JP2008087004A - Method and apparatus for manufacturing inner grooved tube and inner grooved tube - Google Patents

Method and apparatus for manufacturing inner grooved tube and inner grooved tube Download PDF

Info

Publication number
JP2008087004A
JP2008087004A JP2006267986A JP2006267986A JP2008087004A JP 2008087004 A JP2008087004 A JP 2008087004A JP 2006267986 A JP2006267986 A JP 2006267986A JP 2006267986 A JP2006267986 A JP 2006267986A JP 2008087004 A JP2008087004 A JP 2008087004A
Authority
JP
Japan
Prior art keywords
tube
pipe
grooved
raw
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006267986A
Other languages
Japanese (ja)
Other versions
JP5064749B2 (en
Inventor
Eitoku In
栄徳 尹
Kotaro Tsuri
弘太郎 釣
Toshiaki Hashizume
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006267986A priority Critical patent/JP5064749B2/en
Publication of JP2008087004A publication Critical patent/JP2008087004A/en
Application granted granted Critical
Publication of JP5064749B2 publication Critical patent/JP5064749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing an inner grooved tube having internal fins having high height and large lead angles at high productivity. <P>SOLUTION: The method includes: a diameter reducing step in which the diameter of a tube stock is reduced using a diameter reducing die and a floating plug inserted into the tube stock by continuously imparting drawing force in a fixed direction to the tube stock; and a form rolling step in which many fins along the grooves of a grooved plug are transferred inside the tube stock with the use of the grooved plug having many spiral parallel grooves on the outer circumferential surface which is freely rotatably connected to the floating plug and a form-rolling tool composed of a plurality of balls or rolls which performs planetary revolution while idly revolving on the outer circumference of the tube stock while being pressed to the side of the grooved plug. The drawing force to the tube stock is controlled so as to fall in the target range on the basis of the detected value while detecting the drawing force. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は空調機や冷凍機等の熱交換器に組み込まれる内面溝付管(伝熱管)の製造方法と、その製造装置及び前記製造方法により製造された内面溝付管に関するものである。   The present invention relates to a method of manufacturing an internally grooved tube (heat transfer tube) incorporated in a heat exchanger such as an air conditioner or a refrigerator, an apparatus for manufacturing the same, and an internally grooved tube manufactured by the manufacturing method.

空調機や冷凍機等の熱交換器には、管内面に管軸に対して所定のリード角(ねじれ角)をもつ多数の平行な溝が形成された銅又は銅合金製の内面溝付管が用いられている。
この種の内面溝付管は、以下のように転造加工部を有する製造装置(転造加工法)により製造される。
前記製造装置は、銅又は銅合金からなる素管に対して一定方向へ連続的に引抜く引抜き手段を備え、当該引抜き手段による引抜き方向に沿って、縮径加工部,転造加工部及び仕上げダイス(整形ダイス)を順に備えている。
縮径加工部では、縮径ダイスと前記素管内に挿入されたフローティングプラグとにより前記素管を縮径する。
転造加工部では、前記フローティングプラグへ回転自在に連結され外周面に螺旋状の平行な多数の溝を有する溝付プラグと、当該溝付プラグ側へ押圧された状態で前記素管の外周を遊転しつつ遊星回転する複数のボール又はロールからなる転造工具とにより、前記素管内へ前記溝付プラグの溝に沿った多数のフィンを転写する。
フィンが転写された管は、仕上げダイスに通してさらに縮径される。
For heat exchangers such as air conditioners and refrigerators, an internally grooved tube made of copper or copper alloy in which a number of parallel grooves having a predetermined lead angle (twist angle) with respect to the tube axis are formed on the tube inner surface. Is used.
This type of internally grooved tube is manufactured by a manufacturing apparatus (rolling method) having a rolling part as follows.
The manufacturing apparatus includes a drawing means for continuously drawing a base pipe made of copper or a copper alloy in a certain direction, and along the drawing direction by the drawing means, a diameter reduction processing section, a rolling processing section, and a finish Dice (shaping dies) are provided in order.
In the diameter reducing portion, the diameter of the element pipe is reduced by a diameter reducing die and a floating plug inserted into the element pipe.
In the rolling process portion, a grooved plug that is rotatably connected to the floating plug and has a number of spiral parallel grooves on the outer peripheral surface, and the outer periphery of the raw tube in a state of being pressed toward the grooved plug side. A large number of fins along the groove of the grooved plug are transferred into the raw tube by a rolling tool composed of a plurality of balls or rolls that rotate in a planetary manner.
The pipe onto which the fins are transferred is further reduced in diameter through a finishing die.

ところで、ルームエアコンに代表される空調機や冷凍機には、近年の地球環境問題を背景として一層の高性能化,省エネルギー化が求められているため、これらに使用される内面溝付管にもさらなる高性能化が要請されている。
内面溝付管の一層の高性能化には、例えば管内面のフィンをシャープに高く(0.2〜0.4mm)かつ密に形成し(後記特許文献1)、フィンリード角を30〜60度とすることが有効である(後記特許文献2)ことが知られている。
また、最近内面溝付管の製造コストを極力抑えるため、ルームエアコン等へ一般的に使用されているR410a冷媒に対して、耐圧強度を確保できる最小限度の肉厚(溝底肉厚)tで内面溝付管を製造することが要請されている。このR410a冷媒を使用する場合、冷媒の設計作動圧力にもよるが、内面溝付管の外径を4〜7mm程度と想定すると、管の肉厚tは設計上0.18mm以上とする必要があると考えられる。他方、所定以上の伝熱性能を発揮させるためフィンの高さhは少なくとも0.15mmは必要(後記特許文献2)であるから、内面溝付管はフィン高さhと肉厚tとの比h/tが1.2以下であるのが好ましい。
By the way, air conditioners and refrigerators represented by room air conditioners are required to have higher performance and energy saving against the background of recent global environmental problems. There is a demand for higher performance.
In order to further improve the performance of the internally grooved tube, for example, the fins on the tube inner surface are sharply high (0.2 to 0.4 mm) and densely formed (Patent Document 1 described later), and the fin lead angle is 30 to 60. It is known that the degree is effective (Patent Document 2 described later).
In addition, in order to minimize the manufacturing cost of the inner surface grooved tube as much as possible, the minimum thickness (groove bottom thickness) t that can secure the pressure resistance against the R410a refrigerant generally used for room air conditioners and the like. There is a need to produce internally grooved tubes. When this R410a refrigerant is used, depending on the design operating pressure of the refrigerant, assuming that the outer diameter of the inner grooved pipe is about 4 to 7 mm, the wall thickness t of the pipe needs to be 0.18 mm or more in design. It is believed that there is. On the other hand, since the fin height h is required to be at least 0.15 mm in order to exhibit a heat transfer performance exceeding a predetermined value (Patent Document 2 described later), the inner grooved tube has a ratio between the fin height h and the wall thickness t. h / t is preferably 1.2 or less.

前記のような構成の内面溝付管を前記従来方法で製造すると、素管金属材料の加工(変形)効率が極めて低く、管の破断を避けるためには加工速度(引抜き速度)を内面フィンの形状やリード角に応じて極端に落とさなければならず、生産性に問題があった。
特に、熱交換器の製造現場に供給される内面溝付管は、1000m以上の長さのものを円筒状に整列多層巻き(レベルワウンドコイル:LWC)形態に仕上げるのが好ましい。しかし、前記高性能構成であって前記のように極めて長尺の内面溝付管は、前記製造方法による加工時に、素管に加わる加工力が素管の破断強度よりも若干低いかほぼ同等になって、加工設備の振動その他のわずかな外因により素管が破断し易いため、生産性よく製造することは極めて困難であった。
When the internally grooved tube having the above-described configuration is manufactured by the conventional method, the processing (deformation) efficiency of the base tube metal material is extremely low, and in order to avoid breakage of the tube, the processing speed (drawing speed) is set to the value of the internal fin. There was a problem in productivity because it had to be dropped extremely according to the shape and lead angle.
In particular, it is preferable that the inner grooved tube supplied to the manufacturing site of the heat exchanger is finished in the form of an aligned multilayer winding (level-wound coil: LWC) having a length of 1000 m or more in a cylindrical shape. However, as described above, the extremely long inner grooved pipe as described above has a processing force applied to the raw pipe slightly lower than or substantially equal to the breaking strength of the raw pipe during the processing by the manufacturing method. Therefore, since the raw tube is easily broken due to vibrations of the processing equipment and other slight external factors, it has been extremely difficult to manufacture with high productivity.

前記構成の内面溝付管を生産性よく製造するために、種々の工夫がなされている。
その第1は、例えばフィンリード角の大きい内面溝付管の加工性(フィンの加工性)を向上させるため、フィンの根元部(溝底部)に大きいR部(凹部)を形成することである(後記特許文献2)。
しかし、上記フィン根元のR部は管の伝熱性能には寄与せず、全体の平均肉厚が厚くなって金属材料を多く必要とするので、内面溝付管の製造コストを増大させる。
In order to manufacture the internally grooved tube having the above-described configuration with high productivity, various ideas have been made.
First, for example, in order to improve the workability (fin workability) of an internally grooved tube having a large fin lead angle, a large R portion (concave portion) is formed at the root portion (groove bottom) of the fin. (Patent Document 2 described later).
However, the R portion of the fin base does not contribute to the heat transfer performance of the tube, and the overall average thickness is increased and a large amount of metal material is required, which increases the manufacturing cost of the internally grooved tube.

その第2は、前記縮径加工部と転造加工部との間に補助引抜き装置を設置し、この補助引抜き装置により加工時に素管へ補助的引抜き力を付与する製造方法である(後記特許文献3)。
前記補助引抜き装置は、それぞれプーリに保持された状態で素管を挟み、かつ、前記素管の引抜き方向に沿って回転する一対の無端状のタイミングベルトを備え、一方のタイミングベルトは押圧手段により前記素管へ押付けられる。また、各タイミングベルトの素管への接触面には、当該素管が押し込まれる円弧状断面の溝が形成されている。
前記製造方法は、前記補助引抜き装置を、縮径ダイスの出側における素管移動速度の1.0倍以上となる速度で素管を引っ張るように制御する(整形ダイスの出側の引抜き力は低減する。)ことにより、管の破断(断管)を防止しようとするものである。
しかし、加工済み管の引抜き力を低減させることはできるが、補助引抜き装置の制御は引抜き速度基準による制御であるため、管に対する全体の引抜き力の変動幅は大きく、加工中の管の破断を防止するのには不十分である。特に、加工開始段階や加工終了段階のように加工速度が大きく変動し易い領域における引抜き力の変動は大きく、管の破断や折れが発生し易い。
特開2003−166794号公報 特開2004−230450号公報 特開平11−000711号公報
The second is a manufacturing method in which an auxiliary drawing device is installed between the reduced diameter processing portion and the rolling processing portion, and an auxiliary drawing force is applied to the raw pipe at the time of processing by this auxiliary drawing device (patents described later). Reference 3).
The auxiliary pulling device includes a pair of endless timing belts that sandwich the raw tube while being held by pulleys and that rotate along the pulling direction of the raw tube. Pressed against the raw tube. Further, on the contact surface of each timing belt to the pipe, a groove having an arcuate cross section into which the pipe is pushed is formed.
In the manufacturing method, the auxiliary drawing device is controlled to pull the pipe at a speed that is 1.0 times or more the moving speed of the pipe on the outlet side of the reduced diameter die (the pulling force on the outlet side of the shaping die is This is intended to prevent the tube from being broken (disconnected).
However, although the drawing force of the processed pipe can be reduced, the control of the auxiliary drawing device is based on the drawing speed standard, so the fluctuation range of the overall drawing force on the pipe is large, and the pipe during processing is not broken. Insufficient to prevent. In particular, the fluctuation of the drawing force is large in a region where the machining speed is likely to fluctuate greatly, such as at the machining start stage and the machining end stage, and the pipe is easily broken or broken.
JP 2003-166794 A JP 2004-230450 A JP-A-11-000711

本発明の課題は、伝熱性能の優れた前記のようなフィン構成の内面溝付管における生産性の改善にあり、その目的とするところは、高さが高くかつリード角の大きい内面フィンを有する内面溝付管を、より生産性よく製造することができる製造方法を提供することにある。
本発明の他の目的は、本発明に係る製造方法を円滑かつ確実に実施することができる内面溝付管の製造装置を提供することにある。
本発明のさらに他の目的は、本発明に係る製造方法により製造された管であって、伝熱性能を一層高めた内面溝付管を提供することにある。
An object of the present invention is to improve the productivity of an internally grooved pipe having the above-described fin structure with excellent heat transfer performance, and the object is to provide an internal fin having a high height and a large lead angle. It is providing the manufacturing method which can manufacture the inner surface grooved pipe | tube which has more with sufficient productivity.
It is another object of the present invention to provide an apparatus for manufacturing an internally grooved tube that can smoothly and reliably carry out the manufacturing method according to the present invention.
Still another object of the present invention is to provide an internally grooved tube that is manufactured by the manufacturing method according to the present invention and that further enhances heat transfer performance.

本発明に係る内面溝付管の製造方法は、前記課題を解決するため、
素管に対して一定方向へ引抜き力を連続的に付与し、
縮径ダイスと前記素管内に挿入されたフローティングプラグとにより前記素管を縮径する縮径工程と、
前記フローティングプラグへ回転自在に連結され外周面に螺旋状の平行な多数の溝.を有する溝付プラグと、当該溝付プラグ側へ押圧された状態で前記素管の外周を遊転しつつ遊星回転する複数のボール又はロールからなる転造工具とにより、前記素管内へ前記溝付プラグの溝に沿った多数のフィンを転写する転造工程とを含み、
前記引抜き力を検出しながら、その検出値に基づいて前記素管に対する引抜き力を目標範囲内に収まるように制御することを最も主要な特徴としている。
In order to solve the above problems, the method of manufacturing an internally grooved tube according to the present invention,
Continuously applying a pulling force to the base tube in a certain direction,
A diameter reducing step of reducing the diameter of the element pipe by a diameter reducing die and a floating plug inserted into the element pipe;
A grooved plug that is rotatably connected to the floating plug and has a number of spiral parallel grooves on its outer peripheral surface, and a planet while rolling around the outer periphery of the element tube while being pressed toward the grooved plug. A rolling step of transferring a large number of fins along the groove of the grooved plug into the raw pipe by a rolling tool comprising a plurality of rotating balls or rolls,
The most important feature is that, while detecting the pulling force, control is performed so that the pulling force with respect to the raw tube falls within a target range based on the detected value.

本発明に係る内面溝付管の製造装置は、前記課題を解決するため、
素管に対して一定方向へ引抜き力を連続的に付与する引抜き手段と、
縮径ダイスと前記素管内に挿入されたフローティングプラグとにより前記素管を縮径する縮径加工部と、
前記縮径加工部よりも素管の引抜き方向下流側に設置され、前記フローティングプラグへ回転自在に連結され外周面に螺旋状の平行な多数の溝を有する溝付プラグと、当該溝付プラグ側へ押圧された状態で前記素管の外周を遊転しつつ遊星回転する複数のボール又はロールからなる転造工具とにより、前記素管内へ前記溝付プラグの溝に沿った多数のフィンを転写する転造加工部と、
前記引抜き力を検出する引抜き力検出手段と、
前記引抜き力検出手段の検出値に基づいて、前記素管に対する引抜き力を目標範囲内に収まるように制御する制御手段とを備えたことを最も主要な特徴としている。
In order to solve the above problems, an apparatus for manufacturing an internally grooved tube according to the present invention,
A drawing means for continuously applying a drawing force in a certain direction to the raw tube;
A diameter reducing portion that reduces the diameter of the element pipe with a diameter reducing die and a floating plug inserted into the element pipe;
A grooved plug that is installed downstream of the diameter-reduced portion in the drawing direction of the pipe, is rotatably connected to the floating plug, and has a number of spiral parallel grooves on the outer peripheral surface, and the grooved plug side A large number of fins along the groove of the grooved plug are transferred into the element tube by a rolling tool composed of a plurality of balls or rolls that rotate planetarily while rotating around the outer periphery of the element tube while being pressed Rolling process parts to
A pulling force detecting means for detecting the pulling force;
The main feature is that it comprises control means for controlling the drawing force with respect to the raw tube to be within a target range based on the detection value of the drawing force detection means.

本発明に係る内面溝付管は、前記課題を解決するため、前記本発明に係る製造方法により製造され、内面に管軸に対して40〜60度のリード角をもつ多数のフィンを有し、フィン高さhが0.20mm以上であって、前記フィン高さhと隣合うフィン間の溝底肉厚tとの比h/tが1.2以下であることを最も主要な特徴としている。   In order to solve the above problems, an internally grooved tube according to the present invention is manufactured by the manufacturing method according to the present invention, and has an inner surface with a large number of fins having a lead angle of 40 to 60 degrees with respect to the tube axis. The most important feature is that the fin height h is 0.20 mm or more and the ratio h / t between the fin height h and the groove bottom wall thickness t between adjacent fins is 1.2 or less. Yes.

本発明に係る内面溝付管の製造方法によれば、管に対する引抜き力を検出しながら、その検出値に基づいて前記素管に対する引抜き力を目標範囲内に収まるように制御するので、加工中管に対する引抜き力の変動幅をより小さくすることができる。そのため、高さが高くかつリード角の大きい内面フィンを有する内面溝付管を、より生産性よく製造することが可能になる。   According to the method of manufacturing an internally grooved tube according to the present invention, while detecting the pulling force on the tube, based on the detected value, the pulling force on the raw tube is controlled to be within the target range. The fluctuation range of the pulling force on the tube can be further reduced. Therefore, it is possible to manufacture an internally grooved tube having an internal fin having a high height and a large lead angle with higher productivity.

本発明に係る内面溝付管の製造装置によれば、管に対する引抜き力を検出する引抜き力検出手段と、前記引抜き力検出手段の検出値に基づいて、前記素管に対する引抜き力を目標範囲内に収まるように制御する制御手段とを備えたので、前記本発明に係る製造方法を円滑かつ確実に実施することができる。   According to the inner grooved pipe manufacturing apparatus of the present invention, the pulling force detecting means for detecting the pulling force for the pipe, and the pulling force for the raw pipe within the target range based on the detection value of the pulling force detecting means. And the control means for controlling so as to fall within the range, the manufacturing method according to the present invention can be carried out smoothly and reliably.

本発明に係る内面溝付管はによれば、内面に管軸に対して40〜60度のリード角をもつ多数のフィンを有し、フィン高さhが0.20mm以上であって、前記フィン高さhと隣合うフィン間の溝底肉厚tとの比h/tが1.2以下であるので、伝熱性能を一層高めた内面溝付管を提供することができる。   According to the inner grooved tube of the present invention, the inner surface has a large number of fins having a lead angle of 40 to 60 degrees with respect to the tube axis, and the fin height h is 0.20 mm or more, Since the ratio h / t between the fin height h and the groove bottom wall thickness t between adjacent fins is 1.2 or less, it is possible to provide an internally grooved tube with further improved heat transfer performance.

第1実施形態
図1は本発明に係る内面伝熱管の製造装置の第1実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。
この製造装置は、金属製の素管1に対して一定方向へ引抜き力を連続的に付与する引抜き手段2と、素管1の引抜き方向(図の左側から右方向)に沿って順に設置された縮径加工部3、転造加工部4及び整形ダイス5を備え、さらに力検出手段7、及び制御手段6を具備している。
First Embodiment FIG. 1 is a partial cross-sectional view for explaining a first embodiment of an inner surface heat transfer tube manufacturing apparatus according to the present invention and a manufacturing method using the manufacturing apparatus.
This manufacturing apparatus is installed in order along the drawing means 2 for continuously applying a drawing force in a certain direction to the metal tube 1 and the drawing direction of the tube 1 (from the left to the right in the figure). Further, a reduced diameter processing section 3, a rolling processing section 4 and a shaping die 5 are provided, and a force detection means 7 and a control means 6 are further provided.

前記縮径加工部3は、縮径ダイス30と前記素管1内に挿入されたフローティングプラグ31とにより前記素管1を縮径する。
前記転造加工部4は、フローティングプラグ31へロッド31aを介して回転自在に連結され外周面に螺旋状の平行な多数の溝を有する溝付プラグ40と、当該溝付プラグ40側へ押圧された状態で前記素管1の外周を遊転しつつ遊星回転する複数のボール又はロールからなる転造工具41とにより、素管1内へ前記溝付プラグ40の溝に沿った多数のフィン1bを転写する。
整形ダイス5では、転造加工部4で内面にフィン1bが加工された素管1をさらに縮径するとともに所定の外径となるように整形し、内面に管軸に対して所定のリード各βを有する多数のフィンが形成された内面溝付管1aを仕上げる。
前記の連続した製造工程において、引抜き力検出手段7により素管1に対する引抜き力(引抜き力の変動量を含む。以下同じ。)を連続的に検出し、当該検出値に基づいて制御手段6により前記素管1に対する引抜き力を目標範囲内に収まるように制御する。
以上の構成は、請求項9及び請求項1と対応している。
The diameter reducing portion 3 reduces the diameter of the element tube 1 by a diameter reducing die 30 and a floating plug 31 inserted into the element tube 1.
The rolling processed portion 4 is rotatably connected to the floating plug 31 via a rod 31a and has a grooved plug 40 having a number of spiral parallel grooves on the outer peripheral surface, and is pressed toward the grooved plug 40 side. A large number of fins 1b along the groove of the grooved plug 40 into the raw tube 1 by a rolling tool 41 made of a plurality of balls or rolls that rotate in a planetary manner while rolling around the outer periphery of the raw tube 1 Transcript.
In the shaping die 5, the raw tube 1 having the fins 1b processed on the inner surface thereof at the rolling processing portion 4 is further reduced in diameter and shaped to have a predetermined outer diameter. The internally grooved tube 1a formed with a large number of fins having β is finished.
In the continuous manufacturing process, the pulling force detecting means 7 continuously detects the pulling force (including the fluctuation amount of the pulling force; the same applies hereinafter) to the raw tube 1 and the control means 6 based on the detected value. The pulling force for the raw tube 1 is controlled so as to be within a target range.
The above configuration corresponds to claim 9 and claim 1.

この実施形態においては、引抜き手段2は転造加工部4よりも引抜き方向下流側に設置されていて、加工済みの内面溝付管1aを巻き取る巻取りドラムを兼ねており、前記引抜き力検出手段7は前記巻取り手段2を回転させるモータM1への電流を検出する電流計であり、当該電流計の検出値から前記引抜き手段2のトルクを演算するように構成されている(請求項10,2と対応)。
制御手段6は、制御部60、入力部61、演算部62及び図示しない出力部(表示装置やプリンター等を含む)を備えており、制御手段6には入力部61から引抜き力の目標範囲(目標制御範囲又は範囲のない目標制御値。好ましくは目標制御値。)が入力される。
電流計である引抜き力検出手段7の検出信号(電気信号)は演算部62へ入力され、この入力信号に基づいて前記演算部62で引抜き手段2のトルクが演算される。
In this embodiment, the drawing means 2 is installed on the downstream side in the drawing direction with respect to the rolling process portion 4 and also serves as a winding drum for winding the machined inner grooved tube 1a. The means 7 is an ammeter that detects a current to the motor M1 that rotates the winding means 2, and is configured to calculate the torque of the drawing means 2 from the detected value of the ammeter. , 2).
The control unit 6 includes a control unit 60, an input unit 61, a calculation unit 62, and an output unit (including a display device and a printer) (not shown). The control unit 6 includes a target range (withdrawal force) from the input unit 61. A target control value with or without a target control range, preferably a target control value).
A detection signal (electric signal) of the extraction force detection means 7 which is an ammeter is input to the calculation unit 62, and the torque of the extraction means 2 is calculated by the calculation unit 62 based on this input signal.

転造加工部4における転造工具41は素管1の管軸を中心として等角度間隔に配置された複数のボールであり、これらのボールは、引抜き方向下流側へ向けて拡大した急角度の円錐面を有するリング状の加工ヘッド42内へ保持されている。
各ボールは、ベアリング43とともに加工ヘッド42内の出側へ設置されたリング状の押圧部材44と、加工ヘッド42の前記円錐面とにより、管軸方向(溝付プラグ40側)へ押付けられている。符号45は、押圧部材44を介して各ボールに対し圧力を付与する加圧手段である。
この実施形態における制御手段6の制御部60は、検出された前記トルクに基づいて、前記加圧手段45を介して転造工具41の前記素管1への押圧力を加減することにより、素管1に対する引抜き力を目標範囲内に収まるように制御する。(請求項14、6と対応)。
上記制御では、前記押圧力の増減に応じて引抜き力は増減する。
前記管の製造中他の条件(素管1の引抜き速度や転造工具41の遊星回転数)は、一定又は一定範囲内に保たれるよう制御される。
この実施形態において、引抜き手段2を兼ねた巻取りドラムに巻き取られた加工済みの内面溝付管1aは、図示しないバスケットその他の収容部に収容され、円筒状の整列多層巻き状に巻き直される。
The rolling tool 41 in the rolling processing unit 4 is a plurality of balls arranged at equiangular intervals around the tube axis of the raw tube 1, and these balls have a steep angle expanded toward the downstream side in the drawing direction. It is held in a ring-shaped processing head 42 having a conical surface.
Each ball is pressed in the tube axis direction (grooved plug 40 side) by a ring-shaped pressing member 44 installed on the exit side in the processing head 42 together with the bearing 43 and the conical surface of the processing head 42. Yes. Reference numeral 45 is a pressurizing unit that applies pressure to each ball via the pressing member 44.
The control unit 60 of the control means 6 in this embodiment adjusts the pressing force of the rolling tool 41 to the raw tube 1 through the pressurizing means 45 based on the detected torque, thereby The pulling force on the tube 1 is controlled so as to be within the target range. (Corresponding to claims 14 and 6).
In the above control, the pulling force increases or decreases according to the increase or decrease of the pressing force.
Other conditions (the drawing speed of the raw pipe 1 and the planetary rotation speed of the rolling tool 41) during the production of the pipe are controlled to be kept constant or within a certain range.
In this embodiment, the processed inner surface grooved tube 1a wound around the winding drum that also serves as the drawing means 2 is accommodated in a basket or other accommodating portion (not shown), and is rewound into a cylindrical aligned multilayer winding. It is.

第1実施形態の製造装置を用いた前記製造方法によれば、加工中に素管1の引抜き力の変動幅を狭い範囲内に抑制することができるので、管1の引抜き速度を極端に抑えることなく、かつ、管1の破断や折れを防止しつつ後記のような高性能の内面溝付管を生産性よく製造することができる。
すなわち、前記の製造方法により、図8で示すように、内面に管軸に対して40〜60度のリード角β(図1)をもつ多数のフィン1bを有し、フィン高さhが0.20mm以上であって、フィン高さhと隣合うフィン間の溝底肉厚tとの比h/tが1.2以下である高性能の内面溝付管1aが、工業的な引抜き速度により製造される。
According to the manufacturing method using the manufacturing apparatus of the first embodiment, the fluctuation range of the pulling force of the raw tube 1 can be suppressed within a narrow range during processing, so that the pulling speed of the tube 1 is extremely suppressed. In addition, a high performance internally grooved tube as described later can be manufactured with high productivity while preventing the tube 1 from being broken or broken.
That is, by the above manufacturing method, as shown in FIG. 8, the inner surface has a large number of fins 1b having a lead angle β (FIG. 1) of 40 to 60 degrees with respect to the tube axis, and the fin height h is 0. A high-performance internally grooved tube 1a having a ratio h / t of 1.2 mm or less between the fin height h and the groove bottom wall thickness t between adjacent fins is 20 mm or more. Manufactured by.

第1実施形態では、素管1に対する引抜き力を目標範囲内に収まるように制御するため、前記のように転造工具41の素管1への押圧力を加減する構成を採用したが、これに代えて、モータM1を介して素管1の引抜き速度を加減するように構成することができる。(請求項5,13と対応。)
上記制御では、引抜き速度の増減に応じて引抜き力は増減する。
上記管の製造中他の条件(転造工具41の素管1への押圧力や転造工具41の遊星回転数)は一定又は一定範囲内に保たれるよう制御される。
In the first embodiment, in order to control the drawing force with respect to the raw tube 1 to be within the target range, the configuration in which the pressing force of the rolling tool 41 to the raw tube 1 is adjusted as described above is employed. Instead of this, the drawing speed of the tube 1 can be adjusted via the motor M1. (Corresponding to claims 5 and 13)
In the above control, the pulling force increases / decreases according to the increase / decrease of the pulling speed.
Other conditions (the pressing force of the rolling tool 41 on the raw tube 1 and the planetary rotation speed of the rolling tool 41) during the manufacture of the pipe are controlled to be constant or within a certain range.

第2実施形態
図2は本発明に係る内面伝熱管の製造装置の第2実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。
この実施形態において、引抜き力検出手段7は、転造加工部4よりも引抜き方向下流側において、引抜き方向へ移動しつつある加工済みの内面溝付管1aの外周面へ管軸に向けて押付けられた荷重測定器70と、当該押付け部分における前記押付け方向への管軸の変位量を検出する変位計71とを備えている。変位計71は、荷重測定器70の押付けによる素管1の管軸の押付け方向への変位量を検出するのであるから、その検出ヘッドが前記押付け方向と直交する方向から素管1の管軸へ向く状態に設置される。
この実施形態では、移動中の内面溝付管1a外周部へ管軸に向けて押付けられている荷重測定器70はその検出荷重(押付け圧力)を、前記変位計71は検出した管軸の変位量を、それぞれ電気信号に変換して出力し、これらの電気信号が入力された制御手段6の演算部62により、前記荷重と変位量との関係から素管1への引抜き力が演算される。(請求項11,3と対応)。
具体的な検出方法としては、荷重測定器70の管1aへの押付け力を一定に保って管1aの管軸変位量の変動から引抜き力を検出するか、あるいは、管軸変位量を一定に保って荷重測定器70の検出荷重の変動から引抜き力を検出するのが好ましい。
2nd Embodiment FIG. 2: is a fragmentary sectional view for demonstrating 2nd Embodiment of the manufacturing apparatus of the inner surface heat exchanger tube which concerns on this invention, and the manufacturing method using the said manufacturing apparatus.
In this embodiment, the pulling force detecting means 7 is pressed toward the outer peripheral surface of the processed internally grooved tube 1a that is moving in the pulling direction downstream of the rolling processed portion 4 toward the tube axis. And a displacement meter 71 for detecting the amount of displacement of the tube shaft in the pressing direction at the pressing portion. Since the displacement meter 71 detects the amount of displacement in the pressing direction of the tube axis of the raw tube 1 due to the pressing of the load measuring device 70, the tube axis of the raw tube 1 from the direction in which the detection head is orthogonal to the pressing direction. It is installed in a state facing to.
In this embodiment, the load measuring device 70 pressed against the outer peripheral portion of the inner grooved tube 1a being moved toward the tube axis is the detected load (pressing pressure), and the displacement meter 71 is the detected displacement of the tube shaft. The amount is converted into an electrical signal and output, and the extraction unit 62 of the control means 6 to which these electrical signals are input calculates the pulling force to the raw tube 1 from the relationship between the load and the displacement amount. . (Corresponding to claims 11 and 3).
As a specific detection method, the pressing force of the load measuring device 70 to the tube 1a is kept constant, and the pulling force is detected from the fluctuation of the tube shaft displacement amount of the tube 1a, or the tube shaft displacement amount is made constant. It is preferable to detect the pulling force from the variation in the detected load of the load measuring device 70 while maintaining it.

この実施形態では、前記のように検出された引抜き力に基づき、転造加工部4の加工ヘッド42を回転させる回転伝達手段46(プーリとベルト)のモータM2を通じて、転造工具41の遊星回転速度(回転数)を加減することにより、素管1に対する引抜き力を目標範囲内に収まるように制御する。(請求項14,6と対応)。
上記制御では、転造工具41の遊星回転速度の増減に応じて引抜き力は増減する。
前記管の製造中他の条件(素管1の引抜き速度、転造工具41の素管1への押圧力)は、一定又は一定範囲内に保たれるよう制御される。
In this embodiment, the planetary rotation of the rolling tool 41 is performed through the motor M2 of the rotation transmission means 46 (pulley and belt) that rotates the machining head 42 of the rolling processing unit 4 based on the pulling force detected as described above. By controlling the speed (number of rotations), the pulling force for the raw tube 1 is controlled to be within the target range. (Corresponding to claims 14 and 6).
In the above control, the pulling force increases or decreases according to the increase or decrease of the planetary rotation speed of the rolling tool 41.
During the production of the pipe, other conditions (drawing speed of the raw pipe 1 and pressing force of the rolling tool 41 on the raw pipe 1) are controlled to be kept constant or within a certain range.

第2実施形態における他の構成や作用効果は第1実施形態と同様であるので、それらの説明は省略する。   Since other configurations and operational effects in the second embodiment are the same as those in the first embodiment, description thereof will be omitted.

第3実施形態
図3は本発明に係る内面伝熱管の製造装置の第3実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。
この実施形態において、縮径加工部3には、縮径ダイス30の回転させるための回転伝達手段(プーリとベルト)33とモータM3を含む回転駆動手段32が設けられている。
そして、第2実施形態の装置と同様な引抜き力検出手段7により引抜き力を検出し、当該検出値に基づいて、制御手段6の制御部60により、前記回転駆動手段32のモータM3を通じて縮径ダイス30の回転を制御することにより、素管1に対する引抜き力を目標範囲内に収まるように制御する。(請求項15,7と対応)。
すなわち、縮径ダイス30を回転させ(引抜き力は停止時よりも減少する)又は停止させ(引抜き力は回転時よりも増加する)、あるいはその回転速度(回転数)を加減することにより制御するのである。この場合、回転速度が速くなると引抜き力が減少し、回転速度が遅くなると引抜き力が増加する。
前記管の製造中他の条件(素管1の引抜き速度、転造工具41の素管1への押圧力や遊星回転数)は一定又は一定範囲内に保たれるよう制御される。
この実施形態における他の構成や作用効果は第1実施形態と同様であるので、それらの説明は省略する。
3rd Embodiment FIG. 3: is partial sectional drawing for demonstrating 3rd Embodiment of the manufacturing apparatus of the inner surface heat exchanger tube which concerns on this invention, and the manufacturing method using the said manufacturing apparatus.
In this embodiment, the diameter reducing portion 3 is provided with a rotation driving means 32 including a rotation transmitting means (pulley and belt) 33 for rotating the diameter reducing die 30 and a motor M3.
Then, the pulling force is detected by the pulling force detecting means 7 similar to the apparatus of the second embodiment, and the diameter is reduced through the motor M3 of the rotation driving means 32 by the control unit 60 of the control means 6 based on the detected value. By controlling the rotation of the die 30, the pulling force for the raw tube 1 is controlled so as to be within the target range. (Corresponding to claims 15 and 7).
That is, it is controlled by rotating the diameter reducing die 30 (the pulling force is decreased than when it is stopped) or stopping (the pulling force is increasing than when it is rotating), or by increasing or decreasing the rotation speed (the number of rotations). It is. In this case, the pulling force decreases as the rotational speed increases, and the pulling force increases as the rotational speed decreases.
During the production of the pipe, other conditions (the pulling speed of the raw pipe 1, the pressing force of the rolling tool 41 on the raw pipe 1 and the planetary rotation speed) are controlled to be kept constant or within a certain range.
Since other configurations and operational effects in this embodiment are the same as those in the first embodiment, description thereof will be omitted.

第4実施形態
図4は本発明に係る内面伝熱管の製造装置の第4実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。
この実施形態では、引抜き手段2を除く製造装置は機枠9へ取り付けられており、この機枠9はレール91へ素管1の引抜き方向に沿って可動に載置された可動台90の上に設置されている。
可動台90には、当該可動台90の素管引抜き方向への荷重を測定する荷重測定器70により構成された引抜き力検出手段7が取り付けられ、この検出手段7が検出した荷重は電気信号に変換されて制御手段6へ素管1の引抜き力として入力される。すなわち、素管1への引抜き力は、機枠9及び可動台90を介して検出手段7である荷重測定器70で検出される。(請求項12,4と対応)。
なお、この実施形態では後記のように補助引抜き装置8が設置されているが、当該装置8は補助的引抜き力を素管1へ付与しかつ引抜き力を制御する手段として設置されているものであるから、例えば図1〜図3のような製造装置であって、引抜き手段2及び引抜き力検出手段7を除いた部分を同様な機枠に取り付け、これを前記可動台90へ設置しても実施することができる。
4th Embodiment FIG. 4: is partial sectional drawing for demonstrating 4th Embodiment of the manufacturing apparatus of the inner surface heat exchanger tube which concerns on this invention, and the manufacturing method using the said manufacturing apparatus.
In this embodiment, the manufacturing apparatus excluding the pulling means 2 is attached to the machine frame 9, and the machine frame 9 is mounted on a movable table 90 movably mounted on the rail 91 along the drawing direction of the raw tube 1. Is installed.
The movable table 90 is attached with a pulling force detecting means 7 constituted by a load measuring device 70 for measuring a load in the direction in which the movable tube 90 is pulled out. The load detected by the detecting means 7 is converted into an electric signal. It is converted and input to the control means 6 as the pulling force of the raw tube 1. That is, the pulling force to the raw tube 1 is detected by the load measuring device 70 that is the detecting means 7 through the machine frame 9 and the movable base 90. (Corresponding to claims 12 and 4).
In this embodiment, the auxiliary extraction device 8 is installed as will be described later. However, the device 8 is installed as a means for applying an auxiliary extraction force to the base tube 1 and controlling the extraction force. Therefore, for example, in the manufacturing apparatus as shown in FIGS. 1 to 3, even if the portion excluding the drawing means 2 and the drawing force detection means 7 is attached to the same machine frame and installed on the movable table 90. Can be implemented.

この実施形態では、前記縮径加工部3と前記転造加工部4との間には、それぞれ少なくとも一対のプーリ81,81に保持された状態で素管1を挟み、かつ、素管1の引抜き方向に沿って回転する一対の無端状のベルト80,80を含む補助引抜き装置8が設置されている。
前記補助引抜き装置8は、少なくとも一方のベルト80(この実施形態では両方のベルト80,80)を前記素管1に押付ける押圧手段83を備えており、各ベルト80,80は、押圧手段83により素管1を押圧した状態でモータM4により素管1の引抜き方向へ回転し、当該素管1へ補助的引抜き力を付与する。
制御手段6の制御部は、前記ベルト80の素管への押圧力又は各ベルト80の回転速度を制御して前記補助引抜き力を加減することにより、前記素管1に対する引抜き力を目標範囲内に収まるように制御する。(請求項16,8と対応)。
すなわち、荷重測定器70では補助引抜き装置8の補助引抜き力を除いた引抜き力が検出されるが、補助引抜き力が減少すると引抜き手段2の負荷が増大して荷重測定器70の測定値が大きくなる。これに伴って、制御部6の制御により補助引抜き力が増大すると引抜き手段2の負荷が減少し荷重測定器70の測定値は小さくなる。当該測定値が所定値以下になると、制御部6により補助引抜き力が減少方向へ制御されるので、この繰り返しにより引抜き力が目標範囲内におさまるように制御される。
前記管の製造中他の条件(素管1の引抜き速度、転造工具41の素管1への押圧力や遊星回転数)は一定又は一定範囲内に保たれるよう制御される。
In this embodiment, the raw tube 1 is sandwiched between the reduced diameter processing portion 3 and the rolling processing portion 4 while being held by at least a pair of pulleys 81, 81, respectively. An auxiliary drawing device 8 including a pair of endless belts 80 and 80 rotating along the drawing direction is installed.
The auxiliary drawing device 8 includes pressing means 83 that presses at least one belt 80 (in this embodiment, both belts 80, 80) against the raw tube 1, and each belt 80, 80 has a pressing means 83. In the state where the raw tube 1 is pressed by the motor M4, the motor M4 is rotated in the pulling direction of the raw tube 1, and an auxiliary pulling force is applied to the raw tube 1.
The control unit of the control means 6 controls the pressing force of the belt 80 on the raw pipes or the rotational speed of each belt 80 to adjust the auxiliary pulling force, thereby reducing the drawing force on the raw pipe 1 within a target range. Control to fit. (Corresponding to claims 16 and 8).
That is, the load measuring device 70 detects the pulling force excluding the auxiliary pulling force of the auxiliary pulling device 8, but when the auxiliary pulling force decreases, the load on the pulling means 2 increases and the measured value of the load measuring device 70 increases. Become. Along with this, when the auxiliary pulling force increases under the control of the control unit 6, the load on the pulling means 2 decreases and the measured value of the load measuring device 70 decreases. When the measured value falls below a predetermined value, the auxiliary pulling force is controlled in the decreasing direction by the control unit 6, so that the pulling force is controlled to fall within the target range by repeating this.
During the production of the pipe, other conditions (the pulling speed of the raw pipe 1, the pressing force of the rolling tool 41 on the raw pipe 1 and the planetary rotation speed) are controlled to be kept constant or within a certain range.

この実施形態において、各ベルト80を保持するそれぞれの対のプーリ81,81は、それぞれ機枠9に対して素管1の方向へ往復スライド可能に設置された各対の保持板84,84へ取り付けられている。そして、前記押圧手段83は、各対の保持板84,84を素管1の方向へ加圧することにより、各ベルト80を前記素管1へ調整可能に押付けるように構成してある。   In this embodiment, each pair of pulleys 81, 81 holding each belt 80 is respectively connected to each pair of holding plates 84, 84 slidable in the direction of the raw tube 1 relative to the machine frame 9. It is attached. The pressing means 83 is configured to press each belt 80 against the raw tube 1 in an adjustable manner by pressing each pair of holding plates 84 and 84 toward the raw tube 1.

前記各ベルト80,80には、それらの素管1への接触面側へ前記のような回転に支障がない状態に多数のパッド82が長さ方向へ並ぶように取り付けられており、これらのパッド82には、図5で示すように補助引抜き装置8の設置部分を移動する素管1が適合して嵌る寸法で円弧状のガイド溝82aがそれぞれ形成されている。
各パッド82の材質は素管1の材質よりも硬質のものが選ばれ、好ましくは工具鋼が使用される。材質が工具鋼である場合、前記ガイド溝82aの曲率半径/素管半径は1.0〜1.005(好ましくは1.001〜1.003)であるのが好ましい。
A large number of pads 82 are attached to each of the belts 80, 80 in the state in which the rotation is not hindered toward the contact surface side with respect to the raw tube 1 so as to be aligned in the length direction. As shown in FIG. 5, each pad 82 is formed with an arcuate guide groove 82a having a size that fits and fits the base tube 1 that moves the installation portion of the auxiliary drawing device 8.
The material of each pad 82 is selected to be harder than the material of the raw tube 1, and tool steel is preferably used. When the material is tool steel, the radius of curvature / element tube radius of the guide groove 82a is preferably 1.0 to 1.005 (preferably 1.001 to 1.003).

この実施形態における他の構成や作用効果は第1実施形態と同様であるので、それらの説明は省略する。   Since other configurations and operational effects in this embodiment are the same as those in the first embodiment, description thereof will be omitted.

転造加工部の変形形態
図6は、本発明に係る製造装置における転造加工部4の変形形態を示す部分断面図である。
各転造工具41はロールであり、素管1の引抜き方向上流側へ僅かに広がるように傾斜した円錐状内面を有する加工ヘッド42内へ、それぞれホルダ41aへ回転自在に保持された状態で、等角度の間隔で取り付けられている。
各ホルダ41aの外周面と加工ヘッド42の円錐状内面との間には楔状のスペーサ41bが、加工ヘッド42の入口方向からそれぞれ挿入されており、ベアリング43及び押圧部材44を介して各スペーサ41bを図示しない加圧手段により加工ヘッド42内へ押し込むことにより、各ロールを素管1の外周面へ押圧している。
なお、加工ヘッド42の向きは図の逆向き(右向き)でも実施できる。
FIG. 6 is a partial cross-sectional view showing a modified form of the rolling process section 4 in the manufacturing apparatus according to the present invention.
Each rolling tool 41 is a roll, and is rotatably held in a holder 41a in a processing head 42 having a conical inner surface that is inclined so as to spread slightly upstream in the drawing direction of the raw tube 1. Installed at equiangular intervals.
A wedge-shaped spacer 41b is inserted between the outer peripheral surface of each holder 41a and the conical inner surface of the processing head 42 from the entrance direction of the processing head 42, and each spacer 41b is interposed via a bearing 43 and a pressing member 44. Is pressed into the machining head 42 by a pressurizing means (not shown) to press each roll against the outer peripheral surface of the raw tube 1.
The machining head 42 can be oriented in the reverse direction (rightward) in the figure.

転造加工部の他の変形形態
図7は、本発明に係る製造装置における転造加工部4の他の変形形態を示す部分断面図である。
転造加工部4の加工ヘッド42は、素管1が中心を通過しかつ小さな間隙を介して並ぶように配置された二つ割状のリング42a,42bから構成され、一方のリング42aはリング状の回転伝達手段45の内面ヘ固定され、他方のリング42bは回転伝達手段45の内面へ、素管1の管軸方向へのみ可動な状態に取り付けてある。
各リング42a,42bの相対面内側には、中心方向に向かって広がる状態の円錐状内面を有し、複数のボールからなる転造工具41は、両方の円錐状内面と素管1の外周面へ接触しかつ等角度間隔に並ぶようにリング42a、42bの相対面間に配置されている。
一方の可動なリング42bを、ベアリング43及び押圧部材44を介して図示しない加圧手段により他方の固定側リング42aへ押し付けることにより、各ボールを素管1の外周面へ押圧している。
なお、リング42a,42bの位置関係は図の逆でも実施できる。
FIG. 7 is a partial cross-sectional view showing another modified form of the rolling process section 4 in the manufacturing apparatus according to the present invention.
The processing head 42 of the rolling processing unit 4 is composed of split rings 42a and 42b arranged so that the raw tube 1 passes through the center and is arranged with a small gap, and one ring 42a is a ring. The other ring 42b is fixed to the inner surface of the rotation transmitting means 45 so as to be movable only in the tube axis direction of the raw tube 1.
The ring 42a, 42b has a conical inner surface in a state of spreading toward the center on the inner side of the relative surface of each ring 42a, 42b. Are arranged between the relative surfaces of the rings 42a and 42b so as to be in contact with each other and arranged at equal angular intervals.
Each ball is pressed against the outer peripheral surface of the raw tube 1 by pressing one movable ring 42b against the other fixed side ring 42a by a pressing means (not shown) through a bearing 43 and a pressing member 44.
It should be noted that the positional relationship between the rings 42a and 42b can be implemented in the reverse of the figure.

その他の実施形態
前記各実施形態において、引抜き力検出手段7と引抜き力の制御対象(素管に対する引抜き速度、転造工具の素管への押圧力、転造工具の遊星回転速度、縮径ダイスの回転、補助引抜き装置の素管への補助的引抜き力等)との組み合わせは限定的なものではなく、いずれの組み合わせでも実施することができる。
Other Embodiments In each of the above-described embodiments, the drawing force detection means 7 and the drawing force control target (drawing speed with respect to the raw pipe, pressing force of the rolling tool onto the raw pipe, planetary rotation speed of the rolling tool, diameter reduction die , Rotation, auxiliary pulling force to the tube of the auxiliary pulling device, etc.) are not limited, and any combination can be implemented.

試験例1
表1で示すように、管(仕上り管)外径、溝底肉厚及びフィンリード角をそれぞれ一定とし、溝数(フィン数)とフィン高さがそれぞれ異なるサンプル管No.1〜5を製造した。
他方表2で示すように、管外径、溝底肉厚、溝数及びフィン高さをそれぞれ一定とし、フィンリード角がそれぞれ異なるサンプル管No.4,6〜11(但し、表1のサンプル管No.4はそのまま表2に併記)を試作した。
なお、管材質はりん脱酸銅である。
Test example 1
As shown in Table 1, sample tube Nos. With different diameters (fins) and fin heights, with the tube (finished tube) outer diameter, groove bottom thickness, and fin lead angle being constant, respectively. 1-5 were manufactured.
On the other hand, as shown in Table 2, each of the sample tube Nos. 1 and 2 has a constant tube outer diameter, groove bottom thickness, number of grooves, and fin height, and different fin lead angles. 4, 6 to 11 (however, sample tube No. 4 in Table 1 is also shown in Table 2 as it is) was made as a prototype.
The tube material is phosphorous deoxidized copper.

前記各サンプル管を、それぞれ水平に設置した二重管式熱交換器サンプルの内管として挿入し、それらのサンプル内へ冷媒(R410a)を流すとともに、外管と内管の間の二重管部に冷却水を冷媒に対して対抗流となるように流し、冷却水と冷媒とで熱交換させることにより、冷媒を冷却させた。
そのときの熱交換量から、冷媒の質量流速300kg/m2secにおける管内熱(凝縮熱)伝達率を算出(管自体の熱伝達率も含めて管外面積基準で算出)し、それらを表1,2へ併記した。
Each of the sample tubes is inserted as an inner tube of a double tube heat exchanger sample installed horizontally, and a refrigerant (R410a) flows into the samples, and a double tube between the outer tube and the inner tube. Cooling water was caused to flow in a counter flow with respect to the refrigerant, and heat was exchanged between the cooling water and the refrigerant, thereby cooling the refrigerant.
Calculate the heat transfer rate (condensation heat) in the pipe at the mass flow rate of 300 kg / m 2 sec of the refrigerant (calculate on the basis of the outside area of the pipe, including the heat transfer coefficient of the pipe itself). I added it to 1 and 2.

表1
Table 1

表2
Table 2

表1のように、溝数44以上において、フィン高0.2mm未満の領域ではフィン高さの増大に伴う管内熱伝達率の増加割合が大きく、フィン高さが0.2mmを超える領域ではフィン高さの増大に伴う管内熱伝達率の増加割合は小さくなる傾向を示した。
また、表2のように、フィンリード角40度未満の領域ではリード角の増大に伴う管内熱伝達率の増加割合が大きく、リードが角40度を超える領域ではリード角の増大に伴う管内熱伝達率の増加割合は小さくなる傾向を示し、リード角が60度を越えると管内熱伝達率はリード角増大によっても変化がないことが判明した。
これらのことは、小径で高い伝熱性能の内面溝付管は、フィン高さが0.2mm以上でフィンリード角が40〜60度であって、しかも生産性よく(引抜き速度を落とさないで)製造されることが必要であることを示している。
As shown in Table 1, in the region where the number of grooves is 44 or more and the fin height is less than 0.2 mm, the rate of increase in the heat transfer coefficient in the tube accompanying the increase in fin height is large, and in the region where the fin height exceeds 0.2 mm The increase rate of heat transfer coefficient in the tube with the increase in height tended to decrease.
In addition, as shown in Table 2, the rate of increase in the heat transfer coefficient in the tube accompanying the increase in the lead angle is large in the region where the fin lead angle is less than 40 degrees, and the heat in the tube due to the increase in the lead angle in the region where the lead exceeds 40 degrees. The rate of increase in the transfer rate tended to decrease, and it was found that the heat transfer rate in the tube did not change with an increase in the lead angle when the lead angle exceeded 60 degrees.
These are the small diameter and high heat transfer performance internally grooved pipes with fin heights of 0.2 mm or more and fin lead angles of 40-60 degrees, and with good productivity (without reducing the drawing speed) ) Indicates that it needs to be manufactured.

試験例2
本発明方法では、管の引抜き力が常に一定となるように制御されるのが望ましいが、種々の条件により実際の引抜き力の値は一定にはならず所定の範囲内で変動する。
そこで、第1実施形態の製造装置を用い、外径11mm、肉厚0.25mmのりん脱酸銅管を素管として、前記サンプル管No.2を、引抜き速度40m/min、引抜き力目標値1700Nに設定して引抜き試験(仕上げ管長さ1000mm)を行なった。
第1例は管の引抜き力目標値のみを設定して引抜き力を制御しないで、第2例は引抜き力の制御幅目標をややラフ(制御幅は目標値の±10%以下を目指す)にして、第3例は引抜き力制御幅目標を最小にして(制御幅は目標値の±3%以下を目指す)、それぞれ引抜き試験を行なった。引抜き力は、転造工具への押圧力を加減することにより制御した。
それらの管引抜き試験中の引抜き力の実際の変動幅を、巻取りドラムのモータの出力を測定(電流計による)し、その変動幅を連続的に測定してグラフ化出力した。その結果、引抜き力無制御の第1例では図9で示すように変動幅が極めて大きかったが、第2例では図10で示すように変動幅±10以内を、第3例では図11で示すように変動幅±3%以内をそれぞれ達成することができた。
Test example 2
In the method of the present invention, it is desirable to control the pipe pulling force to be always constant. However, the actual pulling force value does not become constant and varies within a predetermined range due to various conditions.
Therefore, using the manufacturing apparatus of the first embodiment, a phosphorous deoxidized copper pipe having an outer diameter of 11 mm and a wall thickness of 0.25 mm was used as a base pipe, and the sample tube No. 2 was set to a drawing speed of 40 m / min and a drawing force target value of 1700 N, and a drawing test (finished tube length of 1000 mm) was performed.
In the first example, only the pulling force target value of the pipe is set and the pulling force is not controlled, and in the second example, the control width target of the pulling force is slightly rough (the control width aims at ± 10% or less of the target value). In the third example, the pulling force control width target was minimized (the control width was aimed at ± 3% or less of the target value), and each pulling test was performed. The pulling force was controlled by adjusting the pressing force on the rolling tool.
The actual fluctuation range of the pulling force during the pipe pulling test was measured by measuring the output of the motor of the winding drum (using an ammeter), and continuously measuring the fluctuation range and outputting the graph. As a result, in the first example with no extraction force control, the fluctuation range was extremely large as shown in FIG. 9, but in the second example, the fluctuation range was within ± 10 as shown in FIG. 10, and in the third example in FIG. As shown, the fluctuation range was within ± 3%.

次に、外径11mm、肉厚0.27〜0.31mmのりん脱酸銅管を素管とし、長さ2000mの前記サンプル管No.3,4,5,8,9,10(各サンプル管No.1,2,6,7は管形態が単純で引抜き力制御無しで製造することができ、また、No.11は本発明方法によっても生産性よく製造することが実験上困難であったので外した。)を、第1〜第4実施形態の製造装置を用いた製造方法と、特許文献3の公報記載の試作製造装置を用いた製造方法とにより、それぞれ各5サンプル製造した。それらの結果を表3〜8に示した。
ここで素管の肉厚を変化させたのは、内面溝付管の肉厚を一定値(ここでは0.20mm)として溝深さを変化させた場合には製造し易くなるためであり、その値は、サンプル管No.3の素管では0.27mm、サンプル管No.4,8,9,10の素管では0.29mm、サンプル管No.5の素管では0.31mmとした。実際にはこの値に拘わらず、素管の内径は適宜変化させることができる。
なお、各表の結果欄における「○」は円滑に引抜き内面溝付管を製造できたことを、「×」は引抜き開始後備考に記載の長さ前後で断管したことを、「△」は、断管はしなかったが溝付管の長手方向または径方向における肉厚変動、凹み、亀裂などが一部に発生したサンプルがあったことをそれぞれ示している。
Next, a phosphorous deoxidized copper pipe having an outer diameter of 11 mm and a wall thickness of 0.27 to 0.31 mm was used as a base pipe, and the sample pipe No. 2 having a length of 2000 m was used. 3, 4, 5, 8, 9, and 10 (each sample tube No. 1, 2, 6 and 7 has a simple tube shape and can be manufactured without pulling force control, and No. 11 is a method of the present invention The manufacturing method using the manufacturing apparatus according to the first to fourth embodiments and the prototype manufacturing apparatus described in the gazette of Patent Document 3 were also removed. 5 samples each were manufactured according to the manufacturing method used. The results are shown in Tables 3-8.
Here, the thickness of the raw tube was changed because it becomes easier to manufacture when the thickness of the inner grooved tube is changed to a constant value (here 0.20 mm) and the groove depth is changed. The value is the sample tube No. No. 3 is 0.27 mm, sample tube No. In the case of 4, 8, 9, and 10 tube, 0.29 mm, sample tube No. In the case of No. 5 tube, it was 0.31 mm. Actually, regardless of this value, the inner diameter of the tube can be changed as appropriate.
In addition, “○” in the result column of each table indicates that the drawn inner grooved tube could be manufactured smoothly, and “×” indicates that the tube was disconnected before and after the length described in the remarks after starting drawing. Indicates that there were samples that were not cut, but had some variation in thickness, dents, cracks, etc. in the longitudinal or radial direction of the grooved tube.

この実施例において、第1実施形態の装置を用いた各製造例では、転造工具の素管への押圧力を加減することにより引抜き力を制御した。
第2実施形態の装置を用いた各製造例では、転造工具の遊星回転速度(回転数)を加減することにより引抜き力を制御した。
第3実施形態の装置を用いた各製造例では、縮径ダイスの回転を制御することにより引抜き力を制御した。
第4実施形態の製造装置を用いた各製造例では、補助引抜き装置の引抜き力を1000Nに設定するとともに、全体としての引抜き力目標値は各表記載のとおりに設定し、補助引抜き装置の補助引抜き力を加減(ベルトの回転速度を制御)することにより引抜き力を制御した。
また、特許文献3の公報記載の試作製造装置では、補助引抜き装置において素管に1000Nの引抜き力を付与するように設定し、当該補助引抜き装置を、縮径ダイスの出側における素管移動速度の1.1倍となる速度で素管を引っ張るように制御し、全体としての引抜き力を各表記載のとおりに設定するとともに引抜き力制御は行なわなかった。
In this example, in each manufacturing example using the apparatus of the first embodiment, the pulling force was controlled by adjusting the pressing force of the rolling tool on the raw pipe.
In each production example using the apparatus of the second embodiment, the drawing force was controlled by adjusting the planetary rotation speed (rotation speed) of the rolling tool.
In each production example using the apparatus of the third embodiment, the pulling force was controlled by controlling the rotation of the reduced diameter die.
In each manufacturing example using the manufacturing apparatus according to the fourth embodiment, the pulling force of the auxiliary pulling apparatus is set to 1000 N, and the overall pulling force target value is set as described in each table, and the auxiliary pulling apparatus assists. The drawing force was controlled by adjusting the drawing force (controlling the rotation speed of the belt).
Moreover, in the prototype manufacturing apparatus described in the publication of Patent Document 3, the auxiliary drawing device is set so as to apply a drawing force of 1000 N to the raw tube, and the auxiliary drawing device is moved to the raw pipe moving speed on the outlet side of the reduced diameter die. The pulling force was controlled to be pulled at a speed that is 1.1 times the speed, the pulling force as a whole was set as shown in each table, and the pulling force control was not performed.

表3
Table 3

表4
Table 4

表5
Table 5

表6
Table 6

表7
Table 7

表8
Table 8

以上表3〜8で示したように、本発明方法の実施例によれば、小径でフィン高さが0.2mm以上かつフィンリード角が40度以上の高性能の内面溝付管を、生産性よく製造することができた。ただし、表5,8で見られるように、比較的小径の管で管内面形態が厳しい(フィン高さ,フィンリード角ともに相対的に高い値である)場合には、引抜き力目標値に対して制御幅を最小にするように精確な制御が必要である。
なお、前記実施例では本発明方法にける引抜き力の具体的な制御手段全部の実施例は記載されていないが、前記各実施形態で説明した他の具体的な引抜き力制御手段によっても、実験上前記実施例と同様な効果を達成することができたのでそれらは割愛した。
また、管の引抜き速度を加減することにより引抜き力が目標値になるように制御する場合、引抜き速度の基準値を設定しておくが、引抜き力制御のためには引抜き速度を加減する。この方法によっても、引抜き速度を一時的に加減した場合、検出引抜き力により当該引抜き速度はさらに加減されて設定基準値近傍の値に戻るので、内面溝付管を1000m以上引抜く間の平均的な引抜き速度は前記基準値をほぼ達成することができる。
As shown in Tables 3 to 8 above, according to the embodiment of the method of the present invention, a high performance internally grooved tube having a small diameter, a fin height of 0.2 mm or more and a fin lead angle of 40 degrees or more is produced. It was possible to manufacture with good quality. However, as can be seen from Tables 5 and 8, when the inner surface of the pipe is relatively small (the fin height and fin lead angle are relatively high values), the pulling force target value is exceeded. Therefore, precise control is required to minimize the control range.
In the above-described examples, examples of all of the concrete pulling force control means in the method of the present invention are not described. However, the experiment is performed by the other specific pulling force control means described in the above embodiments. Since the same effect as the above-mentioned Example was able to be achieved, they were omitted.
In addition, when controlling the drawing force to be a target value by adjusting the drawing speed of the tube, a reference value of the drawing speed is set, but the drawing speed is adjusted for the drawing force control. Also with this method, when the drawing speed is temporarily adjusted, the drawing speed is further adjusted by the detected drawing force and returns to a value in the vicinity of the set reference value. The drawing speed can almost achieve the reference value.

本発明に係る内面溝付管製造装置の第1実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。It is partial sectional drawing for demonstrating 1st Embodiment of the internal grooved pipe manufacturing apparatus which concerns on this invention, and the manufacturing method using the said manufacturing apparatus. 本発明に係る内面溝付管製造装置の第2実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。It is a fragmentary sectional view for explaining a 2nd embodiment of an internally grooved pipe manufacturing device concerning the present invention, and a manufacturing method using the manufacturing device. 本発明に係る内面溝付管製造装置の第3実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。It is partial sectional drawing for demonstrating 3rd Embodiment of the internal grooved pipe manufacturing apparatus which concerns on this invention, and the manufacturing method using the said manufacturing apparatus. 本発明に係る内面溝付管製造装置の第4実施形態と、当該製造装置を用いた製造方法を説明するための部分断面図である。It is a fragmentary sectional view for demonstrating 4th Embodiment of the internal grooved pipe manufacturing apparatus which concerns on this invention, and the manufacturing method using the said manufacturing apparatus. 第4実施形態の製造装置における補助引抜き装置のベルトパッドの拡大断面図である。It is an expanded sectional view of the belt pad of the auxiliary drawing apparatus in the manufacturing apparatus of 4th Embodiment. 本発明に係る製造装置における転造加工部の変形形態を示す部分断面図である。It is a fragmentary sectional view which shows the deformation | transformation form of the rolling process part in the manufacturing apparatus which concerns on this invention. 本発明に係る製造装置における転造加工部の他の変形形態を示す部分断面図である。It is a fragmentary sectional view which shows the other deformation | transformation form of the rolling process part in the manufacturing apparatus which concerns on this invention. 本発明に係る製造方法によって製造された内面溝付管を説明するための引抜き管の部分拡大断面図である。It is a partial expanded sectional view of the drawing pipe for demonstrating the internal grooved pipe manufactured by the manufacturing method which concerns on this invention. 引抜き力無制御状態で引抜き試験を行なった場合の引抜き力の実際の変動幅を連続的に測定してグラフ化出力した線図である。FIG. 6 is a diagram in which an actual fluctuation range of the pulling force when a pulling test is performed in a state where the pulling force is not controlled is continuously measured and output as a graph. 本発明方法の一形態により引抜き力を制御しつつ引抜き試験を行なった場合の引抜き力の実際の変動幅を連続的に測定してグラフ化出力した線図である。FIG. 5 is a diagram in which an actual fluctuation range of the pulling force when a pulling test is performed while controlling the pulling force according to an embodiment of the method of the present invention is continuously measured and output as a graph. 本発明方法の一形態により引抜き力を制御しつつ引抜き試験を行なった場合の引抜き力の実際の変動幅を連続的に測定してグラフ化出力した別の線図である。FIG. 10 is another diagram in which the actual fluctuation range of the pulling force when the pulling test is performed while controlling the pulling force according to an embodiment of the method of the present invention is continuously measured and output as a graph.

符号の説明Explanation of symbols

β リード角
1 素管
1a 内面溝付管
1b フィン
2 引抜き手段
3 縮径部
30 縮径ダイス
31 フローティングプラグ
31a ロッド
32 回転駆動手段
33 回転伝達手段
4 転造加工部
40 溝付プラグ
41 転造加工具
41a ホルダ
41b スペーサ
42 加工ヘッド
42a,42b リング
43 ベアリング
44 押圧部材
45 加圧手段
46 回転伝達手段
5 整形ダイス
6 制御手段
60 制御部
61 入力部
62 演算部
7 引抜き力検出手段
70 荷重測定器
71 変位計
8 補助引抜き装置
80 ベルト
81 プーリ
82 パッド
82a ガイド溝
83 押圧手段
84 保持版
9 機枠
90 可動台
91 レール
M1〜M4 モータ
β Lead angle 1 Elementary tube 1a Internal grooved tube 1b Fin 2 Pulling means 3 Reduced diameter part 30 Reduced diameter die 31 Floating plug 31a Rod 32 Rotation drive means 33 Rotation transmission means 4 Rolling processing part 40 Grooved plug 41 Rolling addition Tool 41a Holder 41b Spacer 42 Processing head 42a, 42b Ring 43 Bearing 44 Pressing member 45 Pressing means 46 Rotating transmission means 5 Shaping die 6 Control means 60 Control part 61 Input part 62 Calculation part 7 Pulling force detection means 70 Load measuring device 71 Displacement meter 8 Auxiliary extraction device 80 Belt 81 Pulley 82 Pad 82a Guide groove 83 Pressing means 84 Holding plate 9 Machine frame 90 Movable base 91 Rails M1 to M4 Motor

Claims (19)

素管に対して一定方向へ引抜き力を連続的に付与し、
縮径ダイスと前記素管内に挿入されたフローティングプラグとにより前記素管を縮径する縮径工程と、
前記フローティングプラグへ回転自在に連結され外周面に螺旋状の平行な多数の溝を有する溝付プラグと、当該溝付プラグ側へ押圧された状態で前記素管の外周を遊転しつつ遊星回転する複数のボール又はロールからなる転造工具とにより、前記素管内へ前記溝付プラグの溝に沿った多数のフィンを転写する転造工程とを含み、
前記引抜き力を検出しながら、その検出値に基づいて前記素管に対する引抜き力を目標範囲内に収まるように制御する、
ことを特徴とする内面溝付管の製造方法。
Continuously applying a pulling force to the base tube in a certain direction,
A diameter reducing step of reducing the diameter of the element pipe by a diameter reducing die and a floating plug inserted into the element pipe;
A grooved plug that is rotatably connected to the floating plug and has a number of spiral parallel grooves on the outer peripheral surface, and planetary rotation while rotating around the outer periphery of the element tube while being pressed toward the grooved plug side A rolling step of transferring a large number of fins along the groove of the grooved plug into the raw tube by a rolling tool comprising a plurality of balls or rolls,
While detecting the pulling force, based on the detected value, control the pulling force for the raw tube to be within a target range,
A method for producing an internally grooved tube.
前記転造工程よりも引抜き方向下流側において、加工済みの内面溝付管を巻き取る巻取りドラムを兼ねた引抜き手段により前記素管に対して引抜き力を付与し、当該引抜き手段のトルクを測定することにより前記引抜き力を検出することを特徴とする、請求項1に記載の内面溝付管の製造方法。 On the downstream side of the rolling process in the drawing direction, a drawing force acting as a take-up drum that winds up the processed inner grooved tube is applied to the raw pipe, and the torque of the drawing means is measured. The method for producing an internally grooved tube according to claim 1, wherein the pulling force is detected. 前記転造工程よりも引抜き方向下流側において、引抜き方向へ移動しつつある加工済みの内面溝付管の外周面へ管軸に向けて荷重を付与し、当該部分の管軸の変位量と当該荷重の大きさとの関係から前記引抜き力を検出することを特徴とする、請求項1に記載の内面溝付管の製造方法。 On the downstream side of the rolling step with respect to the drawing direction, a load is applied to the outer peripheral surface of the processed inner surface grooved tube that is moving in the drawing direction toward the tube axis, The method for producing an internally grooved tube according to claim 1, wherein the pulling force is detected from a relationship with a magnitude of a load. 前記内面溝付管の製造方法を実施するための製造装置の中、前記素管へ引抜き力を付与する引抜き手段以外の部分における前記素管の引抜き方向への荷重を測定することにより、前記引抜き力を測定することを特徴とする、請求項1に記載の内面溝付管の製造方法。 In the manufacturing apparatus for carrying out the method for manufacturing the inner surface grooved tube, by measuring the load in the drawing direction of the raw tube in a portion other than the drawing means for applying a drawing force to the raw tube, the drawing The method for producing an internally grooved tube according to claim 1, wherein force is measured. 前記素管の引抜き速度を加減することにより、前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、請求項1〜4のいずれかに記載の内面溝付管の製造方法。 The inner surface grooved pipe according to any one of claims 1 to 4, wherein a drawing force for the raw pipe is controlled so as to be within a target range by adjusting a drawing speed of the raw pipe. Production method. 前記転造工具の素管への押圧力又は/及び前記転造工具の遊星回転速度を加減することにより、前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、請求項1〜4のいずれかに記載の内面溝付管の製造方法。 By controlling the pressing force on the raw tube of the rolling tool or / and the planetary rotation speed of the rolling tool to control the drawing force on the raw tube to be within a target range, The manufacturing method of the inner surface grooved tube in any one of Claims 1-4. 前記縮径ダイスを回転可能に構成するとともに当該縮径ダイスの回転を制御することにより、前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、請求項1〜4のいずれかに記載の内面溝付管の製造方法。 5. The pulling force for the raw pipe is controlled to be within a target range by configuring the reduced diameter die to be rotatable and controlling the rotation of the reduced diameter die. The manufacturing method of the internally grooved pipe in any one of. 前記縮径工程よりも引抜き方向下流側かつ前記転造工程より引抜き方向上流側において、素管に対し補助的引抜き力を付与しながら、当該補助的引抜き力を加減することにより、前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、
請求項1〜4のいずれかに記載の内面溝付管の製造方法。
By adding and subtracting the auxiliary pulling force to the element pipe on the downstream side in the drawing direction from the diameter reducing process and upstream in the drawing direction from the rolling process, The pulling force is controlled so as to be within the target range,
The manufacturing method of the inner surface grooved tube in any one of Claims 1-4.
素管に対して一定方向へ引抜き力を連続的に付与する引抜き手段と、
縮径ダイスと前記素管内に挿入されたフローティングプラグとにより前記素管を縮径する縮径加工部と、
前記縮径加工部よりも素管の引抜き方向下流側に設置され、前記フローティングプラグへ回転自在に連結され外周面に螺旋状の平行な多数の溝を有する溝付プラグと、当該溝付プラグ側へ押圧された状態で前記素管の外周を遊転しつつ遊星回転する複数のボール又はロールからなる転造工具とにより、前記素管内へ前記溝付プラグの溝に沿った多数のフィンを転写する転造加工部と、
前記引抜き力を検出する引抜き力検出手段と、
前記引抜き力検出手段の検出値に基づいて、前記素管に対する引抜き力を目標範囲内に収まるように制御する制御手段とを備えた、
ことを特徴とする内面溝付管の製造装置。
A drawing means for continuously applying a drawing force in a certain direction to the raw tube;
A diameter reducing portion that reduces the diameter of the element pipe with a diameter reducing die and a floating plug inserted into the element pipe;
A grooved plug that is installed downstream of the diameter-reduced portion in the drawing direction of the pipe, is rotatably connected to the floating plug, and has a number of spiral parallel grooves on the outer peripheral surface, and the grooved plug side A large number of fins along the groove of the grooved plug are transferred into the element tube by a rolling tool composed of a plurality of balls or rolls that rotate planetarily while rotating around the outer periphery of the element tube while being pressed Rolling process parts to
A pulling force detecting means for detecting the pulling force;
Control means for controlling the pulling force on the raw tube so as to be within a target range based on the detection value of the pulling force detection means;
An apparatus for manufacturing an internally grooved tube.
前記引抜き手段は前記転造加工部よりも引抜き方向下流側に設置されて加工済みの内面溝付管を巻き取る巻取りドラムを兼ねており、前記引抜き力検出手段は前記巻取り手段を回転させるモータへの電流を検出する電流計であり、当該電流計の検出値から前記引抜き手段のトルクを演算することを特徴とする、請求項9に記載の内面溝付管の製造装置。 The drawing means also serves as a take-up drum that is installed on the downstream side in the drawing direction with respect to the rolling processed portion and winds up the processed inner grooved tube, and the drawing force detecting means rotates the winding means. The apparatus for manufacturing an internally grooved tube according to claim 9, wherein the apparatus is an ammeter for detecting a current to the motor, and calculates a torque of the drawing means from a detection value of the ammeter. 前記引抜き力検出手段は、前記転造加工部よりも引抜き方向下流側において、引抜き方向へ移動しつつある加工済みの内面溝付管の外周面へ管軸に向けて押付けられた荷重測定器と、当該押付け部分における前記管軸の押付け方向への変位量を検出する変位計とを含むことを特徴とする、請求項9に記載の内面溝付管の製造装置。 The pulling force detecting means is a load measuring instrument pressed toward the tube axis to the outer peripheral surface of the processed inner surface grooved tube that is moving in the drawing direction on the downstream side of the rolling process portion in the drawing direction. An apparatus for producing an internally grooved tube according to claim 9, further comprising a displacement meter that detects a displacement amount of the pressing portion in the pressing direction of the tube shaft. 前記縮径部と転造加工部は前記素管の引抜き方向に沿って可動に設けられた可動台の上に設置され、前記引抜き力測定手段は前記可動台の素管引抜き方向への荷重を測定する荷重測定器であることを特徴とする、請求項9に記載の内面溝付管の製造装置。 The reduced diameter portion and the rolling process portion are installed on a movable base that is movably provided along the drawing direction of the raw pipe, and the drawing force measuring means applies a load in the drawing direction of the movable pipe. It is a load measuring device to measure, The manufacturing apparatus of the internally grooved pipe | tube of Claim 9 characterized by the above-mentioned. 前記制御手段は、前記素管の引抜き速度を加減することにより前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、請求項9〜12のいずれかに記載の内面溝付管の製造装置。 The inner surface according to any one of claims 9 to 12, wherein the control means controls the drawing force with respect to the raw pipe to be within a target range by adjusting a drawing speed of the raw pipe. Grooved tube manufacturing equipment. 前記制御手段は、前記転造工具の素管への押圧力又は/及び前記転造工具の遊星回転速度を加減することにより、前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、請求項9〜12のいずれかに記載の内面溝付管の製造装置。 The control means controls the drawing force with respect to the raw pipe to be within a target range by adjusting the pressing force of the rolling tool on the raw pipe and / or the planetary rotation speed of the rolling tool. An apparatus for producing an internally grooved tube according to any one of claims 9 to 12, wherein: 前記縮径加工部には前記縮径ダイスを回転させるモータを含む回転駆動手段を設け、前記制御手段は、前記回転駆動手段を通じて前記縮径ダイスの回転を制御することにより、前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、請求項9〜12のいずれかに記載の内面溝付管の製造装置。 The diameter reducing portion is provided with a rotation driving means including a motor for rotating the diameter reducing die, and the control means controls the rotation of the diameter reducing die through the rotation driving means, thereby pulling out the raw pipe. The apparatus for manufacturing an internally grooved tube according to any one of claims 9 to 12, wherein the force is controlled so as to be within a target range. 前記縮径加工部と前記転造加工部との間に、それぞれ少なくとも一対のプーリに保持された状態で前記素管を挟み、かつ、前記素管の引抜き方向に沿って回転する一対の無端状のベルトを含む補助引抜き装置を設置し、
前記補助引抜き装置は少なくとも一方のベルトを前記素管に押付ける押圧手段を備え、
前記制御手段は、前記ベルトの素管への押圧力又は各ベルトの回転速度を制御して前記補助引抜き装置による素管への補助引抜き力を加減することにより、前記素管に対する引抜き力を目標範囲内に収まるように制御することを特徴とする、請求項9〜12のいずれかに記載の内面溝付管の製造装置。
A pair of endless shapes that sandwich the element pipe while being held by at least a pair of pulleys between the reduced diameter processing part and the rolling process part, and rotate along the drawing direction of the element pipe Auxiliary extraction device including the belt of
The auxiliary pulling device comprises a pressing means for pressing at least one belt against the raw tube,
The control means controls the pressing force to the raw pipe of the belt or the rotational speed of each belt, and adjusts the auxiliary pulling force to the raw pipe by the auxiliary pulling device to thereby target the pulling force on the raw pipe. The apparatus for producing an internally grooved tube according to any one of claims 9 to 12, wherein the apparatus is controlled so as to be within a range.
前記請求項1〜8のいずれかの内面溝付管の製造方法により製造され、内面に管軸に対して40〜60度のリード角をもつ多数のフィンを有し、フィン高さhが0.20mm以上であって、前記フィン高さhと隣合うフィン間の溝底肉厚tとの比h/tが1.2以下であることを特徴とする内面溝付管。 The inner surface grooved tube manufacturing method according to any one of claims 1 to 8, wherein the inner surface has a large number of fins having a lead angle of 40 to 60 degrees with respect to the tube axis, and the fin height h is 0. An inner grooved tube characterized in that the ratio h / t between the fin height h and the groove bottom wall thickness t between adjacent fins is 1.2 or less. 長さが1000m以上であることを特徴とする、請求項17に記載の内面溝付管。 18. The internally grooved tube according to claim 17, wherein the length is 1000 m or more. 円筒状に整列多層巻きされていることを特徴とする、請求項18に記載の内面溝付管。 The internally grooved tube according to claim 18, wherein the tube is wound in an aligned multilayer in a cylindrical shape.
JP2006267986A 2006-09-29 2006-09-29 Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube Expired - Fee Related JP5064749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267986A JP5064749B2 (en) 2006-09-29 2006-09-29 Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267986A JP5064749B2 (en) 2006-09-29 2006-09-29 Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube

Publications (2)

Publication Number Publication Date
JP2008087004A true JP2008087004A (en) 2008-04-17
JP5064749B2 JP5064749B2 (en) 2012-10-31

Family

ID=39371707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267986A Expired - Fee Related JP5064749B2 (en) 2006-09-29 2006-09-29 Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube

Country Status (1)

Country Link
JP (1) JP5064749B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131661A (en) * 2008-12-08 2010-06-17 Furukawa Electric Co Ltd:The Inner grooved tube and method of manufacturing the same
WO2010067576A1 (en) * 2008-12-08 2010-06-17 古河電気工業株式会社 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
JP2010188356A (en) * 2009-02-16 2010-09-02 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing pipe with groove on inner surface
JP2010247181A (en) * 2009-04-15 2010-11-04 Furukawa Electric Co Ltd:The Method of manufacturing tube having groove on inside surface
JP2010274264A (en) * 2009-05-26 2010-12-09 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2011115800A (en) * 2009-12-01 2011-06-16 Furukawa Electric Co Ltd:The Apparatus and method for producing pipe having grooved inner surface
JP2011224613A (en) * 2010-04-20 2011-11-10 Furukawa Electric Co Ltd:The Tube with inner surface groove, and method and device for manufacturing the same
CN106607465A (en) * 2016-12-28 2017-05-03 苏州金钜松机电有限公司 Driving wheel for superfine wire drawing machine
CN113305174A (en) * 2021-05-27 2021-08-27 江苏兴荣高新科技股份有限公司 Internal thread copper pipe or internal thread aluminum pipe and manufacturing method and production line thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225812A (en) * 1983-06-06 1984-12-18 Nippon Steel Corp Method for controlling plug position in drawing pipe having spirally formed inner surface
JPH10258307A (en) * 1997-03-14 1998-09-29 Kobe Steel Ltd Method for working tube with internal groove
JP2004025230A (en) * 2002-06-25 2004-01-29 Hitachi Cable Ltd Working method of inside-grooved pipe
JP2006239773A (en) * 2005-02-04 2006-09-14 Furukawa Electric Co Ltd:The Device and method for manufacturing inner grooved tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225812A (en) * 1983-06-06 1984-12-18 Nippon Steel Corp Method for controlling plug position in drawing pipe having spirally formed inner surface
JPH10258307A (en) * 1997-03-14 1998-09-29 Kobe Steel Ltd Method for working tube with internal groove
JP2004025230A (en) * 2002-06-25 2004-01-29 Hitachi Cable Ltd Working method of inside-grooved pipe
JP2006239773A (en) * 2005-02-04 2006-09-14 Furukawa Electric Co Ltd:The Device and method for manufacturing inner grooved tube

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131661A (en) * 2008-12-08 2010-06-17 Furukawa Electric Co Ltd:The Inner grooved tube and method of manufacturing the same
WO2010067576A1 (en) * 2008-12-08 2010-06-17 古河電気工業株式会社 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
CN102245323A (en) * 2008-12-08 2011-11-16 古河电气工业株式会社 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
KR101278827B1 (en) * 2008-12-08 2013-06-25 후루카와 덴키 고교 가부시키가이샤 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
JP2010188356A (en) * 2009-02-16 2010-09-02 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing pipe with groove on inner surface
JP2010247181A (en) * 2009-04-15 2010-11-04 Furukawa Electric Co Ltd:The Method of manufacturing tube having groove on inside surface
JP2010274264A (en) * 2009-05-26 2010-12-09 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2011115800A (en) * 2009-12-01 2011-06-16 Furukawa Electric Co Ltd:The Apparatus and method for producing pipe having grooved inner surface
JP2011224613A (en) * 2010-04-20 2011-11-10 Furukawa Electric Co Ltd:The Tube with inner surface groove, and method and device for manufacturing the same
CN106607465A (en) * 2016-12-28 2017-05-03 苏州金钜松机电有限公司 Driving wheel for superfine wire drawing machine
CN113305174A (en) * 2021-05-27 2021-08-27 江苏兴荣高新科技股份有限公司 Internal thread copper pipe or internal thread aluminum pipe and manufacturing method and production line thereof

Also Published As

Publication number Publication date
JP5064749B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5064749B2 (en) Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube
US6834523B2 (en) Method for producing seamless tube with grooved inner surface
JP4948073B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP6169538B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
KR101278827B1 (en) Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
JP2005207670A (en) Internally grooved tube, and its manufacturing device and method
JP6967876B2 (en) Tube heat exchanger and its manufacturing method
JP4833577B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP4460064B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP2018204803A (en) Internal spiral fluting multiple torsion pipe, manufacturing method thereof and manufacturing installation
JP5227771B2 (en) Internal grooved tube and manufacturing method thereof
JP6316697B2 (en) Internal spiral grooved tube and manufacturing method thereof
JP5356195B2 (en) Internal grooved pipe manufacturing apparatus and manufacturing method thereof
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP4036044B2 (en) Internal grooved tube processing method
Tangsri et al. Influences of total reduction of area on drawing stress and tube dimension in inner spiral ribbed copper tube sinking
JP6316696B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP7116868B2 (en) Heat transfer tubes and heat exchangers with excellent expandability and thermal properties
JP6846182B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
JP5275904B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP2010247181A (en) Method of manufacturing tube having groove on inside surface
JP6902931B2 (en) Multiple twisted tube with inner spiral groove
JP2012076126A (en) Apparatus and method for manufacturing inner grooved tube
JP2006218514A (en) Method for reducing diameter of pipe

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R151 Written notification of patent or utility model registration

Ref document number: 5064749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees