JP2011224613A - Tube with inner surface groove, and method and device for manufacturing the same - Google Patents

Tube with inner surface groove, and method and device for manufacturing the same Download PDF

Info

Publication number
JP2011224613A
JP2011224613A JP2010096614A JP2010096614A JP2011224613A JP 2011224613 A JP2011224613 A JP 2011224613A JP 2010096614 A JP2010096614 A JP 2010096614A JP 2010096614 A JP2010096614 A JP 2010096614A JP 2011224613 A JP2011224613 A JP 2011224613A
Authority
JP
Japan
Prior art keywords
grooved
tube
plug
connecting rod
floating plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010096614A
Other languages
Japanese (ja)
Other versions
JP5534917B2 (en
Inventor
Toshiaki Hashizume
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010096614A priority Critical patent/JP5534917B2/en
Publication of JP2011224613A publication Critical patent/JP2011224613A/en
Application granted granted Critical
Publication of JP5534917B2 publication Critical patent/JP5534917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tube with an inner surface groove capable of stabilizing an orthogonal cross section to the axial direction of the tube in the tube axis direction, and a method and device for manufacturing the same.SOLUTION: In this method of manufacturing this tube with an inner surface groove, a connection rod 34 for connecting a floating plug 23 used in a diameter-reducing process to a grooved plug 32 used in a grooving work process is formed with a rigid body formed of a single constituent material continuing along a tube axis direction; the connection rod 34 is formed with a floating plug mounting part 34f allowing the floating plug 23 to be mounted thereto and formed with the grooved plug mounting part allowing the grooved plug to be mounted thereto; the diameter-reducing process is performed using the floating plug 23 directly mounted to the floating plug mounting part 34f; and the grooving work process is performed using the grooved plug 32 directly mounted to the grooved plug mounting part 34g.

Description

この発明は、冷凍機器、家庭用空調機(エアコン)、業務用空調機(パッケージエアコン)等の空調機器に備えられる熱交換器用の伝熱管として用いられる内面溝付管並びにその製造方法及び製造装置に関する。   The present invention relates to an internally grooved tube used as a heat transfer tube for a heat exchanger provided in an air conditioner such as a refrigeration device, a domestic air conditioner (air conditioner), a commercial air conditioner (package air conditioner), and a manufacturing method and a manufacturing apparatus thereof. About.

熱交換器用の伝熱管として用いられる内面溝付管を製造するための内面溝付管の製造装置及び製造方法は、特許文献1に開示されている。   A manufacturing apparatus and a manufacturing method of an internally grooved tube for manufacturing an internally grooved tube used as a heat transfer tube for a heat exchanger is disclosed in Patent Document 1.

詳述すると特許文献1では、ダイスとフローティングプラグとの間で管を引き抜いて縮径する縮径部と、素管の外面を管周方向に沿って転動する転動体(4個のボール)で押圧しながら該素管の内面を、管内部に備えた溝付プラグに押し付けて該素管の内面に複数の溝を形成する溝加工部とを備えた構成の製造装置が開示されている。   More specifically, in Patent Document 1, a diameter-reducing portion that pulls out a pipe between a die and a floating plug to reduce the diameter, and a rolling element that rolls along the pipe circumferential direction on the outer surface of the raw pipe (four balls). A manufacturing apparatus having a configuration including a groove processing portion that presses the inner surface of the raw tube against a grooved plug provided inside the tube while forming a plurality of grooves on the inner surface of the raw tube is disclosed. .

さらに特許文献1では、素管がダイスとフローティングプラグにより縮径された後、転動体と溝付プラグとで内面の溝付け加工が行われる内面溝付管の製造方法が開示されている。   Further, Patent Document 1 discloses a method of manufacturing an internally grooved tube in which the inner tube is grooved by a rolling element and a grooved plug after the raw tube is reduced in diameter by a die and a floating plug.

前記製造装置は、溝付プラグとフローティングプラグとが、プラグロッドで回転自在に連結され、これら溝付プラグ、フローティングプラグ、及び、プラグロッドが、芯金として一体に構成され、管内部に配置された構成である。   In the manufacturing apparatus, a grooved plug and a floating plug are rotatably connected by a plug rod, and the grooved plug, the floating plug, and the plug rod are integrally formed as a cored bar and disposed inside the pipe. It is a configuration.

しかし、芯金を組み立てたときに、例えば、プラグロッドや溝付プラグのフローティングプラグに対する取り付け誤差などがある場合、プラグロッドと溝付プラグとの間に軸ずれが生じ、芯金が管内部で回転したときに軸振れが生じるという難点が生じる。   However, when the cored bar is assembled, for example, if there is a mounting error of the plug rod or grooved plug with respect to the floating plug, an axial misalignment occurs between the plug rod and the grooved plug, and the cored bar is moved inside the pipe. There is a difficulty in that shaft runout occurs when rotated.

このような軸ずれ量の大きな芯金を使用した場合、溝加工部において軸振れが大きくなるため、転動体の押圧力が安定せず、管外面のうねりが大きくなりがちである。   When such a metal core having a large amount of shaft misalignment is used, the shaft runout is increased in the groove processing portion, so that the pressing force of the rolling elements is not stable, and the undulation of the outer surface of the tube tends to increase.

また、このような軸ずれ量の大きな芯金を使用した場合、溝付プラグによる管内面への溝加工が安定せず、管軸方向において溝の深さなど溝形状が変動することになる。   Further, when such a metal core having a large amount of axial deviation is used, the groove processing on the inner surface of the tube by the grooved plug is not stable, and the groove shape such as the groove depth varies in the tube axis direction.

さらにまた、軸振れが大きい状態で溝加工を行うと、転動体の回転数を上げることで、管に捩れが発生するため、これを回避するため回転数を下げる必要があるがそのために溝付け加工速度を下げる必要があり、製造効率が低下するという難点もあった。   Furthermore, when grooving is performed in a state where the shaft runout is large, the number of rotations of the rolling elements is increased, and the tube is twisted. To avoid this, it is necessary to reduce the number of rotations. It was necessary to reduce the processing speed, and there was a problem that the production efficiency was reduced.

また、管外面のうねりが大きいなどにより管軸方向において管断面が安定しなければ、内面溝付管を製品として出荷時に非破壊探傷試験を行う場合に、ノイズが大きくなり、キズ(欠陥)の検出精度に悪影響を及ぼし、製品歩留りが低いという難点があった。   Also, if the tube cross-section is not stable in the tube axis direction due to large undulations on the tube outer surface, noise will increase and scratches (defects) will occur when performing a nondestructive flaw detection test at the time of shipment as an internally grooved tube. The detection accuracy is adversely affected and the product yield is low.

また管外面のうねりが大きい内面溝付管を伝熱管として使用して熱交換器を製造する場合に、伝熱管を、所定のピッチを隔てて並べた複数枚の放熱フィンに予め形成された孔内に挿通し、拡管したとき、放熱フィンとの密着状態にばらつきが出て所望の性能が得られないという難点も生じる。   Also, when a heat exchanger is manufactured using an internally grooved tube with a large undulation on the tube outer surface as a heat transfer tube, holes formed in advance in a plurality of heat dissipating fins arranged with a predetermined pitch are arranged. When the tube is inserted and expanded, there is also a difficulty that desired performance cannot be obtained due to variations in the close contact state with the radiating fins.

さらに、管内面の溝深さが管軸方向において安定しないと、所望の優れた伝熱性能を得ることができないという難点も生じる。   Furthermore, if the groove depth on the inner surface of the tube is not stable in the tube axis direction, there arises a difficulty that desired excellent heat transfer performance cannot be obtained.

特開平5−50136号公報JP-A-5-50136

そこで管の軸方向に対する直交断面を管軸方向において安定化することができる内面溝付管並びにその製造方法及び製造装置の提供を目的とする。   An object of the present invention is to provide an internally grooved tube capable of stabilizing the cross section perpendicular to the axial direction of the tube in the axial direction of the tube, a manufacturing method thereof, and a manufacturing apparatus.

本発明は、縮径ダイスとフローティングプラグとの間で素管を引き抜いて縮径する縮径工程と、素管の外面を管軸回りに転動する転動体で押圧しながら該素管の内面を、管内部に備えた溝付プラグに押し付けて素管の内面に複数の溝を形成する溝付加工工程とを行う内面溝付管の製造方法であって、前記フローティングプラグと前記溝付プラグとを連結する連結棒を管内部に備え、前記連結棒の軸方向における前記縮径ダイスの側に、前記フローティングプラグを該連結棒に対して直接、取り付けることを許容するフローティングプラグ取付け部を形成するとともに、前記連結棒の軸方向における前記転動体の側に、前記溝付プラグを前記連結棒に対して直接、取り付けることを許容する溝付プラグ取付け部を形成し、前記フローティングプラグ取付け部に取り付けた前記フローティングプラグを用いて前記縮径工程を行い、前記溝付プラグ取付け部に取り付けた前記溝付プラグを用いて前記溝付加工工程を行うことを特徴とする。   The present invention relates to a diameter reduction step of drawing a base tube between a diameter reducing die and a floating plug to reduce the diameter, and an inner surface of the base tube while pressing the outer surface of the base tube with a rolling element that rolls around the tube axis. A grooved plug that is pressed against a grooved plug provided inside the tube to form a plurality of grooves on the inner surface of the raw tube, and a method of manufacturing an internally grooved tube, the floating plug and the grooved plug And a floating plug attachment portion that allows the floating plug to be directly attached to the connecting rod on the side of the reduced diameter die in the axial direction of the connecting rod. In addition, a grooved plug attaching portion that allows the grooved plug to be directly attached to the connecting rod is formed on the side of the rolling element in the axial direction of the connecting rod, and the floating plug is formed. It performs the reduced diameter step using the floating plug attached to the grayed mounting portion, and performing the grooving process using the grooved plug attached to the plug mounting portion with grooves.

この発明の態様として、前記製造方法では、前記連結棒を、前記フローティングプラグ取付け部から前記溝付プラグ取付け部まで1つの構成材料からなる剛体で形成した構成のものを用いて行うことができる。   As an aspect of the present invention, in the manufacturing method, the connecting rod may be formed using a rigid body made of one constituent material from the floating plug mounting portion to the grooved plug mounting portion.

またこの発明の態様として、前記製造方法は、前記フローティングプラグ取付け部を、フローティングプラグの挿着を許容するフローティングプラグ挿着許容部で構成するとともに、前記フローティングプラグに、管軸方向へスライド自在に前記フローティングプラグ挿着許容部に挿着するフローティングプラグ挿着部を構成し、前記溝付プラグ取付け部を、前記溝付プラグの挿着を許容する溝付プラグ挿着許容部で構成するとともに、前記溝付プラグに、管軸方向へスライド自在に前記溝付プラグ挿着許容部に挿着する溝付プラグ挿着部を構成し、前記連結棒における、前記フローティングプラグと前記溝付プラグとの管軸方向の間に挿着され、該フローティングプラグと該溝付プラグとを管軸方向において所定間隔に規制する間隔規制管を備えた構成のものを用いて行うことができる。   As an aspect of the present invention, in the manufacturing method, the floating plug mounting portion includes a floating plug insertion allowing portion that allows the floating plug to be inserted, and the floating plug is slidable in the tube axis direction to the floating plug. A floating plug insertion portion to be inserted into the floating plug insertion allowance portion is configured, and the grooved plug mounting portion is configured with a grooved plug insertion allowance portion that allows insertion of the grooved plug, The grooved plug is configured to have a grooved plug insertion portion that is slidably inserted in the grooved plug insertion allowable portion so as to be slidable in the tube axis direction, and the floating rod and the grooved plug in the connecting rod An interval regulating tube that is inserted in the tube axis direction and regulates the floating plug and the grooved plug at a predetermined interval in the tube axis direction. It can be performed using one of the configuration including.

またこの発明の態様として、前記製造方法は、前記縮径ダイス、および、前記フローティングプラグで構成される縮径部と、前記転動体、及び、前記溝付プラグで構成される溝付加工部との管軸方向の間に素管を引抜く中間引抜き機を備え、前記縮径工程と前記溝付加工工程とを行なう間、前記中間引抜き機により、前記縮径工程で縮径した素管を引抜く中間引抜き工程を行うことができる。   Moreover, as an aspect of the present invention, the manufacturing method includes a reduced diameter portion configured by the reduced diameter die and the floating plug, a grooved processed portion configured by the rolling element and the grooved plug, and An intermediate drawing machine that draws the raw pipe between the pipe axis directions, and the raw pipe reduced in the diameter reducing step by the intermediate drawing machine while performing the diameter reducing step and the grooving step. An intermediate drawing process of drawing can be performed.

またこの発明は、上述した内面溝付管の製造方法により製造した内面溝付管であって、管軸方向における管長さが1mの所定区間において、管長さが10mm刻みごとに測定した管重量をそれぞれ1mあたりに換算した管重量のばらつきが±1%以下であることを特徴とする。   Further, the present invention is an internal grooved tube manufactured by the above-described internal grooved tube manufacturing method, wherein the tube weight is measured every 10 mm in a predetermined section having a tube length of 1 m in the tube axis direction. The variation of the tube weight converted per 1 m is ± 1% or less.

またこの発明は、縮径ダイスとフローティングプラグとの間で素管を引き抜いて管を縮径する縮径部と、前記素管の外面を管周方向に沿って転動する転動体で押圧しながら該素管の内面に、管内部に備えた溝付プラグに押し付けて複数の溝を形成する溝加工部とを備えた内面溝付管の製造装置であって、前記縮径部と前記溝加工部との間に配され、前記フローティングプラグと前記溝付プラグとを連結する連結棒を管内部に備え、前記連結棒の軸方向における前記縮径部の側に、前記フローティングプラグを該連結棒に対して直接、取り付けることを許容するフローティングプラグ取付け部を形成するとともに、前記連結棒の軸方向における前記溝加工部の側に、前記溝付プラグを該連結棒に対して直接、取り付けることを許容する溝付プラグ取付け部を形成したことを特徴とする。   The present invention also provides a reduced diameter portion for reducing the diameter of the pipe by pulling the raw pipe between the reduced diameter die and the floating plug, and a rolling element that rolls the outer surface of the raw pipe along the circumferential direction of the pipe. An inner surface grooved pipe manufacturing apparatus comprising a groove processing portion that forms a plurality of grooves by pressing on a grooved plug provided inside the tube on the inner surface of the element pipe, wherein the reduced diameter portion and the groove A connecting rod arranged between the processing portion and connecting the floating plug and the grooved plug is provided inside the tube, and the floating plug is connected to the reduced diameter portion in the axial direction of the connecting rod. A floating plug attachment portion that allows attachment directly to the rod is formed, and the grooved plug is attached directly to the connection rod on the groove processing portion side in the axial direction of the connection rod. Slotted plastic that allows Characterized in that the formation of the mounting portion.

ここで、上述した前記フローティングプラグを該連結棒に対して直接、取り付ける、または、前記溝付プラグを前記連結棒に対して直接、取り付けるとは、前記フローティングプラグや前記溝付プラグを連結棒との間に別の部材を介さずに取り付ける概念である。   Here, attaching the floating plug directly to the connecting rod or attaching the grooved plug directly to the connecting rod means that the floating plug or the grooved plug is connected to the connecting rod. It is the concept which attaches without interposing another member between.

但し、加工中に連結棒が軸回りに回転するに伴って溝付プラグが軸振れしない限り、前記フローティングプラグと連結棒との間や前記溝付プラグと連結棒との間に、例えば、潤滑油など介在させることは、上述した前記フローティングプラグを該連結棒に対して直接、取り付ける、または、前記溝付プラグを前記連結棒に対して直接、取り付ける概念に含むものとする。   However, as long as the grooved plug does not swing as the connecting rod rotates about the axis during processing, for example, lubrication is performed between the floating plug and the connecting rod or between the grooved plug and the connecting rod. The interposition of oil or the like is included in the concept of attaching the floating plug directly to the connecting rod or attaching the grooved plug directly to the connecting rod.

上述した1つの構成材料からなる剛体とは、例えば、一本のピンなど、管軸方向全長に亘って同じ構成部材で連続して形成した剛体を示し、管軸方向の中途部分を螺子などで連結することにより管軸方向の中途部分において非連続な部分を有しない部材を含むものとする。   The above-mentioned rigid body made of one constituent material is, for example, a rigid body continuously formed with the same constituent member over the entire length in the tube axis direction, such as a single pin, and a midway portion in the tube axis direction is formed by a screw or the like. A member that does not have a discontinuous portion in the middle portion in the tube axis direction by being connected is included.

前記フローティングプラグ挿着許容部は、凹状、或いは、凸状に形成するとともに、前記フローティングプラグ挿着部は、前記フローティングプラグ挿着許容部に挿着可能に凸状、或いは、凹状に形成することができる。   The floating plug insertion allowing portion is formed in a concave shape or a convex shape, and the floating plug insertion portion is formed in a convex shape or a concave shape so as to be insertable into the floating plug insertion allowing portion. Can do.

同様に、前記溝付プラグ挿着許容部は、凹状、或いは、凸状に形成するとともに、前記溝付プラグ挿着部は、前記溝付プラグ挿着許容部に挿着可能に凸状、或いは、凹状に形成することができる。   Similarly, the grooved plug insertion allowing portion is formed in a concave shape or a convex shape, and the grooved plug insertion allowing portion is convex so as to be insertable into the grooved plug insertion allowing portion, or , Can be formed in a concave shape.

前記素管は、例えば、銅、銅合金、アルミニウム、或いは、アルミニウム合金など熱伝導性に優れた金属であれば特に限定しない。   The element tube is not particularly limited as long as it is a metal having excellent thermal conductivity, such as copper, copper alloy, aluminum, or aluminum alloy.

前記転動体は、例えば、転造ボールに限らず、ローラ、さらに、転造ボールとローラとを併用して構成することもできる。   The rolling element is not limited to a rolled ball, for example, and can be configured by using a roller, and a combination of a rolled ball and a roller.

この発明によれば、管の軸方向に対する直交断面を管軸方向において安定化することができる内面溝付管並びにその製造方法及び製造装置を提供することができる。   According to the present invention, it is possible to provide an internally grooved tube capable of stabilizing the cross section orthogonal to the axial direction of the tube in the axial direction of the tube, a manufacturing method thereof, and a manufacturing apparatus thereof.

このような内面溝付管により、製品として出荷時のキズ検出精度の確実性を高めて製品歩留まりの向上を図ることができるとともに、伝熱性能を安定化することができ、しかも、放熱フィンとの十分な密着性を得ることができる。   With such an internally grooved tube, it is possible to improve the product yield by improving the reliability of the scratch detection accuracy at the time of shipment as a product, to stabilize the heat transfer performance, and to Sufficient adhesion can be obtained.

第1実施形態の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe | tube of 1st Embodiment. 第1実施形態の内面溝付管の製造装置に備えた芯金の側面図。The side view of the metal core with which the manufacturing apparatus of the inner surface grooved pipe of 1st Embodiment was equipped. 図2中のA−A線断面図。AA line sectional view in FIG. 第1実施形態の内面溝付管の製造装置に備えた芯金を分解して一部断面で示した構成説明図。The structure explanatory view which decomposed | disassembled the core metal with which the manufacturing apparatus of the inner surface grooved pipe of 1st Embodiment was decomposed | disassembled, and showed it with a partial cross section. 第2実施形態の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of 2nd Embodiment. 実験1を行っている様子を示す説明図。Explanatory drawing which shows a mode that the experiment 1 is performed. 転造ボールの加工ピッチを説明する説明図。Explanatory drawing explaining the processing pitch of a rolling ball. 単重変化率のばらつきを確認する方法を説明するための説明図。Explanatory drawing for demonstrating the method to confirm the dispersion | variation in single unit change rate. 本発明例の芯金を用いて加工した供試管の管軸方向における単重のばらつきを示すグラフ。The graph which shows the dispersion | variation in the single weight in the pipe-axis direction of the test tube processed using the metal core of the example of this invention. 本発明例の芯金を用いて加工した供試管の管軸方向における単重変化率のばらつきを示すグラフ。The graph which shows the dispersion | variation in the single weight change rate in the pipe-axis direction of the test tube processed using the metal core of the example of this invention. 管軸方向に対する直交断面の一部を示す断面図。Sectional drawing which shows a part of orthogonal cross section with respect to a pipe-axis direction. 本発明例の芯金を用いて加工した供試管の管軸方向における断面形状のばらつきを示すグラフ。The graph which shows the dispersion | variation in the cross-sectional shape in the pipe-axis direction of the test tube processed using the metal core of the example of this invention. 本発明例の芯金を用いて加工した供試管おける渦流探傷試験結果を示すグラフ。The graph which shows the eddy current test result in the test tube processed using the metal core of the example of the present invention. 本発明例の芯金を用いて加工した内面溝付管の外観を示す写真。The photograph which shows the external appearance of the internally grooved pipe processed using the cored bar of the example of the present invention. 本発明例の芯金を用いて加工した内面溝付管おける渦流探傷試験結果を示すグラフ。The graph which shows the eddy current test result in the internal grooved pipe processed using the core metal of the example of the present invention. 従来の内面溝付管の製造装置に備えた芯金の側面図。The side view of the metal core with which the manufacturing apparatus of the conventional internal grooved pipe was equipped. 図16中のA−A線断面図。AA sectional view taken on the line in FIG. 従来の内面溝付管の製造装置に備えた芯金を分解して一部断面で示した構成説明図。The structure explanatory drawing which decomposed | disassembled the core metal with which the manufacturing apparatus of the conventional internal grooved pipe was shown, and showed it with a partial cross section. 従来の芯金を用いて加工した供試管の管軸方向における単重ばらつきを示すグラフ。The graph which shows the single weight dispersion | variation in the pipe-axis direction of the test tube processed using the conventional metal core. 従来の芯金を用いて加工した供試管の管軸方向における単重変化率のばらつきを示すグラフ。The graph which shows the dispersion | variation in the single weight change rate in the pipe-axis direction of the test tube processed using the conventional metal core. 従来の芯金を用いて加工した供試管の管軸方向における断面形状のばらつきを示すグラフ。The graph which shows the dispersion | variation in the cross-sectional shape in the pipe-axis direction of the test tube processed using the conventional metal core. 従来の芯金を用いて加工した供試管おける渦流探傷試験結果を示すグラフ。The graph which shows the eddy current test result in the test tube processed using the conventional metal core. 従来の芯金を用いて加工した内面溝付管を示す写真。A photograph showing an internally grooved tube processed using a conventional cored bar. 従来の芯金を用いて加工した内面溝付管おける渦流探傷試験結果を示すグラフ。The graph which shows the eddy current test result in the internally grooved tube processed using the conventional metal core.

この発明の一実施形態を、以下図面を用いて説明する。
(第1実施形態)
第1実施形態の内面溝付管の製造装置10は、図1に示すように構成している。
なお、図1は、本実施形態における内面溝付管の製造装置10の一部を示す断面図である。
An embodiment of the present invention will be described below with reference to the drawings.
(First embodiment)
The inner surface grooved pipe manufacturing apparatus 10 of the first embodiment is configured as shown in FIG.
In addition, FIG. 1 is sectional drawing which shows a part of manufacturing apparatus 10 of the inner surface grooved pipe | tube in this embodiment.

前記製造装置10は、引抜き方向Xの上流側から下流側に沿って順に配置した縮径部21、溝加工部31、整形ダイス15を備えた構成であり、これら構成により素管1aを連続加工して内面溝付管1eを製造している。   The said manufacturing apparatus 10 is the structure provided with the diameter reducing part 21, the groove process part 31, and the shaping die 15 which were arrange | positioned in order along the downstream from the upstream of the drawing direction X, and the raw pipe 1a is continuously processed by these structures. Thus, the inner grooved tube 1e is manufactured.

前記縮径部21は、通過する素管1aを縮径するための円筒状の縮径ダイス22と、該縮径ダイス22で絞り込まれた素管1aの内周が押し付けられるように素管1aの内部に挿入したフローティングプラグ23とで構成している。   The diameter-reducing portion 21 includes a cylindrical diameter-reducing die 22 for reducing the diameter of the passing raw pipe 1a, and the inner pipe 1a so that the inner periphery of the elemental tube 1a narrowed by the diameter-reducing die 22 is pressed. It is comprised with the floating plug 23 inserted in the inside.

前記縮径ダイス22は、上流側部分が開口したダイス孔22aを有している。ダイス孔22aは、上流側へ向けて大径となるよう円錐台状に開口している。   The diameter-reducing die 22 has a die hole 22a having an upstream portion opened. The die hole 22a opens in a truncated cone shape so as to have a large diameter toward the upstream side.

さらに、フローティングプラグ23は、引抜き方向Xの下流側部分に下流側へ向けて小径となる円錐台状の外周面を有している。   Furthermore, the floating plug 23 has a frustoconical outer peripheral surface having a small diameter toward the downstream side at the downstream side portion in the drawing direction X.

これにより、縮径ダイス22とフローティングプラグ23とは、これらの間に素管1aを挟み込むようにして互いに係合している。   Thereby, the diameter reducing die 22 and the floating plug 23 are engaged with each other so as to sandwich the element tube 1a therebetween.

また、前記溝加工部31は、外周に複数の螺旋状溝32aが形成された溝付プラグ32と、複数の転造ボール33を備えている。   The groove processing section 31 includes a grooved plug 32 having a plurality of spiral grooves 32 a formed on the outer periphery and a plurality of rolling balls 33.

前記溝付プラグ32は、素管1bの内部に挿入され、前記フローティングプラグ23に対して連結棒34を介して相対回転自在に連結されている。前記複数の転造ボール33は、自転、及び、軸回りに公転しながら転動し、素管1bの管外側において該素管1bを前記溝付プラグ32側に押圧するようそれぞれ管周方向において等間隔に配置されている。   The grooved plug 32 is inserted into the raw tube 1 b and is connected to the floating plug 23 via a connecting rod 34 so as to be relatively rotatable. The plurality of rolling balls 33 roll while rotating and revolving around an axis, and in the tube circumferential direction so as to press the tube 1b toward the grooved plug 32 side on the tube outer side of the tube 1b. It is arranged at equal intervals.

前記整形ダイス15は、内面溝付管1dが通過することにより、例えば、前記溝加工部31における転造ボール33の押圧により生じた管表面の歪み等を滑らかに整形する加工を行う。   The shaping die 15 performs a process of smoothly shaping, for example, distortion of the pipe surface caused by the pressing of the rolling ball 33 in the grooved portion 31 when the inner grooved tube 1d passes through.

また、前記縮径部21と前記溝加工部31との間の素管1bの内部には、1本の芯金60が管軸方向に沿って配置されている。
なお、管軸方向は、図1中において引抜き方向Xと一致している方向を示している。
In addition, a single metal core 60 is disposed along the tube axis direction inside the raw tube 1b between the reduced diameter portion 21 and the groove processing portion 31.
The tube axis direction indicates a direction that coincides with the drawing direction X in FIG.

芯金60は、溝付プラグ32、フローティングプラグ23、及び、連結棒34をその構成部品の一部として備えている。   The core metal 60 includes the grooved plug 32, the floating plug 23, and the connecting rod 34 as a part of its constituent parts.

芯金60の構成について図2、図3、及び、図4を用いて説明する。
なお、図2は、第1実施形態の芯金60の側面図、図3は、図2中のA−A線断面図であり、図4は、芯金60を部品ごとに分解した分解断面図である。
The configuration of the metal core 60 will be described with reference to FIGS. 2, 3, and 4.
2 is a side view of the metal core 60 of the first embodiment, FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, and FIG. 4 is an exploded cross-section of the metal core 60 disassembled for each part. FIG.

芯金60は、溝付プラグ32、フローティングプラグ23、及び、連結棒34に加え、間隔規制管61、留金62、スペーサ63で構成している。   The metal core 60 includes a gap regulating pipe 61, a clasp 62, and a spacer 63 in addition to the grooved plug 32, the floating plug 23, and the connecting rod 34.

溝付プラグ32は、円筒状部材で構成し、連結棒34の挿入を許容するよう中心軸に沿って貫通する溝付プラグ挿着貫通孔32Hを形成している(図4参照)。   The grooved plug 32 is formed of a cylindrical member, and has a grooved plug insertion through hole 32H penetrating along the central axis so as to allow insertion of the connecting rod 34 (see FIG. 4).

フローティングプラグ23は、連結棒34の挿入を許容するよう中心軸に沿って貫通するフローティングプラグ挿着貫通孔23Hを形成している(図4参照)。   The floating plug 23 is formed with a floating plug insertion through hole 23H penetrating along the central axis so as to allow insertion of the connecting rod 34 (see FIG. 4).

連結棒34は、縮径部21と溝加工部31との間に相当する長さを備えた細長い丸棒状に形成し、溝付プラグ挿着貫通孔32H、及び、フローティングプラグ挿着貫通孔23Hへの挿通を許容する外径で形成している。   The connecting rod 34 is formed in the shape of an elongated round bar having a length corresponding to that between the reduced diameter portion 21 and the groove processing portion 31, and the grooved plug insertion through hole 32H and the floating plug insertion through hole 23H. It is formed with an outer diameter that allows insertion into.

さらに連結棒34は、管軸方向の全長に亘って接合部分を有さずに鋼材料からなる一本の剛体で形成されたピンである。連結棒34の長さ方向の一端側(図4中の右側)には、鍔状の頭部34aを形成し、長さ方向の他端部(図4中の左側)には、螺子部34bを形成したボルト型のピンで構成している。   Further, the connecting rod 34 is a pin formed of a single rigid body made of a steel material without having a joint portion over the entire length in the tube axis direction. A hook-shaped head portion 34a is formed on one end side (right side in FIG. 4) of the connecting rod 34 in the length direction, and a screw portion 34b is formed on the other end portion (left side in FIG. 4) in the length direction. It is composed of a bolt-shaped pin formed.

さらにまた連結棒34は、頭部34aと螺子部34bとの間の外周面を、平滑な平滑外周面34Aとして形成している。平滑外周面34Aの頭部34a側の端部を、溝付プラグ32を挿着する溝付プラグ挿着部34gに設定するとともに、該平滑外周面34Aの螺子部34b側部分を、フローティングプラグ23を挿着するフローティングプラグ挿着部34fに設定している。   Furthermore, the connecting rod 34 forms the outer peripheral surface between the head portion 34a and the screw portion 34b as a smooth smooth outer peripheral surface 34A. The end of the smooth outer peripheral surface 34A on the head 34a side is set to a grooved plug insertion portion 34g for inserting the grooved plug 32, and the screw portion 34b side portion of the smooth outer peripheral surface 34A is set to the floating plug 23. Is set to the floating plug insertion portion 34f to which is inserted.

間隔規制管61は、縮径部21と溝加工部31との間に相当する長さを備え、連結棒34の挿着を許容するよう中心軸に沿って貫通する挿着貫通孔61Hが形成された円管状部材である(図4参照)。   The interval regulating pipe 61 has a length corresponding to that between the reduced diameter portion 21 and the groove processing portion 31, and is formed with an insertion through hole 61H penetrating along the central axis so as to allow the insertion of the connecting rod 34. This is a circular tubular member (see FIG. 4).

留金62は、連結棒34の挿入を許容する挿入孔62Hを有し、一端が閉塞した円筒状部材であり、その内周面には、連結棒34の螺子部34bと螺合可能に雌螺子部62aが形成されている(図4参照)。なお、留金62の閉塞した一端側は、素管1aの外面に凹みがあった場合に引っ掛かり難くするために円弧状の先細り形状で形成している。   The clasp 62 is a cylindrical member that has an insertion hole 62H that allows insertion of the connecting rod 34 and that is closed at one end, and has a female member that can be screwed onto the screw portion 34b of the connecting rod 34 on its inner peripheral surface. A screw portion 62a is formed (see FIG. 4). In addition, the closed one end side of the clasp 62 is formed in an arcuate tapered shape so that it is difficult to be caught when the outer surface of the base tube 1a is recessed.

スペーサ63は、留金62とフローティングプラグ23との間に介在させる円管状部材であり、管長さに応じて構成したものを複数種類備えることができ、そのいずれかを取り付けるかによってフローティングプラグ23、溝付プラグ32、及び、間隔規制管61の連結棒34に対する挿着位置を一定に保つことができる。   The spacer 63 is a circular tubular member interposed between the clasp 62 and the floating plug 23, and can be provided with a plurality of types according to the tube length. Depending on whether one of them is attached, the floating plug 23, The insertion positions of the grooved plug 32 and the interval regulating pipe 61 with respect to the connecting rod 34 can be kept constant.

上述した各部材による芯金60の組み立て方法について説明する。
連結棒34の軸方向の頭部34a側の端部から雄螺子部34b側の端部へ溝付プラグ32、間隔規制管61、フローティングプラグ23、スペーサ63の順に挿着し、留金62を、連結棒34に挿着するとともに、留金62の雌螺子部62aと連結棒34の雄螺子部34bとを螺合することで図2、及び、図3に示ように、芯金60を一体に構成することができる。
A method for assembling the cored bar 60 using the above-described members will be described.
The grooved plug 32, the spacing regulating tube 61, the floating plug 23, and the spacer 63 are inserted in this order from the end on the head 34a side in the axial direction of the connecting rod 34 to the end on the male screw 34b side, and the clasp 62 is attached. As shown in FIG. 2 and FIG. 3, the core bar 60 is inserted into the connecting rod 34 and screwed into the female screw portion 62 a of the clasp 62 and the male screw portion 34 b of the connecting rod 34. It can be configured integrally.

このとき溝付プラグ32は、連結棒34の頭部34aと間隔規制管61との間でこれら端部同士を当接させることで軸回りに回転自在であるとともに管軸方向に位置決めされ、フローティングプラグ23は、スペーサ63を介して留金62と間隔規制管61との間でこれら端部同士を当接させることで軸回りに回転自在であるとともに管軸方向に位置決めされる。   At this time, the grooved plug 32 is rotatable around the axis by abutting the end portions between the head portion 34a of the connecting rod 34 and the interval regulating tube 61, and is positioned in the tube axis direction so as to float. The plug 23 is rotatable about its axis and positioned in the tube axis direction by bringing these end portions into contact with each other between the clasp 62 and the interval regulating tube 61 via the spacer 63.

上述した芯金60を備えた製造装置10を用いた本実施形態における製造方法について説明する。
本実施形態の製造方法は、縮径工程と溝加工工程とを備えた製造方法である。
The manufacturing method in this embodiment using the manufacturing apparatus 10 provided with the core metal 60 mentioned above is demonstrated.
The manufacturing method of this embodiment is a manufacturing method provided with a diameter reducing process and a groove processing process.

詳しくは、縮径工程は、素管1aを縮径ダイス22で絞り込んでフローティングプラグ23に管内面を押し付けて素管1bを縮径する工程である。   Specifically, the diameter reducing step is a step of reducing the diameter of the element pipe 1b by narrowing the element pipe 1a with the diameter reducing die 22 and pressing the inner surface of the pipe against the floating plug 23.

溝加工工程は、溝付プラグ32、及び、複数個の転造ボール33により素管1bを縮径するとともに、複数個の転造ボール33が管周を転動しながら溝付プラグ32に管内面を押し付けて、該管内面に所定のリード角、及び、高さを有する螺旋状の複数の溝5(図1参照)を形成する工程である。   In the grooving step, the diameter of the raw tube 1b is reduced by the grooved plug 32 and the plurality of rolling balls 33, and the plurality of rolling balls 33 rolls around the pipe to the grooved plug 32. This is a step of pressing a surface to form a plurality of spiral grooves 5 (see FIG. 1) having a predetermined lead angle and height on the inner surface of the tube.

上述した製造装置10、製造方法により、以下のような様々な作用、効果を得ることができる。
上述した製造方法は、上述した芯金60を備えた前記製造装置10で内面溝付管1eを製造する方法である。詳しくは、前記フローティングプラグ挿着部34fに直接、取り付けた前記フローティングプラグ23を用いて前記縮径工程を行い、前記溝付プラグ挿着部34gに直接、取り付けた前記溝付プラグ32を用いて前記溝付加工を行う内面溝付管1eの製造方法である。
The following various actions and effects can be obtained by the manufacturing apparatus 10 and the manufacturing method described above.
The manufacturing method described above is a method of manufacturing the internally grooved tube 1e with the manufacturing apparatus 10 provided with the core metal 60 described above. Specifically, the diameter reducing step is performed using the floating plug 23 attached directly to the floating plug insertion portion 34f, and the grooved plug 32 attached directly to the grooved plug insertion portion 34g is used. It is a manufacturing method of the inner surface grooved pipe 1e which performs the grooved processing.

このため、芯金60は、前記フローティングプラグ23、及び、前記溝付プラグ32のそれぞれを、別の部材を介在させて連結棒34に対して取り付けた構成でないため(図3参照)、別の部材の加工誤差の影響を受けず、芯金60の軸ずれを防ぐことができる。   For this reason, the metal core 60 is not configured to attach the floating plug 23 and the grooved plug 32 to the connecting rod 34 with another member interposed therebetween (see FIG. 3). The shaft misalignment of the cored bar 60 can be prevented without being affected by the processing error of the member.

よって、加工中に芯金60、すなわち、フローティングプラグ23に対して溝付プラグ32が軸振れすることを防ぎ、管軸方向での断面形状寸法のばらつきが小さい内面溝付管1eを製造することができる。   Therefore, it is possible to prevent the grooved plug 32 from axially swinging with respect to the core metal 60, that is, the floating plug 23 during processing, and to manufacture the internally grooved tube 1e with small variations in cross-sectional shape dimensions in the tube axis direction. Can do.

詳しくは、内面溝付管の製造方法に用いられていた従来の芯金100は、図16、図17、図18に示すように、溝付プラグ32、フローティングプラグ23、連結棒101、溝付プラグ挿着用ボルト102、フローティングプラグ挿着用ボルト103、及び、2つのスペーサ104,104とで構成している。
連結棒101は、円柱状部材であり、長さ方向の両端部の中心には管軸方向に沿って螺子孔101H,101Hを形成し、該螺子孔101H,101Hの内周面には、それぞれ雌螺子部101a,101aを形成している(図18参照)。
Specifically, the conventional cored bar 100 used in the manufacturing method of the inner surface grooved tube has a grooved plug 32, a floating plug 23, a connecting rod 101, and a grooved, as shown in FIGS. A plug insertion bolt 102, a floating plug insertion bolt 103, and two spacers 104, 104 are included.
The connecting rod 101 is a columnar member, and screw holes 101H and 101H are formed along the tube axis direction at the center of both end portions in the length direction. The inner peripheral surfaces of the screw holes 101H and 101H are respectively Female screw portions 101a and 101a are formed (see FIG. 18).

溝付プラグ挿着用ボルト102、及び、フローティングプラグ挿着用ボルト103は、いずれも長さ方向の一端側に鍔状の頭部102a,103aを有し、他端側に雄螺子部102b,103bを形成した細長い円柱状の部材で形成したボルト型のピンで形成している。
なお、溝付プラグ32、フローティングプラグ23、及び、スペーサ104(63)については、本実施形態の構成と同じであるのでその説明を省略する。
The grooved plug insertion bolt 102 and the floating plug insertion bolt 103 both have hook-shaped heads 102a and 103a on one end side in the length direction, and male screw portions 102b and 103b on the other end side. It is formed by a bolt-shaped pin formed by the formed elongated cylindrical member.
Note that the grooved plug 32, the floating plug 23, and the spacer 104 (63) are the same as those in the present embodiment, and thus the description thereof is omitted.

このような部品で構成される従来の芯金100の組み立て方法について説明する。
まず、連結棒101の一端側に溝付プラグ32とスペーサ104とを管軸方向に並べ、溝付プラグ挿着用ボルト102に溝付プラグ32、スペーサ104を挿通し、この状態で溝付プラグ挿着用ボルト102を螺子孔101Hに差し込みながら雄螺子部102bと連結棒101の雌螺子部101aとを螺合することによりスペーサ104、溝付プラグ32、連結棒101をこの順で取り付ける。
A method for assembling the conventional cored bar 100 composed of such components will be described.
First, the grooved plug 32 and the spacer 104 are arranged in the tube axis direction on one end side of the connecting rod 101, the grooved plug 32 and the spacer 104 are inserted into the grooved plug insertion bolt 102, and the grooved plug is inserted in this state. The spacer 104, the grooved plug 32, and the connecting rod 101 are attached in this order by screwing the male screw portion 102b and the female screw portion 101a of the connecting rod 101 while inserting the wearing bolt 102 into the screw hole 101H.

同様に、連結棒101の他端側にフローティングプラグ23とスペーサ104とを管軸方向に並べ、フローティングプラグ挿着用ボルト103にスペーサ104、フローティングプラグ23を挿通し、この状態でフローティングプラグ挿着用ボルト103を螺子孔101Hに差し込みながら雄螺子部103bと連結棒101の雌螺子部101aとを螺合することによりスペーサ104、フローティングプラグ23、連結棒101をこの順で取り付けて芯金100を一体に組み立てることができる。   Similarly, the floating plug 23 and the spacer 104 are arranged in the tube axis direction on the other end side of the connecting rod 101, and the spacer 104 and the floating plug 23 are inserted into the floating plug insertion bolt 103. In this state, the floating plug insertion bolt is inserted. By inserting the male screw portion 103b and the female screw portion 101a of the connecting rod 101 while inserting the screw 103 into the screw hole 101H, the spacer 104, the floating plug 23, and the connecting rod 101 are attached in this order, and the cored bar 100 is integrated. Can be assembled.

このように従来の芯金100における溝付プラグ32は、溝付プラグ挿着用ボルト102を介在させて連結棒101に対して取り付ける構成であるため(図17参照)、溝付プラグ挿着用ボルト102や雌螺子部101aの加工誤差が溝付プラグ32の連結棒101に対する取り付け精度にも影響を及ぼすことになる。   Thus, since the grooved plug 32 in the conventional core metal 100 is configured to be attached to the connecting rod 101 with the grooved plug insertion bolt 102 interposed therebetween (see FIG. 17), the grooved plug insertion bolt 102 is provided. In addition, the processing error of the female screw portion 101a also affects the mounting accuracy of the grooved plug 32 with respect to the connecting rod 101.

特に、溝付プラグ挿着用ボルト102の雄螺子部102bと連結棒101の雌螺子部101aとを螺子留めする構成であり、雄螺子部102bと雌螺子部101aとの加工の際に加工精度にばらつきが生じ易く、組み立てた芯金100での軸ずれが大きくなることがある。   In particular, the male screw portion 102b of the grooved plug insertion bolt 102 and the female screw portion 101a of the connecting rod 101 are screwed together. Variations are likely to occur, and the shaft misalignment in the assembled core metal 100 may increase.

フローティングプラグ23についても、連結棒101に対してフローティングプラグ挿着用ボルト103を介在させて取り付ける形態であるため、溝付プラグ32の場合と同様に、組み立てた芯金100での軸ずれが大きくなることがある。   Since the floating plug 23 is also attached to the connecting rod 101 with the floating plug insertion bolt 103 interposed, as in the case of the grooved plug 32, the axial displacement of the assembled core metal 100 becomes large. Sometimes.

このように軸ずれが大きくなる従来の芯金100を用いて溝付け加工を行った場合、加工中の芯金100の軸振れが大きくなるため、溝加工部31を通過後の内面溝付管の外面のうねりが大きくなり、また、溝5(図1参照)の深さなどの形状が安定しないと、管軸方向において断面が安定しない内面溝付管が製造されることになる。   When grooving is performed using the conventional cored bar 100 having a large axial deviation in this way, the shaft runout of the cored bar 100 being processed increases, so that the internally grooved tube after passing through the grooved portion 31. If the shape of the groove 5 (see FIG. 1) is not stable and the shape of the groove 5 (see FIG. 1) is not stable, an internally grooved tube whose cross section is not stable in the tube axis direction will be manufactured.

また、軸ずれが大きくなる従来の芯金100を用いて溝付け加工を行った場合、加工速度を上げるために、転造ボール33の回転数を上げていき、転造ボール33が所定の回転数に達すると溝加工部31を通過した素管が捻られた形態となるいわゆる捻れ現象が発生する。   Further, when the grooving process is performed using the conventional metal core 100 with a large axial deviation, the rotational speed of the rolling ball 33 is increased in order to increase the processing speed, and the rolling ball 33 is rotated at a predetermined speed. When the number is reached, a so-called twist phenomenon occurs in which the raw tube that has passed through the grooved portion 31 is twisted.

このように捻れ現象が発生した管の内面には溝5が適切に形成されないため、転造ボール33の回転数を捻れ現象が発生しない回転数まで下げなければならない。また、軸振れ量が大きい芯金100ほど転造ボール33の回転数が低くても捻れ現象が発生する傾向があるため、溝付け加工速度を上げることができないという課題を有していた。   Since the groove 5 is not appropriately formed on the inner surface of the pipe in which the twist phenomenon has occurred in this way, the rotational speed of the rolling ball 33 must be lowered to a rotational speed at which the twist phenomenon does not occur. Further, the core metal 100 having a large shaft runout has a problem that the grooving speed cannot be increased because the twisting phenomenon tends to occur even if the rotational speed of the rolling ball 33 is low.

また、製造された内面溝付管の断面が管軸方向において安定しなければ、製品として出荷時に非破壊探傷試験を行う場合に、ノイズが大きくなり、キズ(欠陥)の検出精度に悪影響を及ぼし、良品であっても不良品と誤検出し、製品歩留りが低くなるという課題が生じる。   In addition, if the cross section of the manufactured inner grooved tube is not stable in the tube axis direction, noise will increase when performing a nondestructive flaw detection test at the time of shipment as a product, which will adversely affect the detection accuracy of scratches (defects). Even if it is a non-defective product, it is erroneously detected as a defective product, resulting in a problem that the product yield is lowered.

さらに、内面溝付管1eを伝熱管として組み込んで熱交換器を製造する際に、伝熱管を、放熱フィンに予め形成された孔内に挿通し、拡管したとき、放熱フィンとの密着状態にばらつきが出て所望の性能が得られないという難点も生じることなる。   Furthermore, when manufacturing the heat exchanger by incorporating the inner grooved tube 1e as a heat transfer tube, the heat transfer tube is inserted into a hole formed in advance in the heat radiating fin, and when the tube is expanded, the heat radiating fin comes into close contact with the heat radiating fin. There also arises a difficulty that desired performance cannot be obtained due to variations.

さらにまた、管内面の溝深さが管軸方向において安定しないと、所望の優れた伝熱性能を得ることができないという難点も生じる。   Furthermore, if the groove depth on the inner surface of the tube is not stable in the tube axis direction, there arises a problem that desired excellent heat transfer performance cannot be obtained.

このような課題に対して、本実施形態の製造方法は、上述したように前記フローティングプラグ挿着部34fに直接、取り付けた前記フローティングプラグ23を用いて前記縮径工程を行い、前記溝付プラグ挿着部34gに直接、取り付けた前記溝付プラグ32を用いて前記溝加工工程を行う内面溝付管の製造方法であるため、芯金60に軸ずれが生じないため、加工中に芯金60が軸振れすることを防ぐことができる。   In response to such a problem, the manufacturing method of the present embodiment performs the diameter reducing step using the floating plug 23 attached directly to the floating plug insertion portion 34f as described above, and the grooved plug Since it is a manufacturing method of an internally grooved tube that performs the groove processing step using the grooved plug 32 attached directly to the insertion portion 34g, the core metal 60 is not misaligned. It is possible to prevent the shaft 60 from swinging.

従って、管軸方向での例えば、管外面や溝形状などの管軸方向に対する直交断面形状寸法の管軸方向におけるばらつきが小さい内面溝付管1eを製造することができる。   Accordingly, it is possible to manufacture the internally grooved tube 1e having a small variation in the tube axis direction of the cross-sectional shape dimension orthogonal to the tube axis direction such as the tube outer surface and groove shape in the tube axis direction.

さらに、前記連結棒34は、その管軸方向において前記フローティングプラグ挿着部34fと前記溝付プラグ挿着部34gとを含めた全長に亘って1つの鋼材料からなる剛体で形成しているため、前記連結棒34における前記フローティングプラグ挿着部34fと前記溝付プラグ挿着部34gとの長さ方向の間には、例えば、ネジ留めなどによる連結部分が存在しないことになる。   Further, the connecting rod 34 is formed of a rigid body made of one steel material over the entire length including the floating plug insertion portion 34f and the grooved plug insertion portion 34g in the tube axis direction. In addition, for example, there is no connection portion by screwing or the like between the length direction of the floating plug insertion portion 34f and the grooved plug insertion portion 34g in the connection rod 34.

従って、軸ずれが生じることがなく、加工中に、連結棒34が軸回りに回転するに伴って溝付プラグ32が軸振れする軸振れ量をより大幅に低減できる。   Accordingly, no shaft misalignment occurs, and the amount of shaft runout in which the grooved plug 32 shakes as the connecting rod 34 rotates around the shaft during machining can be greatly reduced.

さらにまた、上述したように芯金60は、図2及び図3に示すように、間隔規制管61を、連結棒34における前記フローティングプラグ23と前記溝付プラグ32との間に挿着した構成であるため、連結棒34の軸方向において、スライド自在な前記フローティングプラグ23と前記溝付プラグ32とが所定の間隔を隔てて保たれるよう規制(位置決め)することができる。   Furthermore, as described above, the cored bar 60 has a configuration in which the interval regulating pipe 61 is inserted between the floating plug 23 and the grooved plug 32 in the connecting rod 34 as shown in FIGS. Therefore, in the axial direction of the connecting rod 34, the slidable floating plug 23 and the grooved plug 32 can be regulated (positioned) so as to be maintained at a predetermined interval.

しかも、前記フローティングプラグ23と前記溝付プラグ32との間に間隔規制管61を備えることにより、連結棒34を長尺状に形成した場合や小径に形成した場合などにより、該連結棒34が撓み易くなっても、加工中に連結棒34が撓むことを防止する補強部材としても機能し、軸振れ量を最小限に留めることができる。   In addition, by providing the gap regulating tube 61 between the floating plug 23 and the grooved plug 32, the connecting rod 34 can be formed when the connecting rod 34 is formed in a long shape or a small diameter. Even if it becomes easy to bend, it also functions as a reinforcing member for preventing the connecting rod 34 from being bent during processing, and the amount of axial deflection can be kept to a minimum.

上述した芯金60を用いた製造装置10により内面溝付管1eを製造することにより、管軸方向における管長さが1mの所定区間において、管長さが10mm刻みごとに測定した管重量を1mあたりに換算したそれぞれの管重量のばらつきが±1%以下であるという管軸方向において断面が安定した内面溝付管1eを製造することができる。   By manufacturing the inner grooved tube 1e by the manufacturing apparatus 10 using the above-described cored bar 60, the tube weight measured at intervals of 10 mm in a predetermined section having a tube length of 1 m in the tube axis direction per 1 m. It is possible to manufacture the internally grooved tube 1e having a stable cross section in the tube axis direction in which the variation of the respective tube weights converted into と い う is ± 1% or less.

これにより、管軸方向における管外面形状を安定化させることができるため、内面溝付管1eを製品として出荷時に非破壊探傷試験を行う場合に、検出信号のノイズの発生を抑制できる。   As a result, the shape of the outer surface of the tube in the tube axis direction can be stabilized, so that the occurrence of noise in the detection signal can be suppressed when a nondestructive flaw detection test is performed at the time of shipment using the inner grooved tube 1e as a product.

従って、キズ(欠陥)を確実に検出することができ、製品歩留りの向上を図ることができる。   Therefore, scratches (defects) can be detected reliably, and the product yield can be improved.

さらに、内面溝付管1eを伝熱管として組み込んで熱交換器を製造する際に、伝熱管を、放熱フィンに予め形成された孔内に挿通し、拡管したとき、放熱フィンとの十分な密着状態を得ることができ、所望の性能を得ることができる。   Furthermore, when the heat exchanger tube is manufactured by incorporating the inner grooved tube 1e as a heat transfer tube, the heat transfer tube is inserted into a hole previously formed in the heat radiating fin, and when the tube is expanded, sufficient adhesion with the heat radiating fin is achieved. A state can be obtained and a desired performance can be obtained.

さらに、管内面における溝5の深さなどの形状が管軸方向において安定するため、所望の優れた伝熱性能を得ることができる。   Further, since the shape such as the depth of the groove 5 on the inner surface of the tube is stabilized in the tube axis direction, desired excellent heat transfer performance can be obtained.

(第2実施形態)
第2実施形態の製造装置20は、図5に示すように、管軸方向の縮径部21と溝加工部31との間に前記中間引抜き機17を備えた構成であり、中間引抜き機17は、素管1aを引抜き方向Xへ引き抜くことで下流側に備えた引抜き装置(図示せず)による引抜きを補助している。すなわち、前記溝加工部31による溝加工は、素管1aを引抜く際の抵抗となり、この溝加工の際の引抜きの負荷が大きくなるが、中間引抜き機17により素管1aにかかる前記引抜き負荷を分散させることができる。
(Second Embodiment)
As shown in FIG. 5, the manufacturing apparatus 20 according to the second embodiment includes the intermediate drawing machine 17 between the reduced diameter portion 21 and the groove processing portion 31 in the tube axis direction. Is supporting the drawing by a drawing device (not shown) provided on the downstream side by drawing the raw tube 1a in the drawing direction X. That is, the grooving by the grooving section 31 becomes resistance when the raw pipe 1a is drawn, and the drawing load at the time of grooving increases, but the drawing load applied to the raw pipe 1a by the intermediate drawing machine 17 is increased. Can be dispersed.

前記中間引抜き機17は、素管1aの管軸方向に対する直交断面に対して上下各側、或いは、左右各側に配置された一対のベルト42a,42bを備えている。各ベルト42a,42bは、ループ状(無端状)に形成され、モータの回転駆動により回転可能にプーリー43に張架されている。ベルト42a,42bは、外周面に、その長さ方向に沿って複数のパッド44を連設したキャタピラ式に構成している。   The intermediate drawing machine 17 includes a pair of belts 42a and 42b disposed on the upper and lower sides or the left and right sides with respect to the cross section orthogonal to the tube axis direction of the raw tube 1a. Each belt 42a, 42b is formed in a loop shape (endless shape), and is stretched around a pulley 43 so as to be rotatable by a rotational drive of a motor. The belts 42a and 42b are configured in a caterpillar type in which a plurality of pads 44 are continuously provided along the length direction on the outer peripheral surface.

なお、前記中間引抜き機17の上流側には、素管1bの外表面に付着した油膜や異物を除去するためのワイパー51を設け、下流側には、中間整形ダイス52を設けている。   A wiper 51 is provided on the upstream side of the intermediate drawing machine 17 to remove an oil film and foreign matter adhering to the outer surface of the raw tube 1b, and an intermediate shaping die 52 is provided on the downstream side.

管軸方向の縮径部21と溝加工部31とは、この間に中間引抜き機17を配置する分、間隔を広げてそれぞれ配置されることになる。   The reduced diameter portion 21 and the groove processing portion 31 in the tube axis direction are arranged at a wider interval by the amount of the intermediate drawing machine 17 disposed therebetween.

連結棒34Lは、縮径部21と溝加工部31との間隔が広がった分、その長さを、第1実施形態の連結棒34の長さと比較して長く形成している。   The connecting rod 34L is formed to have a longer length than the length of the connecting rod 34 of the first embodiment because the distance between the reduced diameter portion 21 and the groove processing portion 31 is increased.

第2実施形態の製造装置20は、中間引抜き機17を備えることで連結棒34Lが長くなっても加工中に芯金60の軸振れが生じないため、安定した引抜きが可能となり管内面に形成される溝5の深さなどの形状のばらつきを大幅に抑制することができる。   Since the manufacturing apparatus 20 of the second embodiment includes the intermediate drawing machine 17, even if the connecting rod 34 </ b> L is long, the shaft bar of the core bar 60 does not occur during processing. Variation in shape such as the depth of the groove 5 to be formed can be greatly suppressed.

従来の製造方法の場合、中間引抜き機17を備えることで、管軸方向の縮径部21と溝加工部31との間隔が広がり、連結棒が長くなった芯金100を用いて加工が行われるため、加工時に芯金100の軸振れの影響が顕著にあらわれることになる。さらに、芯金100の軸振れが大きいと引抜き力が変動し、溝付け加工中に中間引抜き機17が引抜き力を積極的に制御しようとしてかえって荷重のばらつきが大きくなり、それに伴って管内面に形成される溝深さのばらつきも、より顕著になるという悪循環に陥るという課題があった。   In the case of the conventional manufacturing method, by providing the intermediate drawing machine 17, the interval between the reduced diameter portion 21 and the groove processing portion 31 in the tube axis direction is widened, and processing is performed using the cored bar 100 having a long connecting rod. Therefore, the influence of the shaft runout of the cored bar 100 appears remarkably during processing. Furthermore, if the shaft runout of the core metal 100 is large, the drawing force fluctuates, and the intermediate drawing machine 17 tries to positively control the drawing force during the grooving process, resulting in a large variation in load. There has been a problem that a variation in the depth of the formed groove falls into a vicious circle that becomes more prominent.

これに対して、第2実施形態の製造装置20は、中間引抜き機17を備えることで連結棒34が長くなっても加工中に軸振れが生じないため、引抜き力が変動せず、中間引抜き機17による引抜き力も安定し、管内面に形成される溝深さのばらつきを大幅に抑制することができる。   On the other hand, since the manufacturing apparatus 20 of the second embodiment includes the intermediate drawing machine 17, even if the connecting rod 34 becomes long, no shaft runout occurs during processing. The drawing force by the machine 17 is also stable, and the variation in the depth of the groove formed on the inner surface of the pipe can be greatly suppressed.

以下において芯金60の効果を確認するために実施した効果確認実験について説明する。   Hereinafter, an effect confirmation experiment performed to confirm the effect of the cored bar 60 will be described.

(実験1)
実験1では、第1実施形態の芯金60と従来の芯金100とのそれぞれの軸振れ量を測定し、比較検証した。
さらに、実験1では、図2、図3に示すように、第1,2実施形態で説明した芯金60を、溝付プラグ32を除いた状態で組み立てた本発明品No.1から5までの芯金を用いて行った。
詳しくは、図6(a)に示すように、本発明品No.1から5までの芯金60を順にVブロックに乗せ、軸方向の一端側の溝付プラグ挿着部34gの表面にダイヤルゲージの測定子をあてた状態で芯金60の軸方向の他端側を軸回りに回転させて溝付プラグ挿着部34gにおける芯金60の軸振れ量を順に測定した。
(Experiment 1)
In Experiment 1, the axial runout amounts of the core metal 60 of the first embodiment and the conventional metal core 100 were measured and compared for verification.
Further, in Experiment 1, as shown in FIGS. 2 and 3, the metal core 60 described in the first and second embodiments is assembled with the grooved plug 32 removed, and the product No. 1 to 5 cores were used.
Specifically, as shown in FIG. The other end of the metal core 60 in the axial direction is placed with the dial gauge probe placed on the surface of the grooved plug insertion portion 34g on one end side in the axial direction. The shaft runout amount of the cored bar 60 in the grooved plug insertion portion 34g was measured in order by rotating the side around the axis.

同様に、図16、図17に示すような従来の芯金100を、溝付プラグ32を除いた状態で組み立てた従来品No.1から5までの芯金を用いて行った。   Similarly, the conventional core No. 100 in which the conventional cored bar 100 as shown in FIGS. 1 to 5 cores were used.

詳しくは、図6(b)に示すように、従来品No.1から5までの芯金100を順にVブロックに乗せ、軸方向の一端側の溝付プラグ挿着用ボルト102の表面にダイヤルゲージの測定子をあてた状態で芯金100の軸方向の他端側を軸回りに回転させて溝付プラグ挿着用ボルト102における芯金100の軸振れ量を順に測定した。
以下の表1中における[実験1]に測定結果を示す。
Specifically, as shown in FIG. The core metal 100 from 1 to 5 is placed on the V block in order, and the other end in the axial direction of the core metal 100 with the dial gauge probe placed on the surface of the grooved plug insertion bolt 102 on one axial end side. The shaft runout amount of the cored bar 100 in the grooved plug insertion bolt 102 was measured in order by rotating the side around the axis.
The measurement results are shown in [Experiment 1] in Table 1 below.

この表1に示すように、従来品No.1から5の芯金100の軸振れ量は、いずれも0.100mm以上と大きく、ロット毎のばらつきも大きかった。
これに対して本発明品No.1から5の芯金60は、いずれも軸振れ量が0.010mm以下と小さくなっており、ロット毎のばらつきも小さくなることが実証できた。
As shown in Table 1, the conventional product No. The shaft runout amounts of the cores 100 of 1 to 5 were all as large as 0.100 mm or more, and the variation from lot to lot was also large.
In contrast, the product No. The core bars 60 of 1 to 5 all have small shaft runouts of 0.010 mm or less, and it has been proved that the variation from lot to lot is also small.

(実験2)
実験2では、実験1で使用した本発明品No.1から5までの芯金60、及び、従来品No.1から5までの芯金100のそれぞれに溝付プラグ32を取り付け、これら芯金60,100を用いて実際に縮径加工、及び、溝付け加工を行い、その過程で発生した素管の捻れ現象の発生状況を検証した。
(Experiment 2)
In Experiment 2, the product No. 1 of the present invention used in Experiment 1 was used. 1 to 5 cores 60 and conventional product No. A grooved plug 32 is attached to each of the core bars 100 from 1 to 5, and the core bars 60 and 100 are used for actual diameter reduction processing and grooving processing. The occurrence of the phenomenon was verified.

ここで実験2での縮径加工、及び、溝付け加工での加工条件は、表2に示すとおりである。   Here, the processing conditions in the diameter reduction processing and the grooving processing in Experiment 2 are as shown in Table 2.

詳しくは、実験2では、溝加工部31での転造ボール33を低い回転数から溝付け加工を開始し、加工速度を上げるために溝加工部31での転造ボール33の回転数を上げていき、その過程で発生した素管の捻れ現象の発生状況を検証した。 Specifically, in Experiment 2, the rolling ball 33 in the grooving part 31 is started to be grooved at a low rotational speed, and the rotational speed of the rolling ball 33 in the grooving part 31 is increased in order to increase the processing speed. Then, we verified the occurrence of twisting phenomenon of the tube that occurred in the process.

さらに、実験2で使用した溝加工部31の転造ボール33の性能上の限界となる最大回転数は30,000rpmのため、溝加工部31での転造ボール33が、捻れ現象が発生せずに溝付け加工を行うことができる目標とする最大回転数を30,000rpmに設定した。   Furthermore, since the maximum rotation speed that is a limit on the performance of the rolling ball 33 of the groove processing portion 31 used in Experiment 2 is 30,000 rpm, the rolling ball 33 in the groove processing portion 31 may be twisted. The target maximum number of rotations at which grooving can be performed without setting was set to 30,000 rpm.

その結果、前記表1中における[実験2]に示す測定結果となった。
従来品No.1から5は、いずれも転造ボール33の回転数が30,000rpmに達する前に捻れ現象が発生した。
詳しくは、表1中に示した回転数に達したときに捻れ現象が発生した。この結果からも明らかなとおり、従来品No.1から5の芯金100の中でも、実験1で軸振れ量が大きい結果であったものほど、捻れ現象が発生する回転数が低くなっており、最も転造ボール33の回転数が上がったものでも25,000rpmであった。
As a result, the measurement results shown in [Experiment 2] in Table 1 were obtained.
Conventional product No. In all of Nos. 1 to 5, the twisting phenomenon occurred before the rotational speed of the rolling ball 33 reached 30,000 rpm.
Specifically, the twisting phenomenon occurred when the rotational speed shown in Table 1 was reached. As is apparent from this result, the conventional product No. Among the core bars 100 of 1 to 5, the higher the shaft runout in Experiment 1, the lower the number of rotations at which the twisting phenomenon occurs, and the highest number of rotations of the rolling ball 33 But it was 25,000 rpm.

これに対して本発明品No.1から5の芯金60では、いずれも転造ボール33の回転数を30,000rpmまで上げても捻れ現象が発生していなかった。   In contrast, the product No. In any of the first to fifth core bars 60, no twisting phenomenon occurred even when the number of rotations of the rolling ball 33 was increased to 30,000 rpm.

なお、一般に、内面溝付管1eの加工時の溝付加工速度(引抜き速度)をV(m/min)、転造ボール33の公転回転数をR(rpm)、転造ボール33の加工ピッチをP(mm)、転造ボール33の配置数をN(個)とした場合、溝付加工速度V(m/min)は、
V=(R×P×N)/1000…式(1)
であらわすことができる。
In general, the grooving speed (drawing speed) during machining of the internally grooved tube 1e is V (m / min), the revolution speed of the rolling ball 33 is R (rpm), and the processing pitch of the rolling ball 33 Is P (mm), and the number of rolling balls 33 is N (pieces), the groove processing speed V (m / min) is
V = (R × P × N) / 1000 (1)
Can be represented.

ここで加工ピッチP(mm)とは、図7に示すように素管1bの外周を、該外周に配置した転造ボール33の個数で等分配した角度分だけ転造ボール33が素管1b回りを公転する間に素管1bが引抜き方向Xへ進む距離を示す。   Here, the processing pitch P (mm) means that the rolling ball 33 is divided into the raw tube 1b by an angle equally distributed on the outer periphery of the raw tube 1b by the number of the rolling balls 33 arranged on the outer periphery as shown in FIG. It shows the distance that the raw tube 1b travels in the drawing direction X while revolving around.

なお、図7は、溝加工部31付近を一部省略して模式的に示した加工ピッチPを説明する説明図である。また、図7中の仮想線で示したLは、それぞれ素管1b外周に配置された複数の転造ボール33のそれぞれが素管1bの外面を押圧した軌跡を示す。   FIG. 7 is an explanatory diagram for explaining the processing pitch P schematically shown by omitting part of the vicinity of the groove processing portion 31. Moreover, L shown with the virtual line in FIG. 7 shows the locus | trajectory in which each of the some rolling ball 33 arrange | positioned at the outer periphery of the raw tube 1b pressed the outer surface of the raw tube 1b.

この式(1)より、溝付加工速度を上げるためには、転造ボール33の回転数を上げる必要があることがわかる。よって、捻れ現象が発生しないで転造ボール33の回転数を上げることができれば、その分、溝付け加工速度を速くすることができる。
従って、転造ボール33の回転数を上げることができる本発明品No.1から5の芯金60を用いて内面溝付管1eを製造すれば、内面溝付管1eの生産性を大幅に向上することができることを実証することができた。
From this equation (1), it can be seen that in order to increase the grooving speed, it is necessary to increase the rotational speed of the rolling ball 33. Therefore, if the number of rotations of the rolling ball 33 can be increased without causing a twisting phenomenon, the grooving speed can be increased accordingly.
Therefore, the product No. of the present invention that can increase the number of rotations of the rolling ball 33. It was proved that the productivity of the inner grooved tube 1e can be greatly improved if the inner grooved tube 1e is manufactured by using the core bars 60 of 1 to 5.

(実験3)
実験3では、本発明品No.1から5の芯金60、及び、従来品No.1から5の芯金100を用いて溝付け加工を行い、実験2で作製した供試管(内面溝付管)のそれぞれについて単重、及び、単重変化率のばらつきの検証を行った。
(Experiment 3)
In Experiment 3, the product No. 1 to 5 of the core metal 60 and the conventional product No. Grooving was performed using the cores 100 of 1 to 5, and the test piece (inner grooved tube) produced in Experiment 2 was verified for variation in unit weight and unit weight change rate.

単重、及び、単重変化率の算出手順について説明する。まず、図8に示すように、供試管から測定サンプルとして1m(1000mm)分それぞれ取り出し、該測定サンプルを10mm刻みで切断し、切断したサンプル片ごとの正確な長さ(mm)と重量(g)を測定する。
そして、サンプル片ごとの重量を1mあたりの重量に換算することで単重(g/m)を算出することができる。
さらに、単重変化率は、算出した単重を基に、以下の(2)式を用いて算出することができる。
ΔW=(Wn−Wa)/Wa×100…式(2)
但し、ΔW:単重変化率(%)、Wn:サンプル片ごとの単重(g/m)、Wa:サンプルの測定箇所が100箇所分のサンプル片の平均単重(g/m)であらわすことができる。
A procedure for calculating the unit weight and the unit weight change rate will be described. First, as shown in FIG. 8, 1 m (1000 mm) is taken out from the test tube as a measurement sample, the measurement sample is cut in 10 mm increments, and the exact length (mm) and weight (g ).
The unit weight (g / m) can be calculated by converting the weight of each sample piece into the weight per meter.
Furthermore, the unit weight change rate can be calculated using the following formula (2) based on the calculated unit weight.
ΔW = (Wn−Wa) / Wa × 100 (2)
However, ΔW: Unit weight change rate (%), Wn: Unit weight for each sample piece (g / m), Wa: Sample measurement point is the average unit weight (g / m) of 100 sample pieces. be able to.

本発明品No.1から5の芯金60、及び、従来品No.1から5の芯金100のそれぞれを用いて作製した供試管の単重変化率の測定結果を表1中における[実験3]に示す。   Invention product No. 1 to 5 of the core metal 60 and the conventional product No. The measurement results of the unit weight change rate of the test tubes prepared using each of the core bars 100 of 1 to 5 are shown in [Experiment 3] in Table 1.

単重変化率が±1.0%以内に収まっているかを目安にして確認したところ、実験結果のとおり、従来品No.1から5の芯金100を用いて作製した供試管の単重変化率は、いずれも±1.7%以上となり±1.0%より大きくなり、ばらつきの度合いが大きかった。   When the rate of change in unit weight was confirmed to be within ± 1.0%, it was confirmed that the conventional product No. The rate of change in unit weight of the test tubes prepared using the cores 100 of 1 to 5 was ± 1.7% or more and larger than ± 1.0%, and the degree of variation was large.

これに対して、本発明品No.1から5の芯金60を用いた作製した供試管の単重変化率は、いずれも±0.5%以下であり、±1.0%以内に十分収まっていた。   In contrast, the product No. The rate of change in unit weight of the test tubes prepared using the core bars 60 of 1 to 5 was ± 0.5% or less, and was well within ± 1.0%.

具体的には、従来品No.3の芯金100を用いた場合の実験結果として単重の測定結果を図19に示すとともに、単重変化率の測定結果を図20に示す。   Specifically, the conventional product No. FIG. 19 shows the measurement result of the unit weight as an experimental result when the core metal 100 of 3 is used, and FIG. 20 shows the measurement result of the unit weight change rate.

図19及び、図20に示すように、従来品No.3の芯金100を用いた場合単重、及び、単重変化率のいずれの場合もばらつきの度合いが大きかった。例えば、図20に示すように、従来品No.3の芯金100を用いて作製した供試管は、単重変化率が±1.0%以内に収まっているかを目安にして確認したが、±1.0%以内に収まらなかった。   As shown in FIG. 19 and FIG. When the core metal 100 of 3 was used, the degree of variation was large in both the single weight and the single weight change rate. For example, as shown in FIG. The test tube produced using the No. 3 cored bar 100 was confirmed based on whether the unit weight change rate was within ± 1.0%, but it was not within ± 1.0%.

これに対して、発明品No.4の芯金60を用いた場合の実験結果として単重の測定結果を図9に示すとともに、単重変化率の測定結果を図10に示す。   In contrast, the invention product No. FIG. 9 shows the measurement result of the unit weight as an experimental result when using the No. 4 cored bar 60, and FIG. 10 shows the measurement result of the unit weight change rate.

図9、図10に示すように、発明品No.4の芯金60を用いた場合、従来品No.3の芯金100を用いた場合と比較して単重、及び、単重変化率のいずれにおいてもばらつきを大幅に低減できた。例えば、図10に示すように、発明品No.4の芯金60を用いて作製した供試管は、単重変化率を、±0.5%以内に収めることができ、従来品No.3の芯金100を用いた場合と比較して大幅にばらつきを低減できた。   As shown in FIG. 9 and FIG. No. 4 core bar 60 is used, the conventional product No. Compared with the case where the core metal 100 of 3 was used, variation in both the unit weight and the unit weight change rate could be greatly reduced. For example, as shown in FIG. The test tube manufactured using the core metal 60 of No. 4 can keep the unit weight change rate within ± 0.5%. As compared with the case of using the No. 3 cored bar 100, the variation was greatly reduced.

さらに実験3では、上述した単重変化率のばらつきの検証とともに、本発明品No.4の芯金60、及び、従来品No.3の芯金100を用いて実験2で溝付け加工を行い作製した供試管のそれぞれについて断面形状の厚み寸法の検証も行った。   Further, in Experiment 3, along with the verification of the variation in the single weight change rate described above, the product No. No. 4 core metal 60 and the conventional product No. The thickness dimension of the cross-sectional shape was also verified for each of the test tubes produced by grooving in Experiment 2 using the No. 3 cored bar 100.

断面形状の厚み寸法の検証でも、単重、及び、単重変化率の検証と同様に図8に示すように、供試管から測定サンプルを1000mm分それぞれ取り出し、該測定サンプルを10mm刻みで切断した。さらに、断面形状の厚み寸法の検証では、切断したサンプル片ごとの断面形状として、図11に示すように管直交断面の総肉厚(T)、底肉厚(t)、溝深さ(H)の寸法を測定しグラフ化して検証を行った。
従来品No.3の芯金100を用いた場合の管直交断面の総肉厚(T)、底肉厚(t)、溝深さ(H)の測定結果を図21に示し、発明品No.4の芯金60を用いた場合の管直交断面の総肉厚(T)、底肉厚(t)、溝深さ(H)の測定結果を図12に示す。
In the verification of the thickness dimension of the cross-sectional shape, as shown in FIG. 8, similarly to the verification of the unit weight and the unit weight change rate, each measurement sample was taken out from the test tube for 1000 mm, and the measurement sample was cut in 10 mm increments. . Furthermore, in the verification of the thickness dimension of the cross-sectional shape, as shown in FIG. 11, the total thickness (T), bottom wall thickness (t), groove depth (H ) Was measured and graphed for verification.
Conventional product No. 3 shows the measurement results of the total wall thickness (T), bottom wall thickness (t), and groove depth (H) of the cross-section of the tube when the core metal 100 of No. 3 is used. FIG. 12 shows the measurement results of the total wall thickness (T), bottom wall thickness (t), and groove depth (H) of the cross section perpendicular to the tube when the 4 cored bar 60 is used.

図12、図21に示すとおり、上述した単重、及び、単重変化率での実験結果の場合と同様に本発明品No.4の芯金60は、従来品No.3の芯金100を用いた場合と比較して、管軸方向における断面形状のばらつきの度合いを大幅に低減することが実証できた。   As shown in FIGS. 12 and 21, the product No. of the present invention is the same as in the case of the experimental results with the single weight and the single weight change rate described above. No. 4 core bar 60 is a conventional product no. It was proved that the degree of variation in cross-sectional shape in the tube axis direction was significantly reduced as compared with the case of using the No. 3 cored bar 100.

また、上述した単重、単重変化率、及び、断面形状についての測定結果から単重と断面形状寸法は密接に関係していることが明らかとなり、単重変化率(単重)のばらつきで供試管の良否を判断しても実験精度上問題がないことがわかった。さらに、断面形状寸法の測定には時間がかかるので単重変化率をもとに供試管の良否を判断することが好ましいといえる。   In addition, it is clear from the measurement results of the unit weight, the unit weight change rate, and the cross-sectional shape described above that the unit weight and the cross-sectional shape dimensions are closely related. It was found that there was no problem in experimental accuracy even if the quality of the test tube was judged. Furthermore, since it takes time to measure the cross-sectional shape dimensions, it can be said that it is preferable to judge the quality of the test tube based on the unit weight change rate.

(実験4)
実験4では、実験1から3で用いた本発明品No.1から5とは異なる本発明品No.6から11の芯金60を用いて溝付け加工を行い、それぞれ供試管を作製するとともに、従来品No.1から5とは異なる従来品No.6から8の芯金100を用いて溝付け加工を行い、それぞれ供試管を作製し、渦流探傷試験での管外面のキズ検出精度について検証した。
(Experiment 4)
In Experiment 4, the product No. of the present invention used in Experiments 1 to 3 was used. 1 to 5 different from the present invention product No. A grooving process is performed using the core metal 60 of 6 to 11, and each test tube is manufactured. Conventional product No. 1 different from 1 to 5 A grooving process was performed using 6 to 8 metal cores 100 to prepare test tubes, respectively, and the accuracy of detection of flaws on the outer surface of the tube in the eddy current test was verified.

なお、渦流探傷試験は、最初に試験材の外表面にドリルなどで人工的に穴を開けた人工欠陥に対して渦流探傷装置に備えた検出コイルで検出した信号値を基準となる信号値として設定し、その後に試験材における検出コイルを通過させた箇所から検出される信号値が基準の信号値より高い場合に、その箇所に使用上問題となるような大きなキズが有るものと判断する公知の探傷試験である。   In the eddy current testing, the signal value detected by the detection coil provided in the eddy current testing device is used as a reference signal value for the artificial defect that was first drilled on the outer surface of the test material with a drill or the like. When the signal value detected from the location where the detection coil in the test material is subsequently passed is higher than the reference signal value, it is known that the location has a large scratch that causes a problem in use. This is a flaw detection test.

また、実験4で検証する渦流探傷試験でのキズ探査性能は、該キズ探査性能に密接に関係するといわれている渦流探傷試験で検出される信号のS/N比(S:人工欠陥の基準信号値、N:試験材のベースの信号値。)の比較により行った。
なお、試験材のベースの信号値(N)は、試験材においてキズの無い箇所でノイズとして検出される信号値を示す。
Further, the flaw detection performance in the eddy current flaw detection test verified in Experiment 4 is the S / N ratio of the signal detected in the eddy current flaw detection test, which is said to be closely related to the flaw detection performance (S: reference signal for artificial defects) Value, N: signal value of base of test material).
Note that the signal value (N) of the base of the test material indicates a signal value detected as noise at a place where there is no scratch in the test material.

同時に、キズ探査性能には、後述するとおり、前記S/N比の他にも単重の変化率も密接に関連し、単重変化率(単重)のばらつきを小さくすることで、前記S/N比を高くすることができ、結果的に渦流探傷試験での管外面の探傷精度を向上させることができる。   At the same time, as will be described later, in addition to the S / N ratio, the rate of change in unit weight is closely related to the flaw search performance, and by reducing the variation in unit rate of change (unit weight), the S The / N ratio can be increased, and as a result, the flaw detection accuracy on the outer surface of the tube in the eddy current flaw detection test can be improved.

よって、本実験4では、本発明品No.6から11の芯金60、及び、従来品No.6から8の芯金100を用いてそれぞれ作製した供試管について単重変化率と渦流探傷試験での検出信号のS/N比を測定し、検証した。その結果は、表3に示すとおりである。   Therefore, in this Experiment 4, the product No. 6 to 11 cored bar 60 and conventional product No. The test tube produced using each of the 6 to 8 metal cores 100 was measured by verifying the single weight change rate and the S / N ratio of the detection signal in the eddy current testing. The results are as shown in Table 3.

表3に示すとおり、従来品No.6から8の芯金100を用いた場合の単重変
化率は、いずれも±1.0より大きく、前記S/N比は、2.0より小さかった。
As shown in Table 3, the conventional product No. When the 6 to 8 cored bar 100 was used, the unit weight change rate was larger than ± 1.0, and the S / N ratio was smaller than 2.0.

これに対して本発明品No.6から11の芯金60を用いた場合の単重変化率は、いずれも±1.0以下であり、前記S/N比は、2.0以上となった。   In contrast, the product No. When the 6 to 11 cored bar 60 was used, the unit weight change rate was ± 1.0 or less, and the S / N ratio was 2.0 or more.

また、一般に内面溝付管の外面のキズの数を渦流探傷試験で検査した場合、前記S/N比が2.0以上のときにキズを確実に検出できることが経験的に明らかになっている。   In general, when the number of scratches on the outer surface of the inner grooved tube is inspected by an eddy current flaw detection test, it has been empirically revealed that scratches can be reliably detected when the S / N ratio is 2.0 or more. .

以上より本発明品No.6から11の芯金60を用いた場合、キズを確実に検出できることが明らかとなった。   As described above, the product No. It was revealed that scratches could be reliably detected when the 6 to 11 cored bar 60 was used.

併せて、キズ(欠陥)を確実に検出するためには、単重変化率を±1%以内に抑える必要があることも判った。   At the same time, it was also found that the rate of change in unit weight must be kept within ± 1% in order to reliably detect scratches (defects).

なお、内面に形成する溝の形状、加工するサイズが違っても同様の結果であった。   The same result was obtained even when the shape of the groove formed on the inner surface and the size to be processed were different.

以下では、上述した渦流探傷試験でのキズ探査性能、単重変化率(単重)、及び、前記S/N比の関係について本発明品No.9の芯金60を用いて作製した供試管、及び、従来品No.6の芯金100を用いて作製した供試管に着目して説明する。同時に、本発明品No.9の芯金60を用いて作製した供試管、及び、従来品No.6の芯金100を用いて作製した供試管について行った渦流探傷試験でのキズ探査性能についてのより詳細な測定結果について説明する。   Hereinafter, the relationship between the flaw exploration performance, the single weight change rate (single weight), and the S / N ratio in the above-described eddy current flaw detection test, and the product S. No. 9 test tube manufactured using the cored bar 60 and conventional product No. Description will be made by paying attention to a test tube manufactured using the No. 6 cored bar 100. At the same time, the product No. No. 9 test tube manufactured using the cored bar 60 and conventional product No. The more detailed measurement result about the flaw search performance in the eddy current flaw test performed about the test tube produced using the metal core 100 of 6 is demonstrated.

従来品No.6の芯金100を用いて作製した供試管の渦流探傷試験結果は、図22に示すグラフのとおりであり、本発明品No.9の芯金60を用いて作製した供試管の渦流探傷試験結果は、図13に示すとおりであった。   Conventional product No. The results of the eddy current test of the test tube produced using the core metal 100 of No. 6 are as shown in the graph of FIG. FIG. 13 shows the results of the eddy current flaw detection test of the test tube produced using the No. 9 cored bar 60.

図22、図13中に示すように、本発明品No.9の芯金60での供試管は、S/N比が2.50であり、従来品No.6の芯金100での供試管のS/N比(1.30)よりも高いことから、従来品No.6の芯金100での供試管よりも渦流探傷試験でキズを確実に探査することができることが明らかとなった。
さらにまた、図22、図13中に示すように、本発明品No.9の芯金60での供試管は、従来品No.6の芯金100での供試管と同様に、人工欠陥の基準信号値(S値)がいずれも1.50Vであった。さらに、本発明品No.9の芯金60での供試管は、ベースの信号値(N値)が0.60Vであり、従来品No.6の芯金100での供試管のベースの信号値(1.15V)よりも低かった。
As shown in FIG. 22 and FIG. The test tube with the core metal 60 of No. 9 has an S / N ratio of 2.50. Since it is higher than the S / N ratio (1.30) of the test tube with the core metal 100 of No. 6, the conventional product no. It was revealed that scratches could be reliably detected by the eddy current flaw detection test rather than the test tube with the core metal 100 of 6.
Furthermore, as shown in FIG. 22 and FIG. The test tube with the cored bar 60 of No. 9 is the conventional product No. As in the test tube with the core metal 100 of No. 6, the reference signal value (S value) of the artificial defect was 1.50V. Furthermore, the present invention product No. 9 has a base signal value (N value) of 0.60 V. It was lower than the signal value (1.15 V) of the base of the test tube with the core metal 100 of 6.

このことから前記S/N比を高くするためには、ベースの信号値を低く抑えることが有効であることがわかる。   This shows that it is effective to keep the base signal value low in order to increase the S / N ratio.

さらに、ベース信号値を低く抑えるためには、断面形状寸法の長手方向のばらつきを小さくする、すなわち単重変化率を小さくする必要がある。   Furthermore, in order to keep the base signal value low, it is necessary to reduce the longitudinal variation of the cross-sectional shape dimensions, that is, to reduce the unit change rate.

詳しくは、従来品No.6の芯金100を用いて製造した内面溝付管1eのように、渦流探傷試験時のベースの信号値が特に高かった材料を調べたところ、管外面に形成される凹凸のピッチは均一であったが、溝付け加工直後の管(最終外径に縮径する前の管)で、目視でもはっきりと確認できるうねり(図23参照)が発生していた。   For details, please refer to the conventional product no. When a material having a particularly high base signal value during the eddy current test was examined, such as the inner grooved tube 1e manufactured using the core metal 100 of No. 6, the pitch of the unevenness formed on the outer surface of the tube was uniform. However, in the tube immediately after grooving (the tube before being reduced to the final outer diameter), undulation (see FIG. 23) that can be clearly confirmed visually occurred.

さらに、このように渦流探傷試験時のベースの信号値が特に高かった材料について単重を検証したところ、上述した実験3の結果のとおり、単重のばらつきが大きく(図19参照)、管軸方向の断面形状(総肉厚)のばらつきも大きかった(図21参照)。   Further, when the unit weight was verified for the material having a particularly high base signal value during the eddy current flaw detection test as described above, the variation in unit weight was large as shown in the result of Experiment 3 described above (see FIG. 19). The variation in the cross-sectional shape (total thickness) in the direction was also large (see FIG. 21).

これに対して本発明品No.9の芯金60を用いて製造した内面溝付管1eのように、渦流探傷試験時のベースの信号値が低い材料については、うねりは確認できなかった(図11参照)。さらに、渦流探傷試験時のベースの信号値が低い材料について単重を検証したところ、上述した実験3の結果のとおり、単重のばらつきが小さく(図9参照)、管軸方向の断面形状(総肉厚)のばらつきも小さかった(図12参照)。   In contrast, the product No. As for the inner grooved tube 1e manufactured using the No. 9 metal core 60, no swell was confirmed for a material having a low base signal value in the eddy current flaw detection test (see FIG. 11). Furthermore, when the unit weight was verified for a material with a low base signal value during the eddy current testing, as shown in the result of Experiment 3 described above, the variation in unit weight was small (see FIG. 9) and the cross-sectional shape in the tube axis direction ( The variation in total thickness was also small (see FIG. 12).

このことから、断面形状寸法の変化が渦流探傷試験時のベースの信号値が高くなった主たる要因であることが明らであり、ベース信号値を低く抑えるためには、単重変化率を小さくすることが有効であるといえる。   From this, it is clear that the change in cross-sectional shape dimension is the main factor that increased the signal value of the base during the eddy current flaw detection test, and in order to keep the base signal value low, the unit weight change rate must be reduced. It can be said that it is effective.

以上より、単重変化率(単重)のばらつきを小さくすることでベース信号値を低く抑えることができ、結果的に、前記S/N比を高くすることができるため、渦流探傷試験での管外面の探傷精度を向上させることができる。   From the above, the base signal value can be kept low by reducing the variation in the unit weight change rate (unit weight), and as a result, the S / N ratio can be increased. The accuracy of flaw detection on the outer surface of the tube can be improved.

また、上述した実験4で述べたとおり、本発明品No.6から11の芯金60を用いた場合、キズを確実に検出できることが明らかとなったが、このように、キズを正確に検出することで、良品か不良品かの誤検出を防止し、製造歩留りの向上することができる。   In addition, as described in Experiment 4 above, the product No. It has been clarified that scratches can be reliably detected when the core bar 60 of 6 to 11 is used. Thus, by detecting the scratches accurately, it is possible to prevent erroneous detection of good or defective products, The production yield can be improved.

詳しくは、通常、内面溝付管1eは、コイル状或いは直線状の形態でユーザーに納入され、納入前に、内面溝付管1eの全長に亘って管外面のキズの有無について非破壊検査として渦流探傷試験を実施する工程が行われる。   Specifically, the inner grooved tube 1e is usually delivered to the user in the form of a coil or a straight line, and before delivery, as a nondestructive inspection for the presence of scratches on the outer surface of the tube over the entire length of the inner grooved tube 1e. A step of performing an eddy current test is performed.

例えば、内面溝付管1eがコイル状の形態の場合、コイル部分全長でのキズ(欠陥)の数の上限が決めらており、その上限数を超えた場合は製品として出荷できずに不良品として扱われる。   For example, when the inner grooved tube 1e is in the form of a coil, the upper limit of the number of scratches (defects) in the entire length of the coil portion is determined. If the upper limit is exceeded, the product cannot be shipped as a defective product. Are treated as

欠陥が多く出たコイル部分を所定の巻き数分取出し、その中からキズ有りと判断された箇所を中心に再度、渦流探傷試験を行ったところ、図24に示すように、コイル部分のベースの信号値が、高い値を示す場合、キズありと判断された箇所で検出した信号値と、ベースの信号値との間で値に差異を見出し難いため、キズありと判断されるものが多くなっていた。すなわち、実際には問題となるような大きながキズが無いのにキズありと誤って判断されている場合が多かった。   A coil part with many defects was taken out for a predetermined number of turns, and the eddy current flaw detection test was performed again around the point where it was determined that there was a scratch. As shown in FIG. When the signal value shows a high value, it is difficult to find a difference in the value between the signal value detected at the place where it is judged to be flawed and the base signal value, so that many are judged to be flawed. It was. In other words, there were many cases where it was erroneously determined that there was a scratch even though there was no large scratch that would actually be a problem.

これに対して図15に示すように、コイル部分のベースの信号値(試験材のキズがない箇所が示す信号値)が全般的に低い値を示す場合、このようなコイル部分は、キズありと判断された箇所で検出される信号値がベースの信号値に対して顕著な値となるため、確実に大きなキズを発見できる。   On the other hand, as shown in FIG. 15, when the signal value of the base of the coil portion (the signal value indicated by the portion having no scratch on the test material) is generally low, such a coil portion is scratched. Since the signal value detected at the location determined to be a significant value with respect to the base signal value, a large scratch can be surely found.

本発明の芯金60を使用して製造した供試管は、渦流探傷試験でのベースの信号値が低く抑えることができ、すなわち、前記S/N比の値を高くすることができるため、キズを正確に検出でき、製造歩留りの向上することができる。   The test tube manufactured using the cored bar 60 of the present invention can suppress the signal value of the base in the eddy current flaw test, that is, the S / N ratio can be increased. Can be detected accurately, and the manufacturing yield can be improved.

この発明の構成と、上述した実施形態との対応において、
溝付プラグ、フローティングプラグ及び連結棒、又は、溝付プラグ、フローティングプラグ、連結棒及び間隔規制管は、芯金100に対応し、
フローティングプラグ挿着部は、フローティングプラグ挿着貫通孔23Hに対応し、
溝付プラグ挿着部は、溝付プラグ挿着貫通孔32Hに対応し、
転動体は、転造ボール33に対応するものとする。
In the correspondence between the configuration of the present invention and the above-described embodiment,
The grooved plug, the floating plug and the connecting rod, or the grooved plug, the floating plug, the connecting rod and the interval regulating tube correspond to the cored bar 100,
The floating plug insertion portion corresponds to the floating plug insertion through hole 23H,
The grooved plug insertion portion corresponds to the grooved plug insertion through hole 32H,
The rolling elements correspond to the rolling balls 33.

10…製造装置
17…中間引抜き機
21…縮径部
22…縮径ダイス
23…フローティングプラグ
23H…フローティングプラグ挿着貫通孔
31…溝加工部
32…溝付プラグ
32H…溝付プラグ挿着貫通孔
33…転造ボール
34,34L…連結棒
34g…溝付プラグ挿着部
34f…フローティングプラグ挿着部
61…間隔規制管
1a〜1c…素管
1e…内面溝付管
DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus 17 ... Intermediate drawing machine 21 ... Reduced diameter part 22 ... Reduced diameter die 23 ... Floating plug 23H ... Floating plug insertion through hole 31 ... Grooved processing part 32 ... Grooved plug 32H ... Grooved plug insertion through hole 33 ... Rolled balls 34, 34L ... Connecting rod 34g ... Slotted plug insertion portion 34f ... Floating plug insertion portion 61 ... Spacing regulating tube 1a to 1c ... Elementary tube 1e ... Internal grooved tube

Claims (6)

縮径ダイスとフローティングプラグとの間で素管を引き抜いて縮径する縮径工程と、素管の外面を管軸回りに転動する転動体で押圧しながら該素管の内面を、管内部に備えた溝付プラグに押し付けて素管の内面に複数の溝を形成する溝付加工工程とを行う内面溝付管の製造方法であって、
前記フローティングプラグと前記溝付プラグとを連結する連結棒を管内部に備え、
前記連結棒の軸方向における前記縮径ダイスの側に、前記フローティングプラグを該連結棒に対して直接、取り付けることを許容するフローティングプラグ取付け部を形成するとともに、前記連結棒の軸方向における前記転動体の側に、前記溝付プラグを前記連結棒に対して直接、取り付けることを許容する溝付プラグ取付け部を形成し、
前記フローティングプラグ取付け部に取り付けた前記フローティングプラグを用いて前記縮径工程を行い、
前記溝付プラグ取付け部に取り付けた前記溝付プラグを用いて前記溝付加工工程を行う
内面溝付管の製造方法。
The diameter reduction process of pulling out the raw tube between the diameter reducing die and the floating plug to reduce the diameter, and pressing the outer surface of the raw tube with a rolling element that rolls around the tube axis, And a grooved processing step of forming a plurality of grooves on the inner surface of the raw tube by pressing against the grooved plug provided in
A connecting rod for connecting the floating plug and the grooved plug is provided inside the pipe,
A floating plug mounting portion that allows the floating plug to be directly attached to the connecting rod is formed on the diameter-reducing die side in the axial direction of the connecting rod, and the rolling plug in the axial direction of the connecting rod is formed. On the side of the moving body, a grooved plug attachment portion that allows the grooved plug to be directly attached to the connecting rod is formed,
Performing the diameter reducing step using the floating plug attached to the floating plug attachment portion,
A method for manufacturing an internally grooved tube, wherein the grooved processing step is performed using the grooved plug attached to the grooved plug attachment portion.
前記連結棒を、前記フローティングプラグ取付け部から前記溝付プラグ取付け部まで1つの構成材料からなる剛体で形成した
請求項1に記載の内面溝付管の製造方法。
The method for manufacturing an internally grooved tube according to claim 1, wherein the connecting rod is formed of a rigid body made of one constituent material from the floating plug mounting portion to the grooved plug mounting portion.
前記フローティングプラグ取付け部を、フローティングプラグの挿着を許容するフローティングプラグ挿着許容部で構成するとともに、
前記フローティングプラグに、管軸方向へスライド自在に前記フローティングプラグ挿着許容部に挿着するフローティングプラグ挿着部を構成し、
前記溝付プラグ取付け部を、前記溝付プラグの挿着を許容する溝付プラグ挿着許容部で構成するとともに、
前記溝付プラグに、管軸方向へスライド自在に前記溝付プラグ挿着許容部に挿着する溝付プラグ挿着部を構成し、
前記連結棒における、前記フローティングプラグと前記溝付プラグとの管軸方向の間に挿着され、該フローティングプラグと該溝付プラグとを管軸方向において所定間隔に規制する間隔規制管を備えた
請求項1、又は、2に記載の内面溝付管の製造方法。
The floating plug mounting portion is configured with a floating plug insertion allowing portion that allows insertion of the floating plug,
The floating plug is configured to be inserted into the floating plug insertion allowing portion so as to be slidable in the tube axis direction.
The grooved plug mounting portion is configured with a grooved plug insertion allowing portion that allows insertion of the grooved plug,
The grooved plug is configured to have a grooved plug insertion portion that is slidably inserted in the grooved plug insertion allowable portion in a tube axis direction,
The connecting rod includes an interval regulating tube that is inserted between the floating plug and the grooved plug in the tube axis direction and regulates the floating plug and the grooved plug at a predetermined interval in the tube axis direction. The manufacturing method of the internally grooved pipe | tube of Claim 1 or 2.
前記縮径ダイス、および、前記フローティングプラグで構成される縮径部と、前記転動体、及び、前記溝付プラグで構成される溝付加工部との管軸方向の間に素管を引抜く中間引抜き機を備え、
前記縮径工程と前記溝付加工工程とを行なう間、前記中間引抜き機により、前記縮径工程で縮径した素管を引抜く中間引抜き工程を行う
請求項1から3のいずれかに記載の内面溝付管の製造方法。
The raw tube is drawn between the reduced diameter portion constituted by the reduced diameter die and the floating plug, and the grooved portion constituted by the rolling element and the grooved plug. Equipped with an intermediate drawing machine,
4. The intermediate drawing step according to claim 1, wherein an intermediate drawing step of drawing the raw pipe reduced in the diameter reduction step is performed by the intermediate drawing machine while the diameter reduction step and the grooving step are performed. Manufacturing method of internally grooved tube.
管軸方向における管長さが1mの所定区間において、管長さが10mm刻みごとに測定した管重量をそれぞれ1mあたりに換算した管重量のばらつきが±1%以下である
請求項1から4のいずれかに記載の内面溝付管の製造方法により製造した内面溝付管。
5. The tube weight variation obtained by converting the tube weight measured every 10 mm in increments of 10 mm in a predetermined section having a tube length of 1 m in the tube axis direction to 1 m or less is ± 1% or less. An internally grooved tube manufactured by the method for manufacturing an internally grooved tube according to 1.
縮径ダイスとフローティングプラグとの間で素管を引き抜いて管を縮径する縮径部と、前記素管の外面を管周方向に沿って転動する転動体で押圧しながら該素管の内面を、管内部に備えた溝付プラグに押し付けて複数の溝を形成する溝加工部とを備えた内面溝付管の製造装置であって、
前記縮径部と前記溝加工部との間に配され、前記フローティングプラグと前記溝付プラグとを連結する連結棒を管内部に備え、
前記連結棒の軸方向における前記縮径部の側に、前記フローティングプラグを該連結棒に対して直接、取り付けることを許容するフローティングプラグ取付け部を形成するとともに、
前記連結棒の軸方向における前記溝加工部の側に、前記溝付プラグを該連結棒に対して直接、取り付けることを許容する溝付プラグ取付け部を形成した
内面溝付管の製造装置。
A diameter-reducing portion that pulls out the pipe between the diameter-reducing die and the floating plug to reduce the diameter of the pipe, and a rolling element that rolls along the circumferential direction of the pipe while pressing the outer surface of the pipe. An inner surface grooved pipe manufacturing apparatus comprising a groove processing portion that forms a plurality of grooves by pressing an inner surface against a grooved plug provided inside the pipe,
A connecting rod that is arranged between the reduced diameter portion and the groove processing portion and connects the floating plug and the grooved plug is provided inside the pipe,
On the side of the reduced diameter portion in the axial direction of the connecting rod, a floating plug attaching portion that allows the floating plug to be attached directly to the connecting rod is formed.
An apparatus for manufacturing an internally grooved tube, in which a grooved plug attachment portion that allows the grooved plug to be directly attached to the connection rod is formed on the groove processing portion side in the axial direction of the connection rod.
JP2010096614A 2010-04-20 2010-04-20 Internal grooved tube and method and apparatus for manufacturing the same Expired - Fee Related JP5534917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096614A JP5534917B2 (en) 2010-04-20 2010-04-20 Internal grooved tube and method and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096614A JP5534917B2 (en) 2010-04-20 2010-04-20 Internal grooved tube and method and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2011224613A true JP2011224613A (en) 2011-11-10
JP5534917B2 JP5534917B2 (en) 2014-07-02

Family

ID=45040645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096614A Expired - Fee Related JP5534917B2 (en) 2010-04-20 2010-04-20 Internal grooved tube and method and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5534917B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113070375A (en) * 2021-03-25 2021-07-06 江西耐乐铜业有限公司 Copper pipe internal thread shaping governing system
CN117564126A (en) * 2023-12-20 2024-02-20 娄底市鼎成管业有限公司 Composite forming process of wear-resistant alloy pipe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719110A (en) * 1980-07-08 1982-02-01 Sumitomo Light Metal Ind Ltd Manufacture of pipe with inside channel
JPS5871402U (en) * 1981-11-06 1983-05-14 株式会社神戸製鋼所 Processing equipment for internally grooved pipes
JPS61286018A (en) * 1985-06-11 1986-12-16 Kobe Steel Ltd Method and device for manufacturing inner surface grooved tube
JPH0550136A (en) * 1991-08-23 1993-03-02 Furukawa Electric Co Ltd:The Manufacture of inside-grooved tube
JPH05245529A (en) * 1992-03-06 1993-09-24 Hitachi Cable Ltd Machining plug with inner surface groove
JP2008036640A (en) * 2006-08-01 2008-02-21 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2008087004A (en) * 2006-09-29 2008-04-17 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing inner grooved tube and inner grooved tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719110A (en) * 1980-07-08 1982-02-01 Sumitomo Light Metal Ind Ltd Manufacture of pipe with inside channel
JPS5871402U (en) * 1981-11-06 1983-05-14 株式会社神戸製鋼所 Processing equipment for internally grooved pipes
JPS61286018A (en) * 1985-06-11 1986-12-16 Kobe Steel Ltd Method and device for manufacturing inner surface grooved tube
JPH0550136A (en) * 1991-08-23 1993-03-02 Furukawa Electric Co Ltd:The Manufacture of inside-grooved tube
JPH05245529A (en) * 1992-03-06 1993-09-24 Hitachi Cable Ltd Machining plug with inner surface groove
JP2008036640A (en) * 2006-08-01 2008-02-21 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2008087004A (en) * 2006-09-29 2008-04-17 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing inner grooved tube and inner grooved tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113070375A (en) * 2021-03-25 2021-07-06 江西耐乐铜业有限公司 Copper pipe internal thread shaping governing system
CN113070375B (en) * 2021-03-25 2022-11-15 江西耐乐铜业有限公司 Copper pipe internal thread forming and adjusting system
CN117564126A (en) * 2023-12-20 2024-02-20 娄底市鼎成管业有限公司 Composite forming process of wear-resistant alloy pipe
CN117564126B (en) * 2023-12-20 2024-05-17 娄底市鼎成管业有限公司 Composite forming process of wear-resistant alloy pipe

Also Published As

Publication number Publication date
JP5534917B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
EP2018911B1 (en) Method for correcting pipe and method for producing pipe by using that correction method
CA2595320C (en) Hot reduced coil tubing and a method for forming same
JP5534917B2 (en) Internal grooved tube and method and apparatus for manufacturing the same
JP5064749B2 (en) Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube
JP2004101465A (en) Shape measuring method and device for tube, tube examining method and device, and method and system for manufacturing tube
JP4999468B2 (en) Spiral tube manufacturing method and spiral tube manufacturing apparatus
JP2013104719A (en) External surface bend measuring-method for steel pipe
KR101278827B1 (en) Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
JP2008047632A (en) Wire winding machine, wire winding method, and wire-wound bobbin
WO2018193315A1 (en) Equipment and method for producing spherical bodies
JPH10314837A (en) Helical deformed tube, method for forming and device therefor
JP4795322B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
KR100808361B1 (en) Method of examining a rolling mill in the rolling direction and the roll axis direction
JP5055848B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP2000317521A (en) Straightening roll and production of heat transfer tube
JP4613431B2 (en) Rolling method of steel pipe by mandrel mill
JP2952187B2 (en) ERW pipe inspection apparatus, ERW pipe manufacturing apparatus and manufacturing method
JP2010274264A (en) Apparatus and method for manufacturing internally grooved tube
JP4036044B2 (en) Internal grooved tube processing method
JP2012240104A (en) Method of detecting generation of twist in rolled stock, method of suppressing twist in rolled stock and rolling mill adopting these methods
JP2005193247A (en) Method for manufacturing seamless steel tube and mandrel mill
JP6316697B2 (en) Internal spiral grooved tube and manufacturing method thereof
EP4108352A1 (en) Inclined rolling equipment, method for producing seamless tube blank, and method for producing seamless steel tube
JP6964498B2 (en) Manufacturing method of inner spiral grooved tube, heat exchanger and inner spiral grooved tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R151 Written notification of patent or utility model registration

Ref document number: 5534917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees