10 (see FIG. 3). A method for manufacturing such a wafer 10 will be described in detail.

ブロック体1は、例えば、図1に示すように、結晶体であるランバート人工水晶としてランバートY棒水晶が用いられ、長さ方向を向く断面1Cの形状が矩形形状となるように加工されている。この場合、ブロック体1の結晶軸は、平面視において長辺方向がY軸、短辺方向がZ軸、Y軸とZ軸とで形成される平面と直交する方向がX軸となる。つまり、X軸は厚さ方向であり、Y軸は長さ方向であり、Z軸は幅方向となる。
なお、ブロック体1のX軸には−X方向と+X方向の方向性がある。ブロック体1の−X方向を向く面を−X面1B、ブロック体の+X方向を向く面を+X面1Aとする。したがって、アズグロウン人工水晶にランバード加工を行う前に、このアズグロウン人工水晶に−X方向又は+X方向のいずれかをマーキングしておくと良い。
As shown in FIG. 1, for example, a Lambert Y bar crystal is used as the block body 1 as a Lambert artificial quartz crystal, and the block body 1 is processed so that the shape of the cross section 1C facing the length direction is a rectangular shape. . In this case, the crystal axis of the block body 1 in the plan view is the Y axis in the long side direction, the Z axis in the short side direction, and the X axis in the direction orthogonal to the plane formed by the Y axis and the Z axis. That is, the X axis is the thickness direction, the Y axis is the length direction, and the Z axis is the width direction.
The X axis of the block body 1 has a directivity in the −X direction and the + X direction. A surface facing the -X direction of the block body 1 is defined as a -X surface 1B, and a surface facing the + X direction of the block body is defined as a + X surface 1A. Therefore, it is preferable to mark either the −X direction or the + X direction on the as-grown artificial quartz before performing lumbard processing on the as-grown artificial quartz.

このように形成されるブロック体1は、図2に示すように、積み重ねつつ並べられて接合される(ブロック体接合工程、図2参照)。このとき、一方のブロック体1の+X面1Aと他方のブロック体の−X面1Bとが向かい合うように接合する。   As shown in FIG. 2, the block bodies 1 formed in this way are arranged while being stacked and joined (block body joining step, see FIG. 2). At this time, the bonding is performed so that the + X surface 1A of one block body 1 and the -X surface 1B of the other block body face each other.

このように、一方のブロック体1の+X面1Aと他方のブロック体の−X面1Bとを向かい合わせて接合することによって、電子デバイス等に用いられる部品として圧電振動片をウェハから製造する場合、ウェハのどの位置で形成しても種々の特性が許容範囲内に収まるため、歩留まりを向上させることができる。   In this way, when the + X surface 1A of one block body 1 and the -X surface 1B of the other block body are bonded to face each other, a piezoelectric vibrating piece is manufactured from a wafer as a component used in an electronic device or the like. The yield can be improved because various characteristics are within an allowable range regardless of the position of the wafer.

また、ブロック体1,1同士の接合には接着剤Sを用いる。例えば、接着剤Sとして紫外線硬化性接着剤を用いることができる。一方のブロック体1の表面にこの紫外線硬化性接着剤を塗布し、この紫外線硬化性接着剤と接触するように他のブロック体1を積み重ねる。この状態で紫外線ランプ(図示せず)を接着箇所に照射する。これによって早期にブロック体1,1同士を接着させることができる。
なお、ブロック体1の接合は、積み重ねてから接合しても良いし、並べてから接合させても良い。
An adhesive S is used for joining the block bodies 1 and 1 together. For example, an ultraviolet curable adhesive can be used as the adhesive S. The ultraviolet curable adhesive is applied to the surface of one block body 1, and the other block bodies 1 are stacked so as to come into contact with the ultraviolet curable adhesive. In this state, an ultraviolet ray lamp (not shown) is irradiated to the bonded portion. Thereby, the block bodies 1 and 1 can be bonded to each other at an early stage.
The block bodies 1 may be joined after being stacked, or may be joined after being arranged.

このようにして複数のブロック体1,1・・・を接合した状態において、接合されたブロック体1,1・・・の外周を切断して所定の厚さのウェハ10を形成する(切断工程、図2及び図3参照)。例えば、ブロック体1の厚さ方向及び幅方向を含む外周で切断しても良いし、ATカットとなるカットアングルで切断しても良い(図2参照)。
なお、切断には、従来周知のワイヤーソウやバンドソウを用いることができる。
In a state where a plurality of block bodies 1, 1... Are joined in this way, the outer periphery of the joined block bodies 1, 1... Is cut to form a wafer 10 having a predetermined thickness (cutting step). FIG. 2 and FIG. 3). For example, you may cut | disconnect in the outer periphery containing the thickness direction and width direction of the block body 1, and you may cut | disconnect with the cut angle used as AT cut (refer FIG. 2).
For the cutting, a conventionally known wire saw or band saw can be used.

このようにウェハの製造方法を構成することにより、容易な方法で従来よりも大きな表面積となるウェハ10を得ることができる。したがって、このウェハ10に形成できる部品の数が増大するので、電子デバイス等に用いられる部品の生産性を向上させることができる。   By configuring the wafer manufacturing method in this manner, the wafer 10 having a larger surface area than the conventional one can be obtained by an easy method. Therefore, since the number of components that can be formed on the wafer 10 increases, the productivity of components used in electronic devices and the like can be improved.

次に、このウェハの使用方法について説明する。
このようなウェハ10には、接合箇所が存在するために、その接合箇所に電子デバイス等に用いられる部品が形成されてもこの部品は使用することはできない。しかしながら、従来のウェハに比べて利用できる面積は増えているため、生産性を向上させることができる。例えば、ウェハ10に電子デバイス等に用いられる部品を形成する場合、「枠」となる部分が必ず生じる。したがって、この枠の部分が従来に比べて少ないために利用できる面積が増えることとなり、形成できる部品の数を増やすことができる。
Next, a method for using this wafer will be described.
Since such a wafer 10 has a bonding portion, even if a component used for an electronic device or the like is formed at the bonding portion, the component cannot be used. However, since the available area is increased as compared with the conventional wafer, productivity can be improved. For example, when a part used for an electronic device or the like is formed on the wafer 10, a “frame” portion is always generated. Accordingly, since the number of the frame portions is smaller than in the conventional case, the usable area increases, and the number of parts that can be formed can be increased.

(第二の実施形態)
次に、本発明の第二の実施形態に係るウェハの製造方法は、ブロック体接合工程において、ブロック体1,1・・・同士の接合が直接接合によってなされる点で第一の実施形態と異なる。
接合に直接接合を用いる場合、ランバート加工されたブロック体1を四角柱状(図1参照)に形成した後に表面を鏡面加工しておくと良い。この状態でブロック体1のX軸方向を向く+X面1Aと−X面1Bとが向かい合うように接合する。
例えば、ランバート加工されたブロック体1を四角柱状に加工した後に表面を鏡面加工し、重ね合わせて熱処理を行うことで接合する(ブロック体接合工程)。なお、第一の実施形態と同様に、積み重ねてから接合しても良いし、並べた状態で密着させてから接合しても良い。
このように構成しても第一の実施形態と同様の効果を奏する。
(Second embodiment)
Next, the wafer manufacturing method according to the second embodiment of the present invention is different from the first embodiment in that the block bodies 1, 1... Different.
When direct bonding is used for bonding, the surface of the block body 1 that has been subjected to Lambert processing is preferably mirror-finished after being formed into a quadrangular prism shape (see FIG. 1). In this state, the + X surface 1A and the −X surface 1B facing the X-axis direction of the block body 1 are joined so as to face each other.
For example, after the block body 1 that has been subjected to Lambert processing is processed into a quadrangular prism shape, the surfaces are mirror-finished and bonded together by heat treatment (block body bonding step). In addition, like 1st embodiment, it may join after stacking, and you may join, after making it closely_contact | adhere in the state arranged.
Even if comprised in this way, there exists an effect similar to 1st embodiment.

以上、本発明の実施形態について説明したが、本発明は前記実施形態には限定されない。例えば、ランバートY棒水晶に代えてランバートZ板水晶を用いても良いし、水晶の他に人工的に育成される結晶体を用いても良い。
また、切断は、結晶体が水晶の場合、ATカット、SCカット、BTカット、CTカット、GTカット、Xカット、Zカット等のカットアングルであっても良い。
なお、切断する角度に対応してブロック体を所定の寸法で形成しておくことで、各辺の長さが同じとなるウェハを得ることができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, a Lambert Z plate crystal may be used instead of the Lambert Y bar crystal, or an artificially grown crystal may be used in addition to the crystal.
Further, when the crystal is a crystal, the cutting may be a cut angle such as AT cut, SC cut, BT cut, CT cut, GT cut, X cut, Z cut or the like.
Incidentally, by forming the block body with a predetermined dimension corresponding to the angle to be cut, a wafer having the same length of each side can be obtained.

(a)は断面を矩形形状にする前の状態のブロック体の一例を示す斜視図であり、(b)は断面を矩形形状にした状態のブロック体の一例を示す斜視図である。(A) is a perspective view which shows an example of the block body of the state before making a cross section into a rectangular shape, (b) is a perspective view which shows an example of the block body in the state where the cross section was made into the rectangular shape. ブロック体を接合した状態を示す斜視図である。It is a perspective view which shows the state which joined the block body. ウェハの一例を示す図である。It is a figure which shows an example of a wafer.

符号の説明Explanation of symbols

10 ウェハ
1 ブロック体
1A +X面
1B −X面
1C 長さ方向を向く断面
S 接着剤
DESCRIPTION OF SYMBOLS 10 Wafer 1 Block body 1A + X surface 1B -X surface 1C The cross section which faces a length direction S Adhesive

Claims (3)

長さ方向を向く断面の形状が矩形形状となるように加工された結晶体からなる複数のブロック体を積み重ねつつ並べた状態に接合するブロック体接合工程と、
接合された前記複数のブロック体の外周を切断して所定の厚さのウェハを形成する切断工程と、
から構成されることを特徴とするウェハの製造方法。
A block body joining step for joining in a state in which a plurality of block bodies made of a crystal body processed so that the shape of a cross section facing the length direction is a rectangular shape is stacked,
A cutting step of forming a wafer having a predetermined thickness by cutting the outer periphery of the plurality of bonded block bodies;
A method for producing a wafer, comprising:
前記ブロック体となる前記結晶体がランバード人工水晶であることを特徴とする請求項1に記載のウェハの製造方法。   The method for manufacturing a wafer according to claim 1, wherein the crystal body serving as the block body is a Lambert artificial quartz crystal. 接合される前記ブロック体において、一方のブロック体の+X面と他方のブロック体の−X面とが向かい合うように接合されることを特徴とする請求項2に記載のウェハの製造方法。   3. The method for manufacturing a wafer according to claim 2, wherein in the block bodies to be joined, the + X plane of one block body and the -X plane of the other block body face each other.
JP2006267235A 2006-09-29 2006-09-29 Wafer manufacturing method Expired - Fee Related JP4847836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267235A JP4847836B2 (en) 2006-09-29 2006-09-29 Wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267235A JP4847836B2 (en) 2006-09-29 2006-09-29 Wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2008087980A true JP2008087980A (en) 2008-04-17
JP4847836B2 JP4847836B2 (en) 2011-12-28

Family

ID=39372509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267235A Expired - Fee Related JP4847836B2 (en) 2006-09-29 2006-09-29 Wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4847836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939151A1 (en) * 2008-12-01 2010-06-04 Soitec Silicon On Insulator INGOTS FORMS OF AT LEAST TWO BASIC INGOTS, A METHOD OF MANUFACTURE AND A PLATELET THEREFROM
JP2013115534A (en) * 2011-11-28 2013-06-10 Seiko Epson Corp Method for manufacturing single crystal wafer, single crystal wafer, vibration element, and piezoelectric device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122617A (en) * 1988-11-01 1990-05-10 Mitsubishi Electric Corp Rod-like base material for providing wafer for electronic device
JPH05279190A (en) * 1992-03-31 1993-10-26 Nippon Dempa Kogyo Co Ltd Artificial quartz and its production
JP2000264786A (en) * 1999-03-16 2000-09-26 Nippon Dempa Kogyo Co Ltd Production of synthetic quartz, synthetic quartz produced with the same and quartz wafer from the same synthetic quartz
JP2000327492A (en) * 1999-05-14 2000-11-28 Nippon Dempa Kogyo Co Ltd Method for growing artificial quartz crystal and quartz crystal plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122617A (en) * 1988-11-01 1990-05-10 Mitsubishi Electric Corp Rod-like base material for providing wafer for electronic device
JPH05279190A (en) * 1992-03-31 1993-10-26 Nippon Dempa Kogyo Co Ltd Artificial quartz and its production
JP2000264786A (en) * 1999-03-16 2000-09-26 Nippon Dempa Kogyo Co Ltd Production of synthetic quartz, synthetic quartz produced with the same and quartz wafer from the same synthetic quartz
JP2000327492A (en) * 1999-05-14 2000-11-28 Nippon Dempa Kogyo Co Ltd Method for growing artificial quartz crystal and quartz crystal plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939151A1 (en) * 2008-12-01 2010-06-04 Soitec Silicon On Insulator INGOTS FORMS OF AT LEAST TWO BASIC INGOTS, A METHOD OF MANUFACTURE AND A PLATELET THEREFROM
JP2013115534A (en) * 2011-11-28 2013-06-10 Seiko Epson Corp Method for manufacturing single crystal wafer, single crystal wafer, vibration element, and piezoelectric device

Also Published As

Publication number Publication date
JP4847836B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US20110108957A1 (en) Semiconductor substrate, semiconductor device and method of manufacturing the same
JP2007141995A (en) Manufacturing method of semiconductor chip
JP2007305810A (en) Semiconductor substrate, semiconductor device, and method of manufacturing the same
JP2006259542A (en) Method for manufacturing liquid crystal display panel
JP2008011278A (en) Method of manufacturing crystal piece, crystal piece, crystal vibrator, and electronic component
JP2012034086A5 (en)
JP2010232378A (en) Method of producing semiconductor device
JP4847836B2 (en) Wafer manufacturing method
JP2004210580A (en) Manufacturing method of thin plate quartz crystal wafer and quartz crystal resonator
JP2009206291A (en) Semiconductor substrate, semiconductor device, and manufacturing method thereof
JP2010259011A (en) Substrate for surface acoustic wave element and method of manufacturing the surface acoustic wave element
EP3453481B1 (en) Method of manufacturing a light emitting element
US8161608B2 (en) Method of manufacturing quartz-crystal resonator
JP5515679B2 (en) Substrate dicing method
JP2008072456A (en) Chip type piezoelectric vibrator, chip type saw device, and manufacturing method
JP2007129109A (en) Method for manufacturing electronic module
JP5267247B2 (en) Optical element for small laser
WO1996017270A1 (en) Method of producing optical isolator
JP2017528012A (en) Piezoelectric quartz chip with single-sided convex structure
JP4485760B2 (en) Manufacturing method of quartz base plate
JP2011129612A (en) Method for manufacturing semiconductor device and semiconductor device
JP2016174328A5 (en)
JP2015050616A (en) Quartz wafer
TW200824527A (en) Fabricating method of flexible array substrate and substrate module
JP2002283340A (en) Ingot cutting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees