JP2010274264A - Apparatus and method for manufacturing internally grooved tube - Google Patents

Apparatus and method for manufacturing internally grooved tube Download PDF

Info

Publication number
JP2010274264A
JP2010274264A JP2009125936A JP2009125936A JP2010274264A JP 2010274264 A JP2010274264 A JP 2010274264A JP 2009125936 A JP2009125936 A JP 2009125936A JP 2009125936 A JP2009125936 A JP 2009125936A JP 2010274264 A JP2010274264 A JP 2010274264A
Authority
JP
Japan
Prior art keywords
disconnection
load
tube
processing
related data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009125936A
Other languages
Japanese (ja)
Other versions
JP5275904B2 (en
Inventor
Eitoku In
栄徳 尹
Kotaro Tsuri
弘太郎 釣
Toshiaki Hashizume
利明 橋爪
Kazuaki Shobuke
和昭 正武家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009125936A priority Critical patent/JP5275904B2/en
Priority to KR1020117014300A priority patent/KR101278827B1/en
Priority to PCT/JP2009/006674 priority patent/WO2010067576A1/en
Priority to MYPI2011002613A priority patent/MY167025A/en
Priority to CN200980150021.9A priority patent/CN102245323B/en
Publication of JP2010274264A publication Critical patent/JP2010274264A/en
Application granted granted Critical
Publication of JP5275904B2 publication Critical patent/JP5275904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for manufacturing an internally grooved tube, capable of determining occurrence of any tube breakage during the machining before a grooved plug provided on a grooved section is broken by a form rolling ball, and reliably preventing any breakage of the grooved plug. <P>SOLUTION: Each of the apparatuses 10A, 10B, 10C for manufacturing the internally grooved tube comprises a contraction means 13 by which a tube stock 11a is reduction-worked, and contracted, a groove machining means 14 for forming a large number of grooves in an inner surface of the tube stock after passing the contraction means 13, and a reduction working means 16 for reduction-working the internally grooved tube 11 worked on the downstream side in the tube axial direction X of the groove machining means 14. Work-related data detection means 17, 45, 52 which detect the work-related data on the machining load generated in the tube axial direction X as the tube stock 11a is reduction-worked, are provided on the upper-stream side in the tube axial direction X from the reduction working means 16. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、エアコンや給湯器の熱交換器用の伝熱管として用いられる内面溝付管の製造装置及び製造方法に関する。   The present invention relates to an apparatus and a method for manufacturing an internally grooved tube used as a heat transfer tube for a heat exchanger of an air conditioner or a water heater.

エアコンや給湯器の熱交換器に用いられる伝熱管は、熱交換性能の要求から、内面に溝のついた銅管が用いられることが多い。
近年は特に、熱交換器の軽量化や金属の省資源化のために、伝熱管用の内面溝付管は、より薄いものが求められている。
A heat transfer tube used for a heat exchanger of an air conditioner or a water heater is often a copper tube with a groove on the inner surface because of the requirement for heat exchange performance.
In recent years, in particular, thinner inner-surface grooved tubes for heat transfer tubes have been demanded in order to reduce the weight of heat exchangers and save metal resources.

このような内面溝付管を製造するための内面溝付管の製造装置及び製造方法は、特許文献1に開示されている。   A manufacturing apparatus and a manufacturing method of an internally grooved tube for manufacturing such an internally grooved tube are disclosed in Patent Document 1.

特許文献1の内面溝付管の製造装置は、加工済みの内面溝付管を抽伸方向の最下流側で巻き取る巻き取りドラム(抽伸ドラム)を兼ねた引抜手段を備え、該引抜手段により内面溝付管を引抜く引抜力を検出する引抜力検出手段を備えている。   The manufacturing apparatus for an internally grooved tube of Patent Document 1 includes a drawing unit that also serves as a take-up drum (drawing drum) that winds a processed internally grooved tube on the most downstream side in the drawing direction. A pulling force detecting means for detecting a pulling force for pulling out the grooved tube is provided.

引抜力検出は、引抜手段のモータの電流値によるトルク測定、引抜手段における管の押し付け力と変位の関係、巻き取りドラム以外の素管を縮径したり、溝付け加工をしたりする装置が載った可動台の荷重測定、等によって行われる。   The drawing force is detected by a device that measures the torque based on the motor current value of the drawing means, the relationship between the pushing force and displacement of the pipe in the drawing means, reduces the diameter of the raw pipe other than the winding drum, and performs grooving. This is done by measuring the load on the mounted movable table.

例えば引抜手段のモータトルクによって検出する場合、モータトルクがメカニカルロスのレベルまで落ち込んだ時点で断管と判定する。   For example, when detecting by the motor torque of the drawing means, it is determined that the tube is disconnected when the motor torque drops to the mechanical loss level.

特許文献1における引抜力検出手段は、いずれも抽伸ドラムの直前において管にかかる張力に相当する引抜力を測定するものである。   The pulling force detection means in Patent Document 1 measures the pulling force corresponding to the tension applied to the tube immediately before the drawing drum.

ここで、引抜力検出手段は、加工中に断管が発生した場合であって、その断管箇所が引抜手段の直前(整径ダイスと抽伸ドラムの間)である場合には即時に検出できる。   Here, the pulling force detection means can be detected immediately when a tube break occurs during processing, and when the tube break is immediately before the drawing means (between the diameter adjusting die and the drawing drum). .

しかし、引抜力検出手段は、加工中に断管が発生した場合であって、その破断箇所が整径ダイスより上流である場合には、破断部が整径ダイスを通過するまで管が整径ダイスを通過する際にかかる引抜荷重が検出される分、荷重変動が抑制され、断管の検出に遅れが生じる。   However, the pull-out force detecting means is a case where a tube breakage occurs during processing, and when the broken portion is upstream from the diameter adjusting die, the tube is adjusted until the broken portion passes the diameter adjusting die. As the pull-out load applied when passing through the die is detected, the load fluctuation is suppressed, and the detection of the broken tube is delayed.

このように、従来技術では、整径ダイスより上流で断管が発生した場合に、断管の検出の遅れにより装置の停止が遅れて溝付プラグを破損することがあった。   As described above, in the related art, when a disconnection occurs upstream of the diameter adjusting die, the stop of the apparatus is delayed due to a delay in detecting the disconnection, and the grooved plug may be damaged.

管の破断部が、溝加工部を通過すると、溝加工部に備えた溝付プラグが転造ボールに直接押し付けられ、溝付プラグが破損する可能性がある。溝付プラグは高価なため、断管が発生したらすぐに装置を停止しなければ、断管の度に溝付プラグを交換する必要があり多大なコスト、労力を要してしまうことになる。   When the broken part of the tube passes through the grooved part, the grooved plug provided in the grooved part is pressed directly against the rolled ball, and the grooved plug may be damaged. Since the grooved plug is expensive, if the apparatus is not stopped immediately after the disconnection occurs, it is necessary to replace the grooved plug every time the disconnection occurs, resulting in a great cost and labor.

特開2008−87004号公報JP 2008-87004 A

そこで本発明では、溝加工部に備えた溝付プラグが転造ボールにより破損される前に加工中に断管発生と判断することができ、溝付プラグの破損を確実に防止することができる内面溝付管の製造装置及び製造方法の提供を目的とする。   Therefore, in the present invention, it is possible to determine that a tube break has occurred during processing before the grooved plug provided in the groove processing portion is damaged by the rolled ball, and it is possible to reliably prevent the grooved plug from being damaged. An object is to provide a manufacturing apparatus and a manufacturing method of an internally grooved tube.

本発明は、素管を抽伸して縮径させる縮径手段と、該縮径手段通過後の素管内面に多数の溝を形成する溝加工手段と、該溝加工手段の管軸方向下流側で加工済みの内面溝付管を抽伸する抽伸手段とを備えた内面溝付管の製造装置であって、前記抽伸手段よりも管軸方向上流側に、素管の抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出する加工関連データ検出手段を備えた内面溝付管の製造装置であることを特徴とする。   The present invention relates to a diameter reducing means for drawing and reducing the diameter of an element pipe, a groove processing means for forming a large number of grooves on the inner surface of the element pipe after passing through the diameter reducing means, and a downstream side in the tube axis direction of the groove processing means. The inner grooved pipe manufacturing apparatus includes a drawing means for drawing the processed inner grooved pipe at the upstream side in the pipe axis direction with respect to the drawing means in the pipe axis direction. It is the manufacturing apparatus of the inner surface grooved pipe provided with the processing related data detecting means for detecting the processing related data regarding the processing load generated in the above.

前記構成により、素管の抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出することができるため、加工関連データに基づいて抽伸手段よりも管軸方向上流側で素管が破断しても溝加工手段に備えた溝付プラグが破損する前に断管が発生していることを認識することができる。   With the above configuration, it is possible to detect machining-related data related to the machining load generated in the pipe axis direction as the pipe is drawn, so that the pipe breaks on the upstream side in the pipe axis direction from the drawing means based on the machining-related data. Even so, it can be recognized that the disconnection has occurred before the grooved plug provided in the groove processing means is broken.

よって、装置を停止するなどの対応を迅速にとることができ、溝加工手段において溝付プラグが転造ボールに直接的に押し付けられ、破損することを防ぐことができる。   Therefore, it is possible to quickly take measures such as stopping the apparatus, and it is possible to prevent the grooved plug from being pressed directly against the rolled ball in the groove processing means and being damaged.

前記加工関連データは、例えば、前記縮径手段や前記溝加工手段において測定される前記加工荷重、或いは、前記中間抽伸手段の抽伸荷重、換言するとモータの荷重(駆動力)に関連する荷重関連データを挙げることができる。さらに、前記加工関連データは、加工荷重や駆動力を電気信号化した電流値や電圧値、さらには、これらの値を微分した微分値などのデータであってもよく、さらには、これらデータをグラフ化した波形が示す傾向であってもよい。   The processing related data is, for example, the load related data related to the processing load measured in the diameter reducing means or the groove processing means, or the drawing load of the intermediate drawing means, in other words, the motor load (driving force). Can be mentioned. Further, the machining-related data may be data such as a current value or a voltage value obtained by converting a machining load or a driving force into an electrical signal, or a differential value obtained by differentiating these values. The tendency shown by the graphed waveform may be used.

また、本発明は、前記加工関連データ検出手段を、前記溝加工手段における前記加工荷重を測定する溝加工荷重測定手段、及び、前記縮径手段における前記加工荷重を測定する縮径加工荷重測定手段のうち、少なくとも一方で構成したことを特徴とする。   Further, the present invention provides the machining-related data detection means, a grooving load measuring means for measuring the machining load in the grooving means, and a reduced diameter processing load measuring means for measuring the machining load in the reduced diameter means. Of these, at least one is configured.

前記加工関連データ検出手段を、前記溝加工荷重測定手段で構成した場合、前記溝加工手段での前記加工荷重の変化を基にして断管が発生したと判定することができる。
前記加工関連データ検出手段を、前記縮径加工荷重測定手段で構成した場合、前記縮径手段での前記加工荷重の変化を基にして断管が発生したと判定することができる。
When the machining-related data detection means is configured by the grooving load measuring means, it can be determined that a disconnection has occurred based on the change in the machining load at the grooving means.
When the processing-related data detection means is constituted by the reduced diameter processing load measuring means, it can be determined that a disconnection has occurred based on a change in the processing load at the reduced diameter means.

このため、溝加工部の下流側に整径ダイスを設置した場合も、前記溝加工手段、前記縮径手段のいずれにおいても、断管発生の判定に遅れるなどの影響を受けずに溝付プラグが破損する前に断管発生を認識することができる。   For this reason, even when a sizing die is installed on the downstream side of the groove processing portion, the grooved plug is not affected by any delay in the determination of the occurrence of disconnection in either the groove processing means or the diameter reducing means. The occurrence of disconnection can be recognized before it breaks.

特に、前記加工関連データ検出手段を、前記縮径加工荷重測定手段で構成した場合は、前記溝加工手段と前記縮径手段との間で断管が発生したときも、その断管発生したことを瞬時に判定できる点で好ましい。   In particular, when the processing-related data detection means is configured by the diameter reducing load measuring means, the disconnection occurred even when a disconnection occurs between the groove processing means and the diameter reducing means. Is preferable in that it can be determined instantaneously.

また、前記溝加工手段、前記縮径手段のいずれにおいても、例えば、前記加工荷重が通常の定常加工時の加工荷重に対して例えば、20%など、メカニカルロスのレベルまで落ち込む手前の所定の割合にまで変化したら断管と判断することができる。   Further, in both the groove machining means and the diameter reducing means, for example, a predetermined ratio before the machining load drops to the level of mechanical loss such as 20% with respect to the machining load during normal steady machining, for example. If it changes to, it can be judged as a disconnection.

また、本発明は、前記縮径手段と前記溝加工手段との間で素管を抽伸する中間抽伸手段を備え、前記加工関連データ検出手段を、前記中間抽伸手段のモータの抽伸荷重に関連する荷重関連データを検出する荷重関連データ検出手段で構成したことを特徴とする。   The present invention further includes an intermediate drawing means for drawing an element pipe between the diameter reducing means and the groove processing means, and the processing related data detection means is related to a drawing load of a motor of the intermediate drawing means. It is characterized by comprising load-related data detecting means for detecting load-related data.

前記中間抽伸手段を備えることで、前記抽伸手段による素管の抽伸を補助することができる一方で、前記縮径手段や前記溝加工手段にかかる荷重の変動が大きくなりがちであるが、前記荷重関連データ検出手段で検出する荷重関連データに基づいて、断管が発生したことを認識することができ、溝付プラグが破損することを防ぐことができる。   By providing the intermediate drawing means, it is possible to assist the drawing of the raw pipe by the drawing means, while the load variation on the diameter reducing means and the groove processing means tends to be large. Based on the load-related data detected by the related data detecting means, it can be recognized that the disconnection has occurred, and the grooved plug can be prevented from being damaged.

さらに、前記中間抽伸手段の抽伸荷重(モータの荷重)に関連する荷重関連データを検出し、断管発生を認識するために利用する構成であるため、ロードセルやトルクゲージなどの荷重測定手段、さらには、該荷重測定手段を設置するための治具などのハードウェアが不要になるため、既存の設備を利用して手軽に断管検出を行なうことができる。   Furthermore, since the load-related data related to the drawing load (motor load) of the intermediate drawing means is detected and used for recognizing the disconnection, load measuring means such as a load cell and a torque gauge, Since no hardware such as a jig for installing the load measuring means is required, the disconnection detection can be easily performed using existing equipment.

この場合、前記中間抽伸手段の抽伸荷重自体は、制御によって加工中に常に変化しているので、断管発生を認識するのは困難な場合もあるが、その場合でも荷重関連データとしては、抽伸荷重の微分値や差分値を用いれば、断管発生時に顕著な変動を示すため、断管発生を確実に認識することができる点で好ましい。   In this case, since the drawing load itself of the intermediate drawing means always changes during the processing by the control, it may be difficult to recognize the occurrence of the broken tube. If a differential value or a difference value of the load is used, it is preferable in that the occurrence of the disconnection can be surely recognized because a significant variation is exhibited when the disconnection occurs.

荷重関連データとして抽伸荷重の微分値を用いる場合、前記断管判定手段では、例えば、抽伸荷重の微分値が、通常の定常加工時においても発生する程度の変動での分布における標準偏差(σ)の5倍(5σ)など、所定の幅を超えて大きく変動したら、断管と判定することができる。   When the differential value of the drawing load is used as the load-related data, the disconnection determining means, for example, the standard deviation (σ) in the distribution with a variation that causes the differential value of the drawing load to occur even during normal steady machining. If it fluctuates greatly exceeding a predetermined width, such as 5 times (5σ), it can be determined that the tube is broken.

前記荷重関連データは、上述したように抽伸荷重(モータの荷重)、荷重に対応する電流値、電圧値(電気信号)といったデータ、これらデータの微分値、差分値等を挙げることができる。   As described above, the load-related data can include drawing load (motor load), data such as current value and voltage value (electrical signal) corresponding to the load, differential values and difference values of these data, and the like.

さらには、前記荷重関連データには、モータの荷重に限らず、モータのトルクであってもよく、その他にも、前記中間抽伸手段のモータの荷重により可動するプーリ、ベルトなどの伝達機構の(角)速度、(角)加速速度、或いは、これら微分値も含み、前記中間抽伸手段のモータの荷重に関連するデータであれば特に限定しない。   Furthermore, the load-related data is not limited to the motor load, but may be a motor torque. In addition, the load-related data may include a transmission mechanism such as a pulley or a belt that is movable by the motor load of the intermediate drawing means. There is no particular limitation as long as it is data related to the motor load of the intermediate drawing means, including the angular) speed, the (angular) acceleration speed, or these differential values.

また、本発明は、前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定する断管判定手段を備えたことを特徴とする。   Further, the present invention is characterized by comprising a disconnection determining means for determining that a disconnection has occurred based on the processing related data detected by the processing related data detecting means.

前記断管判定手段により、前記加工関連データ検出手段により検出した加工関連データに基づいて断管が発生したと自動で判定することができるため、断管発生であると判定したら装置を即時、且つ、確実に停止することができ、溝付プラグの破損を防ぐことができる。   The disconnection determination means can automatically determine that a disconnection has occurred based on the processing related data detected by the processing related data detection means. Therefore, it is possible to reliably stop and prevent breakage of the grooved plug.

さらにまた、本発明は、前記内面溝付管の製造装置を用いて、前記断管判定手段により、前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定し、加工停止を行う内面溝付管の製造方法であることを特徴とする。   Furthermore, in the present invention, it is determined by the disconnection determining means that the disconnection has occurred on the basis of the processing related data detected by the processing related data detecting means, using the manufacturing apparatus of the inner surface grooved pipe. The method for producing an internally grooved tube that stops processing is characterized by the following.

前記構成により、前記加工関連データ検出手段により検出した加工関連データに基づいて断管が発生したと自動で判定し、断管が発生したと判定したら溝加工部に備えた溝付プラグが破損する前に加工を停止することができるため、溝付プラグの破損を確実に防ぐことができる。   With the above configuration, it is automatically determined that a disconnection has occurred based on the processing-related data detected by the processing-related data detection means, and if it is determined that a disconnection has occurred, the grooved plug provided in the grooving portion is damaged. Since machining can be stopped before, the grooved plug can be reliably prevented from being damaged.

本発明では、溝加工部に備えた溝付プラグが転造ボールにより破損される前に加工中に断管発生したと判断することができ、溝付プラグの破損を確実に防止することができる内面溝付管の製造装置及び製造方法を提供することができる。   In the present invention, it is possible to determine that a tube break has occurred during processing before the grooved plug provided in the groove processing portion is damaged by the rolling ball, and it is possible to reliably prevent the grooved plug from being damaged. A manufacturing apparatus and a manufacturing method of an internally grooved tube can be provided.

第1実施形態の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe | tube of 1st Embodiment. 第2実施形態の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of 2nd Embodiment. 第3実施形態の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the internally grooved pipe | tube of 3rd Embodiment. 第1、第2実施形態、従来技術の各製造装置に設置した加工荷重検出部の設置箇所を説明する断面図。Sectional drawing explaining the installation location of the process load detection part installed in each manufacturing apparatus of 1st, 2nd embodiment and a prior art. 第3実施形態の製造装置に設置した加工荷重検出部の設置箇所を説明する断面図。Sectional drawing explaining the installation location of the process load detection part installed in the manufacturing apparatus of 3rd Embodiment. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 第1実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of the first embodiment. 第1実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of the first embodiment. 第1実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of the first embodiment. 第2実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed in a graph the fluctuation | variation of the process related data before and after the occurrence of a disconnection in the state of occurrence of the disconnection in the manufacturing apparatus of the second embodiment. 第2実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed in a graph the fluctuation | variation of the process related data before and after the occurrence of a disconnection in the state of occurrence of the disconnection in the manufacturing apparatus of the second embodiment. 第3実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of the processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of the third embodiment. 第3実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of the processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of the third embodiment. 第3実施形態の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of the processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of the third embodiment.

この発明の一実施形態を、以下図面を用いて説明する。
(第1実施形態)
第1実施形態における内面溝付管の製造装置10Aは、図1に示すように、管軸方向Xの上流側から下流側(抽伸方向)へ沿って、縮径加工部13、溝加工部14、整径ダイス15、抽伸部16(引抜部)を構成している。
なお、図1は、本実施形態における内面溝付管の製造装置10Aの説明図である。
An embodiment of the present invention will be described below with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the inner grooved tube manufacturing apparatus 10 </ b> A according to the first embodiment extends from the upstream side in the tube axis direction X to the downstream side (the drawing direction), and the diameter reducing portion 13 and the groove processing portion 14. The diameter adjusting die 15 and the drawing part 16 (drawing part) are configured.
In addition, FIG. 1 is explanatory drawing of the manufacturing apparatus 10A of an internally grooved pipe | tube in this embodiment.

さらに、前記製造装置10Aは、素管11aの抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出する加工関連データ検出部17と、断管が発生した場合、該加工関連データ検出部17により検出した加工関連データに基づいて断管が発生したと判定し、抽伸部16に対して抽伸停止指令を出力する制御部18とを備えている。   Further, the manufacturing apparatus 10A includes a machining-related data detection unit 17 that detects machining-related data related to a machining load that occurs in the pipe axis direction along with the drawing of the raw tube 11a, and, when a disconnection occurs, the machining-related data detection. It is determined that a disconnection has occurred based on the processing related data detected by the unit 17, and a control unit 18 that outputs a drawing stop command to the drawing unit 16 is provided.

前記縮径加工部13は、縮径ダイス22と、素管11a内に配置され、前記縮径ダイス22とともに素管11aを縮径するフローティングプラグ23とで構成している。   The reduced diameter processing portion 13 includes a reduced diameter die 22 and a floating plug 23 that is disposed in the raw tube 11 a and reduces the diameter of the raw tube 11 a together with the reduced diameter die 22.

前記縮径ダイス22は、管軸方向Xへ連通した連通孔22aを有した筒状に構成し、連通孔22aは、管軸方向Xの上流側部分(入口側)を下流側部分(出口側)に対して上流側へ向けて末広がり状に開口した形状で構成している。   The diameter-reducing die 22 is formed in a cylindrical shape having a communication hole 22a communicating in the tube axis direction X, and the communication hole 22a has an upstream portion (inlet side) in the tube axis direction X as a downstream portion (outlet side). ) With respect to the upstream side.

前記フローティングプラグ23は、円柱状に構成し、下流側部分の外周をテーパ状に構成している。   The floating plug 23 is formed in a cylindrical shape, and the outer periphery of the downstream portion is formed in a tapered shape.

前記溝加工部14は、素管11a内においてプラグロッド25を介して前記フローティングプラグ23と回動自在に連結され、外周に複数の溝が形成された溝付プラグ24と、素管11aの外側において該素管11aを前記溝付プラグ24の側へ押圧しながら管軸回りに公転自在に配設された複数の転造ボール26と、転造ボール26を素管11a側へ押圧する押圧治具27とで構成している。   The groove processing portion 14 is rotatably connected to the floating plug 23 via a plug rod 25 in the raw tube 11a, and has a grooved plug 24 having a plurality of grooves formed on the outer periphery, and an outer side of the raw tube 11a. In FIG. 4, a plurality of rolling balls 26 arranged to revolve around the tube axis while pressing the raw tube 11a toward the grooved plug 24, and a pressing treatment for pressing the rolled ball 26 toward the raw tube 11a. It consists of the tool 27.

押圧治具27は、管軸方向X下流側へ向けて拡大した急角度の円錐状の内周面に有し、転造ボール26を外周側から保持するリング状の加工ヘッド28と、加工ヘッドの下流側にベアリング21を介して設置され、各転造ボール26に対して圧力を付与するリング状の押圧部材29とで構成している。   The pressing jig 27 has a conical inner peripheral surface with a steep angle expanded toward the downstream side in the tube axis direction X, a ring-shaped processing head 28 that holds the rolling ball 26 from the outer peripheral side, and a processing head. And a ring-shaped pressing member 29 that applies pressure to each rolling ball 26.

複数の転造ボール26は、正方向、或いは、逆方向のいずれの方向にも素管11aの表面を押圧しながら公転自在に転造工具として前記加工ヘッド28の内周面によって保持されている。   The plurality of rolling balls 26 are held by the inner peripheral surface of the processing head 28 as a rolling tool that can revolve while pressing the surface of the raw tube 11a in either the forward direction or the reverse direction. .

前記整径ダイス15は、内面溝付管11が通過することにより、例えば、前記溝加工部14における転造ボール26の押圧により生じた管表面の歪み等を滑らかに整径する加工を行う。   When the inner diameter grooved tube 11 passes, the diameter adjusting die 15 performs, for example, a process of smoothly adjusting a diameter of a tube surface caused by pressing of the rolling ball 26 in the groove processing portion 14.

前記抽伸部16は、加工済みの内面溝付管11を巻き取る抽伸ドラム31(巻取りドラム)を兼ね備え、抽伸ドラム31を駆動するモータMを備え、該モータMの回転駆動により内面溝付管11を引張りながら抽伸ドラム31に巻き付けている。 The drawing unit 16, combines the drawing drum 31 for winding the processed of the inner surface grooved tube 11 (winding drum), a motor M 1 for driving the drawing drum 31, inner grooved by the rotation of the motor M 1 The drawing tube 31 is wound around the drawing drum 31 while being pulled.

前記加工関連データ検出部17は、溝加工部14に備え、該溝加工部14における加工荷重を測定する溝加工荷重測定用ロードセル41と可動台43で構成している。   The machining-related data detection unit 17 includes a groove machining load measurement load cell 41 that measures a machining load in the groove machining unit 14 and a movable base 43 provided in the groove machining unit 14.

可動台43は、固定台42に対して管軸方向Xに可動自在に下部に車輪を有して構成し、上部に溝加工部14の押圧治具27を設置している。
溝加工荷重測定用ロードセル41は、可動台43を介して溝加工部14にかかる管軸方向Xの加工荷重Fを測定可能に固定治具42aに設置している。
The movable table 43 is configured to have a wheel at the lower part so as to be movable in the tube axis direction X with respect to the fixed table 42, and a pressing jig 27 for the groove processing portion 14 is installed at the upper part.
The groove machining load measurement load cell 41 is installed on the fixing jig 42a so as to be able to measure the machining load F in the tube axis direction X applied to the groove machining portion 14 via the movable platform 43.

前記制御部18は、溝加工荷重測定用ロードセル41から検出した荷重Fを電気信号化した荷重検出信号Sinが入力され、後述する制御プログラムに従って、断管発生時には、断管が発生したと判定して抽伸部16のモータMの駆動を停止する停止信号Soutを出力する。 The control unit 18, determines that the input load detection signal S in which the electrical signal of the load F detected from grooving load measuring load cell 41, according to control programs that will be described later, when the cross-sectional tubes occurred, the cross-sectional tubes occurred It outputs a stop signal S out to stop driving of the motor M 1 of the drawing portion 16 and.

前記制御部18は、図示しないが信号の解析処理および演算処理を実行するための演算機(CPU)、必要な制御プログラムを格納するためのハードディスク、及び、前記荷重検出信号Sinを一時格納するためのメモリを備え、その他にも、制御パラメータを入力するキーボードなどの入力手段、モニタなどの表示手段を適宜、備えることができる。 The control unit 18 is illustrated without the signal analysis processing and arithmetic processing operation machine for executing the (CPU), a hard disk for storing the necessary control program, and temporarily stores the load detection signal S in In addition, an input unit such as a keyboard for inputting control parameters and a display unit such as a monitor can be appropriately provided.

上述した製造装置10Aを用い、以下で説明する製造方法により内面溝付管11を製造することができる。   The inner grooved tube 11 can be manufactured by the manufacturing method described below using the manufacturing apparatus 10A described above.

まず、素管11a内にはフローティングプラグ23と当該フローティングプラグ23へプラグロッド25を介して回転自在に連結された溝付プラグ24を挿入する。前記素管11aを、前記縮径ダイス22と加工ヘッド28に通して引抜きながら、加工ヘッド28を回転させる。
なお、素管11aには銅,その合金,アルミニウム又はその合金等の熱伝導性のよい金属管を用いることができる。
First, a floating plug 23 and a grooved plug 24 rotatably connected to the floating plug 23 via a plug rod 25 are inserted into the raw tube 11a. The processing head 28 is rotated while the raw tube 11 a is pulled out through the reduced diameter die 22 and the processing head 28.
Note that a metal tube having good thermal conductivity such as copper, an alloy thereof, aluminum or an alloy thereof can be used for the raw tube 11a.

素管11aは、抽伸に伴って前記縮径ダイス22とフローティングプラグ23とにより縮径される。次いで、溝付プラグ24の位置で前記加工ヘッド28の回転に伴って素管11aの周りを公転しつつ自転する複数の転造ボール26が素管11aを押圧することにより、素管11aの内周面を溝付プラグ24の表面へ押圧し、当該素管11aの内面に溝付プラグ24の周面の溝50を転写する。   The raw tube 11a is reduced in diameter by the reduced diameter die 22 and the floating plug 23 along with the drawing. Next, a plurality of rolling balls 26 revolving around the base tube 11a as the machining head 28 rotates at the position of the grooved plug 24 presses the base tube 11a, so that the inside of the base tube 11a. The circumferential surface is pressed against the surface of the grooved plug 24, and the groove 50 on the circumferential surface of the grooved plug 24 is transferred to the inner surface of the raw tube 11a.

これにより、管軸に対して40〜60度のリード角β(図1参照)をもつ多数の微細な溝10を内面に有した内面溝付管11を形成することができる。その後、内面溝付管11は、下流側の整径ダイス15により整径され、抽伸ドラム31に巻き付けられる。   As a result, it is possible to form an internally grooved tube 11 having a large number of fine grooves 10 having a lead angle β (see FIG. 1) of 40 to 60 degrees with respect to the tube axis on the inner surface. Thereafter, the inner grooved tube 11 is adjusted in diameter by the downstream diameter adjusting die 15 and wound around the drawing drum 31.

内面溝付管の製造過程において、制御部18では、上述した内面溝付管11の製造過程において断管が発生したとき、溝加工荷重測定用ロードセル41により検出した加工関連データとしての加工荷重Fに基づいて断管が発生したと判定して、加工停止を行う制御を行なっている。   In the manufacturing process of the inner surface grooved tube, the control unit 18 processes the processing load F as the processing related data detected by the load cell 41 for measuring the groove processing load when a disconnection occurs in the manufacturing process of the inner surface grooved tube 11 described above. Based on the above, it is determined that a disconnection has occurred, and control is performed to stop machining.

詳しくは、前記制御部18は、溝加工荷重測定用ロードセル41により検出した荷重が通常の定常加工時の20%以下に低下したら断管が発生したと判定し、抽伸部16のモータMの駆動を停止させる制御プログラムを実行する。 Specifically, the control unit 18 determines that a disconnection has occurred when the load detected by the load cell 41 for measuring the grooving load decreases to 20% or less during normal steady machining, and the motor M 1 of the drawing unit 16 determines that the disconnection has occurred. A control program for stopping driving is executed.

前記製造装置10Aにより、以下のような作用効果を奏することができる。
前記製造装置10Aは、溝加工部14に備えた溝加工荷重測定用ロードセル41により検出した加工荷重Fに基づいて断管が発生したと判定可能な構成であり、整径ダイス15より上流側、特に、溝加工部14またはそれよりも上流側で断管が発生した場合でも断管が発生したと迅速、且つ、確実に判定することができる。
The following effects can be achieved by the manufacturing apparatus 10A.
10 A of said manufacturing apparatuses are the structures which can determine with the pipe breakage having generate | occur | produced based on the processing load F detected by the load cell 41 for groove processing load measurement with which the groove processing part 14 was equipped, upstream from the diameter adjustment die 15, In particular, even when a disconnection occurs at the groove processing portion 14 or upstream thereof, it can be quickly and reliably determined that the disconnection has occurred.

したがって、断管発生後に素管11aの破断部が溝加工部14を通過することにより、転造ボール26が素管11aを介さずに直接的に溝付きプラグ24を押圧し、溝付きプラグ24が破損することを防ぐことができる。   Therefore, when the broken portion of the raw tube 11a passes through the groove processing portion 14 after the occurrence of the broken tube, the rolling ball 26 directly presses the grooved plug 24 without passing through the raw tube 11a, and the grooved plug 24 Can be prevented from being damaged.

前記製造装置10Aは、加工中において溝加工荷重測定用ロードセル41で検出した加工荷重Fが通常の定常加工時の加工荷重の20%以下に低下したら断管と判定する制御を実行している。このため、荷重がメカロスレベルまで落ち込んだときに断管であると判定することができる。   10 A of said manufacturing apparatuses are performing control which determines that it is a disconnection, if the processing load F detected with the load cell 41 for groove processing load measurement falls to 20% or less of the processing load at the time of normal steady processing during processing. For this reason, it can be determined that the tube is broken when the load drops to the mechanical loss level.

さらに、ロッド間での性状の違いや、周囲の温度などの環境の違いによる変動を考慮して設定されたものであるから断管発生を誤検出することがない。   Furthermore, since it is set in consideration of variations due to differences in properties between rods and environmental differences such as ambient temperature, the occurrence of disconnection is not erroneously detected.

したがって、断管発生時には、確実に断管発生を検出することができるとともに、生産効率に優れた製造装置を製造することができる。   Therefore, when disconnection occurs, the occurrence of disconnection can be reliably detected, and a manufacturing apparatus excellent in production efficiency can be manufactured.

また、前記加工関連データ検出部17は、溝加工部14を可動台43に設置し、溝加工部14に加わる管軸方向Xの荷重を、可動台43を介して溝加工荷重測定用ロードセル41で検出する構成であるため、溝加工部14に加わる管軸方向Xの荷重を正確に測定することができる。   Further, the machining-related data detection unit 17 installs the groove machining unit 14 on the movable table 43, and loads the load in the tube axis direction X applied to the groove machining unit 14 via the movable table 43 to the groove machining load measurement load cell 41. Therefore, the load in the tube axis direction X applied to the groove machining portion 14 can be accurately measured.

以下では、他の実施形態における内面溝付管の製造装置10B,10Cについて説明する。
但し、以下で説明する内面溝付管の製造装置10B,10Cの構成のうち、上述した第1実施形態における内面溝付管の製造装置10Aと同様の構成については、同一の符号を付して、その説明を省略する。
Below, the manufacturing apparatus 10B, 10C of the inner surface grooved pipe | tube in other embodiment is demonstrated.
However, among the configurations of the inner grooved tube manufacturing devices 10B and 10C described below, the same reference numerals are given to the same configurations as the inner grooved tube manufacturing device 10A in the first embodiment described above. The description is omitted.

(第2実施形態)
第2実施形態における内面溝付管の製造装置10Bは、図2に示すように、管軸方向Xの上流側から下流側へ沿って、縮径加工部13、溝加工部14、整径ダイス15、抽伸部16を構成するとともに、加工関連データ検出部45と制御部46とを備えている。
前記加工関連データ検出部45は、縮径加工部13に備え、該縮径加工部13における加工荷重Fを測定する縮径加工荷重測定用ロードセル45で構成している。
縮径加工荷重測定用ロードセル45は、縮径ダイス22に取り付けられ、縮径ダイス22に負荷される管軸方向Xの荷重を検出することができる。
(Second Embodiment)
As shown in FIG. 2, the inner surface grooved pipe manufacturing apparatus 10 </ b> B according to the second embodiment includes a diameter reducing portion 13, a groove processing portion 14, and a diameter adjusting die, from the upstream side to the downstream side in the tube axis direction X. 15, the drawing unit 16 is configured, and a processing related data detection unit 45 and a control unit 46 are provided.
The machining-related data detection unit 45 includes a reduced-diameter machining load measurement load cell 45 that is provided in the reduced-diameter machining unit 13 and that measures a machining load F in the reduced-diameter machining unit 13.
The diameter reduction load measuring load cell 45 is attached to the diameter reduction die 22 and can detect the load in the tube axis direction X applied to the diameter reduction die 22.

なお、第2実施形態における内面溝付管の製造装置10Bには、溝加工部14に溝加工荷重測定用ロードセル41、及び、可動台43を備えていない。   In addition, the inner surface grooved tube manufacturing apparatus 10B according to the second embodiment does not include the groove processing load measurement load cell 41 and the movable base 43 in the groove processing portion 14.

前記制御部46は、縮径加工荷重測定用ロードセル45から検出した荷重Fを電気信号化した荷重検出信号Sinが入力され、制御プログラムに従って、断管の検出を行い、断管発生時には、断管が発生したと判定して抽伸部16のモータMの駆動を停止する停止信号Soutを出力する。 The control unit 46 is input load F detected from diameter reduction load measuring load cell 45 is an electrical signal of the load detection signal S in, in accordance with a control program, performs detection of the disconnection tube, when the cross-sectional tubes occurred, the cross-sectional tube outputs a stop signal S out to stop driving of the motor M 1 of the drawing unit 16 determines to have occurred.

詳しくは、前記制御部46は、縮径加工荷重測定用ロードセル45により検出した加工荷重Fが通常の定常加工時の20%以下に低下したら断管と判定し、抽伸部16のモータMの駆動を停止させる制御プログラムを実行する。 Specifically, the control unit 46 determines that the tube is disconnected when the processing load F detected by the load cell 45 for measuring the reduced diameter processing load is reduced to 20% or less during normal steady machining, and determines the motor M 1 of the drawing unit 16. A control program for stopping driving is executed.

前記製造装置10Bにより、以下のような作用効果を奏することができる。
前記製造装置10Bは、縮径加工部13に備えた縮径加工荷重測定用ロードセル45により測定した加工荷重Fに基づいて断管が発生したと判定する構成であり、整径ダイス15よりも上流側で断管が発生した場合でも断管が発生したと迅速、且つ、確実に判定することができる。
The manufacturing apparatus 10B can provide the following operational effects.
The manufacturing apparatus 10 </ b> B is configured to determine that a disconnection has occurred based on the processing load F measured by the diameter reducing processing load measuring load cell 45 provided in the diameter reducing processing unit 13, and upstream of the diameter adjusting die 15. Even when a disconnection occurs on the side, it can be quickly and reliably determined that the disconnection has occurred.

特に、前記製造装置10Bは、縮径加工部13よりも下流側で断管が発生した場合は、断管発生と同時に素管の抽伸により縮径加工部13にかかる荷重がゼロになるので、断管が発生したと即時に判定することができる。   In particular, in the manufacturing apparatus 10B, when a tube break occurs on the downstream side of the reduced diameter processing portion 13, the load applied to the reduced diameter processing portion 13 becomes zero due to the drawing of the raw tube simultaneously with the occurrence of the disconnection, It can be immediately determined that a disconnection has occurred.

したがって、転造ボール26が素管11aを介さずに直接的に溝付きプラグ24を押圧し、溝付きプラグ24が破損することを防ぐことができる。   Therefore, it is possible to prevent the rolling ball 26 from directly pressing the grooved plug 24 without passing through the raw tube 11a, and the grooved plug 24 from being damaged.

(第3実施形態)
第3実施形態における内面溝付管の製造装置10Cは、図3に示すように、管軸方向Xの上流側から下流側へ沿って、縮径加工部13、中間抽伸部51(中間引抜部)、溝加工部14、整径ダイス15、抽伸部16を構成するとともに、加工関連データ検出部52と制御部53とを備えている。
なお、図3は、第3実施形態における内面溝付管の製造装置10Cの説明図である。
(Third embodiment)
As shown in FIG. 3, the inner grooved tube manufacturing apparatus 10 </ b> C according to the third embodiment extends from the upstream side to the downstream side in the tube axis direction X, and the diameter reducing portion 13, the intermediate drawing portion 51 (intermediate drawing portion). ), A grooving section 14, a diameter adjusting die 15, and a drawing section 16, and a processing related data detection section 52 and a control section 53.
In addition, FIG. 3 is explanatory drawing of the manufacturing apparatus 10C of an internally grooved pipe | tube in 3rd Embodiment.

前記中間抽伸部51は、縮径部13と溝加工部14との間で、素管11aを管軸方向Xへ抽伸することで抽伸部16による抽伸を補助している。すなわち、前記溝加工部14による溝加工は、素管11aを抽伸する際の抵抗となり、この溝加工の際の抽伸(引抜き)の負荷が大きくなるが、中間抽伸部51により素管11aにかかる抽伸負荷を管軸方向Xにおいて分散させ、その結果、溝加工部14にかかる荷重を低減させることができる。   The intermediate drawing portion 51 assists the drawing by the drawing portion 16 by drawing the raw tube 11 a in the tube axis direction X between the reduced diameter portion 13 and the groove processing portion 14. That is, the grooving by the grooving section 14 becomes a resistance when the raw pipe 11a is drawn, and a load of drawing (drawing) at the time of the grooving increases. However, the intermediate drawing section 51 applies to the raw pipe 11a. The drawing load is dispersed in the tube axis direction X, and as a result, the load applied to the groove processing portion 14 can be reduced.

前記中間抽伸部51は、素管11aに対して上下各側、或いは、左右各側に配置された一対のベルト54を備えている。各ベルト54は、プーリー55によりループ状(無端状)に張架され、モータMにより回転可能に構成している。ベルト54は、外周面に、その長さ方向に沿って複数のパッド56を連設している。 The intermediate drawing portion 51 includes a pair of belts 54 arranged on the upper and lower sides or the left and right sides of the raw tube 11a. Each belt 54 is stretched by the pulley 55 in a loop shape (endless) is configured to be rotated by the motor M 2. The belt 54 has a plurality of pads 56 connected to the outer peripheral surface along the length direction.

前記パッド56には、図示しないが、縮径部13により縮径後の素管11aの外面との接触部分に、複数のパッド56の連設方向に対する切断面が円弧状となるパッド溝を形成している。   Although not shown, the pad 56 is formed with a pad groove in which the cut surface with respect to the connecting direction of the plurality of pads 56 has an arcuate shape at the contact portion with the outer surface of the base tube 11a after the diameter reduction by the diameter reducing portion 13. is doing.

前記中間抽伸部51は、モータMの駆動によりパッド56を素管11a表面に押し付け、或いは、退避可能に構成している。
なお、前記中間抽伸部51の上流側には、素管11aの外表面に付着した油膜や異物を除去するためのワイパー57を設け、下流側には、中間整径ダイス58を設けている。
The intermediate drawing unit 51 pressed against the pad 56 to the base pipe 11a surface by driving of the motor M 3, or are retractably configuration.
A wiper 57 for removing the oil film and foreign matter adhering to the outer surface of the raw pipe 11a is provided on the upstream side of the intermediate drawing portion 51, and an intermediate diameter adjusting die 58 is provided on the downstream side.

前記ワイパー57は、素管11aの外表面に付着した油膜や異物も除去するために設けられ、素管11aを通過させるため、該素管11aの外径よりも一回り小さい径の貫通穴が中央部に形成された例えば、ゴム製の筒状体である。
中間整径ダイス58は、前記中間抽伸部51で扁平した素管11aの断面形状を真円に近い形状に戻すために設けられ、前記素管11aの形状に応じて、縮径ダイス22の径と同じか小さなダイス径で構成している。
前記制御部53は、中間抽伸部51のモータMの駆動を制御することにより、中間抽伸部51のパッド56による素管11aに対する押し付け力を制御することができる。
パッド56を素管11aに対して適切な押し付け力で押し付けることによって、パッド56と素管11aの間のスリップを低減させ、荷重Fの変動が小さくなるようにする。
The wiper 57 is provided to remove an oil film and foreign matter adhering to the outer surface of the raw tube 11a, and a through hole having a diameter slightly smaller than the outer diameter of the raw tube 11a is passed through the raw tube 11a. For example, a rubber cylindrical body formed in the central portion.
The intermediate diameter adjusting die 58 is provided to return the cross-sectional shape of the element tube 11a flattened by the intermediate drawing portion 51 to a shape close to a perfect circle, and the diameter of the diameter reducing die 22 is changed according to the shape of the element tube 11a. It is configured with the same or smaller die diameter.
The control unit 53, by controlling the driving of the motor M 3 of the intermediate drawing unit 51, it is possible to control the pressing force by the pad 56 of the intermediate drawing portion 51 with respect to base pipe 11a.
By pressing the pad 56 against the raw tube 11a with an appropriate pressing force, the slip between the pad 56 and the raw tube 11a is reduced, and the fluctuation of the load F is reduced.

前記加工関連データ検出部52は、中間抽伸部51のモータMの駆動力に関連する信号としてモータMへの駆動力指令値に対応する電流値(電気信号)を検出する電流計52で構成している。
なお、製造装置10Cには、溝加工部14に、溝加工荷重測定用ロードセル41や可動台43を備えておらず、縮径加工部13に、縮径加工荷重測定用ロードセル45を備えていない。
The processing related data detection unit 52 is an ammeter 52 that detects a current value (electric signal) corresponding to a driving force command value to the motor M 3 as a signal related to the driving force of the motor M 3 of the intermediate drawing unit 51. It is composed.
The manufacturing apparatus 10 </ b> C does not include the groove processing load measurement load cell 41 or the movable base 43 in the groove processing portion 14, and does not include the diameter reduction processing load measurement load cell 45 in the diameter reduction processing portion 13. .

また、前記制御部53は、上述したように、電流計52により検出した電流値を微分する演算部を備え、微分値を荷重関連データとして記憶する記憶部を備えている。さらに、前記制御部53は、微分値が定常加工時の変動の5σを超えて大きく変動したら、断管と判定し、抽伸部16のモータM、中間抽伸部51のモータMに対して抽伸停止の指令を出力する制御プログラムを備えている。 Further, as described above, the control unit 53 includes a calculation unit that differentiates the current value detected by the ammeter 52 and includes a storage unit that stores the differential value as load-related data. Further, the control unit 53, when the differential value varies significantly beyond 5σ variations of steady state processing, determines that the cross tube, the motor M 1 of the drawing unit 16, the motor M 3 of the intermediate drawing portion 51 A control program for outputting a drawing stop command is provided.

上述した製造装置10Cを用いて内面溝付管11を製造することができる。
制御部53では、素管11aが破断した場合、電流計52で検出した電流値を微分した微分値に基づいて、断管が発生したと判定し、加工停止を行う。
詳しくは、内面溝付管11の製造方法によれば、電流計52で検出した電流値を微分した微分値の変化量を計測し、その変動が5σを超えたら断管と判断し、抽伸部16のモータM、中間抽伸部51のモータMなどの装置を停止させる。
The internally grooved tube 11 can be manufactured using the manufacturing apparatus 10C described above.
In the control part 53, when the elementary tube 11a breaks, it determines with the disconnection having occurred based on the differential value which differentiated the electric current value detected with the ammeter 52, and performs a process stop.
Specifically, according to the method of manufacturing the inner surface grooved tube 11, the amount of change in the differential value obtained by differentiating the current value detected by the ammeter 52 is measured, and when the fluctuation exceeds 5σ, it is determined that the tube is broken. 16 motor M 1 of, stops the apparatus, such as a motor M 2 of the intermediate drawing unit 51.

前記製造装置10Cにより、以下のような作用効果を奏することができる。
前記製造装置10Cは、整径ダイス15よりも上流側で発生した断管であっても、溝付プラグ24が破損する前に確実に検出することができる。
With the manufacturing apparatus 10C, the following operational effects can be achieved.
The manufacturing apparatus 10 </ b> C can reliably detect a broken tube generated upstream of the diameter adjusting die 15 before the grooved plug 24 is damaged.

さらに、製造装置10Cは、中間抽伸部51のモータの荷重(駆動力)の指令値となる電流値を微分した微分値に基づいて、断管が発生したと判定することができるため、中間抽伸部51の抽伸補助により荷重変動が大きい状況下でも、中間抽伸部51、又は、それよりも上流側で発生した断管を迅速、且つ、確実に検出することができる。   Furthermore, since the manufacturing apparatus 10C can determine that the disconnection has occurred based on the differential value obtained by differentiating the current value that is the command value of the motor load (driving force) of the intermediate drawing unit 51, the intermediate drawing unit 51C. Even under a situation where the load fluctuation is large due to the drawing assistance of the part 51, the intermediate drawing part 51 or the disconnection that has occurred on the upstream side can be detected quickly and reliably.

したがって、転造ボール26が素管11aを介さずに直接的に溝付きプラグ24を押圧し、溝付きプラグ24が破損することを防ぐことができる。   Therefore, it is possible to prevent the rolling ball 26 from directly pressing the grooved plug 24 without passing through the raw tube 11a, and the grooved plug 24 from being damaged.

さらに、中間抽伸部51のモータMの荷重に対応する電流値の微分値に基づいて、断管が発生したと判定する構成であるため、ロードセルやトルクゲージ、さらには、これらを設置するための可動台等のハードウェアの追加は不要であり、例えば、電流計52といった簡素なハードウェアによって断管検出を行なうことができる。 Furthermore, based on the differential value of the current value corresponding to the load of the motor M 2 of the intermediate drawing unit 51, since it is determined configuration to the cross-sectional tubes occurred, the load cell and torque gauge, further, for installing these It is not necessary to add hardware such as a movable table, and for example, disconnection can be detected by simple hardware such as the ammeter 52.

なお、第3実施形態の内面溝付管の製造装置10Cは、中間抽伸部51に備えた前記加工関連データ検出部52(電流計52)のみに基いて断管を検出する構成に限らない。
詳しくは、製造装置10Cは、前記加工関連データ検出部52に加えて、溝加工部14に溝加工荷重測定用ロードセル41、及び/又は、縮径加工部13に縮径加工荷重測定用ロードセル45を備え、各箇所で断管発生を検出する構成を排除するものでない。
In addition, 10 C of inner surface grooved pipe manufacturing apparatuses of 3rd Embodiment are not restricted to the structure which detects a disconnection based only on the said process related data detection part 52 (ammeter 52) with which the intermediate | middle drawing part 51 was equipped.
Specifically, in addition to the processing-related data detection unit 52, the manufacturing apparatus 10 </ b> C includes a groove processing load measurement load cell 41 in the groove processing unit 14 and / or a diameter reduction processing load measurement load cell 45 in the diameter reduction processing unit 13. It does not exclude the structure which detects breakage generation | occurrence | production at each location.

(実施例)
続いて、本発明の製造装置を用いて内面溝付管11の加工中に素管11a(内面溝付管11)に断管が発生したとき、代替困難な溝付プラグ24が破損することなく断管発生を判定できるか否かを検証する断管検出実験を行なった。
本断管検出実験では、本発明の製造装置として第1から第3実施形態の製造装置10A,10B,10Cを用い、さらに、第1から第3実施形態の製造装置10A,10B,10Cの比較例として従来技術に係る製造装置を用いて行なった。
(Example)
Subsequently, when a tube breakage occurs in the raw tube 11a (inner surface grooved tube 11) during the processing of the inner surface grooved tube 11 using the manufacturing apparatus of the present invention, the grooved plug 24 which is difficult to substitute is not damaged. An experiment for detecting the disconnection was conducted to verify whether or not the occurrence of the disconnection can be determined.
In this disconnection detection experiment, the manufacturing apparatuses 10A, 10B, and 10C of the first to third embodiments are used as the manufacturing apparatus of the present invention, and the manufacturing apparatuses 10A, 10B, and 10C of the first to third embodiments are compared. As an example, a manufacturing apparatus according to the prior art was used.

第1から第3実施形態の製造装置10A,10B,10Cでは、上述したとおり、いずれも、抽伸部16よりも、詳しくは、溝加工部14、又は、該溝加工部14よりも管軸方向X上流側に、適宜、加工荷重検出部17,45,52を備え、該加工荷重検出部17,45,52により、加工荷重関連データの検出を行なっている。第1から第3実施形態の製造装置10A,10B,10Cについて中間抽伸部51の設置の有無、加工荷重検出部17,45,52の種類、中間抽伸部51の設置箇所についてまとめると表1、図4、図5に示すとおりである。   In the manufacturing apparatuses 10A, 10B, and 10C according to the first to third embodiments, as described above, all of them are more detailed than the drawing unit 16, more specifically the groove processing unit 14, or the tube processing direction than the groove processing unit 14. The processing load detection units 17, 45, and 52 are appropriately provided on the X upstream side, and the processing load detection units 17, 45, and 52 detect processing load related data. Table 1 summarizes the presence / absence of installation of the intermediate drawing unit 51, the types of processing load detection units 17, 45, 52, and the installation location of the intermediate drawing unit 51 for the manufacturing apparatuses 10A, 10B, and 10C of the first to third embodiments. As shown in FIGS.

Figure 2010274264
なお、表1は、第1から第3実施形態の各製造装置の中間抽伸部51の設置の有無、加工荷重検出部の種類、中間抽伸部の設置箇所を示す表である。
図4は、第1、第2実施形態、比較例の各製造装置に設置する加工荷重検出部の設置箇所を示し、中間抽伸部を設置していない製造装置の模式図である。図5は、第3実施形態の製造装置に設置する加工荷重検出部の設置箇所を示し、中間抽伸部を設置している製造装置の模式図である。
Figure 2010274264
In addition, Table 1 is a table | surface which shows the presence or absence of the installation of the intermediate drawing part 51 of each manufacturing apparatus of 1st to 3rd embodiment, the kind of process load detection part, and the installation location of an intermediate drawing part.
FIG. 4 is a schematic diagram of a manufacturing apparatus in which the machining load detection unit installed in each manufacturing apparatus of the first, second embodiment, and comparative example is shown, and the intermediate drawing unit is not installed. FIG. 5 is a schematic diagram of a manufacturing apparatus in which an intermediate drawing unit is installed, showing an installation location of a processing load detection unit installed in the manufacturing apparatus of the third embodiment.

一方、表1、図4に示すように、比較例の製造装置では、中間抽伸部51を設置していない構成を例にとり、抽伸部16に抽伸ドラム31のモータの荷重を検出する荷重検出器を備え(図示せず)、該荷重検出器で抽伸荷重を検出し、断管が発生した場合は、断管が発生したとの判定を行う。   On the other hand, as shown in Table 1 and FIG. 4, in the manufacturing apparatus of the comparative example, a configuration in which the intermediate drawing unit 51 is not installed is taken as an example, and a load detector that detects the load of the motor of the drawing drum 31 on the drawing unit 16. (Not shown), the drawing load is detected by the load detector, and when a broken tube is generated, it is determined that the broken tube has been generated.

また、断管発生箇所(以下、「断管箇所」という。)は、図4、図5に示すとおり、断管箇所aからiの9通りの箇所とした。
断管箇所aからdは、図4に示すとおりであり、詳しくは、断管箇所aは、整径ダイス15と抽伸部16の間であり、断管箇所bは、整径ダイス15内、または、溝加工部14と整径ダイス15の間であり、断管箇所cは、溝加工部14内、または、縮径加工部13と溝加工部14の間であり、断管箇所dは、縮径加工部13内、または、縮径加工部13の上流側から素管11aを供給するペイオフテーブル62と縮径加工部13の間である。
Moreover, the disconnection generation | occurrence | production location (henceforth "the disconnection location") was made into nine places of the disconnection location a to i as shown in FIG. 4, FIG.
The disconnection points a to d are as shown in FIG. 4. Specifically, the disconnection point a is between the diameter adjusting die 15 and the drawing part 16, and the disconnection point b is within the diameter adjusting die 15. Or it is between the groove processing part 14 and the diameter adjustment die 15, and the disconnection part c is in the groove processing part 14 or between the diameter reduction processing part 13 and the groove processing part 14, and the disconnection part d is , Between the payoff table 62 and the diameter reduction processing section 13 for supplying the raw tube 11a in the diameter reduction processing section 13 or from the upstream side of the diameter reduction processing section 13.

断管箇所eからiは、図5に示すとおりであり、詳しくは、断管箇所eは、整径ダイス15と抽伸部16の間であり、断管箇所fは、整径ダイス15内、または、溝加工部14と整径ダイス15の間であり、断管箇所gは、溝加工部14内、または、中間抽伸部51と溝加工部14の間であり、断管箇所hは、縮径加工部13と中間抽伸部51の間であり、断管箇所iは、縮径加工部13内、または、ペイオフテーブル62と縮径加工部13の間である。   The disconnection points e to i are as shown in FIG. 5. Specifically, the disconnection point e is between the diameter adjusting die 15 and the drawing portion 16, and the disconnection point f is within the diameter adjusting die 15. Or it is between the groove processing part 14 and the diameter adjusting die 15, and the disconnection part g is in the groove processing part 14 or between the intermediate drawing part 51 and the groove processing part 14, and the disconnection part h is Between the reduced diameter processing portion 13 and the intermediate drawing portion 51, the disconnection point i is in the reduced diameter processing portion 13 or between the payoff table 62 and the reduced diameter processing portion 13.

以上を踏まえ、比較例の製造装置を用いて断管箇所a,b,c,dの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験0−a,0−b,0−c,0−dとする。第1実施形態の製造装置10Aを用いて断管箇所a,b,c,dの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験1−a,1−b,1−c,1−dとする。第2実施形態の製造装置10Bを用いて断管箇所a,b,c,dの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験2−a,2−b,2−c,2−dとする。第3実施形態の製造装置10Cを用いて断管箇所e,f,g,h,iの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験3−e,3−f,3−g,3−h,3−iとする。   Based on the above, the disconnection detection experiments 0-a, 0-b are respectively performed when the disconnection occurs at each of the disconnection locations a, b, c, d using the manufacturing apparatus of the comparative example. , 0-c, 0-d. The disconnection detection experiments 1-a, 1-b, 1b, and 1b are respectively performed when the disconnection occurs at each of the disconnection points a, b, c, d using the manufacturing apparatus 10A of the first embodiment. 1-c and 1-d. The disconnection detection experiment 2-a, 2-b, and the disconnection detection experiment when the disconnection occurs at each of the disconnection locations a, b, c, and d using the manufacturing apparatus 10B of the second embodiment. Let 2-c and 2-d. Using the manufacturing apparatus 10C of the third embodiment, the disconnection detection experiments when the disconnection occurs at each of the disconnection locations e, f, g, h, i are shown as the disconnection detection experiments 3-e, 3- Let f, 3-g, 3-h, 3-i.

断管検出実験で行った断管検出制御について、図6から図17を基に説明する。
なお、図6から図17は、各断管検出実験において、各加工部に適宜、設けた加工荷重検出部が検出する加工荷重と時間の関係のグラフを示す図であり、いずれも測定開始から100秒経過時点で断管が発生したものとする。
The disconnection detection control performed in the disconnection detection experiment will be described with reference to FIGS.
FIGS. 6 to 17 are graphs showing the relationship between the machining load and time detected by the machining load detection unit provided appropriately for each machining unit in each disconnection detection experiment, both from the start of measurement. It is assumed that a disconnection has occurred after 100 seconds.

さらに、断管検出後に断管発生であるとの判定ができ次第、装置を停止するので、その後の荷重は、ゼロになるが、図6から図17では、断管検出前後の荷重の変化の様子を示すため、実際に装置を停止しても、断管発生後も装置を停止しない状態の荷重の波形をあらわしている。   Furthermore, since the apparatus is stopped as soon as it is determined that a disconnection has occurred after the detection of the disconnection, the subsequent load becomes zero. However, in FIGS. 6 to 17, the change in the load before and after the disconnection is detected. In order to show the situation, a waveform of a load in a state where the apparatus is not stopped even after the apparatus is actually stopped is shown.

(比較例の製造装置を用いた断管検出実験)
比較例の製造装置では、図6から図9に示すように、上述した抽伸ドラム31の定常加工時のモータMの抽伸荷重に対して20%の割合だけ低下させた値を閾値とする断管検出ラインに設定している。
なお、図6から図9は、それぞれ断管検出実験0−a,0−b,0−c,0−dにおける断管検出実験の実験結果を示す。
(A disconnection detection experiment using the manufacturing apparatus of the comparative example)
In the manufacturing apparatus of the comparative example, as shown in FIG. 6 to FIG. 9, the threshold value is a value that is reduced by a ratio of 20% with respect to the drawing load of the motor M 1 at the time of steady processing of the drawing drum 31 described above. Set to tube detection line.
6 to 9 show experimental results of the disconnection detection experiments in the disconnection detection experiments 0-a, 0-b, 0-c, and 0-d, respectively.

断管検出ラインは、断管が発生したと判定することができるとともに、断管を誤検出しない範囲で設定する必要がある。
詳しくは、抽伸ドラム31の抽伸荷重は、図6に示すように数100秒レベルの加工時間の範囲において、約±50Nの範囲内で変動している。ロットの先頭と終わりの間の数100分レベルの加工時間範囲に着目すると、銅管の前後での焼鈍状態の違いや偏肉、溝付プラグ24の磨耗などの要因によりさらに抽伸ドラム31の荷重には、変動が生じる。
The disconnection detection line needs to be set within a range where it is possible to determine that the disconnection has occurred and to prevent erroneous detection of the disconnection.
Specifically, the drawing load of the drawing drum 31 fluctuates within a range of about ± 50 N within a machining time range of several hundred seconds as shown in FIG. Paying attention to the machining time range of several hundred minutes between the beginning and the end of the lot, the load on the drawing drum 31 is further increased due to the difference in the annealing state before and after the copper pipe, uneven thickness, wear of the grooved plug 24, etc. There will be fluctuations.

さらに、銅管のロット間の違いや、溝付プラグ24の固体差や季節変動での差はもっと大きく、例えば、断管発生前の定常加工時においても、抽伸ドラム31の抽伸荷重は、約1500Nから3000Nの範囲で変動する。   Furthermore, the difference between the lots of copper pipes, the difference in the solid difference of the grooved plug 24 and the difference due to the seasonal variation is much larger. For example, the drawing load of the drawing drum 31 is about It fluctuates in the range of 1500N to 3000N.

そのため、断管検出の閾値としての断管検出ラインを上げると断管発生の誤検出が多くなるため、断管検出ラインは、断管の誤検出が生じない範囲で設定する必要がある。   For this reason, if the disconnection detection line is increased as a threshold for disconnection detection, erroneous detection of the occurrence of disconnection increases. Therefore, it is necessary to set the disconnection detection line within a range in which erroneous detection of disconnection does not occur.

断管検出実験0−aの結果は、図6に示すとおりである。図6に示すように、断管発生までは、抽伸ドラム31の抽伸荷重は、定常加工時の範囲で変移するが、断管発生と同時に、モータMの抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がるので、制御部では、断管発生と同時に断管が発生したと判定し、装置を停止することで転造ボール26により溝付プラグ24を破損することを防ぐことができる。 The result of the disconnection detection experiment 0-a is as shown in FIG. As shown in FIG. 6, until the cross-sectional tubes occurred, drawing load drawing drum 31, will be shifted in the range of steady state processing, simultaneously with the cross tube occurs, drawing load of the motor M 1 is than the cross tube detection line Since the mechanical loss level is lowered to a low mechanical loss level, the control unit determines that the disconnection has occurred simultaneously with the occurrence of the disconnection, and can stop the grooved plug 24 from being damaged by the rolled ball 26 by stopping the apparatus.

断管検出実験0−bの結果は、図7に示すとおりである。図7に示すように、断管発生と同時に、抽伸ドラム31の抽伸荷重は、降下するが、断管検出ラインよりも降下せず(図7中の荷重波形のa点参照)、破断部が整径ダイス15を通過すると同時に、抽伸ドラム31の抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がるので、制御部では、断管であると判定し、装置を停止する。   The result of the disconnection detection experiment 0-b is as shown in FIG. As shown in FIG. 7, the drawing load of the drawing drum 31 drops at the same time as the disconnection occurs, but does not fall below the disconnection detection line (see point a of the load waveform in FIG. 7), At the same time as passing through the sizing die 15, the drawing load of the drawing drum 31 is lowered to a mechanical loss level lower than the disconnection detection line. Therefore, the control unit determines that the disconnection has occurred and stops the apparatus.

このように断管検出実験0−bにおいても、比較例の製造装置は、断管発生後に加工停止することができるが、断管発生から断管発生を検出までに僅かに遅れが生じることになる。   Thus, also in the disconnection detection experiment 0-b, the manufacturing apparatus of the comparative example can stop processing after the occurrence of the disconnection, but there is a slight delay between the occurrence of the disconnection and the detection of the disconnection. Become.

但し、断管検出実験0−bでは、溝加工部14よりも下流側である断管箇所bで断管が発生するため、破断部が溝付プラグ24を有する溝加工部14を通過することなく、溝付プラグ24が破損する前に装置を停止することができる。   However, in the disconnection detection experiment 0-b, since the disconnection occurs at the disconnection location b that is downstream of the groove processing portion 14, the fracture portion passes through the groove processing portion 14 having the grooved plug 24. And the device can be stopped before the fluted plug 24 breaks.

なお、断管発生と同時に降下する荷重値(図7中の荷重波形のa点参照)よりも断管検出ラインを高く設定した場合には、破断部が整径ダイス15通過前に断管発生を遅れなく検出することができる反面、上述したように、様々な要因により加工中に抽伸荷重が変動するに伴い、断管発生の誤検出が生じ易くなり、加工効率が大幅に低下するため、好ましくない。   If the disconnection detection line is set higher than the load value that drops simultaneously with the occurrence of the disconnection (see point a of the load waveform in FIG. 7), the fracture occurs before the fractured portion passes through the sizing die 15. However, as described above, as the drawing load fluctuates during processing due to various factors, false detection of disconnection is likely to occur, and processing efficiency is greatly reduced. It is not preferable.

断管検出実験0−cの結果は、図8に示すとおりである。図8に示すように、断管発生と同時に、抽伸ドラム31の抽伸荷重は、降下するが、破断部が溝加工部14、整径ダイス15を通過するごとに段階的に降下し、破断部が整径ダイス15を通過するまで、抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がらず、制御部では、最終的に整径ダイス15を通過するまで断管が発生したと判定することができない。   The result of the disconnection detection experiment 0-c is as shown in FIG. As shown in FIG. 8, the drawing load of the drawing drum 31 drops simultaneously with the occurrence of the broken tube, but drops step by step every time the fractured portion passes through the groove processing portion 14 and the diameter adjusting die 15, and the fractured portion Until the diameter passes through the sizing die 15, the drawing load does not drop to a mechanical loss level lower than the disconnection detection line, and the control unit determines that the rupture has occurred until it finally passes through the sizing die 15. I can't.

よって、断管は、溝加工部14よりも上流側である断管箇所cで発生するが、断管発生後に断管発生であると判定し、装置を停止するまでに要する時間に遅れが生じるため、この間、破断部が溝付プラグ24を有する溝加工部14を通過し、転造ボール26が直接的に溝付プラグ24に接触するので、溝付プラグ24が破損するおそれがある。   Therefore, the disconnection occurs at the disconnection location c that is upstream of the groove processing portion 14, but it is determined that the disconnection has occurred after the occurrence of the disconnection, and there is a delay in the time required to stop the apparatus. Therefore, during this time, the rupture portion passes through the groove processing portion 14 having the grooved plug 24 and the rolling ball 26 directly contacts the grooved plug 24, so that the grooved plug 24 may be damaged.

なお、図8中の抽伸荷重の波形のa点、b点は、それぞれ破断部が溝加工部14、整径ダイス15を通過中であることを示す。   Note that points a and b in the waveform of the drawing load in FIG. 8 indicate that the fracture portion is passing through the groove processing portion 14 and the diameter-controlling die 15, respectively.

断管検出実験0−dの結果は、図9に示すとおりである。図9に示すように、断管検出実験0−cと同様に、断管発生と同時に、抽伸ドラム31の抽伸荷重は、降下するが、破断部が縮径加工部13、溝加工部14、整径ダイス15を通過するごとに段階的に降下し、整径ダイス15を通過するまで、抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がらず、制御部では、最終的に整径ダイス15を通過するまで断管が発生したと判定することができない。   The result of the disconnection detection experiment 0-d is as shown in FIG. As shown in FIG. 9, the drawing load of the drawing drum 31 is lowered at the same time as the occurrence of the broken tube, as in the broken tube detection experiment 0-c, but the fracture portion is the reduced diameter processing portion 13, the groove processing portion 14, Each time it passes through the sizing die 15, it descends stepwise, and until it passes through the sizing die 15, the drawing load does not drop to a mechanical loss level lower than the disconnection detection line. It is not possible to determine that a disconnection has occurred until 15 is passed.

よって、断管発生後に断管発生であると判定し、装置停止までに要する時間に遅れが生じ、この間、転造ボール26が溝付プラグ24に接触するので、溝付プラグ24が破損するおそれがある。   Therefore, it is determined that the disconnection has occurred after the occurrence of the disconnection, and there is a delay in the time required to stop the apparatus. During this time, the rolling ball 26 contacts the grooved plug 24, and therefore the grooved plug 24 may be damaged. There is.

(第1実施形態の製造装置を用いた断管検出実験)
続いて第1実施形態の製造装置10Aを用いた断管検出実験について説明する。
第1実施形態の製造装置10Aでは、断管検出の閾値として断管検出ラインを、溝加工荷重測定部17で測定した定常加工時の測定荷重(加工荷重F)の20%になるよう設定し、測定荷重が断管検出ライン以下になったら断管と判定し、装置を停止する制御を行なっている。
(A disconnection detection experiment using the manufacturing apparatus of the first embodiment)
Next, a disconnection detection experiment using the manufacturing apparatus 10A of the first embodiment will be described.
In the manufacturing apparatus 10A of the first embodiment, the disconnection detection line is set as 20% of the measurement load (processing load F) at the time of steady processing measured by the grooving processing load measuring unit 17 as a threshold for detecting the disconnection. When the measured load falls below the disconnection detection line, it is determined that the disconnection has occurred, and control is performed to stop the apparatus.

断管検出実験1−aの結果は、図10に示すとおりである。図10に示すように、溝加工荷重測定部17の測定荷重は、断管発生と同時に、測定荷重が断管検出ラインよりも低いゼロにまで降下するため、即時に断管が発生したと判定可能であり、溝付プラグ24を破損せずに装置を停止することができる。   The result of the disconnection detection experiment 1-a is as shown in FIG. As shown in FIG. 10, the measurement load of the grooving load measuring unit 17 is determined that the disconnection has occurred immediately because the measurement load drops to zero lower than the disconnection detection line simultaneously with the occurrence of the disconnection. Yes, the device can be stopped without damaging the fluted plug 24.

なお、断管後に測定荷重がゼロにまで降下するのは、溝加工部14よりも下流側で断管が発生した場合、断管発生と同時に抽伸ドラム31による素管11aの抽伸が溝加工部14まで完全に作用しなくなるためである。   Note that the measured load drops to zero after the disconnection when the disconnection occurs on the downstream side of the groove processing portion 14 and when the tube 11a is drawn by the drawing drum 31 simultaneously with the disconnection, the groove processing portion. This is because it does not work completely up to 14.

また、断管検出実験1−bも、断管検出実験1−aと同様に、断管発生と同時に、測定荷重がゼロにまで降下するため、即時に断管検出可能であり、溝付プラグ24を破損せずに装置を停止することができる。
なお、断管検出実験1−bでの溝加工荷重測定部17の測定荷重は、図10と略同じ波形になるため、加工荷重と経過時間との関係を示すグラフは、省略する。
Similarly to the disconnection detection experiment 1-a, the disconnection detection experiment 1-b can detect the disconnection immediately because the measurement load drops to zero simultaneously with the occurrence of the disconnection. The device can be shut down without damaging 24.
In addition, since the measurement load of the groove processing load measurement part 17 in the disconnection detection experiment 1-b has substantially the same waveform as that in FIG. 10, a graph showing the relationship between the processing load and the elapsed time is omitted.

断管検出実験1−cの結果は、図11に示すとおりである。図11に示すように、断管発生と同時に溝加工荷重測定部17の測定荷重は、降下しない。
これは、溝加工部14よりも上流側である断管箇所cで断管が発生した場合、破断部が溝加工部14を通過するまで、断管が発生しても抽伸ドラム31による素管11aの抽伸が溝加工部14まで作用するからである。
The result of the disconnection detection experiment 1-c is as shown in FIG. As shown in FIG. 11, the measurement load of the grooving load measurement unit 17 does not drop simultaneously with the occurrence of the broken tube.
This is because, when a disconnection occurs at a disconnection point c that is upstream of the groove processing portion 14, even if the disconnection occurs until the fracture portion passes the groove processing portion 14, the raw pipe by the drawing drum 31 It is because the drawing of 11a acts to the groove processing part 14. FIG.

断管部が溝加工部14を通過したと同時に(図11中の荷重波形のa点参照)一気に断管検出ラインよりも低いゼロにまで降下し、制御部では、断管が発生したと判定し、装置を停止する。   At the same time that the broken tube portion passes through the groove processing portion 14 (see point a of the load waveform in FIG. 11), the controller falls to zero, which is lower than the broken tube detection line, and the control unit determines that a broken tube has occurred. Then stop the device.

このように第1実施形態の製造装置10Aでは、断管箇所cの場合、断管発生と同時に装置を停止することができないが、破断部が溝加工部14を通過すると同時に断管が発生したと判定し、装置を即時停止することができるので、溝付プラグ24が破損することを未然に防止することができる。   As described above, in the manufacturing apparatus 10A of the first embodiment, in the case of the disconnection location c, the apparatus cannot be stopped simultaneously with the occurrence of the disconnection, but the disconnection occurred at the same time as the fractured portion passed the groove processing portion 14. Since the apparatus can be immediately stopped, it is possible to prevent the grooved plug 24 from being damaged.

ここで、比較例の製造装置では、断管検出実験0−cで説明したように、断管箇所cで断管が発生した場合、破断部が溝加工部14を通過し、さらに整径ダイス15を通過するまで断管が発生したと判定することができない(図8参照)。すなわち、破断部が溝加工部14と整径ダイス15の間、及び、整径ダイス15内を通過する間の数秒間、転造ボール26が溝付プラグ24に接触することになり、この間に溝付プラグ24を破損させることになる。   Here, in the manufacturing apparatus of the comparative example, as described in the disconnection detection experiment 0-c, when the disconnection occurs at the disconnection location c, the fracture portion passes through the groove processing portion 14, and further the diameter adjusting die. It is not possible to determine that a disconnection has occurred until it passes 15 (see FIG. 8). That is, the rolling ball 26 comes into contact with the grooved plug 24 for several seconds while the fracture portion passes between the groove processing portion 14 and the diameter adjusting die 15 and passes through the diameter adjusting die 15. The grooved plug 24 will be damaged.

これに対して第1実施形態の製造装置10Aでは、断管箇所cで断管発生した場合において比較例の製造装置よりも、破断部が溝加工部14と整径ダイス15の間、及び、整径ダイス15内を通過する間だけ早く装置を停止することができるため、溝付プラグ24が転造ボール26に接触し、破損することを未然に防ぐことができる。   On the other hand, in the manufacturing apparatus 10A of the first embodiment, when the disconnection occurs at the disconnection point c, the fracture portion is between the groove processing part 14 and the diameter-controlling die 15 than the manufacturing apparatus of the comparative example, and Since the apparatus can be stopped as soon as it passes through the sizing die 15, it is possible to prevent the grooved plug 24 from coming into contact with the rolling ball 26 and being damaged.

断管検出実験1−dにおいても、図12に示すように、第1実施形態の製造装置10Aでは、断管発生と同時に断管が発生したと判定することができないが、破断部が縮径加工部13を通過し、溝加工部14を通過する際に、溝加工荷重測定部17の測定荷重がゼロにまで降下するので(図12中、荷重波形a点参照)溝加工部14の通過と同時に断管発生したと判定することができ、断管検出実験1−cの場合と同様に溝付プラグ24が破損することを未然に防ぐことができる。   Also in the disconnection detection experiment 1-d, as shown in FIG. 12, in the manufacturing apparatus 10A of the first embodiment, it cannot be determined that the disconnection has occurred simultaneously with the occurrence of the disconnection, but the fracture portion has a reduced diameter. When passing through the processing section 13 and passing through the grooving section 14, the measurement load of the grooving load measuring section 17 drops to zero (refer to point a in the load waveform in FIG. 12). At the same time, it can be determined that the disconnection has occurred, and the grooved plug 24 can be prevented from being damaged in the same manner as in the disconnection detection experiment 1-c.

(第2実施形態の製造装置を用いた断管検出実験)
続いて第2実施形態の製造装置10Bを用いた断管検出実験について説明する。
断管検出実験2−aでは、断管検出実験1−aと同様に溝加工部14よりも下流側で断管が発生するため、断管発生と同時に抽伸ドラム31による素管11aの抽伸が縮径加工部13まで作用しなくなる。
(A disconnection detection experiment using the manufacturing apparatus of the second embodiment)
Subsequently, a disconnection detection experiment using the manufacturing apparatus 10B of the second embodiment will be described.
In the disconnection detection experiment 2-a, similar to the disconnection detection experiment 1-a, a disconnection is generated on the downstream side of the grooving portion 14. Therefore, the drawing drum 31 is drawn by the drawing drum 31 simultaneously with the disconnection. It does not work up to the reduced diameter processed portion 13.

このため、縮径加工荷重測定部の測定荷重は、図13に示すように、断管発生と同時に、測定荷重が断管検出ラインよりも低いゼロにまで降下するため、即時に断管発生と判定可能であり、溝付プラグ24を破損せずに装置を停止することができる。   For this reason, as shown in FIG. 13, the measurement load of the reduced diameter processing load measurement unit drops to zero at the same time as the disconnection occurs, and the measured load drops to zero, which is lower than the disconnection detection line. The determination can be made, and the apparatus can be stopped without damaging the grooved plug 24.

同様に、断管検出実験2−b,cも、断管発生と同時に、測定荷重がゼロにまで降下するため、即時に断管発生と判定可能であり、溝付プラグ24を破損せずに装置を停止することができる。
なお、断管検出実験2−b,cでの溝加工荷重測定部17の測定荷重は、図13と略同じ波形になるため、加工荷重と経過時間との関係を示すグラフは、省略する。
Similarly, in the disconnection detection experiments 2-b and c, since the measurement load drops to zero simultaneously with the occurrence of the disconnection, it can be immediately determined that the disconnection has occurred, and the grooved plug 24 is not damaged. The device can be stopped.
In addition, since the measurement load of the groove processing load measurement part 17 in the disconnection detection experiment 2-b and c becomes a waveform substantially the same as FIG. 13, the graph which shows the relationship between a processing load and elapsed time is abbreviate | omitted.

断管検出実験2−dでは、縮径加工部13よりも上流側である断管箇所dで断管が発生するため、断管が発生しても破断部が縮径加工部13を通過するまでは抽伸ドラム31による素管11aの抽伸が縮径加工部13まで作用する。   In the disconnection detection experiment 2-d, since the disconnection occurs at the disconnection location d that is upstream of the diameter reduction processing portion 13, the fracture portion passes through the diameter reduction processing portion 13 even if the disconnection occurs. Up to this point, the drawing of the tube 11a by the drawing drum 31 acts up to the reduced diameter processing portion 13.

このため、図14に示すように、断管発生と同時に縮径加工荷重測定部の測定荷重は、降下しないが、破断部が縮径加工部13を通過したと同時に断管検出ラインよりも低いゼロにまで降下し、制御部では、断管が発生したと判定し、装置を停止する。   For this reason, as shown in FIG. 14, the measurement load of the reduced diameter processing load measuring portion does not drop at the same time as the occurrence of the disconnection, but is lower than the disconnection detection line at the same time as the broken portion passes the reduced diameter processing portion 13. The controller descends to zero, and the control unit determines that a disconnection has occurred and stops the apparatus.

このように第2実施形態の製造装置10Bでは、断管発生と同時に装置を停止することができないが、破断部が縮径加工部13を通過すると同時に断管が発生したと判定し、破断部が溝加工部14を通過する前に装置を停止することができるので、溝付プラグ24が破損することを未然に防止することができる。   Thus, in the manufacturing apparatus 10B of the second embodiment, the apparatus cannot be stopped at the same time as the occurrence of the disconnection, but it is determined that the disconnection has occurred at the same time that the fracture portion passes through the reduced diameter processing portion 13, and the fracture portion Since the apparatus can be stopped before passing through the grooved portion 14, it is possible to prevent the grooved plug 24 from being damaged.

(第3実施形態の製造装置を用いた断管検出実験)
続いて第3実施形態の製造装置10Cを用いた断管検出実験について説明する。
第3実施形態の製造装置10Cでは、上述したように中間抽伸部51のモータMの荷重の微分値をもとに断管が発生したと判定している。
詳しくは、中間抽伸部51のモータMの荷重(中間抽伸部51の抽伸荷重F)の変化量(微分値)を監視し、微分値の変動が5σを超えたら断管と判断し、装置を停止する制御を行なっている。
(A disconnection detection experiment using the manufacturing apparatus of the third embodiment)
Next, a disconnection detection experiment using the manufacturing apparatus 10C of the third embodiment will be described.
In the manufacturing apparatus 10C of the third embodiment, the cross-sectional tube a differential value of the load of the motor M 2 of the intermediate drawing unit 51 based on is determined to have occurred as described above.
For more information, monitors the load of the motor M 2 of the intermediate drawing unit 51 changes the amount of (drawing load F of the intermediate drawing portion 51) (differential value), the variation of the differential value is determined as the cross-sectional tube Once beyond the 5Shiguma, device The control which stops is performed.

ここで、中間抽伸部51での抽伸荷重は、定常加工時でも実際には、上述したように加工前の素管11a(銅管)や装置の状態、加工環境の違いなど、様々な要因により変化量が大きくなる。   Here, the drawing load in the intermediate drawing unit 51 is actually due to various factors such as the state of the raw pipe 11a (copper pipe) before processing, the state of the apparatus, and the processing environment, even during steady machining. The amount of change increases.

このため、第3実施形態の製造装置10Cのように、抽伸荷重の微分値を用いて断管発生を検出することにより、正確に断管を判定できる点で好ましい。   For this reason, it is preferable at the point which can determine a disconnection correctly by detecting the disconnection generation | occurrence | production using the differential value of a drawing load like the manufacturing apparatus 10C of 3rd Embodiment.

断管検出実験3−eの実験結果は、図15に示すとおりである。
なお、図15は、断管発生前後の中間抽伸部51での抽伸荷重と、荷重変化量(微分値)とをそれぞれグラフ化して示し、抽伸荷重は、図15中左側を縦軸とし、荷重の変化量は、図15中右側を縦軸としている。
The experimental result of the disconnection detection experiment 3-e is as shown in FIG.
FIG. 15 is a graph showing the drawing load at the intermediate drawing unit 51 before and after the occurrence of the broken tube and the amount of load change (differential value). The drawing load is represented by a load on the left side in FIG. As for the amount of change, the right side in FIG.

断管検出実験3−eでは、溝加工部14よりも下流側で断管が発生するが、これにより、中間抽伸部51の負荷が上がり、抽伸ドラムの抽伸荷重の変化量が定常加工時と比較して顕著にあがる。よって、断管発生と略同時に断管が発生したと判定し、装置を停止することができる。   In the disconnection detection experiment 3-e, a disconnection occurs downstream of the groove processing portion 14, but this increases the load of the intermediate drawing portion 51, and the amount of change in the drawing load of the drawing drum is the same as that during steady processing. It is remarkable compared. Therefore, it can be determined that the disconnection has occurred substantially simultaneously with the occurrence of the disconnection, and the apparatus can be stopped.

なお、図15に示すように、数100秒レベルの範囲でみれば中間抽伸部51での抽伸荷重の変動も、抽伸荷重の微分値の変動も大差はないが、上述したように、数100分レベルの範囲でみれば中間抽伸部51での抽伸荷重の変動が大きくなる。   As shown in FIG. 15, when viewed in the range of several hundred seconds, there is no great difference between the variation of the drawing load in the intermediate drawing unit 51 and the variation of the differential value of the drawing load. If it sees in the range of a minute level, the fluctuation | variation of the drawing load in the intermediate drawing part 51 will become large.

このため、中間抽伸部51の抽伸荷重の変化量(微分値)に基いて断管が発生したと判定することで、断管を誤検出することなく、断管と同時に即時に断管発生と判定可能であり、溝付プラグ24を破損せずに装置を停止することができる。   For this reason, it is determined that the disconnection has occurred based on the amount of change (differential value) of the drawing load of the intermediate drawing unit 51, so that the disconnection is immediately generated simultaneously with the disconnection without erroneously detecting the disconnection. The determination can be made, and the apparatus can be stopped without damaging the grooved plug 24.

また、断管検出実験3−f,gも、断管検出実験3−eと同様に、断管発生と同時に、中間抽伸部51の抽伸荷重の変化量(微分値)が5σを超えるまで変化し、即時に断管検出可能であり、溝付プラグ24を破損せずに装置を停止することができる。   Similarly to the disconnection detection experiment 3-e, the disconnection detection experiment 3-f, g also changes until the amount of change (differential value) of the drawing load of the intermediate drawing unit 51 exceeds 5σ at the same time as the occurrence of the disconnection. The disconnection can be detected immediately, and the apparatus can be stopped without damaging the grooved plug 24.

なお、断管検出実験3−f,gでの中間抽伸部51の測定荷重は、図15と略同じ波形になるため、加工荷重と経過時間との関係を示すグラフは、省略する。   In addition, since the measurement load of the intermediate | middle drawing part 51 in the disconnection detection experiment 3-f, g becomes a waveform substantially the same as FIG. 15, the graph which shows the relationship between a process load and elapsed time is abbreviate | omitted.

断管検出実験3−hでは、中間抽伸部51内、又は、中間抽伸部51よりも上流側である断管箇所hで断管が発生するが、図16に示すように、断管発生と同時に中間抽伸部51の抽伸荷重の変化量(微分値)が5σを超えるまで変化し、即時に断管発生と判定可能であり、溝付プラグ24を破損せずに装置を停止することができる。   In the disconnection detection experiment 3-h, a disconnection occurs in the intermediate drawing unit 51 or at a disconnection point h that is upstream of the intermediate drawing unit 51. As shown in FIG. At the same time, the amount of change (differential value) in the drawing load of the intermediate drawing portion 51 changes until it exceeds 5σ, and it can be immediately determined that a disconnection has occurred, and the apparatus can be stopped without damaging the grooved plug 24. .

断管検出実験3−iでは、図17に示すように、断管発生と同時に中間抽伸部51の荷重、及び、荷重の変化量(微分値)は、降下しない。断管は、縮径加工部13よりも上流側である断管箇所iで発生するため、破断部が縮径加工部13を通過するまでは、中間抽伸部51の抽伸荷重に影響を及ぼさないからである。   In the disconnection detection experiment 3-i, as shown in FIG. 17, the load of the intermediate drawing unit 51 and the change amount (differential value) of the load do not drop simultaneously with the occurrence of the disconnection. Since the disconnection occurs at the disconnection location i that is upstream of the diameter reducing portion 13, it does not affect the drawing load of the intermediate drawing portion 51 until the fracture portion passes the diameter reducing portion 13. Because.

しかし、破断部が縮径加工部13を通過すると同時に、断管検出実験3−hと同様に中間抽伸部51の荷重の変化量(微分値)が5σを超えるまで変化し、断管発生と判定可能であり、溝付プラグ24を破損せずに装置を停止することができる。   However, at the same time as the fractured portion passes through the reduced diameter processing portion 13, the amount of change (differential value) in the load of the intermediate drawing portion 51 changes in the same manner as in the disconnection detection experiment 3-h until the occurrence of disconnection. The determination can be made, and the apparatus can be stopped without damaging the grooved plug 24.

上述した断管検出実験により、比較例の製造装置は、断管発生箇所によっては、溝付プラグ24が転造ボール26に直接的に押し付けられ破損した。   As a result of the above-described disconnection detection experiment, the grooved plug 24 was directly pressed against the rolled ball 26 and was damaged in the manufacturing device of the comparative example depending on the location where the disconnection occurred.

これに対して、第1から第3実施形態の各製造装置は、いずれも溝付プラグ24が転造ボール26により破損される前に、加工中に断管発生したと判定し、加工を停止することができた。   On the other hand, in each of the manufacturing apparatuses of the first to third embodiments, before the grooved plug 24 is damaged by the rolling ball 26, it is determined that a disconnection has occurred during the processing, and the processing is stopped. We were able to.

したがって、本発明の内面溝付管の製造装置及び製造方法により、溝付プラグ24の破損を防止することができることを実証することができた。   Therefore, it has been proved that the grooved plug 24 can be prevented from being damaged by the manufacturing apparatus and the manufacturing method of the inner surface grooved pipe of the present invention.

上述した実施形態と、この発明の構成との対応において、
縮径手段は、縮径加工部13に対応し、
溝加工手段は、溝加工部14に対応し、
抽伸手段は、抽伸部16に対応し、
中間抽伸手段は、中間抽伸部51に対応し、
加工関連データは、加工関連データ検出部17,45で測定した測定荷重、又は、計測した電流計52に対応し、
加工関連データ検出手段は、加工関連データ検出部17,45,52に対応し、
断管判定手段は、演算部、記憶部を備えた制御部18,46,53に対応し、
溝加工荷重測定手段は、溝加工荷重測定用ロードセル41に対応し、
縮径加工荷重測定手段は、縮径加工荷重測定用ロードセル45に対応し、
荷重関連データは、中間抽伸部51の抽伸荷重の微分値に対応し、
荷重関連データ検出手段は、電流計52、及び、制御部53の演算部に対応するも、この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In the correspondence between the embodiment described above and the configuration of the present invention,
The diameter reducing means corresponds to the diameter reducing processing portion 13,
The groove processing means corresponds to the groove processing portion 14,
The drawing means corresponds to the drawing unit 16,
The intermediate drawing means corresponds to the intermediate drawing unit 51,
The machining-related data corresponds to the measured load measured by the machining-related data detection units 17 and 45 or the measured ammeter 52,
The processing related data detection means corresponds to the processing related data detection unit 17, 45, 52,
The disconnection determination means corresponds to the control units 18, 46, 53 provided with a calculation unit and a storage unit,
The grooving load measuring means corresponds to the grooving load measuring load cell 41,
The reduced diameter processing load measuring means corresponds to the reduced diameter processing load measuring load cell 45,
The load related data corresponds to the differential value of the drawing load of the intermediate drawing unit 51,
The load-related data detecting means corresponds to the ammeter 52 and the calculation unit of the control unit 53, but the present invention is not limited to the configuration of the above-described embodiment, and many embodiments are obtained. be able to.

例えば、本発明は、第3実施形態の製造装置10Cにおいて、中間抽伸部51のモータMの荷重を測定するロードセル等の荷重測定器を備え、該荷重測定器で測定した荷重を、荷重関連データとして断管発生の判定に用いる構成を排除するものではない。 For example, the present invention is a manufacturing apparatus 10C of the third embodiment, provided with a load measuring instrument such as a load cell for measuring the load of the motor M 2 of the intermediate drawing unit 51, a load measured by該荷heavy instrument, the load related It does not exclude the configuration used for determining the occurrence of disconnection as data.

また、本発明は、溝加工部14で加工荷重を測定する手段として加工関連データ検出部17の代わりに縮径加工部13に備えた加工関連データ検出部45と同様の構成を採用してもよく、逆に、縮径加工部13で加工荷重を測定する手段として加工関連データ検出部45の代わりに溝加工部14に備えた加工関連データ検出部17と同様の構成を採用してもよい。   Further, the present invention may adopt the same configuration as the processing related data detection unit 45 provided in the diameter reduction processing unit 13 instead of the processing related data detection unit 17 as means for measuring the processing load in the groove processing unit 14. Alternatively, conversely, as means for measuring the machining load at the diameter reduction processing unit 13, a configuration similar to the processing related data detection unit 17 provided in the groove processing unit 14 may be employed instead of the processing related data detection unit 45. .

さらに、本発明は、縮径加工部13に加工関連データ検出部45を備え、溝加工部14に加工関連データ検出部17を備え、双方の加工関連データ検出部17,45を用いて断管発生を判定する構成であってもよい。   Further, according to the present invention, the diameter-reduction processing unit 13 includes a processing-related data detection unit 45, the groove processing unit 14 includes a processing-related data detection unit 17, and both the processing-related data detection units 17 and 45 are used for disconnection. The structure which determines generation | occurrence | production may be sufficient.

さらにまた、第3実施形態の製造装置10Cにおいて、縮径加工部13に加工関連データ検出部45を備え、及び/又は、溝加工部14に加工関連データ検出部17を備え、中間抽伸部51の抽伸荷重の微分値に加えて加工関連データ検出部17,45のうち、少なくとも一方で検出した加工関連データを用いて断管発生を判定する構成であってもよい。   Furthermore, in the manufacturing apparatus 10 </ b> C of the third embodiment, the diameter reduction processing unit 13 includes the processing related data detection unit 45 and / or the groove processing unit 14 includes the processing related data detection unit 17, and the intermediate drawing unit 51. In addition to the differential value of the drawing load, it may be configured to determine the occurrence of disconnection using the processing related data detected at least one of the processing related data detection units 17 and 45.

また、押圧治具27は、転造ボール26を用いるに限らず、ローラーなど、素管11aを押圧できれば、他の工具を用いてもよい。   In addition, the pressing jig 27 is not limited to using the rolling ball 26, and other tools such as a roller may be used as long as the raw tube 11a can be pressed.

10A,10B,10C…内面溝付管の製造装置
11…内面溝付管
11a…素管
13…縮径加工部
14…溝加工部
16…抽伸部
17,45,52…加工関連データ検出部
18,46,53,59…制御部
24…溝付プラグ
41…溝加工荷重測定用ロードセル
51…中間抽伸部
DESCRIPTION OF SYMBOLS 10A, 10B, 10C ... Manufacturing apparatus of inner surface grooved pipe 11 ... Inner surface grooved pipe 11a ... Elementary pipe 13 ... Diameter reduction processing part 14 ... Groove processing part 16 ... Drawing part 17, 45, 52 ... Processing related data detection part 18 , 46, 53, 59... Control unit 24... Slotted plug 41... Load cell for measuring groove processing load 51.

Claims (5)

素管を抽伸して縮径させる縮径手段と、
該縮径手段通過後の素管内面に多数の溝を形成する溝加工手段と、
該溝加工手段の管軸方向下流側で加工済みの内面溝付管を抽伸する抽伸手段とを備えた内面溝付管の製造装置であって、
前記抽伸手段よりも管軸方向上流側に、素管の抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出する加工関連データ検出手段を備えた
内面溝付管の製造装置。
A diameter reducing means for drawing and reducing the diameter of the tube;
Groove processing means for forming a plurality of grooves on the inner surface of the raw tube after passing through the diameter reducing means;
An apparatus for producing an internally grooved pipe comprising drawing means for drawing an internally grooved pipe that has been processed on the downstream side in the tube axis direction of the groove machining means,
An apparatus for manufacturing an internally grooved pipe, comprising processing-related data detection means for detecting processing-related data relating to a processing load generated in the pipe axis direction accompanying drawing of a raw pipe, upstream of the drawing means in the pipe axis direction.
前記加工関連データ検出手段を、前記溝加工手段における前記加工荷重を測定する溝加工荷重測定手段、及び、前記縮径手段における前記加工荷重を測定する縮径加工荷重測定手段のうち、少なくとも一方で構成した
請求項1に記載の内面溝付管の製造装置。
At least one of the machining-related data detection means is a grooving load measuring means for measuring the machining load in the grooving means and a reduced diameter machining load measuring means for measuring the machining load in the reduced diameter means. The manufacturing apparatus of the inner surface grooved pipe according to claim 1 constituted.
前記縮径手段と前記溝加工手段との間で素管を抽伸する中間抽伸手段を備え、
前記加工関連データ検出手段を、前記中間抽伸手段のモータの抽伸荷重に関連する荷重関連データを検出する荷重関連データ検出手段で構成した
請求項1、又は、2に記載の内面溝付管の製造装置。
An intermediate drawing means for drawing a raw pipe between the diameter reducing means and the groove processing means;
3. The manufacturing of an internally grooved tube according to claim 1 or 2, wherein the processing related data detecting means comprises load related data detecting means for detecting load related data related to a drawing load of a motor of the intermediate drawing means. apparatus.
前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定する断管判定手段を備えた
請求項1から3のいずれかに記載の内面溝付管の製造装置。
The apparatus for manufacturing an internally grooved tube according to any one of claims 1 to 3, further comprising a disconnection determining unit that determines that a disconnection has occurred based on the processing related data detected by the processing related data detecting unit.
請求項4に記載の内面溝付管の製造装置を用いて、
前記断管判定手段により、前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定し、加工停止を行う
内面溝付管の製造方法。
Using the apparatus for producing an internally grooved tube according to claim 4,
A method for manufacturing an internally grooved tube, wherein the disconnection determination means determines that a disconnection has occurred based on the processing related data detected by the processing related data detection means, and stops processing.
JP2009125936A 2008-12-08 2009-05-26 Manufacturing apparatus and manufacturing method for internally grooved tube Expired - Fee Related JP5275904B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009125936A JP5275904B2 (en) 2009-05-26 2009-05-26 Manufacturing apparatus and manufacturing method for internally grooved tube
KR1020117014300A KR101278827B1 (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
PCT/JP2009/006674 WO2010067576A1 (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
MYPI2011002613A MY167025A (en) 2008-12-08 2009-12-07 Inner grooved tube, and apparatus and method for producing the same
CN200980150021.9A CN102245323B (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125936A JP5275904B2 (en) 2009-05-26 2009-05-26 Manufacturing apparatus and manufacturing method for internally grooved tube

Publications (2)

Publication Number Publication Date
JP2010274264A true JP2010274264A (en) 2010-12-09
JP5275904B2 JP5275904B2 (en) 2013-08-28

Family

ID=43421707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125936A Expired - Fee Related JP5275904B2 (en) 2008-12-08 2009-05-26 Manufacturing apparatus and manufacturing method for internally grooved tube

Country Status (1)

Country Link
JP (1) JP5275904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014140897A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral groove on inner surface, manufacturing method therefor, and heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207670A (en) * 2004-01-22 2005-08-04 Kobe Steel Ltd Internally grooved tube, and its manufacturing device and method
JP2008036640A (en) * 2006-08-01 2008-02-21 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2008087004A (en) * 2006-09-29 2008-04-17 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing inner grooved tube and inner grooved tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207670A (en) * 2004-01-22 2005-08-04 Kobe Steel Ltd Internally grooved tube, and its manufacturing device and method
JP2008036640A (en) * 2006-08-01 2008-02-21 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2008087004A (en) * 2006-09-29 2008-04-17 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing inner grooved tube and inner grooved tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014140897A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral groove on inner surface, manufacturing method therefor, and heat exchanger

Also Published As

Publication number Publication date
JP5275904B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
EP1918034B1 (en) Device and method for detecting flaw on tube
JP5064749B2 (en) Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube
BRPI0706213B1 (en) PROCESS TO MANUFACTURE A SEWLESS PIPE
WO2006025369A1 (en) Die, method of manufacturing stepped metal tube, and stepped metal tube
JP6169538B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
US7765841B2 (en) Quality analysis of tube bending processes including mandrel fault detection
KR101278827B1 (en) Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
JP5275904B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
WO2004085086A1 (en) Method of manufacturing seamless tube
JP4795322B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP2005207670A (en) Internally grooved tube, and its manufacturing device and method
JP4103082B2 (en) Manufacturing method for seamless pipes using a three-roll mandrel mill
JP5534917B2 (en) Internal grooved tube and method and apparatus for manufacturing the same
US20120232822A1 (en) Weld detecting method and weld detecting apparatus
JP4460064B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP2005193247A (en) Method for manufacturing seamless steel tube and mandrel mill
JP2010247181A (en) Method of manufacturing tube having groove on inside surface
JP4178825B2 (en) Method for detecting rolling anomalies in multi-high mills
JP4501116B2 (en) Scratch detection apparatus and method for blank tube
JP2004330297A (en) Steel pipe correction method for obtaining steel pipe excellent in circularity
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP6316697B2 (en) Internal spiral grooved tube and manufacturing method thereof
JP3692597B2 (en) Method and apparatus for piercing and rolling seamless metal pipe
CN113766979A (en) Method and apparatus for determining twist angle during rolling operation
JP6316696B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R151 Written notification of patent or utility model registration

Ref document number: 5275904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees