WO2010067576A1 - Pipe having grooved inner surface, apparatus for producing the same and method for producing the same - Google Patents

Pipe having grooved inner surface, apparatus for producing the same and method for producing the same Download PDF

Info

Publication number
WO2010067576A1
WO2010067576A1 PCT/JP2009/006674 JP2009006674W WO2010067576A1 WO 2010067576 A1 WO2010067576 A1 WO 2010067576A1 JP 2009006674 W JP2009006674 W JP 2009006674W WO 2010067576 A1 WO2010067576 A1 WO 2010067576A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
diameter
load
processing
grooved
Prior art date
Application number
PCT/JP2009/006674
Other languages
French (fr)
Japanese (ja)
Inventor
尹栄徳
釣弘太郎
橋爪利明
正武家和昭
Original Assignee
古河電気工業株式会社
田口忠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008312016A external-priority patent/JP5227771B2/en
Priority claimed from JP2009032645A external-priority patent/JP5128515B2/en
Priority claimed from JP2009125936A external-priority patent/JP5275904B2/en
Priority claimed from JP2009273044A external-priority patent/JP5356195B2/en
Application filed by 古河電気工業株式会社, 田口忠 filed Critical 古河電気工業株式会社
Priority to KR1020117014300A priority Critical patent/KR101278827B1/en
Priority to CN200980150021.9A priority patent/CN102245323B/en
Publication of WO2010067576A1 publication Critical patent/WO2010067576A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/20Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes from stock of essentially unlimited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/27Carriages; Drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/27Carriages; Drives
    • B21C1/30Drives, e.g. carriage-traversing mechanisms; Driving elements, e.g. drawing chains; Controlling the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/08Dies; Selection of material therefor; Cleaning thereof with section defined by rollers, balls, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/16Mandrels; Mounting or adjusting same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Definitions

  • the present invention relates to an internally grooved tube used as a heat transfer tube for a heat exchanger such as a refrigerator or an air conditioner, and a manufacturing method thereof.
  • Heat transfer tubes used in heat exchangers of heat pump equipment such as air conditioners and water heaters often use, for example, copper inner grooved tubes with inner surfaces grooved in order to improve heat exchange performance.
  • the groove formed on the inner surface is deepened, the torsion angle (lead angle) of the groove is increased, the fins are sharpened, and the tube
  • the performance of the heat exchanger is improved by manufacturing an internally grooved tube with a reduced wall thickness.
  • Patent Document 1 proposes a small-diameter heat transfer tube having an outer diameter of 3 to 6 mm, which is effective for downsizing heat exchange equipment.
  • the workability of the groove is assumed to be performed by a conventional processing method. Therefore, the twist angle was small and the degree of performance improvement was small.
  • the weight must be reduced (reducing the weight of the material used per unit length) to cope with the recent resource saving of metal materials. It was difficult.
  • Patent Document 2 an example of a high performance heat transfer tube having a deep inner groove depth is proposed, but it is intended for an outer diameter of 6 mm or more.
  • Patent Document 3 proposes an example of a high performance tube having a deep inner groove depth and a large twist angle.
  • a heat transfer tube having an outer diameter of about 7 mm which has been generally used as a heat transfer tube for air conditioning. Is targeted.
  • the diameter reducing means for reducing the diameter of the raw tube on the base movable in the drawing direction with respect to the drawing means for pulling out the grooved inner surface grooved tube Auxiliary drawing device, grooving means composed of drawing dies and floating plugs, and finishing processing device that finishes the outer surface of grooved reduced diameter pipe are fixed, and the drawing means pulls the grooved inner grooved tube
  • An apparatus for manufacturing an internally grooved tube having a base load detection device that detects a load applied to a base that moves relative to the drawing means has been proposed (see Patent Document 5).
  • an auxiliary pulling device for assisting pulling of a pipe by a pulling means, a pulling force detecting means for detecting a pulling force, and a pulling force for the raw pipe based on a detection value of the pulling force detecting means are set as targets.
  • An apparatus for manufacturing an internally grooved pipe provided with a control means for controlling the apparatus so as to be within a range and a manufacturing method using the manufacturing apparatus have been proposed.
  • Patent Document 5 the target load value at which the processing load detected by the pulling force detection means is optimal in operating the manufacturing apparatus for the internally grooved pipe is clearly in relation to the cross-sectional area in the pipe axis direction. It has not been. For this reason, the auxiliary drawing device cannot be appropriately controlled, and a high-performance heat transfer tube cannot be manufactured efficiently and stably.
  • the apparatus for manufacturing an internally grooved tube of Patent Document 6 includes a diameter reducing die and a floating plug for reducing the diameter of the element tube, and forms a large number of grooves on the inner surface of the element tube on the downstream side in the drawing direction of the element tube.
  • a grooved plug and a pressing tool are provided.
  • a wiper, a drawing device (intermediate drawing device), and an intermediate shaping die are provided between the reduced diameter die and the processing head along the drawing direction of the raw tube in order to prevent breakage of the raw tube during processing. This is a configuration provided.
  • the manufacturing apparatus of the inner surface grooved pipe of Patent Document 5 also includes a diameter reducing means for reducing the diameter of the raw pipe, and a groove processing means for forming a plurality of grooves on the inner face of the raw pipe on the downstream side in the drawing direction of the raw pipe.
  • a drawing means is also provided which also serves as a take-up drum for winding the processed inner grooved tube.
  • assistant extraction apparatus intermediate extraction apparatus
  • the control means which controls the extraction force of the said extraction means and an auxiliary extraction apparatus so that it may be settled in a target range.
  • a wiper is provided in order to prevent a pad that is in contact with the element pipe from sliding relative to the element pipe, or a groove shape of the pad is defined in the intermediate drawing apparatus. Although measures have been taken, load fluctuations can still occur.
  • the present invention is excellent in heat conduction performance, can be reduced in size and weight, and can achieve resource saving, and an inner grooved tube and such an inner grooved tube can be efficiently and stably provided.
  • An object is to provide a manufacturing method and a manufacturing apparatus that can be manufactured.
  • the twist angle of the groove with respect to the central axis of the tube is ⁇ (degrees) and the apex angle of the fin formed between adjacent grooves is ⁇ (degrees)
  • is 30 to 60
  • is 5 to 20
  • the outer diameter is D (mm)
  • the groove depth is H (mm)
  • the cross-sectional area in the axial direction of the tube is A C (mm 2 ). 6 or less
  • H is 0.07 or more
  • the groove depth can be increased, the twist angle can be increased, the apex angle can be decreased, and the heat transfer performance can be increased as compared with the conventional internally grooved tube. Furthermore, weight reduction and resource saving can be achieved by reducing the cross-sectional area.
  • the inner grooved tube can be used as a high-performance and lightweight heat transfer tube to reduce the size and weight of the heat exchanger.
  • the inner grooved tube can have an outer diameter D (mm) of 3 or more.
  • the inner grooved tube can be used as a more preferable heat transfer tube for a heat pump device such as an air conditioner or a water heater.
  • the inner grooved tube may have a groove depth H (mm) of 0.10 to 0.30.
  • the inner grooved tube can be used as a more preferable heat transfer tube for a heat pump device such as an air conditioner or a water heater.
  • the manufacturing method of the inner surface grooved pipe of the present invention is the manufacture of the inner surface grooved pipe provided with a diameter reducing means for drawing out and reducing the diameter of the raw pipe and a groove processing means for forming a large number of grooves on the inner surface of the raw pipe. An apparatus is used.
  • the diameter-reducing means can be constituted by a diameter-reducing die having a die hole in which a mortar-like slope that is widened toward the upstream side, for example.
  • a floating plug inserted into the raw tube can be disposed at a position corresponding to the die hole of the reduced diameter die.
  • the groove processing means is constituted by, for example, a grooved plug connected to the floating plug, and a rolling tool composed of a roller or a ball that presses the reduced diameter tube while planetarily rotating toward the grooved plug. be able to.
  • an inner surface grooved tube manufacturing method includes a drawing device in which the inner surface grooved tube manufacturing apparatus also serves as a take-up drum that winds an inner surface grooved tube downstream of the groove processing means.
  • the groove twisting angle with respect to the central axis of the pipe is ⁇ (degrees) using a manufacturing apparatus for an internally grooved pipe provided with a control means for controlling the means, and the top of the fin formed between adjacent grooves.
  • the drawing means can be constituted by a winding device such as a winding drum, for example, by drawing and winding the internally grooved tube obtained by processing the raw tube on the downstream side.
  • the auxiliary drawing means can be constituted by, for example, a device for assisting feeding by feeding the reduced diameter tube to the groove processing means by sandwiching the reduced diameter pipe with a belt or a pad.
  • the above manufacturing method makes it possible to obtain an internally grooved tube having a larger groove depth, a larger torsion angle, a smaller apex angle and a higher heat transfer performance than the conventional internally grooved tube. Furthermore, by reducing the cross-sectional area, it is possible to obtain a light-weight and resource-saving inner grooved tube.
  • a high-performance and lightweight heat transfer tube can be obtained efficiently and stably, and the heat exchanger can be reduced in size and weight.
  • P ⁇ 0.5 ⁇ (A C1 ⁇ ⁇ M ) is a slight variation in the driving force of the auxiliary pulling means when P ⁇ 0.5 ⁇ (A C1 ⁇ ⁇ M ). This is because the shape of the inner surface of the tube is easily changed, and the groove depth and the like are not constant.
  • P ⁇ 0.9 ⁇ (A C1 ⁇ ⁇ M ) means that when P> 0.9 ⁇ (A C1 ⁇ ⁇ M ), the pulling force is reduced due to slight wall thickness fluctuation or pulling force fluctuation. It is because the case where the breaking load of the tube is exceeded occurs and the tube breaks.
  • the cross-sectional area A C (mm 2 ) of A C ⁇ 0.8 ⁇ D indicates that the tube is thinner than the conventional one, but if the tube is thin, the tube will buckle. It becomes easy and the grooving by the grooving means becomes difficult. And the larger the tensile force in the axial direction, the more difficult it is to deform in the circumferential direction, and thus the grooving process becomes more difficult.
  • the auxiliary pulling means is controlled so that P is between 0.5 and 0.9 times (A C1 ⁇ ⁇ M ).
  • P is between 0.5 and 0.9 times (A C1 ⁇ ⁇ M ).
  • the cross-sectional area with respect to the axial direction of the pipe after passing through the grooving means is not limited to the cross-sectional area AC1 with respect to the axial direction of the primary finishing pipe after passing through the grooving means. It shall also include the cross-sectional area a C with respect to the axial direction of the finishing tube subjected to additional machining of the pull or the like.
  • empty drawing is a process which mainly reduces the outer diameter without directly processing the inner surface of the pipe, and indicates, for example, a process of drawing through an empty drawing die.
  • the outer diameter D (mm) is preferably 3 or more.
  • pressure loss is important in addition to heat transfer performance.
  • the outer diameter D (mm) is preferably 3 or more for practical reasons.
  • the depth H (mm) of the groove can be 0.10 to 0.30.
  • Heat transfer tubes used for heat pumps such as air conditioners are pushed from the inside of the tube with a tool such as a mandrel in order to press the aluminum fins. At that time, the fins on the inner surface are crushed and about 0.01 to 0.02 mm. Lower.
  • the groove depth is desirably 0.1 mm or more. Further, if the inner fin is too high, pressure loss increases and the material weight increases. Therefore, the groove depth H (mm) is preferably 0.3 or less.
  • the auxiliary pulling means can be configured to include, for example, a pair of endless members (loop-shaped members) that sandwich the raw tube from both sides with respect to the axial direction. By rotating the endless member such as the tube, it is possible to assist the drawing by the drawing means of the tube.
  • the load detecting means can be constituted by means capable of detecting a load such as a load cell.
  • Examples of the load detected by the load detection means include a compression load, a tensile load, and a moment load.
  • the inner grooved tube can be formed of a material having excellent thermal conductivity such as copper, aluminum, or an alloy thereof.
  • the inner surface grooved pipe manufacturing apparatus includes the diameter reducing means, the groove processing means, and a drawing means for pulling out the grooved inner surface grooved pipe in this order from the upstream side.
  • a feed assisting means (the auxiliary pulling means) provided between the diameter reducing means and the groove processing means for assisting the feeding of the reduced diameter tube in the feed direction toward the groove processing means, the diameter reducing means and the feed
  • An auxiliary means is fixed and a movable table is movable relative to the grooving means in parallel with the drawing direction of the drawing means, and the grooving means is fixed and parallel to the drawing direction with respect to the drawing means.
  • a base that is relatively movable a moving base load detection device that detects a load in the relative movement direction applied to the mobile base when the mobile base moves relative to the groove processing means, and the base against the pulling means
  • a base load detection device that detects a load in the relative movement direction applied to the base when the relative movement is performed, and a control unit that controls the operation of the feed assisting unit.
  • An inner grooved pipe manufacturing apparatus configured to be movable relative to the base in the drawing direction is used, and the control means includes at least a feed assist speed of the feed assist means and a feed assist torque of the feed assist means. It is preferable that either one is a manufacturing method of an internally grooved tube in which one of them is adjusted based on the difference between the loads detected by the moving table load detecting device and the base load detecting device.
  • the feed assist speed adjusted by the control means is set to the first feed assist speed, and the feed assist torque adjusted by the control means is determined based on the correlation with the feed assist torque. Control can be performed with the second feed assist speed.
  • the movable table and the base can be configured by a table having wheels on the bottom surface and capable of sliding freely.
  • the moving table load detection device and the base load detection device can be configured by an appropriate detector capable of detecting a load, such as a load cell.
  • a diameter reducing process for reducing the diameter of the raw pipe in the process of moving the raw pipe in the drawing direction, and forming a plurality of grooves on the inner face of the raw pipe
  • an intermediate drawing step is performed to pull out the element pipe reduced in the squeezing step, and the squeezing step is reduced to the sizing step.
  • the outer diameter D o of the blank tube mm), the diameter D 2 of the diameter die (mm), R D ⁇ (D o -D 2) / D o ⁇ radial contraction rate of mother tube represented by ⁇ 100 (%) R D ( %) Is set to R D ⁇ 30, and the outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die are set to satisfy D 1 ⁇ D 2 ⁇ 0.1. Is preferred.
  • the load assistance for assisting the extraction load by the intermediate extraction means can be stabilized.
  • the diameter reduction ratio of the blank pipe is greater than 30%, the contact area between the blank pipe and the diameter reduction die increases, and the frictional resistance increases, so the processing load on the diameter reduction die increases, The thinning of the outer diameter of the tube is smaller than the diameter of the outlet of the reduced diameter die.
  • the contact between the raw tube and the diameter-reducing die is not stable, and chattering is likely to occur, and the thickness is reduced. Vibration due to chattering is transmitted to the intermediate drawing means, and the outer diameter of the raw pipe is reduced by thinning. Therefore, the pressing force of the pad provided for holding the raw pipe in the intermediate drawing means becomes unstable. As a result, the load assistance in the intermediate drawing means becomes unstable.
  • the diameter reduction rate of the raw tube is set to 30% or less in the diameter reducing means so that such a problem does not occur during processing.
  • the chatter phenomenon is more effectively achieved by setting the outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die so that D 1 ⁇ D 2 ⁇ 0.1. Can be suppressed. More specifically, when the difference in diameter (D 1 -D 2 ) between the floating plug and the reduced diameter die is 0.1 mm or less, the area where the floating plug and the reduced diameter die overlap is reduced.
  • D 1 ⁇ D 2 ⁇ 0.1 is set so that such a problem does not occur during processing.
  • the revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug (hereinafter referred to as “reverse direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ⁇ P ⁇ 0.7.
  • the revolution direction of the pressing tool is set in the reverse direction, and the machining pitch P is set to P ⁇ 0.2. It is better to set it as small as possible.
  • the processing pitch P is within the range of 0.2 ⁇ P ⁇ 0.7, for example, 0 .2 ⁇ P ⁇ 0.4 is preferable.
  • the processing pitch P is set within the range of 0.2 ⁇ P ⁇ 0.7, for example, 0 It is better to set 4 ⁇ P ⁇ 0.7.
  • the revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug (hereinafter referred to as “positive direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ⁇ P ⁇ 0.4.
  • the inner surface fin is set by setting the machining pitch P (mm) to be in the range of 0.2 ⁇ P ⁇ 0.4.
  • the hems of the slabs do not have any glazing, and the groove depth is deep and the machining accuracy is high.
  • the revolving direction of the pressing tool is a positive direction.
  • An unfilled portion of a material called “egre” is likely to occur at the bottom of the fin formed between the two. Further, the greater the processing pitch P is, the easier it is to generate the egress.
  • the revolution direction of the pressing tool is a positive direction and 0.2 ⁇ P ⁇ 0.4.
  • the thinner the pipe the harder it is to form the fins, and the easier it is to break.
  • the present invention can be applied regardless of the thickness of the pipe, including thin pipes. Therefore, the thinner the pipe is, the more effective the production conditions of the present invention.
  • the shape of the inner surface is stable over the entire length of the long tube and can be processed without breaking, so that it can be applied regardless of the length of the raw tube, and the yield and productivity can be improved. it can.
  • the manufacturing apparatus of the inner surface grooved pipe of the present invention is characterized by comprising a diameter reducing means for reducing the diameter of the raw pipe and a groove processing means for performing groove processing on the inner surface of the reduced diameter pipe. To do.
  • the diameter reducing means, the groove processing means, and a drawing means for pulling out the grooved inner grooved tube are provided in this order from the upstream side, and between the diameter reducing means and the groove processing means.
  • An apparatus for producing an internally grooved pipe provided with a feed assisting means for assisting feeding of the reduced diameter pipe in a feed direction toward the groove machining means, wherein the diameter reducing means and the feed assisting means are fixed.
  • a movable base that is movable relative to the groove processing means in parallel with the drawing direction of the pulling means, and the relative movement applied to the movable base when the movable base moves relative to the groove processing means.
  • the manufacturing apparatus of the internally grooved tube provided with a moving table load detecting device for detecting a load in the moving direction.
  • the groove processing means is fixed and is movable relative to the drawing means in parallel with the drawing direction, and the base is moved relative to the drawing means.
  • a base load detecting device for detecting the load in the relative movement direction applied to the base, and a control means for controlling the operation of the feed assisting means, wherein the moving base is withdrawn from the base.
  • the control means adjusts the feed assist speed of the feed assist means based on the load detected by at least one of the moving table load detecting device and the base load detecting device.
  • the feed assist speed in the assist speed adjustment process is set to a first feed assist speed, and the feed assist torque adjustment process is determined based on a correlation with the feed assist torque.
  • the adjustment processing can be performed with the two-feed auxiliary speed.
  • the diameter reducing means and the groove processing means are provided along the drawing direction of the raw tube, and the diameter is reduced by the diameter reducing means between the diameter reducing means and the groove processing means.
  • An intermediate drawing means for drawing out the raw pipe, and the diameter reducing means is constituted by a diameter reducing die and a floating plug disposed in the pipe and reducing the diameter of the raw pipe together with the diameter reducing die, and the groove processing
  • the diameter reduction rate of the element pipe is set to 30% or less in the diameter reducing means, the so-called chattering that the element pipe slightly vibrates after the diameter reduction by the diameter reducing means.
  • the phenomenon is suppressed, and the load assist that assists the extraction load by the intermediate extraction means can be stabilized.
  • the diameter reduction ratio of the blank pipe is greater than 30%, the contact area between the blank pipe and the diameter reduction die increases, and the frictional resistance increases, so the processing load on the diameter reduction die increases, The thinning of the outer diameter of the tube is smaller than the diameter of the outlet of the reduced diameter die.
  • the contact between the raw tube and the diameter-reducing die is not stable, and chattering is likely to occur, and the thickness is reduced. Vibration due to chattering is transmitted to the intermediate drawing means, and the outer diameter of the raw pipe is reduced by thinning. Therefore, the pressing force of the pad provided for holding the raw pipe in the intermediate drawing means becomes unstable. As a result, the load assistance in the intermediate drawing means becomes unstable.
  • the diameter reduction rate of the raw tube is set to 30% or less in the diameter reducing means so that such a problem does not occur during processing.
  • the chatter phenomenon is more effectively achieved by setting the outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die so that D 1 ⁇ D 2 ⁇ 0.1. Can be suppressed. More specifically, when the difference in diameter (D 1 -D 2 ) between the floating plug and the reduced diameter die is 0.1 mm or less, the area where the floating plug and the reduced diameter die overlap is reduced.
  • D 1 ⁇ D 2 ⁇ 0.1 is set so that such a problem does not occur during processing.
  • the revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug (hereinafter referred to as “reverse direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ⁇ P ⁇ 0.7.
  • the revolution direction of the pressing tool is set in the reverse direction, and the machining pitch P is set to P ⁇ 0.2. It is better to set it as small as possible.
  • the processing pitch P is within the range of 0.2 ⁇ P ⁇ 0.7, for example, 0 .2 ⁇ P ⁇ 0.4 is preferable.
  • the processing pitch P is set within the range of 0.2 ⁇ P ⁇ 0.7, for example, 0 It is better to set 4 ⁇ P ⁇ 0.7.
  • the revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug (hereinafter referred to as “positive direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ⁇ P ⁇ 0.4.
  • the inner surface fin is set by setting the machining pitch P (mm) to be in the range of 0.2 ⁇ P ⁇ 0.4.
  • the hems of the slabs do not have any glazing, and the groove depth is deep and the machining accuracy is high.
  • the revolving direction of the pressing tool is a positive direction.
  • An unfilled portion of a material called “egre” is likely to occur at the bottom of the fin formed between the two. Further, the greater the processing pitch P is, the easier it is to generate the egress.
  • the revolution direction of the pressing tool is a positive direction and 0.2 ⁇ P ⁇ 0.4.
  • the thinner the pipe the harder it is to form the fins, and the easier it is to break.
  • the present invention can be applied regardless of the thickness of the pipe, including thin pipes. Therefore, the thinner the pipe is, the more effective the production conditions of the present invention.
  • the shape of the inner surface is stable over the entire length of the long tube and can be processed without breaking, so that it can be applied regardless of the length of the raw tube, and the yield and productivity can be improved. it can.
  • a drawing means for drawing an internally grooved pipe which has been processed on the downstream side in the tube axis direction of the grooving means, and a drawing of the raw pipe on the upstream side in the pipe axis direction from the drawing means. It is preferable that the manufacturing apparatus of the internally grooved pipe provided with the processing related data detecting means for detecting the processing related data relating to the processing load generated in the pipe axis direction.
  • the processing related data is, for example, the processing load measured by the diameter reducing means or the groove processing means, or the drawing load of the intermediate drawing means (the auxiliary drawing means), in other words, the motor load (driving force). Relevant load related data can be listed. Further, the machining-related data may be data such as a current value or a voltage value obtained by converting a machining load or a driving force into an electrical signal, or a differential value obtained by differentiating these values. The tendency shown by the graphed waveform may be used.
  • the machining-related data detection means includes a groove machining load measuring means for measuring the machining load in the grooving means and a reduced diameter machining load measuring means for measuring the machining load in the diameter reducing means.
  • a groove machining load measuring means for measuring the machining load in the grooving means
  • a reduced diameter machining load measuring means for measuring the machining load in the diameter reducing means.
  • the machining-related data detection means is configured by the grooving load measuring means, it can be determined that a disconnection has occurred based on the change in the machining load at the grooving means.
  • the processing-related data detection means is constituted by the reduced diameter processing load measuring means, it can be determined that a disconnection has occurred based on a change in the processing load at the reduced diameter means.
  • the grooved plug is not affected by being delayed in the determination of the occurrence of disconnection.
  • the occurrence of disconnection can be recognized before it breaks.
  • the processing-related data detection means is configured by the diameter reducing load measuring means, the disconnection occurred even when a disconnection occurs between the groove processing means and the diameter reducing means. Is preferable in that it can be determined instantaneously.
  • an intermediate drawing means for drawing an element pipe between the diameter reducing means and the groove processing means is provided, and the processing related data detection means is related to a drawing load of a motor of the intermediate drawing means.
  • the load-related data detecting means for detecting the load-related data can be configured.
  • the intermediate drawing means By providing the intermediate drawing means, it is possible to assist the drawing of the raw pipe by the drawing means, while the load variation on the diameter reducing means and the groove processing means tends to be large. Based on the load-related data detected by the related data detecting means, it can be recognized that the disconnection has occurred, and the grooved plug can be prevented from being damaged.
  • load measuring means such as a load cell and a torque gauge. Since no hardware such as a jig for installing the load measuring means is required, the disconnection detection can be easily performed using existing equipment.
  • the disconnection determining means for example, the standard deviation ( ⁇ ) in the distribution with a variation that causes the differential value of the drawing load to occur even during normal steady machining. If it fluctuates greatly exceeding a predetermined width, such as 5 times (5 ⁇ ), it can be determined that the tube is broken.
  • the load-related data can include drawing load (motor load), data such as current value and voltage value (electric signal) corresponding to the load, differential values and difference values of these data, and the like.
  • the load-related data is not limited to the motor load, but may be a motor torque.
  • the load-related data may include a transmission mechanism such as a pulley or a belt that is movable by the motor load of the intermediate drawing means.
  • a transmission mechanism such as a pulley or a belt that is movable by the motor load of the intermediate drawing means.
  • a disconnection determining means for determining that a disconnection has occurred based on the processing related data detected by the processing related data detecting means can be provided.
  • the disconnection determination means can automatically determine that a disconnection has occurred based on the processing related data detected by the processing related data detection means. Therefore, it is possible to reliably stop and prevent breakage of the grooved plug.
  • the disconnection determining means it is determined by the disconnection determining means that the disconnection has occurred on the basis of the processing related data detected by the processing related data detecting means, using the manufacturing apparatus of the inner surface grooved pipe.
  • the method for producing an internally grooved tube that stops processing is characterized by the following.
  • the grooved plug provided in the groove processing means is damaged. Since machining can be stopped before, the grooved plug can be reliably prevented from being damaged.
  • an internally grooved tube that has excellent heat conduction performance, can be reduced in size and weight, and can realize resource saving, and such an internally grooved tube can be manufactured efficiently and stably. It is possible to provide a manufacturing method and a manufacturing apparatus that can be used.
  • FIG. 9 is a flowchart showing the overall operation of the inner surface grooved pipe manufacturing apparatus of the second embodiment. Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 3.
  • FIG. FIG. 9 is a flowchart showing the overall operation of the inner surface grooved pipe manufacturing apparatus of the second embodiment. Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 3.
  • FIG. 6 is a configuration explanatory view of a diameter reducing means, in which the diameter reducing means of Embodiment 3 is partially shown in cross section.
  • FIG. 9 is an operation explanatory view showing a state in which the diameter of a raw pipe is reduced by the diameter reducing means of Embodiment 3. Explanatory drawing explaining the processing pitch of the processing ball
  • FIG. Sectional drawing which shows a part of pipe inner surface which has the fin which the egle has generate
  • Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 4B.
  • Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 4C.
  • Sectional drawing explaining the installation location of the processing load detection part installed in each manufacturing apparatus of Embodiment 4A, 4B and a prior art.
  • Sectional drawing explaining the installation location of the process load detection part installed in the manufacturing apparatus of Embodiment 4C.
  • FIG. 1 is explanatory drawing of the manufacturing apparatus 12 of an inner surface grooved pipe
  • the manufacturing apparatus 12 has a reduced diameter portion 13, an auxiliary drawing device 17, a groove processing portion 14, and a finishing processing portion 15 in order from the upstream side to the downstream side in the drawing direction (drawing direction) (X direction in FIG. 1).
  • the drawing device 16 is further provided on the downstream side, and the inner tube 11a is manufactured by continuously processing the raw tube 11a with these configurations.
  • the manufacturing apparatus 12 includes a diameter-reduced portion 13 that draws and reduces the diameter of the raw tube 11 a, a groove processed portion 14 that forms a large number of grooves on the inner surface of the raw tube 11 a, and a downstream side of the groove processed portion 14. It comprises a drawing device 16 that also serves as a winding drum 36 for winding the machined inner grooved tube 11, and an auxiliary drawing device 17 that draws the raw tube 11 a between the reduced diameter portion 13 and the groove processing portion 14. ing.
  • the manufacturing apparatus 12 is movable with respect to the fixed base 50 so as to be movable in the drawing direction, the movable base 33 supporting the reduced diameter portion 13, the auxiliary drawing device 17 and the groove processing portion 14, and the fixing of the movable base 33.
  • the load cell 35 detects a processing load P acting in accordance with the movement with respect to the table 50, and the control device 45 controls the auxiliary extraction device 17 based on the processing load P detected by the load cell 35.
  • the reduced diameter portion 13 constitutes a cylindrical die 22 for reducing the diameter of the passing raw tube 11a.
  • the die 22 has a die hole 22a that opens toward the upstream side.
  • the reduced diameter portion 13 is provided with a floating plug 23 inside the raw tube 11a.
  • the floating plug 23 is formed so that a part of the outer peripheral surface in the axial direction is conical so as to be engageable with the die 22 via the raw tube 11a. Thereby, the floating plug 23 is rotatably engaged in the die 22 portion.
  • the groove processing portion 14 includes a grooved plug 24 in which a plurality of spiral grooves are formed on the outer periphery inside the raw tube 11a.
  • the grooved plug 24 and the floating plug 23 are rotatably connected to each other via a connecting rod 25.
  • the groove processing portion 14 includes a plurality of balls 26, and the plurality of balls 26 are disposed around the tube axis while being pressed against the tube 11a outside the tube 11a. .
  • the grooved portion 14 is configured such that the grooved plug 24 abuts on the inner peripheral surface of the raw tube 11 a, the raw tube 11 a is pulled in the drawing direction while rotating around the axis, and pressed by a plurality of balls 26, thereby being pressed.
  • a large number of parallel spiral grooves can be formed on the inner peripheral surface of the substrate.
  • the inner grooved tube 11 can be obtained by passing through the grooved portion 14.
  • the finishing portion 15 is provided with a diameter adjusting die 27, and the inner grooved tube 11 passes through the die hole 27 a of the diameter adjusting die 27, for example, by pressing the ball 26 in the groove processing portion 14. Processing to smooth the diameter of the tube surface distortion is performed.
  • the drawing device 16 includes a winding drum 36 and a winding motor M1, and winds around the winding drum 36 while pulling the inner grooved tube 11 by rotational driving of the motor M1.
  • the auxiliary drawing device 17 assists the drawing by the drawing device 16 by drawing the raw tube 11a in the drawing direction between the reduced diameter portion 13 and the groove processing portion 14. That is, the grooving by the grooving section 14 becomes a resistance when pulling out the raw tube 11a, and the pulling load during the grooving increases, but the pulling load applied to the raw tube 11a by the auxiliary drawing device 17 is increased. Can be dispersed.
  • the auxiliary drawing device 17 includes a pair of belts 42a and 42b arranged on the upper and lower sides or the left and right sides with respect to the raw tube 11a.
  • Each of the belts 42a and 42b is formed in a loop shape (endless shape), and is stretched around the pulley 43 so as to be rotatable by the rotational drive of the motor M2.
  • the belts 42a and 42b are configured in a caterpillar type in which a plurality of pads 44 are continuously provided along the length direction on the outer peripheral surface.
  • the pair of belts 42a and 42b in the auxiliary pulling device 17 is desired to have a pressing force of the raw tube 11a by the pad 44 of, for example, 0.3 MPa from the viewpoint of obtaining a sufficient pulling force and preventing deformation of the raw tube 11a. It is provided on each side with respect to the element tube 11a so as to be kept at the pressing force of.
  • the pad 44 has a pad groove 44a having a circular cut surface in the connecting direction of the plurality of pads 44 at the contact portion with the outer surface of the base tube 11a after being reduced in diameter by the reduced diameter portion 13. Forming.
  • the movable table 33 is installed on the fixed table 50 via a plurality of wheels 33a so as to be movable in the drawing direction or the opposite direction with respect to the fixed table 50.
  • the part 14, the finishing part 15, and the auxiliary drawing device 17 are installed in a state of being accommodated in the box 32.
  • the load cell 35 is provided on the fixed base 50 and at the downstream end portion of the movable base 33 in the drawing direction so as to detect the processing load P received from the movable base 33 according to the pulling force of the raw tube 11a.
  • the control device 45 receives a load detection signal S in obtained by converting the machining load P detected by the load cell 35 into an electrical signal, and outputs a control signal S out for controlling the driving of the motor M2 of the auxiliary drawing device 17 according to the control program. To do.
  • control device 45 temporarily stores an arithmetic unit (CPU) for executing signal analysis processing and arithmetic processing, a hard disk for storing necessary control programs, and the load detection signal S in.
  • an input unit such as a keyboard for inputting control parameters and a display unit such as a monitor can be appropriately provided.
  • the manufacturing method of the inner surface grooved tube 11 in the present embodiment is performed using the inner surface grooved tube manufacturing apparatus 12 described above.
  • the axial cross-sectional area of the primary finish tube is A C1 (mm 2 )
  • the breaking stress of the primary finish pipe is ⁇ M (N / mm 2 )
  • the auxiliary drawing is performed so that the processing load P is between 0.5 and 0.9 times (A C1 ⁇ ⁇ M ).
  • the control of the speed of the motor M2 of the auxiliary pulling device 17 so as to be between P ⁇ 0.5 ⁇ (A C1 ⁇ ⁇ M ) is P ⁇ 0.5 ⁇ (A C1 ⁇ ⁇ M )
  • the shape of the inner surface of the tube is likely to change due to slight fluctuations in the driving force of the auxiliary drawing device 17, and the groove depth and the like are not constant.
  • the outer diameter D is in the range of 3 mm to 6 mm, and the depth H of the groove 2 is 0.07 mm to 0.10 mm.
  • the twist angle ⁇ of the groove 2 with respect to the central axis of the tube is in the range of 30 to 60 degrees, and the apex angle ⁇ of the fin 1 formed between adjacent grooves 2 is from 5 degrees.
  • the cross-sectional area with respect to the axial direction of the pipe is A C1 (mm 2 ) in the range of 20 degrees
  • the internally grooved pipe 11 satisfying A C1 ⁇ 0.8 ⁇ D can be manufactured. Note that A C1 ⁇ 0.8 ⁇ D indicates that the tube is thinner than the conventional one.
  • the tube wall tends to buckle in the ball revolving direction, and the material constituting the tube escapes radially outward before a portion of the tube wall is filled in the plug groove. Because.
  • the load in the drawing direction applied to the tube is reduced by the control described above, and even when grooving a thin wall tube, It becomes possible to suppress circumferential buckling.
  • the inner grooved tube 11 can be a heat transfer tube having a larger groove depth, a larger torsion angle, a smaller apex angle, and a higher heat transfer performance than the conventional technology. Furthermore, by reducing the cross-sectional area, a heat transfer tube that is lightweight and resource-saving can be obtained. Further, by using such a high-performance and lightweight heat transfer tube, the heat exchanger can be made small and light.
  • the method for controlling the speed of the motor M2 of the auxiliary extraction device 17 by the control device has been described.
  • the speed is controlled as a control parameter, but also the acceleration, torque, rotation angle, Alternatively, a plurality of these may be controlled as control parameters.
  • FIG. 1 shows an example in which one motor M2 is attached to drive the auxiliary pulling device 17, but two motors may be attached to the left and right for operation.
  • a motor that can follow the target operation control value such as a servo mechanism, the machining load P at the time of machining the internally grooved tube having the difficult-to-break shape as in the present invention is generated. This makes it possible to control in more detail and is effective in stabilizing the operation of the equipment.
  • the manufacturing method of the present invention only needs to be a method for controlling at least the auxiliary drawing device 17.
  • P is between 0.5 and 0.9 times (A C1 ⁇ ⁇ M ).
  • both the auxiliary drawing device 17 and the drawing device 16 may be controlled.
  • each elementary tube 11a was subjected to an internal groove processing apparatus under the appropriate conditions shown below, and a processing experiment was performed to produce a primary finish tube as an internal grooved tube.
  • the outer diameter D the number of grooves, the bottom thickness t, the groove depth H, the torsion angle ⁇ , the apex angle ⁇ , the groove bottom width W 1 , the mountain bottom width W 2 , the groove bottom width W 1 and the groove depth.
  • the ratio of H and the cross-sectional area A C1 (refer to FIG. 2) with respect to the axial direction as parameters, the inner grooved tube 11 of Examples 1 and 2 as shown in Table 1 below and Comparative Example 1 as a comparison between them Attempts were made to manufacture the inner grooved tube of No.4.
  • a plurality of copper tubes (element tubes 11a) having an outer diameter of 8 mm and a smooth inner surface are prepared as processing raw materials, and processing is performed with a target of continuous 1000 m or more. Was performed five times, and a processing yield experiment was performed to compare the number of times 1000 mm or more could be processed without breaking.
  • the processing load P is 0.5 ⁇ (A C1 ⁇ ⁇ M ) ⁇ P ⁇ 0. It is manufactured by a processing method for controlling the speed of the motor M2 of the auxiliary drawing device 17 so as to be 9 ⁇ (A C1 ⁇ ⁇ M ).
  • Examples 1 and 2 experiments were performed with the target pull-out loads set to 1200 N and 700 N, respectively.
  • Comparative Examples 3 and 4 were performed by the method for manufacturing an internally grooved tube disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2001-241877). That is, in the comparative examples 3 and 4, the auxiliary drawing device 17 is not provided, and the manufacturing is performed using a manufacturing device that draws the raw tube 11a only with the drawing device.
  • Table 1 shows the results of the primary finishing tube processing experiment for each of Examples 1 and 2 and Comparative Examples 1 to 4. *
  • the manufacturing method of the present invention capable of processing the apex angle at 16 degrees as in Examples 1 and 2 is particularly effective.
  • Comparative Example 3 it was possible to process all five times without breaking.
  • the outer diameter D is 8 mm larger than 6 mm
  • the apex angle ⁇ is 23 degrees larger than 20 degrees
  • the cross-sectional area A C1 with respect to the axial direction is Was larger than 0.8D to 7.6 mm 2
  • the shape of the present invention as in Examples 1 and 2 was not obtained.
  • Comparative Example 4 the same manufacturing apparatus as in Comparative Example 3 was used, and in particular, an attempt was made to process the outer diameter D to 6 mm, which was the same as in Examples 1 and 2. It was 0 times, and all of them were broken immediately after starting the processing, and the processing could not be continued.
  • empty drawing is a method in which the primary finish pipe is pulled through a die without directly processing the inner surface of the primary finish pipe, and the outer diameter is reduced and the wall thickness is reduced by the empty drawing. Slightly decreases. Further, the torsion angle decreases as it extends in the longitudinal direction. In general, empty drawing is not performed if the primary finish pipe has a desired outer diameter, but is performed on the primary finish pipe when the primary finish pipe is larger than the desired outer diameter. In order to evaluate the later tube shape, a blanking experiment was performed on Example 1 or 2 and Comparative Example 3.
  • Example 3 the primary finish tube of Example 1 or 2 was evacuated to reduce the outer diameter to 5 mm.
  • Comparative Example 5 the primary finish tube of Comparative Example 3 was evacuated and reduced in diameter to 7 mm in outer diameter.
  • the ratio of the outer diameter and the cross-sectional area does not exactly match in the primary finishing pipe and the final finishing pipe that has undergone empty drawing, but in the scope of implementation, the diameter reduction rate of the empty drawing (the reduction rate of the outer diameter) is It is about 10 to 20%, and within this range, A C1 / D 1 ⁇ A C / D.
  • a C1 and D 1 indicate the cross-sectional area and outer diameter in the axial direction of the primary finish pipe, respectively, and
  • a C and D indicate the cross-sectional area and outer diameter in the axial direction of the final finish pipe, respectively.
  • the outer diameter D is 5 mm which is 3 mm or more and 6 mm or less
  • the depth H of the groove 2 is 0.07 mm or more and 0.15 mm which is 0.10 mm to 0.30 mm.
  • the twist angle ⁇ of the groove 2 with respect to the central axis of the tube is 40 degrees, which is 30 degrees to 60 degrees
  • the apex angle ⁇ of the fin 1 formed between the adjacent grooves 2 is 2 degrees to 20 degrees. is 10 degrees
  • the heat transfer tube is obtained for satisfying the desired shape of the cross-sectional area a C with respect to the axial direction is smaller 3.8 mm 2 next than 0.8 times the outer diameter D, sinking after the invention of the tube It was.
  • Comparative Example 5 is obtained by emptying Comparative Example 3 as a primary finish pipe as described above.
  • Comparative Example 5 deviates from a desired shape in that A C1 > 0.8D 1 or the like. Even when 3 was emptied, it could not be processed into the desired shape (A C > 0.8D).
  • Example 3 the heat transfer performance was also evaluated as shown in Table 2.
  • the heat transfer performance of Example 3 is shown as relative heat transfer performance when the value of the heat transfer coefficient in the condensing tube of Comparative Example 5 is 100.
  • the heat transfer coefficient in the condensation tube used for calculating the heat transfer performance is measured by the following measurement method.
  • Each of the sample tubes is inserted as an inner tube of a double-tube heat exchanger sample installed horizontally, and the refrigerant (R410a) flows into the samples, and the double tube between the outer tube and the inner tube is inserted. Cooling water was allowed to flow in the pipe portion so as to counteract the refrigerant, and the refrigerant was cooled by heat exchange between the cooling water and the refrigerant.
  • the heat transfer rate in the tube (condensation heat) at a refrigerant mass flow rate of 300 kg / m 2 sec was measured (measured based on the tube outer surface reference).
  • Example 3 of this invention As shown in Table 2, in Example 3 of this invention, it was set to 137 and the heat-transfer performance higher than the comparative example 5 was obtained.
  • Example 3 and Comparative Example 5 should compare and evaluate the heat transfer performance between those having the same diameter.
  • Table 2 compares pipes having different diameters. It shows heat transfer performance.
  • Examples 4 to 8 as shown in Table 3 are manufactured as final finished pipes by the manufacturing method of the present invention described above, and the inner grooved pipes of the present invention are manufactured based on these Examples 4 to 8. The effectiveness of the method was verified.
  • Example 6 the primary finish tube of Example 1 or 2 was used.
  • each of Examples 4 to 8 had a desired shape satisfying the above-described range of the internally grooved tube 11 of the present invention, and could be processed with a high yield.
  • the groove depth is larger than that of the prior art, the twist angle is larger, and the apex angle is smaller.
  • the inner grooved tube 11 can be manufactured, and it has been proved that a heat transfer tube having high heat transfer performance can be manufactured.
  • This is a high-performance heat transfer tube that is ideal for heat exchangers of heat pump equipment such as air conditioners and water heaters.
  • the blanking was performed after the primary finish tube was created.
  • the inner grooved tube of the present invention is not limited to the form in which the blanked tube is used as a product, but the primary finish tube.
  • the form made into a product with the shape of is also included.
  • the reduced diameter portion 13 of this embodiment corresponds to the reduced diameter means of the present invention.
  • the groove processing section 14 corresponds to the groove processing means
  • the drawing device 16 corresponds to the drawing means
  • the auxiliary extraction device 17 corresponds to auxiliary extraction means
  • the movable part 33 corresponds to the movable means
  • the load cell 35 corresponds to the load detection means
  • the control device 45 corresponds to the control means
  • the fixed base 50 corresponds to the installation part
  • the primary finishing pipe or the final finishing pipe corresponds to the pipe after passing the grooving means, but the present invention is not limited to the configuration of the first embodiment, and many embodiments can be obtained. .
  • the inner surface grooved pipe manufacturing apparatus 101 includes a diameter reducing device 120 that reduces the diameter of the raw pipe 201 that is the object to be processed 200, a groove processing apparatus 140 that performs groove processing on the inner surface of the reduced diameter reduced pipe 202, and a groove A winding drum 160 for pulling out the processed inner grooved tube 204 is provided in this order from the upstream side.
  • An auxiliary feeding device 130 is provided between the diameter reducing device 120 and the groove processing device 140 to assist the feeding of the reduced diameter tube 202 in the feeding direction toward the groove processing device 140.
  • an upstream movable base that is fixed to the diameter reducing apparatus 120 and the auxiliary feeding apparatus 130 and is relatively movable with respect to the groove processing apparatus 140 in parallel with the drawing direction of the winding drum 160. 182 is provided, and an upstream load detector 192 that detects a load in the relative movement direction applied to the upstream movable table 182 when the upstream movable table 182 moves relative to the groove processing device 140 is provided.
  • the inner surface grooved pipe manufacturing apparatus 101 is provided with an entire movable stand 184 to which the groove processing apparatus 140 is fixed and which can move relative to the winding drum 160 in parallel with the drawing direction.
  • the upstream movable table 182 is configured to be movable relative to the entire movable table 184 in the drawing direction.
  • an overall load detector 194 that detects a load in the relative movement direction applied to the entire movable table 184 when the entire movable table 184 moves relative to the winding drum 160 is provided.
  • the inner surface grooved pipe manufacturing apparatus 101 includes a controller 171 and a calculator 176 that control the operation of the auxiliary feeder 130. Then, the controller 171 and the calculator 176 adjust the feed assist speed adjustment process for adjusting the feed assist speed of the auxiliary feed device 130 based on the load detected by at least one of the upstream load detector 192 and the overall load detector 194. And at least one of the feed assist torque adjustment processing for adjusting the feed assist torque of the auxiliary feed device 130.
  • the feed assist speed executed by the controller 171 and the calculator 176 in the assist speed adjustment process is the first feed assist speed.
  • the feed assist torque and It adjusts with the 2nd feed auxiliary speed defined based on the correlation.
  • the controller 171 and the calculator 176 include at least a feed assist speed adjustment process for adjusting the feed assist speed of the auxiliary feed device 130 and a feed assist torque adjustment process for adjusting the feed assist torque of the auxiliary feed device 130. Either one is adjusted based on the difference between the loads detected by the upstream load detector 192 and the overall load detector 194.
  • FIG. 4 is a configuration diagram illustrating a configuration of the inner surface grooved pipe manufacturing apparatus 101 according to the second embodiment.
  • FIG. 4 shows a device used for processing, a device used for sensing, and a device used for control.
  • FIG. 5 is an explanatory diagram for explaining the load applied to the material, the pulling force and auxiliary feed force used for processing, and the load to be detected in the inner surface grooved pipe manufacturing apparatus 101.
  • the apparatus used for processing will be described. From the upstream side to the downstream side, the diameter reducing device 120, the auxiliary feeding device 130, the groove processing device 140, and the finishing device 150 are arranged so that their processing parts are horizontal and straight.
  • a take-up drum 160 that is arranged in order and that further draws and unwinds the tube 201 in a straight line is provided downstream thereof.
  • the material of the raw tube 201 to be processed can be a metal having excellent thermal conductivity, such as copper, aluminum, or an alloy thereof.
  • the diameter reducing device 120 includes a gap between a diameter reducing die 121 that presses the periphery of the cylindrical pipe 201 inwardly and a floating plug 111 disposed inside the raw pipe 201. It is a device that reduces the diameter through.
  • the diameter-reducing die 121 is provided with a die hole 122 in which a mortar-shaped slope that is widened toward the upstream side is formed.
  • the floating plug 111 is formed in a size larger than the minimum radius portion of the die hole 122 and slightly smaller than the inner peripheral size of the element tube 201, and is inserted into the element tube 201 in a free state. For this reason, when the base tube 201 is pulled out while being reduced in diameter by the die hole 122 of the reduced diameter die 121, the floating plug 111 is not pulled out together.
  • the surface of the floating plug 111 facing the die hole 122 is formed as a truncated cone-shaped inclined surface.
  • the raw tube 201 supplied from the upstream side is reduced in diameter by the diameter reducing device 120 to become a reduced diameter tube 202.
  • the diameter reduction drawing load R3 is applied to the raw tube 201 as shown in FIG.
  • the auxiliary feeding device 130 includes a pressing device 131, a mounting plate 132, a pulley 133, and a belt 134.
  • the pressing device 131 presses the belt 134 together with the mounting plate 132 toward the reduced diameter tube 202 (see FIG. 4).
  • the attachment plate 132 is attached to the upstream machine casing 102 so as to be movable up and down (movable in a direction perpendicular to the drawing direction), and rotatably supports a pair of pulleys 133 arranged in the drawing direction.
  • a pair of pulleys 133 an endless belt 134 is stretched without slack, and the belt 134 is rotated by the driving force of the motor M2 that is a vector motor.
  • the belt 134 is formed in an endless loop shape, and a plurality of pads 135 are continuously arranged on the outer periphery.
  • the pad 135 is preferably made of a material harder than the base tube 201, and is made of, for example, tool steel.
  • the mounting plate 132 provided with the pulley 133 and the belt 134 is provided symmetrically in the vertical direction (symmetrical in the direction perpendicular to the drawing direction) with the reduced diameter tube 202 interposed therebetween. Furthermore, the pressing device 131 is also provided vertically symmetrically. As a result, the upper and lower pressing devices 131 press the upper and lower pressing devices 131 toward the reduced diameter tube 202, and the reduced diameter tube 202 is sandwiched between the pads 135.
  • the auxiliary feeding device 130 performs an auxiliary feeding operation under the control of the configuration and the controller 171.
  • the pressing device 131 holds the reduced diameter tube 202 from above and below with the pad 135 at a constant pressure at which the reduced diameter tube 202 is not excessively deformed.
  • the pulley 133 is rotated at a constant ratio by the rotational drive of the motor M2 according to the control of the controller 171, and the belt 134 is rotated along with this, and the material traveling direction (drawing) between the pad 135 and the reduced diameter tube 202 is rotated.
  • Direction feed friction force.
  • the auxiliary feed device 130 can apply the auxiliary feed force F2, that is, the auxiliary feed torque to the reduced diameter tube 202 as shown in FIG. For this reason, the speed of the pad 135 in the feeding direction is higher than or equal to the winding speed of the winding drum 160.
  • the groove processing device 140 includes a grooved plug 113, a processing head 141, a rolling tool 142, a pressing member 143, and a bearing 144.
  • the grooved plug 113 is inserted into the reduced diameter tube 202 in a free state, and is rotatably connected to the above-described floating plug 111 by a connecting rod 112. Thereby, it is comprised so that the position in the extraction direction of the grooved plug 113 may not move back and forth.
  • the processing head 141 is formed with a conical surface that expands toward the downstream.
  • the inner diameter of the through hole including this conical surface is formed to be slightly larger than the outer diameter of the reduced diameter tube 202.
  • the pressing member 143 is formed in a ring shape and is rotatably attached by a bearing 144.
  • the rolling tool 142 is composed of a plurality of balls.
  • the rolling tool 142 is sandwiched between the conical surface of the machining head 141 and the pressing surface (upstream side surface) of the pressing member 143 so as to be planetary rotatable, and the reduced diameter tube 202 faces the inner side of the tube. And press.
  • the rolling tool 142 rotates in a planetary manner and presses the reduced diameter tube 202 against the grooved plug 113, thereby reducing the number of fins 205 (spiral grooves) along the spiral groove of the grooved plug 113. It can be formed on the inner surface of the tube 202.
  • the fins 205 can be formed with a predetermined twist angle (lead angle), a predetermined fin height, and a predetermined fin interval with respect to the tube axis.
  • the rolling tool 142 can be composed of a plurality of rollers, or can be composed of rollers and balls.
  • the reduced diameter tube 202 supplied from the upstream side becomes a groove applying tube 203 having grooves (fins 205) formed on the inner surface.
  • a grooving load R2 is applied to the reduced diameter tube 202 as shown in FIG.
  • the finishing device 150 includes a shaping die 151.
  • the shaping die 151 is provided with a die hole 152 having a conical surface that widens toward the upstream side.
  • the radius of the minimum radius portion of the die hole 152 is formed slightly smaller than the outer peripheral radius of the groove providing tube 203.
  • the winding drum 160 is a drum that winds the inner grooved tube 204. This winding is executed by the rotational force of the motor M1 according to the speed instruction signal of the controller 173. Further, the winding force becomes a straight drawing force F1 in a certain direction with respect to the raw tube 201, and a drawing torque can be generated to perform diameter reduction processing or inner surface groove processing.
  • the diameter reducing device 120 and the auxiliary feeding device 130 are fixed to the upstream machine casing 102.
  • the upstream machine casing 102 configured as described above is fixed to the upstream movable table 182 and can be reciprocally slid along the upstream movable table 182 in parallel with the drawing direction (horizontal in this embodiment). . That is, the upstream movable table 182 is provided with wheels 182a, and the wheels 182a are engaged with the rails 184b of the entire movable table 184, and can thereby move smoothly along the rails 184b. Accordingly, the diameter reducing device 120 and the auxiliary feeding device 130 move integrally with the upstream movable table 182.
  • an upstream load detector 192 is provided at the end of the upstream movable table 182 in the drawing direction.
  • the upstream load detector 192 is constituted by an appropriate detector capable of detecting a load such as a load cell.
  • the upstream load detector 192 can detect the load of the upstream movable table 182 applied in the drawing direction during drawing as an upstream load detection value V (T1) (see FIG. 5).
  • the groove processing device 140 and the finishing device 150 are fixed to the entire machine casing 104. Further, the entire machine casing 104 configured as described above is fixed to the entire movable base 184, and reciprocally slides on the fixed base 186 along with the whole movable base 184 in parallel with the drawing direction (horizontal in this embodiment). it can. That is, the entire movable base 184 is provided with a wheel 184a, and the wheel 184a is engaged with the rail 186b of the fixed base 186, thereby being able to move smoothly along the rail 186b. Accordingly, the groove processing device 140 and the finishing device 150 are moved integrally with the entire movable table 184.
  • an overall load detector 194 is provided at the end of the overall movable stand 184 in the drawing direction.
  • the total load detector 194 is formed of an appropriate detector that can detect a load such as a load cell. With this total load detector 194, the load on the entire movable base 184 applied in the drawing direction during the drawing process can be detected as the downstream load detection value V (T2) (see FIG. 5).
  • a controller 171 a speed setter 172, a controller 173, an upstream signal converter 174, an overall signal converter 175, and a calculator 176 are provided.
  • the controller 171 receives the rotation instruction speed S (H) from the calculator 176, and rotates the motor M2 at this speed. Further, the actual rotational speed and torque of the motor M2 are fed back to the calculator 176.
  • the speed setting unit 172 is a device that sets the drawing speed by the winding drum 160, and transmits a set value to the controller 173 and the calculator 176.
  • Controller 173 sets and instructs the rotational speed of motor M1 based on the drawing speed received from speed setter 172.
  • the upstream signal converter 174 converts a signal of a pressing force (detected by the upstream load detector 192) caused by the upstream movable base 182 carrying the upstream machine casing 102 in the drawing direction (material traveling direction) into an electrical signal, This signal is transmitted to the computing unit 176 as the upstream load detection value V (T1).
  • the overall signal converter 175 converts a signal of pressing force (detected by the overall load detector 194) caused by the overall movable base 184 carrying the overall machine casing 104 in the drawing direction (material traveling direction) into an electrical signal, This signal is transmitted to the computing unit 176 as the downstream load detection value V (T2).
  • the computing unit 176 performs computation based on the upstream load detection value V (T1) received from the upstream signal converter 174, the downstream load detection value V (T2) received from the overall signal converter 175, and various setting information.
  • the rotation instruction speed S (H) of the motor M2 is adjusted as needed and transmitted to the controller 171.
  • FIG. 6 is a flowchart showing the overall operation of the inner surface grooved pipe manufacturing apparatus 101.
  • the inner surface grooved pipe manufacturing apparatus 101 starts the winding drum 160 (step s1).
  • the controller 173 completes the manufacture of the internally grooved tube 204 based on the drawing speed received from the speed setting device 172 so as to be wound with a constant drawing force F1 according to the material and diameter of the raw tube 201.
  • the speed of the motor M1 of the winding drum 160 is controlled.
  • the inner surface grooved pipe manufacturing apparatus 101 starts the auxiliary feeding apparatus 130 (step s2).
  • the controller 171 performs the first auxiliary feed speed control on the motor M2 so that the initial auxiliary feed speed (first auxiliary feed speed) corresponding to the material and diameter of the raw tube 201 is obtained (step s3).
  • the initial auxiliary feed speed is a high speed in a range where the raw pipe 201 is not broken by the inner surface grooved pipe manufacturing apparatus 101 according to the material and diameter of the raw pipe 201 to be processed, and is set in advance. Is speed.
  • the raw pipe 201 is not broken, but the groove processing load R2 applied to the reduced diameter pipe 202 by the groove processing apparatus 140 is too large, and the fin 205 is not formed in the groove processing apparatus 140. Alternatively, the formed fin 205 cannot secure a predetermined accuracy.
  • the inner surface grooved pipe manufacturing apparatus 101 detects the upstream load detection value V (T1) with the upstream load detector 192 (step s4), and the downstream load detection value V (T2) with the overall load detector 194. ) Is detected (step s5) and transmitted to the computing unit 176.
  • the computing unit 176 calculates a load difference value (T3) that is a difference between the upstream load detection value V (T1) and the downstream load detection value V (T2) received from the upstream load detector 192 and the overall load detector 194 ( Step s6).
  • This load difference value (T3) indicates the total load of the grooving load R2 applied to the grooving device 140 and the finish drawing load R1 applied to the finishing device 150. More specifically, as described above, the upstream load detection value V (T1) is determined by the load of the upstream movable table 182 in the drawing direction during the drawing process, that is, the reduced diameter drawing load R3 in the diameter reducing device 120 and the auxiliary feed device 130. The total load of the auxiliary feed force F2 is shown.
  • the downstream load detection value V (T2) is the load of the entire movable base 184 in the drawing direction during the drawing process, that is, the reduced diameter drawing load R3 in the diameter reducing device 120, and the auxiliary feed force F2 by the diameter reducing device 120.
  • the total load of the grooving load R2 in the grooving device 140 and the finish drawing load R1 in the finishing device 150 is shown.
  • the load difference value (T3) which is the difference between the upstream load detection value V (T1) and the downstream load detection value V (T2), is the grooving load R2 applied to the grooving device 140 and the finish drawing applied to the finishing device 150.
  • the outer peripheral surface of the groove-applying tube 203 is slightly reduced in diameter in order to obtain the inner-surface grooved tube 20 as a finished product.
  • the finish drawing load R1 in the finishing device 150 is substantially constant and is negligibly small as compared with the reduced diameter drawing load R3 in the groove processing device 140. Therefore, the load difference value (T3) may be considered to be the reduced diameter drawing load R3 in the grooving apparatus 140 substantially.
  • the reduced diameter drawing load R3 in the groove processing device 140 has a great influence on the formation of the fin 205 when forming the groove imparting pipe 203 from the reduced diameter pipe 202 supplied from the upstream side. Specifically, when the reduced diameter drawing load R3 in the groove processing apparatus 140 is smaller than a predetermined range set in advance, that is, the load in forming the fin 205 in the groove processing apparatus 140 is small, sufficient fins 205 can be formed. It means not.
  • the reduced diameter drawing load R3 in the groove processing apparatus 140 is larger than a predetermined range, that is, when the load in forming the fin 205 in the groove processing apparatus 140 is too large, the desired fin 205 cannot be formed in the same manner. .
  • the arithmetic unit 176 causes the auxiliary feed device 130 to act on the reduced diameter pipe 202 so that the load difference value (T3) is within a predetermined range set in advance according to the material and diameter of the raw pipe 201. Torque is calculated (step s7).
  • the auxiliary feed torque is calculated based on the no-load torque and the rod friction torque, and becomes a torque for feeding the reduced diameter tube 202 toward the groove processing device 140 by the auxiliary feed device 130.
  • the motor M2 in the auxiliary feed device 130 is Torque control cannot be performed to match the auxiliary feed torque calculated in step s7.
  • the arithmetic unit 176 instructs the controller 171 to increase or decrease the speed so that the second auxiliary feed speed is determined based on the correlation with the auxiliary feed torque set in advance according to the material and diameter of the raw tube 201.
  • the controller 171 executes torque control based on the received acceleration / deceleration instruction to the motor M2 (step s8).
  • step s3 depending on the material and diameter of the raw pipe 201, the speed is increased to the initial auxiliary feed speed (first auxiliary feed speed), which is a high speed within a range in which the raw pipe 201 is not broken by the inner surface grooved pipe manufacturing apparatus 101.
  • the second auxiliary feed speed determined based on the auxiliary feed torque for controlling the torque to the auxiliary feed device 130 in step s8, that is, the correlation with the auxiliary feed torque is the initial auxiliary feed speed (first auxiliary feed speed).
  • the speed is lower, and the controller 171 controls the motor M2 to decelerate.
  • the inner surface grooved pipe manufacturing apparatus 101 that has executed the torque control for the auxiliary feeder 130 in step s8 uses the upstream load detector 192 and the overall load detector 194 to detect the upstream load detection value V (T1) as in steps s4 to s6. And the downstream load detection value V (T2), and the calculator 176 calculates the load difference value (T3) after torque control of the auxiliary feeder 130, and the calculated load difference value (T3) is calculated in advance. It is determined whether it is within the set predetermined range (step s9).
  • step s9 When the load difference value (T3) after torque control of the auxiliary feeder 130 is not within the predetermined range (step s9: No), the process returns to step s4, and the calculator 176 has the load difference value (T3) within the predetermined range.
  • the auxiliary feed torque is calculated so that
  • step s9: Yes when the load difference value (T3) after torque control of the auxiliary feeder 130 is within a predetermined range set in advance (step s9: Yes), the controller 171 has a predetermined amount of the internally grooved tube 204. Is manufactured (step s10). If a predetermined amount of the internally grooved tube 204 has already been manufactured, the manufacture of the internally grooved tube 204 by the internally grooved tube manufacturing apparatus 101 is stopped (step s10: Yes). On the other hand, when the predetermined amount of the internally grooved tube 204 has not been manufactured yet (step s10: No), the process returns to step s4 until the predetermined amount of the internally grooved tube 204 can be manufactured. Repeat until.
  • the inner surface grooved pipe manufacturing apparatus 101 uses the calculator 176 to detect the upstream load detection value V (T1) detected by the upstream load detector 192 and the downstream load detection value V (T2) detected by the overall load detector 194. So that the load difference value (T3) substantially indicating the reduced diameter drawing load R3 in the groove processing device 140 is within a predetermined range set in advance according to the material and diameter of the raw tube 201.
  • the auxiliary feed torque applied to the reduced diameter tube 202 is controlled by the feed device 130. For this reason, it is possible to stabilize the reduced diameter drawing load R3 that greatly affects the formation of the fins 205, and to form the fins 205 with desired accuracy even under the processing conditions close to the processing limit.
  • an internally grooved tube 204 with a precision that was impossible in the past for example, a fin having a high twist angle (lead angle) of 40 to 60 ° with respect to the tube axis and having a fin height of 0.2 mm or more
  • a plurality of pipes formed on the inner surface such that the ratio H / t between the height H and the groove bottom wall thickness t between adjacent fins is 1.2 or less can be manufactured with high productivity.
  • the auxiliary feed torque for controlling the torque of the auxiliary feed device 130 is determined by using the second auxiliary feed speed determined based on the correlation with the auxiliary feed torque set in advance according to the material and diameter of the raw tube 201. Therefore, it is possible to surely control the torque of the motor M2, which cannot be torque controlled, and to form the fins 205 with desired accuracy.
  • the inner grooved pipe manufacturing apparatus 101 has a high speed in a range in which the inner pipe 201 is not broken in the inner grooved pipe manufacturing apparatus 101 according to the material and diameter of the raw pipe 201 to be processed. Control is performed at the set first auxiliary feed speed. Thereafter, the auxiliary feed device 130 is torque-controlled at a second auxiliary feed speed that is lower than the initial auxiliary feed speed (first auxiliary feed speed) and determined based on the correlation with the auxiliary feed torque. For this reason, the productivity of the internally grooved tube 204 having the fins 205 formed with a desired accuracy can be improved.
  • the inner grooved tube manufacturing apparatus 101 manufactures the inner grooved tube 204 having the fins 205 with a desired accuracy by controlling the torque of the auxiliary feeding device 130 while keeping the drawing force F1 by the winding drum 160 constant.
  • the inner grooved tube 204 can be manufactured with high productivity without complicating the control.
  • a predetermined range and a second auxiliary feed speed that serve as a reference for controlling the drawing force F1 are determined according to the material of the raw tube 201. Since it is set based on the speed, range and correlation according to the diameter, it can be processed corresponding to the load fluctuation due to the material and diameter of the raw tube 201. Therefore, it is possible to form the fin 205 with high accuracy regardless of the material and diameter of the raw tube 201 and to reduce the occurrence of breakage.
  • the inner grooved tube manufacturing apparatus 101 fixes the diameter reducing device 120 and the auxiliary feeding device 130 to the upstream movable table 182 that can move relative to the winding drum 160, and the raw tube 201 by the winding drum 160.
  • An upstream load detector 192 is provided for detecting the load of the upstream movable table 182 that moves relative to each other when it is pulled out.
  • the diameter reducing device 120, the auxiliary feeding device 130, the groove processing device 140, and the finishing device 150 are fixed to the entire movable table 184 that can move relative to the winding drum 160, and the entire movable table 184 is fixed to the entire movable table 184.
  • the auxiliary feed torque by the auxiliary feed apparatus 130 that has a large influence on the formation of the fin 205 can be estimated from the detection result by the upstream load detector 192, and the torque can be controlled.
  • the inner grooved tube 204 having the fins 205 with higher accuracy can be manufactured with high productivity.
  • the inner surface grooved pipe manufacturing apparatus 101 includes an upstream load detector 192 that detects a load applied to the upstream movable table 182 and an overall load detector 194 that is applied to the entire movable table 184.
  • the upstream load detection value V (T3) calculated from the upstream load detection value V (T1) and the downstream load detection value V (T2) detected by the upstream load detector 192 and the overall load detector 194, the upstream load detection value V ( The auxiliary feeder 130 may be torque controlled in consideration of T1).
  • the pulling force F1 by the winding drum 160 may be controlled in consideration of the downstream load detection value V (T2) detected by the overall load detector 194 in addition to the load difference value (T3). .
  • the inner surface grooved pipe manufacturing apparatus 101 includes the upstream load detector 192 for detecting the load applied to the upstream movable table 182 and the overall load detector 194 applied to the entire movable table 184, further thinning is achieved. Even if the twist angle (lead angle) of the fin 205 is further increased, the complexity of the control is increased, but the productivity of the internally grooved tube 204 in which the fin 205 with higher accuracy is formed is improved. can do.
  • the upstream load detector 192 and the entire load detector 194 are configured by the same device, the change curves of the values detected from both detectors are approximated, and the speed of the auxiliary feeding device 130 and the winding drum 160 are Torque can be adjusted with high accuracy.
  • the diameter reducing device 120 of this embodiment corresponds to a diameter reducing means.
  • the auxiliary feeding device 130 corresponds to the feeding assisting means
  • the groove processing device 140 corresponds to the groove processing means
  • the winding drum 160 corresponds to the drawing means
  • the controller 171 and the calculator 176 correspond to control means
  • the auxiliary feed speed corresponds to the feed auxiliary speed
  • the auxiliary feed torque corresponds to the feed auxiliary torque
  • the upstream movable table 182 corresponds to the moving table
  • the entire movable base 184 corresponds to the base
  • the upstream load detector 192 corresponds to the moving table load detector
  • the total load detector 194 corresponds to the base load detection device
  • Step s3 corresponds to the feed assist speed adjustment process
  • Step s8 corresponds to the feed assist torque adjustment process
  • the pressing tool corresponds to the processed ball 326
  • the present invention is not limited only to the configuration of the second embodiment, and many embodiments can be obtained.
  • FIG. 7 is explanatory drawing of the manufacturing apparatus 312 of an inner surface grooved pipe
  • the inner surface grooved tube manufacturing apparatus 312 has a diameter reducing means 313 for reducing the diameter of the element tube 311a along the drawing direction X of the element tube 311a, and an inner surface of the element tube 311a.
  • a groove processing means 314 for forming a large number of grooves is provided, and an intermediate extraction portion 317 is provided between the diameter reducing means 313 and the groove processing means 314 for extracting the raw tube 311a reduced in diameter by the diameter reducing means 313. ing.
  • the diameter-reducing means 313 includes a diameter-reducing die 322 and a floating plug 323 that is disposed in the element tube 311a and reduces the diameter of the element tube 311a together with the diameter-reducing die 322.
  • the groove processing means 314 is rotatably connected to the floating plug 323 via a connecting rod 325 in the raw tube 311a, and has a grooved plug 324 having a plurality of grooves formed on the outer periphery, and an outer side of the raw tube 311a.
  • the raw tube 311a is composed of a plurality of processed balls 326 arranged to revolve around the tube axis while being pressed toward the grooved plug 324 side.
  • the outer diameter D o (mm) of the raw pipe 311 a and the diameter D of the reduced diameter die 322. 2 (mm), the diameter reduction ratio R D of the element tube 311a represented by R D ⁇ (D o ⁇ D 2 ) / D o ⁇ ⁇ 100 (%) is reduced to 30% or less in the diameter reducing means 313. It is set.
  • the outer diameter D 1 (mm) of the floating plug 323 and the diameter D 2 (mm) of the reduced diameter die 322 are set to satisfy D 1 ⁇ D 2 ⁇ 0.1.
  • revolution direction of the processed ball 326 is set in the reverse direction, and the processed pitch P (mm) of the processed ball 326 is set in a range of 0.2 ⁇ P ⁇ 0.7.
  • the processing pitch P (mm) is set to be in the range of 0.2 ⁇ P ⁇ 0.4.
  • the manufacturing apparatus 312 includes a diameter reducing means 313, an intermediate drawing portion 317, a groove processing means 314, a shaping die 315, and a drawing portion 316 along the drawing direction X from the upstream side to the downstream side.
  • the manufacturing apparatus 312 supports a movable base 333 that supports the reduced diameter portion 313, the intermediate extraction portion 317, and the groove processing means 314 so as to be movable in the drawing direction with respect to the fixed base 350, and the fixing of the movable base 333.
  • a load cell 328 that detects a load F that acts in response to movement relative to the table 350, and a control device 345 that controls the intermediate pull-out portion 317 and the pull-out portion 316 based on the load F detected by the load cell 328. Yes.
  • the diameter reducing means 313 includes the diameter reducing die 322 and the floating plug 323 as described above.
  • the diameter-reducing die 322 is formed in a cylindrical shape having a communication hole 322a communicating with the drawing direction X, and the communication hole 322a has an upstream portion (inlet side) in the drawing direction X as a downstream portion (outlet side). On the other hand, it is configured in a shape that opens toward the upstream side.
  • the floating plug 323 is formed in a cylindrical shape, and the outer periphery of the downstream portion is formed in a tapered shape.
  • the outer diameter of the floating plug 323 is set to D 1 (mm), and the inner diameter on the outlet side of the reduced diameter die 322 is set to D 2 (mm).
  • the groove processing means 314 includes a grooved plug 324, a plurality of processing balls 326, and a processing head 327 that holds the processing balls 326 from the outer peripheral side.
  • the processing head 327 is formed with a processing ball holding groove 327a having a semicircular cross section.
  • the plurality of processed balls 326 are held so as to revolve freely while pressing the surface of the raw tube 311a by the processed ball holding grooves 327a.
  • the plurality of processed balls 326 are held by the processed ball holding grooves 327a so that the revolution speed can be changed while pressing the surface of the raw tube 311a in either the forward direction or the reverse direction.
  • the shaping die 315 performs a process of smoothly shaping, for example, the distortion of the pipe surface caused by the pressing of the machining ball 326 in the grooving means 314 when the inner grooved pipe 311 passes.
  • the drawing portion 316 also has a winding drum 336 that winds up the processed inner surface grooved tube 311, and includes a motor M 1 that drives the winding drum 336, and the inner surface grooved tube 311 is driven by rotation of the motor M 1. Is wound around the winding drum 336.
  • the intermediate drawing portion 317 assists the drawing by the drawing device 316 by drawing the raw tube 311a in the drawing direction X between the reduced diameter portion 313 and the groove processing means 314. That is, the grooving by the grooving means 314 becomes a resistance when pulling out the raw tube 311a, and the pulling load during the grooving increases, but the pulling load applied to the raw tube 311a by the intermediate pulling portion 317 is increased. Can be dispersed.
  • the intermediate extraction portion 317 includes a pair of belts 342a and 342a arranged on the upper and lower sides or the left and right sides with respect to the raw tube 311a.
  • Each belt 342a, 342a are formed in a loop shape (endless) and is tensioned by a rotatable pulley 343 by the rotation of the motor M 2.
  • the belts 342a and 342a have a plurality of pads 344 arranged on the outer peripheral surface along the length direction.
  • the pad 344 is formed with a pad groove in which a cut surface with respect to the connecting direction of the plurality of pads 344 has an arc shape at a contact portion with the outer surface of the base tube 311a after the diameter reduction by the diameter reducing portion 313. is doing.
  • the intermediate withdrawal part 317 has a pad 344 configured to be pressed against the base pipe 311a surface by driving of the motor M 3.
  • a wiper 351 is provided on the upstream side of the intermediate extraction portion 317 to remove an oil film and foreign matter adhering to the outer surface of the raw tube 311a, and an intermediate shaping die 352 is provided on the downstream side.
  • the wiper 351 is provided to remove an oil film and foreign matter adhering to the outer surface of the raw tube 311a, and a through hole having a diameter slightly smaller than the outer diameter of the raw tube 311a is provided to pass the raw tube 311a.
  • a rubber cylindrical body formed in the central portion.
  • the intermediate shaping die 352 is provided to return the cross-sectional shape of the element tube 311a flattened by the intermediate extraction portion 317 to a shape close to a perfect circle, and has the same diameter as the floating die 322 depending on the shape of the element tube 311a. It is configured with a small die diameter.
  • the intermediate shaping die 352 is made of a material harder than the material of the metal element tube 311a such as metal or ceramic. Preferably, it is made of cemented carbide.
  • the movable table 333 is installed on the fixed table 350 via a plurality of wheels 333a so that the movable table 333 can be translated in the drawing direction or the opposite direction with respect to the fixed table 350.
  • Means 314, finishing section 315, intermediate drawing section 317, wiper 351 and intermediate shaping die 352 are installed in a state where they are housed in box 332.
  • the load cell 328 is provided on the fixed base 350 at the downstream end portion in the drawing direction of the movable table 333 so that the load F received from the movable table 333 according to the pulling force of the raw tube 311a can be detected.
  • the control unit 345 receives a load detection signal S in obtained by converting the load F detected by the load cell 328 into an electrical signal, and the motors M 1 , M 2 , M 3 of the extraction unit 316 and the intermediate extraction unit 317 according to a control program.
  • a control signal S out for controlling the driving of the signal is output.
  • control unit 345 temporarily stores an arithmetic unit (CPU) for executing signal analysis processing and arithmetic processing, a hard disk for storing necessary control programs, and the load detection signal S in.
  • an input unit such as a keyboard for inputting control parameters and a display unit such as a monitor can be appropriately provided.
  • the control unit 345 by controlling the driving of the motor M 3 of the intermediate withdrawal unit 317, and controls the pressing force by the pad 344 of the intermediate pullout portion 317 against base pipe 311a. By pressing the pad 344 against the raw tube 311a with an appropriate pressing force, the slip between the pad 344 and the raw tube 311a is reduced, and the variation in the load F is reduced.
  • control unit 345 may be configured to control other control parameters such as the rotation speed and acceleration, not limited to the rotation torque of the pulley 343.
  • the manufacturing method of the inner surface grooved tube 311 using the inner surface grooved tube manufacturing apparatus 312 described above includes a diameter reduction process step of reducing the diameter of the raw tube 311a in the process of moving the raw tube 311a in the drawing direction X.
  • An intermediate drawing is performed in which a groove machining step for forming a large number of grooves on the inner surface of the element tube 311a is performed, and the element tube 311a reduced in diameter in the diameter reduction process step is drawn during the diameter reduction process and the groove machining process. Perform the process.
  • the diameter reducing process is performed by a diameter reducing die 322 and a floating plug 323 which is disposed in the element pipe 311a and reduces the diameter of the element pipe 311a together with the diameter reducing die 322.
  • a grooved plug 324 that is rotatably connected to the floating plug 323 through a connecting rod 325 in the raw tube 311a and has a plurality of grooves formed on the outer periphery, and on the outer side of the raw tube 311a. This is performed with a plurality of processed balls 326 arranged to revolve around the tube axis while pressing the raw tube 311a toward the grooved plug 324 side.
  • the manufacturing apparatus 312 and the manufacturing method can achieve the following operational effects.
  • the diameter reduction ratio R D of the element tube 311a expressed by D 2 ) / D o ⁇ ⁇ 100 (%) is set to 30% or less in the diameter reduction means 313.
  • the outer diameter D 1 (mm) of the floating plug 323 and the diameter D 2 (mm) of the reduced diameter die 322 are set such that D 1 ⁇ D 2 ⁇ 0. It is set to be 1.
  • the processing pitch P (mm) is in the range of 0.2 ⁇ P ⁇ 0.7. It is set to become.
  • the processing pitch P (mm) of the processed ball 326 is set to 0.2 ⁇ P ⁇ . It is set to be in the range of 0.4.
  • Example 10 In Example 10, it was subjected to grooving experiment to investigate the effect on the processing by changing the radial contraction rate R D of the base pipe 311a at reduced diameter section 313.
  • machining pipes 311a were machined by setting machining conditions for each of Invention Examples 1 to 3 and Comparative Examples 1 and 2, and an internally grooved tube 311 was created.
  • the diameter reduction ratio RD was set to be 30% or less, and in Comparative Examples 1 and 2, the diameter reduction ratio RD was larger than 30%. Processing was performed under the following settings.
  • the processing result was evaluated by the variation in the groove depth in the longitudinal direction of the groove formed on the inner surface of the raw tube 311a after the grooving. Further, the variation in the depth of the groove in the longitudinal direction and the degree of stability of the load F detected at the time of diameter reduction by the load cell 328 installed in the diameter reduction means 313 are closely related. For this reason, when a load fluctuation occurs, it affects the groove shape (particularly the groove depth) formed on the inner surface of the raw tube 311a, and the magnitude of the load fluctuation is the same as the fluctuation of the groove depth in the longitudinal direction of the groove. Appears in size.
  • the processing result is “ ⁇ ” when the variation in the groove depth in the longitudinal direction indicating the stability of the load is 0 to 0.020 mm, and “ ⁇ ” when the variation is 0.021 to 0.050 mm.
  • the case of 0.051 mm or more was evaluated as “x”.
  • Table 5 shows the results of machining performed under the conditions of Invention Examples 1 to 3 and Comparative Examples 1 and 2.
  • Example 1 of the present invention was “ ⁇ ”
  • Examples 2 and 3 of the present invention were “ ⁇ ”
  • Examples 1 to 3 of the present invention obtained the desired internally grooved tube 311, In Comparative Examples 1 and 2, both were “x”, and the desired internally grooved tube 311 was not obtained.
  • the contact between the raw tube 311a and the reduced diameter die 322A is not stabilized by the thinning, the chatter phenomenon is likely to occur, and the thickness is reduced.
  • Example 1 to 3 of the present invention when the diameter reduction ratio RD is 30% or less and D 1 ⁇ D 2 ⁇ 0.1, the raw tube 311a after the diameter reduction processing is performed. since the outer diameter D f, becomes substantially the same as the diameter D 2 of the diameter reduction dies 322, the thickness T f of the base pipe 311a after diameter reduction is increased equal to or slightly thicker T o of the base pipe 311a Processing was realized.
  • Example 11 In Example 11, a grooving experiment was conducted to examine the influence on the machining by changing the engagement (D 1 -D 2 ) of the floating plug 323 and the reduced diameter die 322 in the diameter reducing means 313. In this processing experiment, the raw tube 311a was processed for each of the conditions of Invention Examples 4 to 8 and Comparative Example 3 to create an internally grooved tube 311.
  • (D 1 -D 2 ) is all set to 0.1 or more, and in Comparative Example 3, (D 1 -D 2 ) is set to be smaller than 0.1. Was processed.
  • Table 6 shows the results of machining performed under the machining conditions of Invention Examples 4 to 8 and Comparative Example 3.
  • the thickness of the raw tube 311a is not reduced, and conversely, the thickness may be increased within 0.01 mm, whereas (D 1 -D 2 ) is 0.1. If it is smaller, the diameter of the tube 311a is reduced while reducing the thickness, and the load is excessively applied, and as shown in the enlarged view of the region Z2 in FIG. Thinning occurs.
  • the contact area between the pad 344 and the raw tube 311a at the intermediate extraction portion 317 is fluctuated and a sufficient contact area cannot be secured, and load assistance at the intermediate extraction portion 317 is not possible. It becomes unstable.
  • the intermediate extraction portion 317 is provided, the number of contacts of the pads 344 is changed, or vibration due to repeated contact and release of the pads 344 with the base tube 311a is affected, so that conventional processing without the intermediate extraction portion 317 is performed. Compared with the method, the instantaneous fluctuation of the load becomes larger.
  • Example 12 In Example 12, a grooving experiment was conducted to examine the effect on machining by changing the machining pitch P. In this machining experiment, as in the conditions of Invention Examples 9 to 32 shown in Table 7, the inner surface is grooved under the machining conditions in which the machining pitch P is changed when the revolution direction of the machining ball 326 is the forward direction and the reverse direction. The tube 311 was processed.
  • Examples 9 to 32 of the present invention were obtained by processing the internally grooved tube 311 under the processing conditions satisfying the conditions of the present invention in which the reduction ratio RD was 30% or less.
  • Invention Examples 11 to 18 and Invention Examples 23 to 25 surrounded by a thick frame are obtained by processing the internally grooved tube 311 under particularly preferable processing conditions.
  • the revolution direction of the processed ball 326 is set to the reverse direction, and the processing is performed under the setting where the processing pitch P (mm) is 0.2 mm or more and 0.7 mm or less.
  • the revolving direction of the processed ball 326 was set to the positive direction, and the processing was performed under a setting in which the processing pitch P (mm) was 0.2 mm or more and 0.4 mm or less.
  • the revolution direction of the processed ball 326 is set to the reverse direction, and the processing pitch P (mm) is set to be smaller than 0.2 mm or larger than 0.7 mm.
  • the revolution direction of the processing ball 326 is set to the positive direction, and the processing pitch P (mm) is set to be smaller than 0.2 mm or larger than 0.4 mm.
  • Example 9 to 32 of the present invention the common tube 311a having an outer diameter of 9.53 mm and an inner diameter of 8.93 mm is used, and the other conditions are the same as shown in Table 4. Was processed.
  • the processing pitch P (mm) means that the processing ball 326 revolves around the base tube 311a by an angle equally distributed on the outer periphery of the base tube 311a by the number of processing balls 326 arranged on the outer periphery.
  • the distance the tube 311a travels in the drawing direction X is shown.
  • the processed tube 326 rotates while the outer periphery of the raw tube 311a rotates 90 degrees.
  • the moving distance P that 311a travels in the drawing direction X is set as the processing pitch P.
  • FIG. 10 is an explanatory diagram for explaining the processing pitch P schematically shown by partially omitting the vicinity of the groove processing means 314.
  • La, Ld, and Lb indicated by phantom lines in FIG. 10 are the three processed balls 326a, 326a, Reference numerals 326d and 326b indicate trajectories of pressing the raw tube 311a.
  • FIG. 10 shows a case where the revolution direction of the processed ball 326 is the reverse direction (the reverse direction to the rotation direction of the grooved plug 324).
  • the trajectories La, Lb, and Ld of the processed ball 326 are lowered to the right in FIG.
  • the processing results were evaluated by “groove formation” (whether or not the tube meat was unfilled) and “groove processing accuracy” (occurrence of aggression) formed on the inner surface of the raw tube 311a after grooving.
  • “egre” indicates an unfilled portion 401 of a material having a shape such that the fin 400 is notched in the thickness direction at the skirt of the inner surface fin 400 in the groove processing means 314. .
  • “Groove formation” is defined as “ ⁇ ” when the entire groove of the grooved plug 324 is filled with meat (having a groove with a predetermined depth) and without filling (having a predetermined depth). (Where no groove was formed) was evaluated as “ ⁇ ” or “ ⁇ ”. “ ⁇ ” is unfilled, but is in a practically usable range. Furthermore, “the processing accuracy of Groove” gouge is missing or gouges depth H e is what is within 10% of the fin Hem and " ⁇ ” gouges depth H e is within 30% of the fin Hem Those with a value of “ ⁇ ” were evaluated, and those with 30% or more were evaluated as “ ⁇ ” or “ ⁇ ”. “ ⁇ ” is gouge depth H e is equal to or more than 30% of the fin Hem, practically, is within the range that can be used.
  • Table 7 shows the results of the processing performed for each condition of Invention Examples 9 to 32.
  • Examples 9 to 32 of the present invention were any of “ ⁇ ”, “ ⁇ ”, and “ ⁇ ”, and there was no “ ⁇ ”. In particular, in Examples 11 to 18 and 23 to 25 of the present invention, all were “ ⁇ ” or “ ⁇ ”.
  • the depth of the angle is within 30% of the fin hem width, it is preferable that there is no possibility that the inner fin will fall when the heat exchanger is assembled into the aluminum fin in the post-processing.
  • inventive examples 11 to 18 and the inventive examples 23 to 25 have the inner grooved tube 311 of the inner grooved tube 311 under particularly preferable processing conditions in the examples of the present invention from the viewpoints of “groove formation” and “groove processing accuracy”. We were able to demonstrate that processing was possible.
  • revolution direction of the processed ball 326 is set to the reverse direction and the processing pitch P (mm) is set to be in the range of 0.2 ⁇ P ⁇ 0.7, or the revolution of the processed ball 326 is
  • the effectiveness of the present invention characterized by setting the direction to the positive direction and setting the machining pitch P (mm) to be in the range of 0.2 ⁇ P ⁇ 0.4 could be verified.
  • Example 13 In Example 13, a grooving experiment was conducted to examine the effect of changing the groove depth and twist angle of the grooved plug 324 in the grooving process. In this machining experiment, the machining pitch P of the machining balls 326 is changed to 0.20 mm, 0.40 mm, and 0.60 mm when the revolution direction of the machining balls 326 is the forward direction and the reverse direction, respectively. I did it.
  • Tables 8 to 10 show the results of experiments performed by changing the groove depth and twist angle of the grooved plug 324 and the processing pitch P of the processing balls 326 when the revolving direction of the processing balls 326 is the forward direction and the reverse direction, respectively. Indicates.
  • Table 8 shows the experimental results obtained by extracting the processing conditions in Tables 9 and 10 and a part of the processing results.
  • Example 12 the machining results were verified with respect to “groove formation” and “groove machining accuracy”, and all of these elements were “O” or “ ⁇ ”. Was evaluated as “x”, and “x” was not included in any of them, and “ ⁇ ” was included in one of them.
  • the processing pitch P can be set as large as 0.6 mm, for example.
  • Example 14 In Example 14, a grooving experiment was conducted to examine the effect of the revolution speed R (rpm) of the machining ball 326 on the machining.
  • the drawing speed at the time of machining the internally grooved tube 311 is V (m / min)
  • the revolution speed of the machining ball 326 is R (rpm)
  • the machining pitch of the machining ball 326 is P (mm)
  • the drawing speed V was set based on the formula (1) so that the machining pitch of the machining ball 326 is constant for each revolution speed of the machining ball 326 of 10,000 rpm, 30000 rpm, and 40000 rpm. Processing experiments similar to Example 12 and Example 13 were performed.
  • Example 12 As a result, even if the revolution speed of the processed ball 326 was changed, the same result as in Example 12 and Example 13 was obtained if the processing pitch P was the same.
  • the revolution speed of the processing ball 326 may be appropriately selected in consideration of the life of a processing tool such as the processing ball 326.
  • Example 15 In Example 15, a grooving experiment was conducted to examine the influence of the number C (number) of processed balls 326 arranged.
  • the drawing speed is changed by V (m / min) or the revolution speed R (rpm).
  • the processing pitch P (mm) can be kept constant.
  • Example 15 in each of the cases where the number C of the processed balls 326 is 3 and 5, the drawing speed is set to V so as to keep the processing pitch P (mm) constant based on the relationship of the expression (1). (M / min) and revolution speed were set to R (rpm), respectively, and processing experiments similar to those of Example 12, Example 13, and Example 14 were performed.
  • Example 12 As a result, even if the revolution speed of the processed ball 326 was changed, the same results as in Example 12, Example 13 and Example 14 were obtained as long as the processing pitch P was the same.
  • the number of processing balls 326 may be appropriately selected depending on the inner grooved tube 311 to be processed.
  • the processing ball 326 of this embodiment corresponds to a pressing tool.
  • the diameter reducing portion 313 corresponds to a diameter reducing means
  • the groove processing portion 314 corresponds to the groove processing means
  • the intermediate extraction portion 317 corresponds to the intermediate extraction device, but the present invention is not limited to the configuration of the third embodiment, and many embodiments can be obtained.
  • the manufacturing apparatus 510 ⁇ / b> A for inner surface grooved pipes in Embodiment 4A has a diameter reduction processing section 513, a groove processing section 514, from the upstream side in the pipe axial direction X to the downstream side (the drawing direction).
  • a diameter adjusting die 515 and a drawing part 516 (drawing part) are configured.
  • FIG. 13 is explanatory drawing of the manufacturing apparatus 510A of an internally grooved pipe
  • the manufacturing apparatus 510A includes a machining-related data detection unit 517 that detects machining-related data related to a machining load that occurs in the pipe axis direction in accordance with the drawing of the raw pipe 511a, and the processing-related data detection when a disconnection occurs.
  • a control unit 518 that determines that a disconnection has occurred based on the processing-related data detected by the unit 517 and outputs a drawing stop command to the drawing unit 516.
  • the diameter-reduction processing portion 513 includes a diameter-reducing die 522 and a floating plug 523 that is disposed in the element pipe 511a and reduces the diameter of the element pipe 511a together with the diameter-reducing die 522.
  • the diameter-reducing die 522 is formed in a cylindrical shape having a communication hole 522a that communicates with the tube axis direction X.
  • the communication hole 522a has an upstream portion (inlet side) in the tube axis direction X as a downstream portion (outlet side). ) With respect to the upstream side.
  • the floating plug 523 is formed in a cylindrical shape, and the outer periphery of the downstream portion is formed in a tapered shape.
  • the grooved portion 514 is rotatably connected to the floating plug 523 via a plug rod 525 in the raw tube 511a, and has a grooved plug 524 having a plurality of grooves formed on the outer periphery, and an outer side of the raw tube 511a.
  • a plurality of rolling balls 526 arranged to revolve around the tube axis while pressing the raw tube 511a toward the grooved plug 524, and a pressing treatment for pressing the rolled ball 526 toward the raw tube 511a. It is comprised with the tool 527.
  • the pressing jig 527 has a ring-shaped processing head 528 that holds the rolling ball 526 from the outer peripheral side, and has a sharp-angled conical inner peripheral surface that expands toward the downstream side in the tube axis direction X. And a ring-shaped pressing member 529 that applies a pressure to each rolling ball 526.
  • the plurality of rolling balls 526 are held by the inner peripheral surface of the processing head 528 as a rolling tool that can revolve while pressing the surface of the raw tube 511a in either the forward direction or the reverse direction. .
  • the diameter adjusting die 515 performs a process of smoothly adjusting the diameter of a tube surface caused by pressing of the rolling ball 526 in the groove processing portion 514 when the inner grooved tube 511 passes therethrough.
  • the drawing unit 516 combines the drawing drum 531 for winding the processed of the inner surface grooved tube 511 (winding drum), a motor M 1 for driving the drawing drum 531, inner grooved by the rotation of the motor M 1
  • the drawing tube 511 is wound around the drawing drum 531 while being pulled.
  • the machining-related data detection unit 517 is provided in the groove machining unit 514 and includes a groove machining load measurement load cell 541 for measuring the machining load in the groove machining unit 514 and a movable table 543.
  • the movable table 543 is configured to have a wheel at the lower part so as to be movable in the tube axis direction X with respect to the fixed table 542, and a pressing jig 527 for the groove processing portion 514 is installed at the upper part.
  • the groove processing load measuring load cell 541 is installed on the fixing jig 542a so as to be able to measure the processing load F in the tube axis direction X applied to the groove processing portion 514 via the movable table 543.
  • the control unit 518 receives a load detection signal S in obtained by converting the load F detected from the grooving load measurement load cell 541 into an electrical signal, and determines that a disconnection has occurred according to a control program to be described later. It outputs a stop signal S out to stop driving of the motor M 1 of the drawing portion 516 and.
  • control unit 518 includes an arithmetic unit (CPU) for executing signal analysis processing and arithmetic processing, a hard disk for storing necessary control programs, and the load detection signal S in for temporary storage.
  • CPU arithmetic unit
  • hard disk for storing necessary control programs
  • the load detection signal S in for temporary storage.
  • input means such as a keyboard for inputting control parameters
  • display means such as a monitor.
  • the inner grooved tube 511 can be manufactured by the manufacturing method described below using the manufacturing apparatus 510A described above.
  • a floating plug 523 and a grooved plug 524 rotatably connected to the floating plug 523 via a plug rod 525 are inserted into the raw tube 511a.
  • the processing head 528 is rotated while the raw tube 511 a is pulled out through the reduced diameter die 522 and the processing head 528.
  • a metal tube having good thermal conductivity such as copper, an alloy thereof, aluminum, or an alloy thereof can be used for the base tube 511a.
  • the raw tube 511a is reduced in diameter by the reduced diameter die 522 and the floating plug 523 along with the drawing.
  • a plurality of rolling balls 526 that revolve around the raw tube 511a as the machining head 528 rotates at the position of the grooved plug 524 presses the raw tube 511a.
  • the peripheral surface is pressed against the surface of the grooved plug 524, and the groove 550 on the peripheral surface of the grooved plug 524 is transferred to the inner surface of the raw tube 511a.
  • control unit 518 has a processing load F as processing related data detected by the groove processing load measurement load cell 541 when a disconnection occurs in the manufacturing process of the inner grooved tube 511 described above. Based on the above, it is determined that a disconnection has occurred, and control is performed to stop machining.
  • control unit 518 determines that a disconnection has occurred when the load detected by the load cell 541 for measuring a grooving load decreases to 20% or less during normal steady machining, and the motor M 1 of the drawing unit 516 A control program for stopping driving is executed.
  • the manufacturing apparatus 510A can provide the following operational effects.
  • the manufacturing apparatus 510A is configured to be able to determine that a disconnection has occurred based on the processing load F detected by the groove processing load measurement load cell 541 provided in the groove processing section 514, and upstream of the diameter adjusting die 515, In particular, even when a disconnection occurs at the groove processing portion 514 or upstream thereof, it can be quickly and reliably determined that the disconnection has occurred.
  • the rolling ball 526 directly presses the grooved plug 524 without passing through the raw tube 511a, and the grooved plug 524 Can be prevented from being damaged.
  • the manufacturing apparatus 510A performs control to determine that the tube is broken when the processing load F detected by the load cell 541 for measuring the grooving load during processing decreases to 20% or less of the processing load during normal steady processing. For this reason, it can be determined that the tube is broken when the load drops to the mechanical loss level.
  • the machining-related data detection unit 517 installs the groove machining unit 514 on the movable table 543, and loads the load in the tube axis direction X applied to the groove machining unit 514 via the movable table 543 to measure the groove machining load. Therefore, the load in the tube axis direction X applied to the groove machining portion 514 can be accurately measured.
  • tube in other embodiment is demonstrated.
  • the same reference numerals are given to the same configurations as the inner grooved tube manufacturing device 510A in the above-described embodiment 4A. The description is omitted.
  • the inner surface grooved pipe manufacturing apparatus 510 ⁇ / b> B is configured to reduce the diameter reducing portion 513, the groove processing portion 514, and the diameter adjusting die 515 along the tube axis direction X from the upstream side to the downstream side.
  • the drawing unit 516 is configured, and a processing related data detection unit 545 and a control unit 546 are provided.
  • the machining-related data detection unit 545 includes a reduced-diameter machining load measurement load cell 545 that is provided in the reduced-diameter machining unit 513 and measures a machining load F in the reduced-diameter machining unit 513.
  • the diameter reduction load measuring load cell 545 is attached to the diameter reduction die 522 and can detect the load in the tube axis direction X applied to the diameter reduction die 522.
  • the inner surface grooved tube manufacturing apparatus 510B according to Embodiment 4B does not include the groove processing load measurement load cell 541 and the movable base 543 in the groove processing portion 514.
  • the control unit 546 is input to load F detected from diameter reduction load measuring load cell 545 is an electrical signal of the load detection signal S in, in accordance with a control program, performs detection of the disconnection tube, when the cross-sectional tubes occurred, the cross-sectional tube outputs a stop signal S out to stop driving of the motor M 1 of the drawing unit 516 determines to have occurred.
  • control unit 546 determines that the tube is disconnected when the processing load F detected by the load cell 545 for measuring a reduced diameter processing load is reduced to 20% or less during normal steady processing, and determines the motor M 1 of the drawing unit 516.
  • a control program for stopping driving is executed.
  • the manufacturing apparatus 510B can provide the following operational effects.
  • the manufacturing apparatus 510 ⁇ / b> B is configured to determine that a disconnection has occurred based on the processing load F measured by the load cell 545 for measuring a diameter reduction load provided in the diameter reduction processing portion 513, and is upstream of the diameter adjusting die 515. Even when a disconnection occurs on the side, it can be quickly and reliably determined that the disconnection has occurred.
  • the load applied to the reduced diameter processing portion 513 becomes zero due to the drawing of the raw tube simultaneously with the occurrence of the disconnection, It can be immediately determined that a disconnection has occurred.
  • the inner surface grooved pipe manufacturing apparatus 510 ⁇ / b> C according to Embodiment 4C has a diameter reduction processing part 513 and an intermediate drawing part 551 (intermediate drawing part) along the pipe axis direction X from the upstream side to the downstream side.
  • a groove processing unit 514, a diameter adjusting die 515, and a drawing unit 516, and a processing related data detection unit 552 and a control unit 553 are provided.
  • FIG. 15 is an explanatory diagram of an inner grooved tube manufacturing apparatus 510C according to Embodiment 4C.
  • the intermediate drawing portion 551 assists the drawing by the drawing portion 516 by drawing the raw tube 511a in the tube axis direction X between the reduced diameter portion 513 and the groove processing portion 514. That is, the grooving by the grooving portion 514 becomes resistance when the raw tube 511a is drawn, and the drawing (drawing) load at the time of grooving increases, but the intermediate drawing portion 551 applies to the raw tube 511a.
  • the drawing load can be dispersed in the tube axis direction X, and as a result, the load applied to the groove processing portion 514 can be reduced.
  • the intermediate drawing portion 551 includes a pair of belts 554 arranged on the upper and lower sides or the left and right sides with respect to the raw tube 511a.
  • Each belt 554 is stretched by the pulley 5555 in a loop (endless) is configured to be rotated by the motor M 2.
  • the belt 554 has a plurality of pads 556 connected to the outer peripheral surface along the length direction.
  • the pad 556 is formed with a pad groove in which the cut surface with respect to the connecting direction of the plurality of pads 556 has an arcuate shape at the contact portion with the outer surface of the base tube 511a after the diameter reduction by the diameter reducing portion 513. is doing.
  • the intermediate drawing unit 551 presses the pad 556 to the base pipe 511a surface by driving of the motor M 3, or are retractably configuration.
  • a wiper 557 is provided on the upstream side of the intermediate drawing portion 551 to remove an oil film and foreign matter adhering to the outer surface of the raw pipe 511a, and an intermediate diameter adjusting die 558 is provided on the downstream side.
  • the wiper 557 is provided to remove an oil film and foreign matter adhering to the outer surface of the raw tube 511a, and has a through hole having a diameter slightly smaller than the outer diameter of the raw tube 511a in order to pass through the raw tube 511a.
  • a rubber cylindrical body formed in the central portion.
  • the intermediate diameter adjusting die 558 is provided to return the cross-sectional shape of the flat tube 511a flattened by the intermediate drawing portion 551 to a shape close to a perfect circle, and the diameter of the reduced diameter die 522 is changed according to the shape of the raw tube 511a. It is configured with the same or smaller die diameter.
  • the control unit 553, by controlling the driving of the motor M 3 of the intermediate drawing unit 551 can control the pressing force against the base pipe 511a by the pad 556 of the intermediate drawing section 551. By pressing the pad 556 against the base tube 511a with an appropriate pressing force, the slip between the pad 556 and the base tube 511a is reduced, and the fluctuation of the load F is reduced.
  • the processing related data detection unit 552 is an ammeter 552 that detects a current value (electrical signal) corresponding to a driving force command value to the motor M 3 as a signal related to the driving force of the motor M 3 of the intermediate drawing unit 551. It is composed.
  • the manufacturing apparatus 510C does not include the groove processing load measurement load cell 541 and the movable base 543 in the groove processing portion 514, and does not include the load cell 545 for diameter reduction processing load measurement in the diameter reduction processing portion 513. .
  • control unit 553 includes a calculation unit that differentiates the current value detected by the ammeter 552, and includes a storage unit that stores the differential value as load-related data. Further, the control unit 553, when the differential value varies significantly beyond 5 ⁇ variations of steady state processing, determines that the cross tube, the motor M 1 of the drawing unit 516, the motor M 3 of the intermediate drawing section 551 A control program for outputting a drawing stop command is provided.
  • the internally grooved tube 511 can be manufactured using the manufacturing apparatus 510C described above.
  • the control unit 553 when the raw tube 511a is broken, it is determined that the disconnection has occurred based on the differential value obtained by differentiating the current value detected by the ammeter 552, and the processing is stopped. Specifically, according to the manufacturing method of the inner surface grooved tube 511, the amount of change in the differential value obtained by differentiating the current value detected by the ammeter 552 is measured, and when the fluctuation exceeds 5 ⁇ , it is determined that the tube is broken, and the drawing unit motor M 1 516, to stop the device, such as a motor M 2 of the intermediate drawing section 551.
  • the manufacturing apparatus 510 ⁇ / b> C can provide the following operational effects.
  • the manufacturing apparatus 510 ⁇ / b> C can reliably detect a broken tube generated upstream of the diameter adjusting die 515 before the grooved plug 524 is damaged.
  • the manufacturing apparatus 510C can determine that a disconnection has occurred based on a differential value obtained by differentiating a current value that is a command value of the motor load (driving force) of the intermediate drawing unit 551, the intermediate drawing unit 551 Even under a situation in which the load fluctuation is large due to the drawing assistance of the portion 551, it is possible to quickly and reliably detect the disconnection that has occurred on the upstream side of the intermediate drawing portion 551 or the intermediate drawing portion 551.
  • the load cell and torque gauge since it is determined configuration to the cross-sectional tubes occurred, the load cell and torque gauge, further, for installing these It is not necessary to add hardware such as a movable table, and for example, disconnection can be detected by simple hardware such as an ammeter 552.
  • 510 C of inner surface grooved pipe manufacturing apparatuses of Embodiment 4C are not restricted to the structure which detects a disconnection based only on the said process related data detection part 552 (ammeter 552) with which the intermediate
  • the manufacturing apparatus 510C includes a groove processing load measurement load cell 541 in the groove processing unit 514 and / or a diameter reducing processing load measurement load cell 545 in the diameter reduction processing unit 513. It does not exclude the configuration for detecting the occurrence of disconnection at each location.
  • Example 16 Subsequently, when the tube 511a (inner surface grooved tube 511) is disconnected during the processing of the inner surface grooved tube 511 using the manufacturing apparatus of the present invention, the grooved plug 524, which is difficult to substitute, is not damaged.
  • An experiment for detecting the disconnection was conducted to verify whether or not the occurrence of the disconnection can be determined.
  • the manufacturing apparatuses 510A, 510B, and 510C of Embodiments 4A to 4C are used as the manufacturing apparatus of the present invention, and the related art is used as a comparative example of the manufacturing apparatuses 510A, 510B, and 510C of Embodiments 4A to 4C. This was performed using the manufacturing apparatus according to the above.
  • the processing load detection units 517, 545, and 552 are provided as appropriate, and the processing load detection units 517, 545, and 552 detect processing load related data.
  • Table 11 and FIG. 16 summarize the presence / absence of installation of the intermediate drawing unit 551, the type of the processing load detection units 517, 545, and 552, and the installation location of the intermediate drawing unit 551 for the manufacturing apparatuses 510A, 510B, and 510C of Embodiments 4A to 4C. As shown in FIG.
  • Table 11 is a table
  • FIG. 16 is a schematic diagram of a manufacturing apparatus in which the processing load detection unit is installed in each of the manufacturing apparatuses of Embodiments 4A and 4B and the comparative example, and the intermediate drawing unit is not installed.
  • FIG. 17 is a schematic diagram of a manufacturing apparatus in which an intermediate drawing unit is installed, showing the installation location of the processing load detection unit installed in the manufacturing apparatus of Embodiment 4C.
  • production location was made into nine places of the disconnection location a to i as shown in FIG. 16, FIG.
  • the disconnection points a to d are as shown in FIG. 16. Specifically, the disconnection point a is between the diameter adjusting die 515 and the drawing part 516, and the disconnection point b is within the diameter adjusting die 515.
  • the disconnection part c is in the groove processing part 514 or between the diameter reduction processing part 513 and the groove processing part 514, and the disconnection part d is , Between the payoff table 562 for supplying the raw pipe 511a from the inside of the reduced diameter processing portion 513 or from the upstream side of the reduced diameter processing portion 513 and the reduced diameter processing portion 513.
  • the disconnection points e to i are as shown in FIG. 17. Specifically, the disconnection point e is between the diameter adjusting die 515 and the drawing part 516, and the disconnection point f is within the diameter adjusting die 515. Or it is between the groove processing part 514 and the diameter adjusting die 515, the disconnection part g is in the groove processing part 514 or between the intermediate drawing part 551 and the groove processing part 514, and the disconnection part h is Between the reduced diameter processing portion 513 and the intermediate drawing portion 551, the disconnection point i is in the reduced diameter processing portion 513 or between the payoff table 562 and the reduced diameter processing portion 513.
  • the disconnection detection experiments 0-a, 0-b are respectively performed when the disconnection occurs at each of the disconnection locations a, b, c, d using the manufacturing apparatus of the comparative example. , 0-c, 0-d.
  • the disconnection detection experiments 1-a, 1-b, and 1 are respectively performed when the disconnection occurs at each of the disconnection locations a, b, c, and d using the manufacturing apparatus 510A of Embodiment 4A. -C, 1-d.
  • the disconnection detection experiments 2-a, 2-b, and 2 are performed when the disconnection occurs at each of the disconnection points a, b, c, and d using the manufacturing apparatus 510B of Embodiment 4B. -C, 2-d.
  • the disconnection detection experiment 3-e, 3-f is performed when the disconnection occurs at each of the disconnection locations e, f, g, h, i using the manufacturing apparatus 510C of Embodiment 4C. , 3-g, 3-h, 3-i.
  • FIGS. FIG. 18 to FIG. 29 are graphs showing the relationship between the machining load and time detected by the machining load detection unit appropriately provided in each machining unit in each disconnection detection experiment. It is assumed that a disconnection has occurred when the second has elapsed.
  • the threshold value is a value that is reduced by a ratio of 20% with respect to the drawing load of the motor M 1 at the time of steady processing of the drawing drum 531 described above.
  • FIGS. 18 to 21 show the experimental results of the disconnection detection experiments in the disconnection detection experiments 0-a, 0-b, 0-c, and 0-d, respectively.
  • the disconnection detection line needs to be set within a range where it is possible to determine that the disconnection has occurred and to prevent the disconnection from being erroneously detected.
  • the drawing load of the drawing drum 531 fluctuates within a range of about ⁇ 50 N within a machining time range of several hundred seconds as shown in FIG. Paying attention to the machining time range of several hundreds of minutes between the beginning and end of the lot, the load of the drawing drum 531 is further increased due to the difference in the annealing state before and after the copper pipe, uneven thickness, wear of the grooved plug 524, etc. There will be fluctuations.
  • the difference between the lots of copper pipes, the difference in the solids of the grooved plug 524, and the difference due to seasonal variation are larger.
  • the drawing load of the drawing drum 531 is about It fluctuates in the range of 1500N to 3000N.
  • disconnection detection line is raised as a threshold for disconnection detection, erroneous detection of the occurrence of disconnection increases. Therefore, it is necessary to set the disconnection detection line within a range in which erroneous detection of disconnection does not occur.
  • the result of the disconnection detection experiment 0-a is as shown in FIG. As shown in FIG. 18, until the cross tube occurs, drawing load drawing drum 531, although shifted in the range of steady state processing, simultaneously with the cross tube occurs, drawing load of the motor M 1 is than the cross tube detection line Since the mechanical loss level is lowered to a low mechanical loss level, it is possible to prevent the grooved plug 524 from being damaged by the rolled ball 526 by determining that the disconnection has occurred simultaneously with the occurrence of the disconnection and stopping the apparatus.
  • the result of the disconnection detection experiment 0-b is as shown in FIG.
  • the drawing load of the drawing drum 531 drops at the same time as the disconnection occurs, but does not fall below the disconnection detection line (see point a of the load waveform in FIG. 19), and the fracture portion is At the same time as passing through the diameter adjusting die 515, the drawing load of the drawing drum 531 falls to a mechanical loss level lower than the broken tube detection line, so the control unit determines that the tube is broken and stops the apparatus.
  • the manufacturing apparatus of the comparative example can stop processing after the occurrence of the disconnection, but there is a slight delay between the occurrence of the disconnection and the detection of the disconnection. become.
  • the disconnection detection line is set higher than the load value that drops simultaneously with the occurrence of the disconnection (see point a of the load waveform in FIG. 19), the disconnection occurs before the fractured portion passes through the diameter adjusting die 515.
  • the drawing load fluctuates during processing due to various factors, false detection of disconnection is likely to occur, and processing efficiency is greatly reduced. It is not preferable.
  • the result of the disconnection detection experiment 0-c is as shown in FIG.
  • the drawing load of the drawing drum 531 drops at the same time as the disconnection occurs, but drops step by step every time the fractured portion passes through the groove processing portion 514 and the diameter adjusting die 515, and the fractured portion Until the diameter passes through the sizing die 515, the drawing load does not drop to a mechanical loss level lower than that of the disconnection detection line, and the controller determines that the disconnection has occurred until it finally passes through the sizing die 515. I can't.
  • the disconnection occurs at the disconnection location c that is upstream of the groove processing portion 514, but it is determined that the disconnection has occurred after the disconnection has occurred, and there is a delay in the time required to stop the apparatus. Therefore, during this time, the fractured portion passes through the grooved portion 514 having the grooved plug 524, and the rolling ball 526 directly contacts the grooved plug 524, so that the grooved plug 524 may be damaged.
  • points a and b in the waveform of the drawing load in FIG. 20 indicate that the fracture portion is passing through the groove processing portion 514 and the diameter-controlling die 515, respectively.
  • the result of the disconnection detection experiment 0-d is as shown in FIG.
  • the drawing load of the drawing drum 531 drops at the same time as the occurrence of the broken tube, as in the broken tube detection experiment 0-c, but the fractured portion is the reduced diameter processed portion 513, the groove processed portion 514, Each time it passes through the diameter die 515, it is lowered step by step, and the drawing load does not drop to a mechanical loss level lower than that of the disconnection detection line until it passes through the diameter adjustment die 515. It is not possible to determine that a disconnection has occurred until it passes.
  • the disconnection detection line is set to be 20% of the measurement load (processing load F) at the time of steady machining measured by the grooving load measuring unit 517 as a threshold for detecting the disconnection, When the measured load falls below the broken tube detection line, it is determined that the tube is broken, and control is performed to stop the apparatus.
  • the result of the disconnection detection experiment 1-a is as shown in FIG. As shown in FIG. 22, since the measurement load of the groove processing load measuring unit 517 falls to zero, the measurement load is lower than the disconnection detection line simultaneously with the occurrence of the disconnection, it is determined that the disconnection has occurred immediately. Yes, the device can be stopped without damaging the fluted plug 524.
  • the measured load drops to zero after the disconnection when the disconnection occurs on the downstream side of the groove processing portion 514.
  • the drawing of the raw pipe 511a by the drawing drum 531 occurs simultaneously with the generation of the disconnection. This is because it does not work completely up to 514.
  • the disconnection detection experiment 1-b can detect the disconnection immediately because the measurement load drops to zero as soon as the disconnection occurs. The device can be shut down without damaging 524. Note that the measurement load of the grooving load measurement unit 517 in the disconnection detection experiment 1-b has substantially the same waveform as that in FIG. 22, and thus a graph showing the relationship between the machining load and the elapsed time is omitted.
  • the result of the disconnection detection experiment 1-c is as shown in FIG. As shown in FIG. 23, the measurement load of the grooving load measurement unit 517 does not drop simultaneously with the occurrence of the broken tube. This is because, when a disconnection occurs at the disconnection point c that is upstream of the groove processing portion 514, even if the disconnection occurs until the fractured portion passes the groove processing portion 514, the raw pipe by the drawing drum 531 This is because the drawing of 511a acts up to the groove processing portion 514.
  • the control portion descends to zero, which is lower than the cut-off detection line. Determine and stop the device.
  • the apparatus in the case of the disconnection location c, the apparatus cannot be stopped simultaneously with the occurrence of the disconnection, but the disconnection has occurred at the same time as the fracture portion passes the groove processing portion 514. Since the determination and the apparatus can be stopped immediately, it is possible to prevent the grooved plug 524 from being damaged.
  • the fracture portion passes through the groove processing portion 514, and further the diameter adjusting die. It cannot be determined that the disconnection has occurred until it passes through 515 (see FIG. 20). That is, the rolling ball 526 comes into contact with the grooved plug 524 for a few seconds while the fracture portion passes between the groove processing portion 514 and the diameter adjusting die 515 and passes through the diameter adjusting die 515, and the groove The plug 524 will be damaged.
  • the fracture portion is between the groove processing part 514 and the diameter adjusting die 515 and the diameter adjusting die compared to the manufacturing apparatus of the comparative example. Since the apparatus can be stopped quickly only while passing through 515, it is possible to prevent the grooved plug 524 from coming into contact with the rolled ball 526 and being damaged.
  • the manufacturing apparatus 510A of Embodiment 4A cannot determine that the disconnection has occurred simultaneously with the occurrence of the disconnection, but the fracture portion is reduced in diameter.
  • the measurement load of the groove processing load measurement portion 517 drops to zero (see point a in the load waveform in FIG. 24), so the passage through the groove processing portion 514
  • the measurement load of the reduced diameter processing load measuring unit drops to zero at the same time that the measured load falls to zero, which is lower than the broken line detection line, and the occurrence of broken pipe immediately.
  • the determination can be made, and the apparatus can be stopped without damaging the grooved plug 524.
  • the measurement load of the groove processing load measuring unit 517 in the disconnection detection experiments 2-b and 2-c has substantially the same waveform as that in FIG. 25, and therefore the graph showing the relationship between the processing load and the elapsed time is omitted. To do.
  • the measurement load of the reduced diameter processing load measuring portion does not drop at the same time as the occurrence of the disconnection, but is lower than the disconnection detection line at the same time as the broken portion passes the reduced diameter processing portion 513.
  • the controller descends to zero, and the control unit determines that a disconnection has occurred and stops the apparatus.
  • the apparatus cannot be stopped simultaneously with the occurrence of the disconnection, but it is determined that the disconnection has occurred at the same time as the fractured portion passes through the reduced diameter processing portion 513, and the fractured portion is Since the apparatus can be stopped before passing through the grooved portion 514, it is possible to prevent the grooved plug 524 from being damaged.
  • the drawing load in the intermediate drawing unit 551 is actually due to various factors such as the state of the raw pipe 511a (copper pipe) before the machining, the state of the apparatus, and the machining environment even during the steady machining. The amount of change increases.
  • the disconnection can be accurately determined by detecting the occurrence of the disconnection using the differential value of the drawing load as in the manufacturing apparatus 510C of the embodiment 4C.
  • FIG. 27 is a graph showing the drawing load and the amount of load change (differential value) in the intermediate drawing unit 551 before and after the occurrence of the broken tube, and the drawing load is plotted on the left side in FIG. The amount of change in the load is indicated on the right side in FIG.
  • the disconnection detection experiments 3-f and 3-g have a change amount (differential value) of the drawing load of the intermediate drawing portion 551 exceeding 5 ⁇ at the same time as the occurrence of the disconnection.
  • the disconnection can be detected immediately, and the apparatus can be stopped without damaging the grooved plug 524.
  • the measurement load of the intermediate drawing portion 551 in the disconnection detection experiments 3-f and 3-g has substantially the same waveform as that in FIG. 27, and thus the graph showing the relationship between the machining load and the elapsed time is omitted.
  • a disconnection occurs in the intermediate drawing portion 551 or at a disconnection location h upstream of the intermediate drawing portion 551.
  • the amount of change (differential value) in the drawing load of the drawing unit 551 changes until it exceeds 5 ⁇ , and it can be immediately determined that disconnection has occurred, and the apparatus can be stopped without damaging the grooved plug 524.
  • the load of the intermediate drawing portion 551 and the change amount (differential value) of the intermediate drawing portion 551 do not drop as soon as the broken tube is generated. Since the disconnection occurs at the disconnection location i upstream of the diameter reducing portion 513, the drawing load of the intermediate drawing portion 551 is not affected until the fracture portion passes the diameter reducing portion 513. Because.
  • the amount of change (differential value) in the load of the intermediate drawing portion 551 changes in the same manner as the disconnection detection experiment 3-h until the occurrence of disconnection occurs. The determination can be made, and the apparatus can be stopped without damaging the grooved plug 524.
  • the grooved plug 524 was directly pressed against the rolled ball 526 and was damaged depending on the location where the disconnection occurred.
  • each of the manufacturing apparatuses of Embodiments 4A to 4C determines that a tube break has occurred during processing before the grooved plug 524 is damaged by the rolled ball 526, and stops processing. I was able to.
  • the grooved plug 524 can be prevented from being damaged by the inner grooved tube manufacturing apparatus and method of the present invention.
  • the diameter-reduction processing portion 513 of this embodiment corresponds to the diameter-reducing means of the present invention.
  • the groove processing portion 514 corresponds to the groove processing means
  • the drawing unit 516 corresponds to drawing means
  • the intermediate drawing unit 551 corresponds to the intermediate drawing means
  • the measurement load measured by the machining-related data detection units 517 and 545 or the current measured by the ammeter 552 corresponds to the machining-related data
  • Processing-related data detection units 517, 545, 552 correspond to processing-related data detection means
  • Control units 518, 546, and 553 including a calculation unit and a storage unit correspond to the disconnection determination unit
  • the groove processing load measuring load cell 541 corresponds to the groove processing load measuring means
  • the diameter reducing load measuring load cell 545 corresponds to the diameter reducing load measuring means
  • the differential value of the drawing load of the intermediate drawing unit 551 corresponds to the load related data
  • the calculation unit of the ammeter 552 and the control unit 553 corresponds

Abstract

Provided is a pipe having a grooved inner surface, which has excellent thermal conduction properties, can be made compact and lightweight, and allows resources to be conserved. Also provided are a method and apparatus for producing this pipe having a grooved inner surface, which allow efficient and stable production thereof. The apparatus which is used for producing the pipe having a grooved inner surface is provided with: diameter-reducing means for drawing a base pipe in order to reduce the diameter thereof, and groove-forming means for forming a large number of grooves on the inner surface of the base pipe. If, for example, the angle of twist of a groove with respect to the centre axis of the pipe is β (º) and the apex angle of a fin which is formed between adjacent grooves is α (º), then β is between 30 and 60 and α is between 5 and 20. If the outer diameter is D (mm), the groove depth is H (mm), and the cross-sectional area with respect to the axial direction of the pipe is Ac (mm2), then D is no greater than 6, H is at least 0.07, and Ac < 0.8 × D.

Description

内面溝付管、その製造装置およびその製造方法Internal grooved tube, manufacturing apparatus and manufacturing method thereof
 この発明は、例えば冷凍機や空調機等の熱交換器用の伝熱管として用いられる内面溝付管およびその製造方法に関する。 The present invention relates to an internally grooved tube used as a heat transfer tube for a heat exchanger such as a refrigerator or an air conditioner, and a manufacturing method thereof.
 エアコンや給湯器などのヒートポンプ機器の熱交換器に用いられる伝熱管は、熱交換性能の向上を図るため、内面に溝加工を施した例えば、銅製の内面溝付管が用いられることが多い。 Heat transfer tubes used in heat exchangers of heat pump equipment such as air conditioners and water heaters often use, for example, copper inner grooved tubes with inner surfaces grooved in order to improve heat exchange performance.
 近年では、熱交換器の小型化、高効率化の要求に対応させるため、内面に形成された溝を深くし、溝のねじれ角(リード角)を大きくし、フィンをシャープな形状にし、管の肉厚を薄くした内面溝付管を製造することにより、熱交換器の性能を向上させている。 In recent years, in order to meet the demands for miniaturization and high efficiency of heat exchangers, the groove formed on the inner surface is deepened, the torsion angle (lead angle) of the groove is increased, the fins are sharpened, and the tube The performance of the heat exchanger is improved by manufacturing an internally grooved tube with a reduced wall thickness.
 例えば、下記特許文献1では、熱交換機器の小型化に有効な外径が3~6mmという小径伝熱管が提案されているが、溝の加工性は、従来の加工方法で行うことを前提としているため、ねじれ角は小さく、性能向上の程度が小さかった。 For example, Patent Document 1 below proposes a small-diameter heat transfer tube having an outer diameter of 3 to 6 mm, which is effective for downsizing heat exchange equipment. However, the workability of the groove is assumed to be performed by a conventional processing method. Therefore, the twist angle was small and the degree of performance improvement was small.
 また、内面フィンの頂角が大きく、シャープな形状とはいえないため、近年の金属材料の省資源化に対応するための軽量化(単位長さあたりに使用する材料重量の削減)を図ることが難しかった。 In addition, since the apex angle of the inner fin is large and it cannot be said that it has a sharp shape, the weight must be reduced (reducing the weight of the material used per unit length) to cope with the recent resource saving of metal materials. It was difficult.
 また、下記特許文献2では、内面溝深さを深くした高性能伝熱管の例が提案されているが、外径6mm以上のものを対象としている。 Also, in Patent Document 2 below, an example of a high performance heat transfer tube having a deep inner groove depth is proposed, but it is intended for an outer diameter of 6 mm or more.
 下記特許文献3では、内面溝深さを深くし、ねじれ角の大きな高性能管の例が提案されているが、従来より、空調用伝熱管として一般的であった外径7mm前後の伝熱管を対象としている。 Patent Document 3 below proposes an example of a high performance tube having a deep inner groove depth and a large twist angle. Conventionally, a heat transfer tube having an outer diameter of about 7 mm, which has been generally used as a heat transfer tube for air conditioning. Is targeted.
 このように上述した特許文献2、3では、伝熱管の内面の溝深さを深くしたり、ねじれ角を大きくすることで高性能化を図っているが、熱交換器の小型化に有効な外径6mm以下の小径伝熱管に適用できていない。その理由は、同じ肉厚で径が異なる管同士であれば、小径な管の方が破断荷重が小さくなることから、管が小径になると、従来の加工方法では内面溝の加工荷重が、管の破断荷重を上回って加工できなったからである。 As described above, in Patent Documents 2 and 3 described above, high performance is achieved by increasing the groove depth of the inner surface of the heat transfer tube or increasing the torsion angle, but this is effective for downsizing the heat exchanger. It cannot be applied to small-diameter heat transfer tubes with an outer diameter of 6 mm or less. The reason for this is that if the tubes have the same wall thickness but different diameters, the breaking load will be smaller for smaller diameter tubes. This is because it has been impossible to process exceeding the breaking load.
 このような内面溝付管の製造方法において、前記引抜きダイスと前記押圧手段の間の位置で、前記金属管を一対のキャタピラで挟み該キャタピラを移動させる補助引抜き装置を用いる方法が提案されている(特許文献4参照)。これにより、金属管の破断を起こさずに、外径が小さい、肉の薄い、内面の溝が深い、または溝の管軸に対する捩れ角(リード角)が大きい内面溝付金属管を容易に製造することができるとされている。 In such a method of manufacturing an internally grooved tube, there has been proposed a method using an auxiliary drawing device in which the metal pipe is sandwiched between a pair of caterpillars at a position between the drawing die and the pressing means. (See Patent Document 4). This makes it easy to produce an internally grooved metal tube with a small outer diameter, a thin wall, a deep groove on the inner surface, or a large twist angle (lead angle) with respect to the tube axis without causing the metal tube to break. It is supposed to be possible.
 また、内面溝付管の高精度化に対応すべく、溝加工された内面溝付管を引き抜く引抜き手段に対して引抜き方向に移動可能な基台に、素管を縮径する縮径手段、補助引抜き装置、引抜きダイスとフローティングプラグとで構成する溝加工手段および溝加工された縮径管の外面を仕上げる仕上げ加工装置を固定し、引抜き手段が溝加工された内面溝付管を引き抜く際に、引抜き手段に対して相対移動する基台にかかる荷重を検出する基台荷重検出装置を備えた内面溝付管の製造装置が提案されている(特許文献5参照)。 Further, in order to correspond to the high accuracy of the inner surface grooved tube, the diameter reducing means for reducing the diameter of the raw tube on the base movable in the drawing direction with respect to the drawing means for pulling out the grooved inner surface grooved tube, Auxiliary drawing device, grooving means composed of drawing dies and floating plugs, and finishing processing device that finishes the outer surface of grooved reduced diameter pipe are fixed, and the drawing means pulls the grooved inner grooved tube An apparatus for manufacturing an internally grooved tube having a base load detection device that detects a load applied to a base that moves relative to the drawing means has been proposed (see Patent Document 5).
 特許文献5では、引抜き手段による管の引抜きを補助する補助引抜き装置と、引抜き力を検出する引抜き力検出手段と、前記引抜き力検出手段の検出値に基づいて、前記素管に対する引抜き力を目標範囲内に収まるように制御する制御手段とを備えた内面溝付管の製造装置および該製造装置を用いた製造方法が提案されている。 In Patent Document 5, an auxiliary pulling device for assisting pulling of a pipe by a pulling means, a pulling force detecting means for detecting a pulling force, and a pulling force for the raw pipe based on a detection value of the pulling force detecting means are set as targets. An apparatus for manufacturing an internally grooved pipe provided with a control means for controlling the apparatus so as to be within a range and a manufacturing method using the manufacturing apparatus have been proposed.
 しかし、特許文献5では、内面溝付管の製造装置を運転する上で引抜き力検出手段で検出する加工荷重が最適となる目標荷重値が管軸方向に対する断面積との関係の上で明らかにされていない。このため、補助引抜き装置を適切に制御することができず、高性能な伝熱管を効率よく安定して製造することができなかった。 However, in Patent Document 5, the target load value at which the processing load detected by the pulling force detection means is optimal in operating the manufacturing apparatus for the internally grooved pipe is clearly in relation to the cross-sectional area in the pipe axis direction. It has not been. For this reason, the auxiliary drawing device cannot be appropriately controlled, and a high-performance heat transfer tube cannot be manufactured efficiently and stably.
 特許文献6の内面溝付管の製造装置は、素管を縮径するために縮径ダイスとフローティングプラグとを備えるとともに、素管の引抜き方向下流側に素管内面に多数の溝を形成する溝付プラグと押圧用工具を備えている。さらに前記縮径ダイスと前記加工ヘッドとの間には、加工途中における素管の破断を防止するため、素管の引抜き方向に沿って、ワイパー、引抜き装置(中間引抜き装置)、中間整形ダイスを備えた構成である。 The apparatus for manufacturing an internally grooved tube of Patent Document 6 includes a diameter reducing die and a floating plug for reducing the diameter of the element tube, and forms a large number of grooves on the inner surface of the element tube on the downstream side in the drawing direction of the element tube. A grooved plug and a pressing tool are provided. Further, a wiper, a drawing device (intermediate drawing device), and an intermediate shaping die are provided between the reduced diameter die and the processing head along the drawing direction of the raw tube in order to prevent breakage of the raw tube during processing. This is a configuration provided.
 特許文献5の内面溝付管の製造装置も同様に、素管を縮径するために縮径手段と、素管の引抜き方向下流側に素管内面に多数の溝を形成する溝加工手段と、加工済みの内面溝付管を巻き取る巻取りドラムを兼ねた引抜き手段を備えている。さらに、前記引抜き手段を補助する補助引抜き装置(中間引抜き装置)と、前記引抜き手段や補助引抜き装置の引抜き力を目標範囲に収まるよう制御する制御手段を備えた構成である。 Similarly, the manufacturing apparatus of the inner surface grooved pipe of Patent Document 5 also includes a diameter reducing means for reducing the diameter of the raw pipe, and a groove processing means for forming a plurality of grooves on the inner face of the raw pipe on the downstream side in the drawing direction of the raw pipe. A drawing means is also provided which also serves as a take-up drum for winding the processed inner grooved tube. Furthermore, it is a structure provided with the auxiliary | assistant extraction apparatus (intermediate extraction apparatus) which assists the said extraction means, and the control means which controls the extraction force of the said extraction means and an auxiliary extraction apparatus so that it may be settled in a target range.
 特許文献5,6に開示の内面溝付管の製造装置によれば、中間引抜き装置によって加工時の引抜き荷重を低減させ、加工中における管の破断の抑制を図ることができる。 According to the apparatus for manufacturing an internally grooved tube disclosed in Patent Documents 5 and 6, it is possible to reduce the drawing load during processing by the intermediate drawing device and to suppress the breakage of the tube during the processing.
 しかし、引張り荷重全体を低減することができても、引張り荷重に変動が発生した場合、このような荷重変動に対して十分に対応した加工を行うことができなかった。 However, even if the entire tensile load can be reduced, if the tensile load fluctuates, it has not been possible to perform processing that sufficiently copes with such a load variation.
 例えば、特許文献6に開示の製造装置では、中間引抜き装置に備え、素管に接触されるパッドが素管に対して滑ることを防止するためにワイパーを設けたり、パッドの溝形状を規定する対策が施されているが、それでも荷重変動は起こりうる。
特開平4-260792号公報 特開平8-21696号公報 特開2001-241877号公報 特許2950289号公報 特開2008-87004号公報 特開2008-36640号公報
For example, in the manufacturing apparatus disclosed in Patent Document 6, a wiper is provided in order to prevent a pad that is in contact with the element pipe from sliding relative to the element pipe, or a groove shape of the pad is defined in the intermediate drawing apparatus. Although measures have been taken, load fluctuations can still occur.
JP-A-4-260792 JP-A-8-21696 JP 2001-241877 A Japanese Patent No. 2950289 JP 2008-87004 A JP 2008-36640 A
 そこで本発明は、熱伝導性能に優れ、小型化、軽量化を図ることができ、省資源化を実現することができる内面溝付管並びに、このような内面溝付管を効率よく安定して製造することができる製造方法および製造装置の提供を目的とする。 Therefore, the present invention is excellent in heat conduction performance, can be reduced in size and weight, and can achieve resource saving, and an inner grooved tube and such an inner grooved tube can be efficiently and stably provided. An object is to provide a manufacturing method and a manufacturing apparatus that can be manufactured.
 本発明の内面溝付管は、管の中心軸に対する溝のねじれ角をβ(度)、隣り合う溝と溝の間で形成されるフィンの頂角をα(度)としたとき、βが30から60、αが5から20であり、外径をD(mm)、溝の深さをH(mm)、管の軸方向に対する断面積をA(mm)としたとき、Dが6以下、Hが0.07以上で、A<0.8×Dであることを特徴とする。 In the internally grooved tube of the present invention, when the twist angle of the groove with respect to the central axis of the tube is β (degrees) and the apex angle of the fin formed between adjacent grooves is α (degrees), β is 30 to 60, α is 5 to 20, the outer diameter is D (mm), the groove depth is H (mm), and the cross-sectional area in the axial direction of the tube is A C (mm 2 ). 6 or less, H is 0.07 or more, and A C <0.8 × D.
 前記構成により、従来の内面溝付管よりも溝深さを大きく、ねじれ角を大きく、頂角を小さくすることができ、熱伝達性能を大きくすることができる。さらに、断面積を小さくすることにより、軽量化、省資源化を図ることができる。 
 また、前記内面溝付管は、高性能で軽量な伝熱管として用いることにより、熱交換器の小型化、軽量化を図ることができる。
With the above-described configuration, the groove depth can be increased, the twist angle can be increased, the apex angle can be decreased, and the heat transfer performance can be increased as compared with the conventional internally grooved tube. Furthermore, weight reduction and resource saving can be achieved by reducing the cross-sectional area.
The inner grooved tube can be used as a high-performance and lightweight heat transfer tube to reduce the size and weight of the heat exchanger.
 さらにこの発明の態様として、内面溝付管は、外径D(mm)が3以上であることができる。 Furthermore, as an aspect of the present invention, the inner grooved tube can have an outer diameter D (mm) of 3 or more.
 前記構成により、内面溝付管を、エアコンまたは給湯器などのヒートポンプ機器に、より好ましい伝熱管として用いることができる。 With the above configuration, the inner grooved tube can be used as a more preferable heat transfer tube for a heat pump device such as an air conditioner or a water heater.
 さらにこの発明の態様として、内面溝付管は、溝の深さH(mm)が0.10から0.30であることができる。 Furthermore, as an aspect of the present invention, the inner grooved tube may have a groove depth H (mm) of 0.10 to 0.30.
 前記構成により、内面溝付管を、エアコンまたは給湯器用などのヒートポンプ機器に、より好ましい伝熱管として用いることができる。 With the above configuration, the inner grooved tube can be used as a more preferable heat transfer tube for a heat pump device such as an air conditioner or a water heater.
 また、本発明の内面溝付管の製造方法は、素管を引抜いて縮径させる縮径手段と、素管内面に多数の溝を形成する溝加工手段とを備えた内面溝付管の製造装置を用いることを特徴とする。 Also, the manufacturing method of the inner surface grooved pipe of the present invention is the manufacture of the inner surface grooved pipe provided with a diameter reducing means for drawing out and reducing the diameter of the raw pipe and a groove processing means for forming a large number of grooves on the inner surface of the raw pipe. An apparatus is used.
 前記縮径手段は、例えば上流側へ向けて末広がりとなるすり鉢状の斜面が形成されたダイス孔を有する縮径ダイスで構成することができる。この縮径ダイスのダイス孔の対応位置には、素管内に挿入されたフローティングプラグを配置することができる。 The diameter-reducing means can be constituted by a diameter-reducing die having a die hole in which a mortar-like slope that is widened toward the upstream side, for example. A floating plug inserted into the raw tube can be disposed at a position corresponding to the die hole of the reduced diameter die.
 前記溝加工手段は、例えば前記フローティングプラグに連結された溝付プラグと、この溝付きプラグへ向けて縮径管を遊星回転しながら押圧するローラやボールで構成される転造工具とで構成することができる。 The groove processing means is constituted by, for example, a grooved plug connected to the floating plug, and a rolling tool composed of a roller or a ball that presses the reduced diameter tube while planetarily rotating toward the grooved plug. be able to.
 この発明の態様として、内面溝付管の製造方法は、前記内面溝付管の製造装置に、前記溝加工手段の下流側で加工済みの内面溝付管を巻き取る巻取りドラムを兼ねた引抜き手段と、前記縮径手段と前記溝加工手段との間で素管を引抜く補助引抜き手段と、前記縮径手段、前記補助引抜き手段および前記溝加工手段を支持し、設置部に対して引抜き方向へ移動可能な可動手段と、前記可動手段の前記設置部に対する移動に応じて作用する加工荷重を検出する荷重検出手段と、前記荷重検出手段により検出した前記加工荷重に基づいて、前記補助引抜き手段を制御する制御手段とを備えた内面溝付管の製造装置を用いて、管の中心軸に対する溝のねじれ角をβ(度)、隣り合う溝と溝の間で形成されるフィンの頂角をα(度)としたとき、βが30から60、αが5から20であり、外径をD(mm)、溝の深さをH(mm)、管の軸方向に対する断面積をA(mm)としたとき、Dが6以下、Hが0.07以上で、A<0.8×Dである内面溝付管の製造方法であって、前記加工荷重をP(N)、前記溝加工手段通過後の管の軸方向に対する断面積をAC1(mm)、前記溝加工手段通過後の管の破断応力をσ(N/mm)としたとき、Pが(AC1×σ)の0.5倍から0.9倍の間になるよう前記補助引抜き手段を制御することが好ましい。 As an aspect of the present invention, an inner surface grooved tube manufacturing method includes a drawing device in which the inner surface grooved tube manufacturing apparatus also serves as a take-up drum that winds an inner surface grooved tube downstream of the groove processing means. Means, an auxiliary drawing means for drawing the blank tube between the diameter reducing means and the groove processing means, and supporting the diameter reducing means, the auxiliary drawing means and the groove processing means, and pulling out the installation portion. A movable means movable in a direction, a load detection means for detecting a machining load acting in accordance with the movement of the movable means relative to the installation portion, and the auxiliary pull-out based on the machining load detected by the load detection means The groove twisting angle with respect to the central axis of the pipe is β (degrees) using a manufacturing apparatus for an internally grooved pipe provided with a control means for controlling the means, and the top of the fin formed between adjacent grooves. When the angle is α (degrees), β is 30 Et 60, alpha is from 5 20, the outer diameter D (mm), the depth of the groove H (mm), when the cross-sectional area with respect to the axial direction of the pipe was A C (mm 2), D is 6 Hereinafter, the manufacturing method of the internally grooved pipe having H of 0.07 or more and A C <0.8 × D, wherein the processing load is P (N), the axis of the pipe after passing through the groove processing means When the cross-sectional area with respect to the direction is A C1 (mm 2 ) and the breaking stress of the tube after passing the groove processing means is σ M (N / mm 2 ), P is 0.5 times (A C1 × σ M ). It is preferable to control the auxiliary pulling means so as to be between 0.9 and 0.9 times.
 前記引抜き手段は、例えば素管を加工した内面溝付管を下流側で引き抜いて巻き取る例えば、巻取りドラム等の巻取装置で構成することができる。 The drawing means can be constituted by a winding device such as a winding drum, for example, by drawing and winding the internally grooved tube obtained by processing the raw tube on the downstream side.
 前記補助引抜き手段は、例えば縮径管をベルトあるいはパッドで挟み込んで溝加工手段へ向けて送り補助する装置で構成することができる。 The auxiliary drawing means can be constituted by, for example, a device for assisting feeding by feeding the reduced diameter tube to the groove processing means by sandwiching the reduced diameter pipe with a belt or a pad.
 前記製造方法により、従来の内面溝付管よりも溝深さを大きく、ねじれ角を大きく、頂角を小さくすることができ、熱伝達性能が大きい内面溝付管を得ることができる。さらに、断面積を小さくすることにより、軽量で省資源化した内面溝付管を得ることができる。 The above manufacturing method makes it possible to obtain an internally grooved tube having a larger groove depth, a larger torsion angle, a smaller apex angle and a higher heat transfer performance than the conventional internally grooved tube. Furthermore, by reducing the cross-sectional area, it is possible to obtain a light-weight and resource-saving inner grooved tube.
 また、高性能で軽量な伝熱管を、効率的、且つ、安定して得ることができ、熱交換器の小型化、軽量化を図ることができる。 Also, a high-performance and lightweight heat transfer tube can be obtained efficiently and stably, and the heat exchanger can be reduced in size and weight.
 ここで、P≧0.5×(AC1×σ)であるのは、P<0.5×(AC1×σ)であると、前記補助引抜き手段の駆動力の僅かな変動で管内面形状が変化し易くなり、溝深さ等が一定でなくなるからである。 Here, P ≧ 0.5 × (A C1 × σ M ) is a slight variation in the driving force of the auxiliary pulling means when P <0.5 × (A C1 × σ M ). This is because the shape of the inner surface of the tube is easily changed, and the groove depth and the like are not constant.
 P≦0.9×(AC1×σ)であるのは、P>0.9×(AC1×σ)であると、僅かな肉厚変動や引抜き力の変動により、引抜き力が管の破断荷重を超える場合が生じ、管が破断してしまうからである。 P ≦ 0.9 × (A C1 × σ M ) means that when P> 0.9 × (A C1 × σ M ), the pulling force is reduced due to slight wall thickness fluctuation or pulling force fluctuation. It is because the case where the breaking load of the tube is exceeded occurs and the tube breaks.
 また、断面積A(mm)がA<0.8×Dというのは、従来と比較して肉厚の薄い管であることを示すが、管の肉厚が薄いと、座屈し易くなり前記溝加工手段による溝付け加工が困難になる。そして、軸方向の引張り力が大きいほど、周方向へ変形し難くなるため、より一層、溝付け加工が困難となる。 In addition, the cross-sectional area A C (mm 2 ) of A C <0.8 × D indicates that the tube is thinner than the conventional one, but if the tube is thin, the tube will buckle. It becomes easy and the grooving by the grooving means becomes difficult. And the larger the tensile force in the axial direction, the more difficult it is to deform in the circumferential direction, and thus the grooving process becomes more difficult.
 これに対して、本発明の製造方法によれば、上述したように、Pが(AC1×σ)の0.5倍から0.9倍の間になるよう前記補助引抜き手段を制御することで、引抜き方向への荷重が低減され、肉厚が薄い管でも周方向の座屈を抑えることが可能になる。 On the other hand, according to the manufacturing method of the present invention, as described above, the auxiliary pulling means is controlled so that P is between 0.5 and 0.9 times (A C1 × σ M ). Thus, the load in the drawing direction is reduced, and it is possible to suppress the buckling in the circumferential direction even with a thin-walled pipe.
 ここで、前記溝加工手段通過後の管の軸方向に対する前記断面積には、前記溝加工手段通過後の一次仕上げ管の軸方向に対する断面積AC1に限らず、一次仕上げ管に対して空引き等の追加工を施した最終仕上げ管の軸方向に対する断面積Aも含むものとする。 
 なお、空引きとは、管内面には直接加工を施さずに、主に外径を減少させる加工であり、例えば、空引きダイスに通して引抜く加工を示す。
Here, the cross-sectional area with respect to the axial direction of the pipe after passing through the grooving means is not limited to the cross-sectional area AC1 with respect to the axial direction of the primary finishing pipe after passing through the grooving means. It shall also include the cross-sectional area a C with respect to the axial direction of the finishing tube subjected to additional machining of the pull or the like.
In addition, empty drawing is a process which mainly reduces the outer diameter without directly processing the inner surface of the pipe, and indicates, for example, a process of drawing through an empty drawing die.
 さらにこの発明の態様として、外径D(mm)が3以上であることが好ましい。 
 エアコンなどのヒートポンプの伝熱管においては、伝熱性能のほかに圧力損失が重要であり、圧力損失が増大すると、冷媒を送るためのポンプやコンプレッサー(圧縮機)の負荷が増大して、ヒートポンプの性能を低下させてしまうため、実用上の理由から外径D(mm)は、3以上が望ましい。
Furthermore, as an aspect of the present invention, the outer diameter D (mm) is preferably 3 or more.
In heat transfer tubes of heat pumps such as air conditioners, pressure loss is important in addition to heat transfer performance. When the pressure loss increases, the load on the pump and compressor (compressor) for sending refrigerant increases, Since the performance is degraded, the outer diameter D (mm) is preferably 3 or more for practical reasons.
 さらにこの発明の態様として、溝の深さH(mm)が0.10から0.30であることができる。 
 エアコンなどのヒートポンプに使用する伝熱管は、アルミフィンに圧着させるために管内側からマンドレルのような工具によって押し広げられるが、その際に内面のフィンはつぶされて0.01~0.02mm程度低くなる。その分を考慮して、溝深さは0.1mm以上であることが望ましい。 
 また、内面フィンが高すぎると、圧力損失が増加したり、材料重量が増えることから、溝深さH(mm)は0.3以下であることが望ましい。
Furthermore, as an aspect of the present invention, the depth H (mm) of the groove can be 0.10 to 0.30.
Heat transfer tubes used for heat pumps such as air conditioners are pushed from the inside of the tube with a tool such as a mandrel in order to press the aluminum fins. At that time, the fins on the inner surface are crushed and about 0.01 to 0.02 mm. Lower. Considering this, the groove depth is desirably 0.1 mm or more.
Further, if the inner fin is too high, pressure loss increases and the material weight increases. Therefore, the groove depth H (mm) is preferably 0.3 or less.
 ここで、前記補助引抜き手段は、例えば、素管を軸方向に対して両側から挟む一対の無端状部材(ループ状部材)を備えて構成することができ、管を挟んだ状態でベルト、キャタピラなどの無端状部材を回転させることにより、管の引抜き手段による引抜きを補助することができる。 Here, the auxiliary pulling means can be configured to include, for example, a pair of endless members (loop-shaped members) that sandwich the raw tube from both sides with respect to the axial direction. By rotating the endless member such as the tube, it is possible to assist the drawing by the drawing means of the tube.
 前記荷重検出手段は、例えば、ロードセルなど荷重を検出できる手段で構成することができる。 
 前記荷重検出手段が検出する荷重は、例えば、圧縮荷重、引張り荷重、モーメント荷重を挙げることができる。
The load detecting means can be constituted by means capable of detecting a load such as a load cell.
Examples of the load detected by the load detection means include a compression load, a tensile load, and a moment load.
 前記内面溝付管は、例えば、銅、アルミニウムまたはそれらの合金等など熱伝導性に優れた材料で形成することができる。 The inner grooved tube can be formed of a material having excellent thermal conductivity such as copper, aluminum, or an alloy thereof.
 またこの発明の態様として、前記内面溝付管の製造装置に、前記縮径手段と、前記溝加工手段と、溝加工された内面溝付管を引き抜く引抜き手段とを上流側からこの順に備え、前記縮径手段と前記溝加工手段の間に設けられ、前記縮径管を前記溝加工手段へ向う送り方向に送り補助する送り補助手段(前記補助引抜き手段)と、前記縮径手段と前記送り補助手段とが固定されて前記引抜き手段の引抜き方向と平行に前記溝加工手段に対して相対移動可能な移動台と、前記溝加工手段が固定されて前記引抜き方向と平行に前記引抜き手段に対して相対移動可能な基台と、前記移動台が前記溝加工手段に対して前記相対移動する際に前記移動台にかかる前記相対移動方向の荷重を検出する移動台荷重検出装置と、前記基台が前記引抜き手段に対して前記相対移動する際に前記基台にかかる前記相対移動方向の荷重を検出する基台荷重検出装置と、前記送り補助手段の動作を制御する制御手段とを備えるとともに、前記移動台を、前記基台に対して前記引抜き方向に相対移動可能に構成する内面溝付管の製造装置を用い、該制御手段が、前記送り補助手段の送り補助速度および前記送り補助手段の送り補助トルクのうち少なくともいずれか一方を、前記移動台荷重検出装置および前記基台荷重検出装置が検出した荷重の差分に基づいて調整する内面溝付管の製造方法であることが好ましい。 As an aspect of the present invention, the inner surface grooved pipe manufacturing apparatus includes the diameter reducing means, the groove processing means, and a drawing means for pulling out the grooved inner surface grooved pipe in this order from the upstream side. A feed assisting means (the auxiliary pulling means) provided between the diameter reducing means and the groove processing means for assisting the feeding of the reduced diameter tube in the feed direction toward the groove processing means, the diameter reducing means and the feed An auxiliary means is fixed and a movable table is movable relative to the grooving means in parallel with the drawing direction of the drawing means, and the grooving means is fixed and parallel to the drawing direction with respect to the drawing means. A base that is relatively movable, a moving base load detection device that detects a load in the relative movement direction applied to the mobile base when the mobile base moves relative to the groove processing means, and the base Against the pulling means A base load detection device that detects a load in the relative movement direction applied to the base when the relative movement is performed, and a control unit that controls the operation of the feed assisting unit. An inner grooved pipe manufacturing apparatus configured to be movable relative to the base in the drawing direction is used, and the control means includes at least a feed assist speed of the feed assist means and a feed assist torque of the feed assist means. It is preferable that either one is a manufacturing method of an internally grooved tube in which one of them is adjusted based on the difference between the loads detected by the moving table load detecting device and the base load detecting device.
 さらにこの発明の態様として、前記制御手段が調整する送り補助速度を、第1送り補助速度とするとともに、前記制御手段が調整する送り補助トルクを、前記送り補助トルクとの相関関係に基づいて定まる第2送り補助速度をもって調整する制御とすることができる。 Further, as an aspect of the present invention, the feed assist speed adjusted by the control means is set to the first feed assist speed, and the feed assist torque adjusted by the control means is determined based on the correlation with the feed assist torque. Control can be performed with the second feed assist speed.
 前記移動台および基台は、例えば底面に車輪を有して自由にスライド移動できる台で構成することができる。 
 前記移動台荷重検出装置および基台荷重検出装置は、例えばロードセルなど荷重を検出できる適宜の検出器で構成することができる。
For example, the movable table and the base can be configured by a table having wheels on the bottom surface and capable of sliding freely.
The moving table load detection device and the base load detection device can be configured by an appropriate detector capable of detecting a load, such as a load cell.
 またこの発明の態様として、前記内面溝付管の製造装置を用い、素管が引抜き方向へ進む過程で、素管を縮径させる縮径加工工程と、素管内面に多数の溝を形成する溝加工工程を行い、前記縮径加工工程と前記溝加工工程とを行なう間、前記縮径加工工程で縮径した素管を引抜く中間引抜き工程を行い、前記縮径加工工程を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで行い、前記溝加工工程を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで行なう内面溝付管の製造方法であって、前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、R={(D-D)/D}×100(%)であらわされる素管の縮径率R(%)を、R≦30に設定し、前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、D-D≧0.1となるよう設定することが好ましい。 Further, as an aspect of the present invention, using the above-mentioned inner surface grooved pipe manufacturing apparatus, a diameter reducing process for reducing the diameter of the raw pipe in the process of moving the raw pipe in the drawing direction, and forming a plurality of grooves on the inner face of the raw pipe During the grooving step, while performing the squeezing step and the grooving step, an intermediate drawing step is performed to pull out the element pipe reduced in the squeezing step, and the squeezing step is reduced to the sizing step. A die and a floating plug that is disposed in the base pipe and reduces the diameter of the base pipe together with the reduced diameter die, and the grooving step is pivotally connected to the floating plug in the base pipe, and a plurality of outer circumferences are provided. An internally grooved tube formed by a grooved plug formed with a groove and a pressing tool arranged to revolve around the tube axis while pressing the raw tube toward the grooved plug on the outside of the raw tube. a manufacturing method, the outer diameter D o of the blank tube mm), the diameter D 2 of the diameter die (mm), R D = { (D o -D 2) / D o} radial contraction rate of mother tube represented by × 100 (%) R D ( %) Is set to R D ≦ 30, and the outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die are set to satisfy D 1 −D 2 ≧ 0.1. Is preferred.
 前記内面溝付管製造方法のように、素管の縮径率を、前記縮径手段において30%以下に設定することで、前記縮径手段で縮径後に素管が微振動するいわゆるビビリ現象が抑えられ、中間引抜き手段(前記補助引抜き手段)で引抜き荷重を補助する荷重補助を安定させることができる。 
 詳しくは、素管の縮径率が30%より大きくなると、素管と前記縮径ダイスの接触面積が大きくなって摩擦抵抗が大きくなるため、前記縮径ダイスでの加工荷重が大きくなり、素管の外径が前記縮径ダイスの出口の径よりも細くなる引き細りが発生する。
As in the inner grooved tube manufacturing method, by setting the diameter reduction rate of the raw pipe to 30% or less in the diameter reducing means, the so-called chatter phenomenon in which the raw pipe slightly vibrates after being reduced in diameter by the diameter reducing means. Therefore, the load assistance for assisting the extraction load by the intermediate extraction means (the auxiliary extraction means) can be stabilized.
Specifically, if the diameter reduction ratio of the blank pipe is greater than 30%, the contact area between the blank pipe and the diameter reduction die increases, and the frictional resistance increases, so the processing load on the diameter reduction die increases, The thinning of the outer diameter of the tube is smaller than the diameter of the outlet of the reduced diameter die.
 さらに引き細りにより素管と前記縮径ダイスとの接触が安定せず、ビビリ現象が発生し易くなり、肉厚減少も生じる。ビビリ現象による振動は前記中間引抜き手段まで伝わり、また引き細りで素管外径が細くなるので、前記中間引抜き手段において素管を押さえるために備えたパッドの素管に対する押え力が不安定になり、その結果、前記中間引抜き手段での荷重補助が不安定になる。 Furthermore, due to the thinning, the contact between the raw tube and the diameter-reducing die is not stable, and chattering is likely to occur, and the thickness is reduced. Vibration due to chattering is transmitted to the intermediate drawing means, and the outer diameter of the raw pipe is reduced by thinning. Therefore, the pressing force of the pad provided for holding the raw pipe in the intermediate drawing means becomes unstable. As a result, the load assistance in the intermediate drawing means becomes unstable.
 よって、加工時にこのような不具合が生じないよう、本発明では、素管の縮径率を、前記縮径手段において30%以下に設定している。 Therefore, in the present invention, the diameter reduction rate of the raw tube is set to 30% or less in the diameter reducing means so that such a problem does not occur during processing.
 さらに、前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、D-D≧0.1となるよう設定することにより、より効果的にビビリ現象の発生を抑えることができる。 
 詳述すると、前記フローティングプラグと前記縮径ダイスの径の差(D-D)が0.1mm以下であると、前記フローティングプラグと前記縮径ダイスがオーバーラップする面積が小さくなる。
Furthermore, the chatter phenomenon is more effectively achieved by setting the outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die so that D 1 −D 2 ≧ 0.1. Can be suppressed.
More specifically, when the difference in diameter (D 1 -D 2 ) between the floating plug and the reduced diameter die is 0.1 mm or less, the area where the floating plug and the reduced diameter die overlap is reduced.
 このように、前記フローティングプラグと前記縮径ダイスとがオーバーラップする面積が小さくなることで、この間に素管が引き込まれる際、前記フローティングプラグの角部、詳しくは、前記フローティングプラグの外周面における上流側の非テーパ面と下流側のテーパ面との境界部分に、管内面が強く当たることで、前記フローティングプラグでの負荷が過大になるので、さらに、引き細り、ビビリ現象による振動、肉厚減少、中間引抜き機での荷重補助不安定が発生し易くなる。 Thus, the area where the floating plug and the reduced diameter die overlap is reduced, so that when the blank tube is pulled in between, the corner of the floating plug, more specifically, the outer peripheral surface of the floating plug Since the inner surface of the pipe strongly hits the boundary between the upstream non-tapered surface and the downstream tapered surface, the load on the floating plug becomes excessive. Reduced, load assist instability in the intermediate drawing machine tends to occur.
 よって、加工時にこのような不具合が生じないよう、本発明では、D-D≧0.1となるよう設定している。 Therefore, in the present invention, D 1 −D 2 ≧ 0.1 is set so that such a problem does not occur during processing.
 さらにこの発明の態様として、前記押圧用工具の公転方向を、前記溝付プラグの回転方向と逆向き(以下、「逆方向」とする。)に設定し、前記押圧用工具の加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定することができる。 Furthermore, as an aspect of the present invention, the revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug (hereinafter referred to as “reverse direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ≦ P ≦ 0.7.
 前記構成により、加工精度が高い溝を有した内面溝付管を、安定して製造できるようになる。 
 Pを0.2mmより小さくすると、前記中間引抜き手段による荷重補助を大きくしても、経験上、素管内面に溝が形成され難くなることが確認されているからである。一方、0.7mmよりも大きくすると、引張り荷重が安定せず、変動が大きくなるからである。
With this configuration, it is possible to stably manufacture an internally grooved tube having a groove with high processing accuracy.
This is because, when P is smaller than 0.2 mm, it has been confirmed from experience that it is difficult to form a groove on the inner surface of the raw tube even if the load assistance by the intermediate drawing means is increased. On the other hand, if it is larger than 0.7 mm, the tensile load is not stable and the fluctuation becomes large.
 なお、前記中間引抜き手段による荷重補助をより安定させ、溝の加工精度を高くするには、前記押圧用工具の公転方向を、逆方向に設定し、加工ピッチPを、P≧0.2を満たす範囲で小さく設定する方がよい。 
 詳しくは、内面溝付管の生産性よりも溝の加工精度がより高くなる加工を優先させる場合には、加工ピッチPを、0.2≦P≦0.7の範囲の中でも、例えば、0.2≦P≦0.4に設定することがよい。
In order to further stabilize the load assistance by the intermediate drawing means and increase the groove machining accuracy, the revolution direction of the pressing tool is set in the reverse direction, and the machining pitch P is set to P ≧ 0.2. It is better to set it as small as possible.
In detail, when giving priority to the processing in which the processing accuracy of the groove is higher than the productivity of the internally grooved tube, the processing pitch P is within the range of 0.2 ≦ P ≦ 0.7, for example, 0 .2 ≦ P ≦ 0.4 is preferable.
 一方、内面溝付管の生産性を高めるためには、前記押圧用工具の公転方向を、逆方向に設定し、加工ピッチPを、P≦0.7を満たす範囲で大きく設定する方がよい。 
 詳しくは、溝の加工精度がより高くなる加工よりも内面溝付管の生産性を優先させる場合には、加工ピッチPを、0.2≦P≦0.7の範囲の中でも、例えば、0.4≦P≦0.7に設定するのがよい。
On the other hand, in order to increase the productivity of the internally grooved tube, it is better to set the revolution direction of the pressing tool in the reverse direction and to set the machining pitch P large in a range satisfying P ≦ 0.7. .
Specifically, in the case where the productivity of the internally grooved tube is given priority over the processing with higher groove processing accuracy, the processing pitch P is set within the range of 0.2 ≦ P ≦ 0.7, for example, 0 It is better to set 4 ≦ P ≦ 0.7.
 さらにこの発明の態様として、前記押圧用工具の公転方向を、前記溝付プラグの回転方向と同じ向き(以下、「正方向」とする。)に設定し、前記押圧用工具の加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することができる。 Further, as an aspect of the present invention, the revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug (hereinafter referred to as “positive direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ≦ P ≦ 0.4.
 前記構成のように、前記押圧用工具の公転方向が、正方向の場合でも、加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することで、内面フィンの裾部にエグレが生じず、溝深さが深くて加工精度が高いものを得ることができる。 Even if the revolving direction of the pressing tool is the positive direction as in the above configuration, the inner surface fin is set by setting the machining pitch P (mm) to be in the range of 0.2 ≦ P ≦ 0.4. In this case, the hems of the slabs do not have any glazing, and the groove depth is deep and the machining accuracy is high.
 詳しくは、管内面に深い溝を有する内面溝付管を製造するためには、前記押圧用工具の公転方向が、正方向であることが望ましいが、正方向の場合、管内面において溝と溝との間に形成されるフィンの裾部にエグレとよばれる材料の未充填部分が生じ易くなる。さらに、加工ピッチPが大きくなるほどエグレが発生し易くなる。 Specifically, in order to manufacture an internally grooved tube having a deep groove on the tube inner surface, it is desirable that the revolving direction of the pressing tool is a positive direction. An unfilled portion of a material called “egre” is likely to occur at the bottom of the fin formed between the two. Further, the greater the processing pitch P is, the easier it is to generate the egress.
 このため、深い溝を形成しつつ、エグレを防ぐためには、前記押圧用工具の公転方向が正方向で、且つ、0.2≦P≦0.4であるのが望ましい。 For this reason, in order to prevent deepening while forming a deep groove, it is desirable that the revolution direction of the pressing tool is a positive direction and 0.2 ≦ P ≦ 0.4.
 なお、一般に、素管が薄肉になるほど、フィンを形成し難く、破断し易くなり、加工が困難になるが、本発明は、薄肉な素管も含めて素管の肉厚に関係なく適用可能であるため、素管が薄肉になるほど、本発明の製造条件がさらに有効になる。 In general, the thinner the pipe, the harder it is to form the fins, and the easier it is to break. However, the present invention can be applied regardless of the thickness of the pipe, including thin pipes. Therefore, the thinner the pipe is, the more effective the production conditions of the present invention.
 また、本発明によって、長い管全長に亘って内面形状も安定し、破断せずに加工できるようになるので、素管の長さに関係なく適用可能となり、歩留まりと生産性を向上させることができる。 In addition, according to the present invention, the shape of the inner surface is stable over the entire length of the long tube and can be processed without breaking, so that it can be applied regardless of the length of the raw tube, and the yield and productivity can be improved. it can.
 また、この発明の内面溝付管の製造装置は、素管を縮径する縮径手段と、縮径された縮径管の内面に溝加工を施す溝加工手段とを備えたことを特徴とする。 Moreover, the manufacturing apparatus of the inner surface grooved pipe of the present invention is characterized by comprising a diameter reducing means for reducing the diameter of the raw pipe and a groove processing means for performing groove processing on the inner surface of the reduced diameter pipe. To do.
 この発明の態様として、前記縮径手段と、前記溝加工手段と、溝加工された内面溝付管を引き抜く引抜き手段とを上流側からこの順に備え、前記縮径手段と前記溝加工手段の間に設けられ、前記縮径管を前記溝加工手段へ向う送り方向に送り補助する送り補助手段を備えた内面溝付管の製造装置であって、前記縮径手段と前記送り補助手段とが固定されて前記引抜き手段の引抜き方向と平行に前記溝加工手段に対して相対移動可能な移動台と、前記移動台が前記溝加工手段に対して前記相対移動する際に前記移動台にかかる前記相対移動方向の荷重を検出する移動台荷重検出装置とを備えた内面溝付管の製造装置であることが好ましい。 As an aspect of the present invention, the diameter reducing means, the groove processing means, and a drawing means for pulling out the grooved inner grooved tube are provided in this order from the upstream side, and between the diameter reducing means and the groove processing means. An apparatus for producing an internally grooved pipe provided with a feed assisting means for assisting feeding of the reduced diameter pipe in a feed direction toward the groove machining means, wherein the diameter reducing means and the feed assisting means are fixed. And a movable base that is movable relative to the groove processing means in parallel with the drawing direction of the pulling means, and the relative movement applied to the movable base when the movable base moves relative to the groove processing means. It is preferable that the manufacturing apparatus of the internally grooved tube provided with a moving table load detecting device for detecting a load in the moving direction.
 さらにこの発明の態様として、前記溝加工手段が固定されて前記引抜き方向と平行に前記引抜き手段に対して相対移動可能な基台と、前記基台が前記引抜き手段に対して前記相対移動する際に前記基台にかかる前記相対移動方向の荷重を検出する基台荷重検出装置と、前記送り補助手段の動作を制御する制御手段とを備え、前記移動台を、前記基台に対して前記引抜き方向に相対移動可能に構成するとともに、該制御手段を、前記移動台荷重検出装置および前記基台荷重検出装置のうち少なくとも一方により検出した荷重に基づいて、前記送り補助手段の送り補助速度を調節する送り補助速度調整処理および前記送り補助手段の送り補助トルクを調節する送り補助トルク調整処理のうち少なくともいずれか一方を実行する構成とすることができる。 Furthermore, as an aspect of the present invention, the groove processing means is fixed and is movable relative to the drawing means in parallel with the drawing direction, and the base is moved relative to the drawing means. A base load detecting device for detecting the load in the relative movement direction applied to the base, and a control means for controlling the operation of the feed assisting means, wherein the moving base is withdrawn from the base. And the control means adjusts the feed assist speed of the feed assist means based on the load detected by at least one of the moving table load detecting device and the base load detecting device. A feed auxiliary speed adjustment process to perform and a feed auxiliary torque adjustment process to adjust the feed assist torque of the feed assist means. Kill.
 さらにまたこの発明の態様として、前記補助速度調整処理における前記送り補助速度を、第1送り補助速度とするとともに、前記送り補助トルク調整処理を、前記送り補助トルクとの相関関係に基づいて定まる第2送り補助速度をもって調整する調整処理とすることができる。 Furthermore, as an aspect of the present invention, the feed assist speed in the assist speed adjustment process is set to a first feed assist speed, and the feed assist torque adjustment process is determined based on a correlation with the feed assist torque. The adjustment processing can be performed with the two-feed auxiliary speed.
 またこの発明の態様として、素管の引抜き方向に沿って、前記縮径手段と、前記溝加工手段を備えるとともに、前記縮径手段と前記溝加工手段との間に前記縮径手段で縮径した素管を引抜く中間引抜き手段を備え、前記縮径手段を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで構成し、前記溝加工手段を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで構成した内面溝付管の製造装置であって、前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、R={(D-D)/D}×100(%)であらわされる素管の縮径率R(%)を、前記縮径手段においてR≦30に設定し、前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、D-D≧0.1となるよう設定することが好ましい。 As an aspect of the present invention, the diameter reducing means and the groove processing means are provided along the drawing direction of the raw tube, and the diameter is reduced by the diameter reducing means between the diameter reducing means and the groove processing means. An intermediate drawing means for drawing out the raw pipe, and the diameter reducing means is constituted by a diameter reducing die and a floating plug disposed in the pipe and reducing the diameter of the raw pipe together with the diameter reducing die, and the groove processing A grooved plug that is rotatably connected to the floating plug in the element tube and has a plurality of grooves formed on the outer periphery, and while pressing the element tube toward the grooved plug on the outer side of the element tube. An inner grooved pipe manufacturing apparatus configured with a pressing tool arranged to revolve around a pipe axis, wherein the outer diameter D o (mm) of the raw pipe and the diameter D 2 (mm of the reduced die) by), R D = {(D o -D 2) / D } × 100 (percent) radial contraction rate R D (%) of the mother tube represented by, set R D ≦ 30 in the reduced diameter section, the outer diameter D 1 of the said floating plug (mm), the diameter It is preferable to set the die diameter D 2 (mm) so that D 1 −D 2 ≧ 0.1.
 前記内面溝付管の製造装置のように、素管の縮径率を、前記縮径手段において30%以下に設定することで、前記縮径手段で縮径後に素管が微振動するいわゆるビビリ現象が抑えられ、前記中間引抜き手段で引抜き荷重を補助する荷重補助を安定させることができる。 
 詳しくは、素管の縮径率が30%より大きくなると、素管と前記縮径ダイスの接触面積が大きくなって摩擦抵抗が大きくなるため、前記縮径ダイスでの加工荷重が大きくなり、素管の外径が前記縮径ダイスの出口の径よりも細くなる引き細りが発生する。
Like the inner grooved pipe manufacturing apparatus, by setting the diameter reduction rate of the element pipe to 30% or less in the diameter reducing means, the so-called chattering that the element pipe slightly vibrates after the diameter reduction by the diameter reducing means. The phenomenon is suppressed, and the load assist that assists the extraction load by the intermediate extraction means can be stabilized.
Specifically, if the diameter reduction ratio of the blank pipe is greater than 30%, the contact area between the blank pipe and the diameter reduction die increases, and the frictional resistance increases, so the processing load on the diameter reduction die increases, The thinning of the outer diameter of the tube is smaller than the diameter of the outlet of the reduced diameter die.
 さらに引き細りにより素管と前記縮径ダイスとの接触が安定せず、ビビリ現象が発生し易くなり、肉厚減少も生じる。ビビリ現象による振動は前記中間引抜き手段まで伝わり、また引き細りで素管外径が細くなるので、前記中間引抜き手段において素管を押さえるために備えたパッドの素管に対する押え力が不安定になり、その結果、前記中間引抜き手段での荷重補助が不安定になる。 Furthermore, due to the thinning, the contact between the raw tube and the diameter-reducing die is not stable, and chattering is likely to occur, and the thickness is reduced. Vibration due to chattering is transmitted to the intermediate drawing means, and the outer diameter of the raw pipe is reduced by thinning. Therefore, the pressing force of the pad provided for holding the raw pipe in the intermediate drawing means becomes unstable. As a result, the load assistance in the intermediate drawing means becomes unstable.
 よって、加工時にこのような不具合が生じないよう、本発明では、素管の縮径率を、前記縮径手段において30%以下に設定している。 Therefore, in the present invention, the diameter reduction rate of the raw tube is set to 30% or less in the diameter reducing means so that such a problem does not occur during processing.
 さらに、前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、D-D≧0.1となるよう設定することにより、より効果的にビビリ現象の発生を抑えることができる。 
 詳述すると、前記フローティングプラグと前記縮径ダイスの径の差(D-D)が0.1mm以下であると、前記フローティングプラグと前記縮径ダイスがオーバーラップする面積が小さくなる。
Furthermore, the chatter phenomenon is more effectively achieved by setting the outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die so that D 1 −D 2 ≧ 0.1. Can be suppressed.
More specifically, when the difference in diameter (D 1 -D 2 ) between the floating plug and the reduced diameter die is 0.1 mm or less, the area where the floating plug and the reduced diameter die overlap is reduced.
 このように、前記フローティングプラグと前記縮径ダイスとがオーバーラップする面積が小さくなることで、この間に素管が引き込まれる際、前記フローティングプラグの角部、詳しくは、前記フローティングプラグの外周面における上流側の非テーパ面と下流側のテーパ面との境界部分に、管内面が強く当たることで、前記フローティングプラグでの負荷が過大になるので、さらに、引き細り、ビビリ現象による振動、肉厚減少、中間引抜き機での荷重補助不安定が発生し易くなる。 Thus, the area where the floating plug and the reduced diameter die overlap is reduced, so that when the blank tube is pulled in between, the corner of the floating plug, more specifically, the outer peripheral surface of the floating plug Since the inner surface of the pipe strongly hits the boundary between the upstream non-tapered surface and the downstream tapered surface, the load on the floating plug becomes excessive. Reduced, load assist instability in the intermediate drawing machine tends to occur.
 よって、加工時にこのような不具合が生じないよう、本発明では、D-D≧0.1となるよう設定している。 Therefore, in the present invention, D 1 −D 2 ≧ 0.1 is set so that such a problem does not occur during processing.
 さらにこの発明の態様として、前記押圧用工具の公転方向を、前記溝付プラグの回転方向と逆向き(以下、「逆方向」とする。)に設定し、前記押圧用工具の加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定することができる。 Furthermore, as an aspect of the present invention, the revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug (hereinafter referred to as “reverse direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ≦ P ≦ 0.7.
 前記構成により、加工精度が高い溝を有した内面溝付管を、安定して製造できるようになる。 
 Pを0.2mmより小さくすると、前記中間引抜き手段による荷重補助を大きくしても、経験上、素管内面に溝が形成され難くなることが確認されているからである。一方、0.7mmよりも大きくすると、引張り荷重が安定せず、変動が大きくなるからである。
With this configuration, it is possible to stably manufacture an internally grooved tube having a groove with high processing accuracy.
This is because, when P is smaller than 0.2 mm, it has been confirmed from experience that it is difficult to form a groove on the inner surface of the raw tube even if the load assistance by the intermediate drawing means is increased. On the other hand, if it is larger than 0.7 mm, the tensile load is not stable and the fluctuation becomes large.
 なお、前記中間引抜き手段による荷重補助をより安定させ、溝の加工精度を高くするには、前記押圧用工具の公転方向を、逆方向に設定し、加工ピッチPを、P≧0.2を満たす範囲で小さく設定する方がよい。 
 詳しくは、内面溝付管の生産性よりも溝の加工精度がより高くなる加工を優先させる場合には、加工ピッチPを、0.2≦P≦0.7の範囲の中でも、例えば、0.2≦P≦0.4に設定することがよい。
In order to further stabilize the load assistance by the intermediate drawing means and increase the groove machining accuracy, the revolution direction of the pressing tool is set in the reverse direction, and the machining pitch P is set to P ≧ 0.2. It is better to set it as small as possible.
In detail, when giving priority to the processing in which the processing accuracy of the groove is higher than the productivity of the internally grooved tube, the processing pitch P is within the range of 0.2 ≦ P ≦ 0.7, for example, 0 .2 ≦ P ≦ 0.4 is preferable.
 一方、内面溝付管の生産性を高めるためには、前記押圧用工具の公転方向を、逆方向に設定し、加工ピッチPを、P≦0.7を満たす範囲で大きく設定する方がよい。 
 詳しくは、溝の加工精度がより高くなる加工よりも内面溝付管の生産性を優先させる場合には、加工ピッチPを、0.2≦P≦0.7の範囲の中でも、例えば、0.4≦P≦0.7に設定するのがよい。
On the other hand, in order to increase the productivity of the internally grooved tube, it is better to set the revolution direction of the pressing tool in the reverse direction and to set the machining pitch P large in a range satisfying P ≦ 0.7. .
Specifically, in the case where the productivity of the internally grooved tube is given priority over the processing with higher groove processing accuracy, the processing pitch P is set within the range of 0.2 ≦ P ≦ 0.7, for example, 0 It is better to set 4 ≦ P ≦ 0.7.
 さらにこの発明の態様として、前記押圧用工具の公転方向を、前記溝付プラグの回転方向と同じ向き(以下、「正方向」とする。)に設定し、前記押圧用工具の加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することができる。 Further, as an aspect of the present invention, the revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug (hereinafter referred to as “positive direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ≦ P ≦ 0.4.
 前記構成のように、前記押圧用工具の公転方向が、正方向の場合でも、加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することで、内面フィンの裾部にエグレが生じず、溝深さが深くて加工精度が高いものを得ることができる。 Even if the revolving direction of the pressing tool is the positive direction as in the above configuration, the inner surface fin is set by setting the machining pitch P (mm) to be in the range of 0.2 ≦ P ≦ 0.4. In this case, the hems of the slabs do not have any glazing, and the groove depth is deep and the machining accuracy is high.
 詳しくは、管内面に深い溝を有する内面溝付管を製造するためには、前記押圧用工具の公転方向が、正方向であることが望ましいが、正方向の場合、管内面において溝と溝との間に形成されるフィンの裾部にエグレとよばれる材料の未充填部分が生じ易くなる。さらに、加工ピッチPが大きくなるほどエグレが発生し易くなる。 Specifically, in order to manufacture an internally grooved tube having a deep groove on the tube inner surface, it is desirable that the revolving direction of the pressing tool is a positive direction. An unfilled portion of a material called “egre” is likely to occur at the bottom of the fin formed between the two. Further, the greater the processing pitch P is, the easier it is to generate the egress.
 このため、深い溝を形成しつつ、エグレを防ぐためには、前記押圧用工具の公転方向が正方向で、且つ、0.2≦P≦0.4であるのが望ましい。 For this reason, in order to prevent deepening while forming a deep groove, it is desirable that the revolution direction of the pressing tool is a positive direction and 0.2 ≦ P ≦ 0.4.
 なお、一般に、素管が薄肉になるほど、フィンを形成し難く、破断し易くなり、加工が困難になるが、本発明は、薄肉な素管も含めて素管の肉厚に関係なく適用可能であるため、素管が薄肉になるほど、本発明の製造条件がさらに有効になる。 In general, the thinner the pipe, the harder it is to form the fins, and the easier it is to break. However, the present invention can be applied regardless of the thickness of the pipe, including thin pipes. Therefore, the thinner the pipe is, the more effective the production conditions of the present invention.
 また、本発明によって、長い管全長に亘って内面形状も安定し、破断せずに加工できるようになるので、素管の長さに関係なく適用可能となり、歩留まりと生産性を向上させることができる。 In addition, according to the present invention, the shape of the inner surface is stable over the entire length of the long tube and can be processed without breaking, so that it can be applied regardless of the length of the raw tube, and the yield and productivity can be improved. it can.
 またこの発明の態様として、前記溝加工手段の管軸方向下流側で加工済みの内面溝付管を抽伸する抽伸手段と、該抽伸手段よりも管軸方向上流側に、素管の抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出する加工関連データ検出手段を備えた内面溝付管の製造装置であることが好ましい。 In addition, as an aspect of the present invention, a drawing means for drawing an internally grooved pipe which has been processed on the downstream side in the tube axis direction of the grooving means, and a drawing of the raw pipe on the upstream side in the pipe axis direction from the drawing means. It is preferable that the manufacturing apparatus of the internally grooved pipe provided with the processing related data detecting means for detecting the processing related data relating to the processing load generated in the pipe axis direction.
 前記構成により、素管の抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出することができるため、加工関連データに基づいて抽伸手段よりも管軸方向上流側で素管が破断しても溝加工手段に備えた溝付プラグが破損する前に断管が発生していることを認識することができる。 With the above configuration, it is possible to detect machining-related data related to the machining load generated in the pipe axis direction as the pipe is drawn, so that the pipe breaks on the upstream side in the pipe axis direction from the drawing means based on the machining-related data. Even so, it can be recognized that the disconnection has occurred before the grooved plug provided in the groove processing means is broken.
 よって、装置を停止するなどの対応を迅速にとることができ、溝加工手段において溝付プラグが転造ボールに直接的に押し付けられ、破損することを防ぐことができる。 Therefore, measures such as stopping the apparatus can be taken quickly, and the grooved plug can be prevented from being directly pressed against the rolled ball by the groove processing means and being damaged.
 前記加工関連データは、例えば、前記縮径手段や前記溝加工手段において測定される前記加工荷重、或いは、中間抽伸手段(前記補助引抜き手段)の抽伸荷重、換言するとモータの荷重(駆動力)に関連する荷重関連データを挙げることができる。さらに、前記加工関連データは、加工荷重や駆動力を電気信号化した電流値や電圧値、さらには、これらの値を微分した微分値などのデータであってもよく、さらには、これらデータをグラフ化した波形が示す傾向であってもよい。 The processing related data is, for example, the processing load measured by the diameter reducing means or the groove processing means, or the drawing load of the intermediate drawing means (the auxiliary drawing means), in other words, the motor load (driving force). Relevant load related data can be listed. Further, the machining-related data may be data such as a current value or a voltage value obtained by converting a machining load or a driving force into an electrical signal, or a differential value obtained by differentiating these values. The tendency shown by the graphed waveform may be used.
 さらにこの発明の態様として、前記加工関連データ検出手段を、前記溝加工手段における前記加工荷重を測定する溝加工荷重測定手段および前記縮径手段における前記加工荷重を測定する縮径加工荷重測定手段のうち、少なくとも一方で構成することができる。 Further, as an aspect of the present invention, the machining-related data detection means includes a groove machining load measuring means for measuring the machining load in the grooving means and a reduced diameter machining load measuring means for measuring the machining load in the diameter reducing means. Of these, at least one can be configured.
 前記加工関連データ検出手段を、前記溝加工荷重測定手段で構成した場合、前記溝加工手段での前記加工荷重の変化を基にして断管が発生したと判定することができる。 
 前記加工関連データ検出手段を、前記縮径加工荷重測定手段で構成した場合、前記縮径手段での前記加工荷重の変化を基にして断管が発生したと判定することができる。
When the machining-related data detection means is configured by the grooving load measuring means, it can be determined that a disconnection has occurred based on the change in the machining load at the grooving means.
When the processing-related data detection means is constituted by the reduced diameter processing load measuring means, it can be determined that a disconnection has occurred based on a change in the processing load at the reduced diameter means.
 このため、溝加工手段の下流側に整径ダイスを設置した場合も、前記溝加工手段、前記縮径手段のいずれにおいても、断管発生の判定に遅れるなどの影響を受けずに溝付プラグが破損する前に断管発生を認識することができる。 For this reason, even when a sizing die is installed on the downstream side of the grooving means, in both the grooving means and the squeezing means, the grooved plug is not affected by being delayed in the determination of the occurrence of disconnection. The occurrence of disconnection can be recognized before it breaks.
 特に、前記加工関連データ検出手段を、前記縮径加工荷重測定手段で構成した場合は、前記溝加工手段と前記縮径手段との間で断管が発生したときも、その断管発生したことを瞬時に判定できる点で好ましい。 In particular, when the processing-related data detection means is configured by the diameter reducing load measuring means, the disconnection occurred even when a disconnection occurs between the groove processing means and the diameter reducing means. Is preferable in that it can be determined instantaneously.
 また、前記溝加工手段、前記縮径手段のいずれにおいても、例えば、前記加工荷重が通常の定常加工時の加工荷重に対して例えば、20%など、メカニカルロスのレベルまで落ち込む手前の所定の割合にまで変化したら断管と判断することができる。 Further, in both the groove machining means and the diameter reducing means, for example, a predetermined ratio before the machining load drops to the level of mechanical loss such as 20% with respect to the machining load during normal steady machining, for example. If it changes to, it can be judged as a disconnection.
 さらにこの発明の態様として、前記縮径手段と前記溝加工手段との間で素管を抽伸する中間抽伸手段を備え、前記加工関連データ検出手段を、前記中間抽伸手段のモータの抽伸荷重に関連する荷重関連データを検出する荷重関連データ検出手段で構成することができる。 Furthermore, as an aspect of the present invention, an intermediate drawing means for drawing an element pipe between the diameter reducing means and the groove processing means is provided, and the processing related data detection means is related to a drawing load of a motor of the intermediate drawing means. The load-related data detecting means for detecting the load-related data can be configured.
 前記中間抽伸手段を備えることで、前記抽伸手段による素管の抽伸を補助することができる一方で、前記縮径手段や前記溝加工手段にかかる荷重の変動が大きくなりがちであるが、前記荷重関連データ検出手段で検出する荷重関連データに基づいて、断管が発生したことを認識することができ、溝付プラグが破損することを防ぐことができる。 By providing the intermediate drawing means, it is possible to assist the drawing of the raw pipe by the drawing means, while the load variation on the diameter reducing means and the groove processing means tends to be large. Based on the load-related data detected by the related data detecting means, it can be recognized that the disconnection has occurred, and the grooved plug can be prevented from being damaged.
 さらに、前記中間抽伸手段の抽伸荷重(モータの荷重)に関連する荷重関連データを検出し、断管発生を認識するために利用する構成であるため、ロードセルやトルクゲージなどの荷重測定手段、さらには、該荷重測定手段を設置するための治具などのハードウェアが不要になるため、既存の設備を利用して手軽に断管検出を行なうことができる。 Furthermore, since the load-related data related to the drawing load (motor load) of the intermediate drawing means is detected and used for recognizing the disconnection, load measuring means such as a load cell and a torque gauge, Since no hardware such as a jig for installing the load measuring means is required, the disconnection detection can be easily performed using existing equipment.
 この場合、前記中間抽伸手段の抽伸荷重自体は、制御によって加工中に常に変化しているので、断管発生を認識するのは困難な場合もあるが、その場合でも荷重関連データとしては、抽伸荷重の微分値や差分値を用いれば、断管発生時に顕著な変動を示すため、断管発生を確実に認識することができる点で好ましい。 In this case, since the drawing load itself of the intermediate drawing means always changes during the processing by the control, it may be difficult to recognize the occurrence of the broken tube. If a differential value or a difference value of the load is used, it is preferable in that the occurrence of the disconnection can be surely recognized because a significant variation is exhibited when the disconnection occurs.
 荷重関連データとして抽伸荷重の微分値を用いる場合、前記断管判定手段では、例えば、抽伸荷重の微分値が、通常の定常加工時においても発生する程度の変動での分布における標準偏差(σ)の5倍(5σ)など、所定の幅を超えて大きく変動したら、断管と判定することができる。 When the differential value of the drawing load is used as the load-related data, the disconnection determining means, for example, the standard deviation (σ) in the distribution with a variation that causes the differential value of the drawing load to occur even during normal steady machining. If it fluctuates greatly exceeding a predetermined width, such as 5 times (5σ), it can be determined that the tube is broken.
 前記荷重関連データは、上述したように抽伸荷重(モータの荷重)、荷重に対応する電流値、電圧値(電気信号)といったデータ、これらデータの微分値、差分値等を挙げることができる。 As described above, the load-related data can include drawing load (motor load), data such as current value and voltage value (electric signal) corresponding to the load, differential values and difference values of these data, and the like.
 さらには、前記荷重関連データには、モータの荷重に限らず、モータのトルクであってもよく、その他にも、前記中間抽伸手段のモータの荷重により可動するプーリ、ベルトなどの伝達機構の(角)速度、(角)加速速度、或いは、これら微分値も含み、前記中間抽伸手段のモータの荷重に関連するデータであれば特に限定しない。 Furthermore, the load-related data is not limited to the motor load, but may be a motor torque. In addition, the load-related data may include a transmission mechanism such as a pulley or a belt that is movable by the motor load of the intermediate drawing means. There is no particular limitation as long as it is data related to the motor load of the intermediate drawing means, including the angular) speed, the (angular) acceleration speed, or these differential values.
 さらにこの発明の態様として、前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定する断管判定手段を備えることができる。 Furthermore, as an aspect of the present invention, a disconnection determining means for determining that a disconnection has occurred based on the processing related data detected by the processing related data detecting means can be provided.
 前記断管判定手段により、前記加工関連データ検出手段により検出した加工関連データに基づいて断管が発生したと自動で判定することができるため、断管発生であると判定したら装置を即時、且つ、確実に停止することができ、溝付プラグの破損を防ぐことができる。 The disconnection determination means can automatically determine that a disconnection has occurred based on the processing related data detected by the processing related data detection means. Therefore, it is possible to reliably stop and prevent breakage of the grooved plug.
 さらにまた、本発明は、前記内面溝付管の製造装置を用いて、前記断管判定手段により、前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定し、加工停止を行う内面溝付管の製造方法であることを特徴とする。 Furthermore, in the present invention, it is determined by the disconnection determining means that the disconnection has occurred on the basis of the processing related data detected by the processing related data detecting means, using the manufacturing apparatus of the inner surface grooved pipe. The method for producing an internally grooved tube that stops processing is characterized by the following.
 前記構成により、前記加工関連データ検出手段により検出した加工関連データに基づいて断管が発生したと自動で判定し、断管が発生したと判定したら溝加工手段に備えた溝付プラグが破損する前に加工を停止することができるため、溝付プラグの破損を確実に防ぐことができる。 With the above configuration, it is automatically determined that a disconnection has occurred based on the processing-related data detected by the processing-related data detection means, and if it is determined that a disconnection has occurred, the grooved plug provided in the groove processing means is damaged. Since machining can be stopped before, the grooved plug can be reliably prevented from being damaged.
 本発明により、熱伝導性能に優れ、小型化、軽量化を図ることができ、省資源化を実現することができる内面溝付管並びに、このような内面溝付管を効率よく安定して製造することができる製造方法および製造装置を提供することができる。 According to the present invention, an internally grooved tube that has excellent heat conduction performance, can be reduced in size and weight, and can realize resource saving, and such an internally grooved tube can be manufactured efficiently and stably. It is possible to provide a manufacturing method and a manufacturing apparatus that can be used.
実施形態1の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe | tube of Embodiment 1. FIG. 実施形態1の内面溝付管を管軸に対して直角に切断した一部を示す断面図。Sectional drawing which shows a part which cut | disconnected the internal grooved pipe | tube of Embodiment 1 at right angle with respect to the pipe axis. 実施形態1の内面溝付管の管軸を通る面における断面図。Sectional drawing in the surface which passes along the pipe axis of the internally grooved pipe | tube of Embodiment 1. FIG. 実施形態2の内面溝付管製造装置の構成を示す構成図。The block diagram which shows the structure of the internal grooved pipe manufacturing apparatus of Embodiment 2. FIG. 実施形態2の内面溝付管製造装置における負荷や力を説明する説明図。Explanatory drawing explaining the load and force in the inner surface grooved pipe manufacturing apparatus of Embodiment 2. FIG. 実施形態2の内面溝付管製造装置の全体動作を示すフローチャート。9 is a flowchart showing the overall operation of the inner surface grooved pipe manufacturing apparatus of the second embodiment. 実施形態3の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 3. FIG. 実施形態3の縮径手段を一部断面で示した縮径手段の構成説明図。FIG. 6 is a configuration explanatory view of a diameter reducing means, in which the diameter reducing means of Embodiment 3 is partially shown in cross section. 実施形態3の縮径手段により素管を縮径する様子を示す作用説明図。FIG. 9 is an operation explanatory view showing a state in which the diameter of a raw pipe is reduced by the diameter reducing means of Embodiment 3. 実施形態3の加工ボールの加工ピッチを説明する説明図。Explanatory drawing explaining the processing pitch of the processing ball | bowl of Embodiment 3. FIG. エグレが発生したフィンを有する管内面の一部を示す断面図。Sectional drawing which shows a part of pipe inner surface which has the fin which the egle has generate | occur | produced. 従来の縮径手段により素管を縮径する様子を示す説明図。Explanatory drawing which shows a mode that an element pipe is diameter-reduced by the conventional diameter reducing means. 実施形態4Aの内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 4A. 実施形態4Bの内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 4B. 実施形態4Cの内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe of Embodiment 4C. 実施形態4A,4B、従来技術の各製造装置に設置した加工荷重検出部の設置箇所を説明する断面図。Sectional drawing explaining the installation location of the processing load detection part installed in each manufacturing apparatus of Embodiment 4A, 4B and a prior art. 実施形態4Cの製造装置に設置した加工荷重検出部の設置箇所を説明する断面図。Sectional drawing explaining the installation location of the process load detection part installed in the manufacturing apparatus of Embodiment 4C. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 比較例の製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the fluctuation of the processing related data before and after the occurrence of the disconnection in the form of a graph showing the state of the occurrence of the disconnection in the manufacturing apparatus of the comparative example. 実施形態4Aの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of disconnection in the form of a graph showing the state of occurrence of disconnection in the manufacturing apparatus of Embodiment 4A. 実施形態4Aの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of disconnection in the form of a graph showing the state of occurrence of disconnection in the manufacturing apparatus of Embodiment 4A. 実施形態4Aの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of disconnection in the form of a graph showing the state of occurrence of disconnection in the manufacturing apparatus of Embodiment 4A. 実施形態4Bの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of Embodiment 4B. 実施形態4Bの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of a disconnection in the form of a graph showing the state of the occurrence of a disconnection in the manufacturing apparatus of Embodiment 4B. 実施形態4Cの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of disconnection in the form of a graph showing the state of occurrence of disconnection in the manufacturing apparatus of Embodiment 4C. 実施形態4Cの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of disconnection in the form of a graph showing the state of occurrence of disconnection in the manufacturing apparatus of Embodiment 4C. 実施形態4Cの製造装置における断管発生判定の様子を断管発生前後の加工関連データの変動をグラフ化して示した図。The figure which showed the change of processing related data before and after the occurrence of disconnection in the form of a graph showing the state of occurrence of disconnection in the manufacturing apparatus of Embodiment 4C.
11…内面溝付管
12…内面溝付管の製造装置
13…縮径部
14…溝加工部
16…引抜き装置
17…補助引抜き装置
33…可動台
35…ロードセル
45…制御装置
50…固定台
101…内面溝付管製造装置
120…縮径装置
130…補助送り装置
140…溝加工装置
160…巻取りドラム
171…制御器
176…演算器
182…上流可動台
184…全体可動台
192…上流荷重検出器
194…全体荷重検出器
201…素管
202…縮径管
204…内面溝付管
311…内面溝付管
311a…素管
312…内面溝付管の製造装置
313…縮径手段
314…溝加工手段
317…中間引抜き部
322…縮径ダイス
323…フローティングプラグ
324…溝付プラグ
326…加工ボール
510A,510B,510C…内面溝付管の製造装置
511…内面溝付管
511a…素管
513…縮径加工部
514…溝加工部
516…抽伸部
517,545,552…加工関連データ検出部
518,546,553…制御部
524…溝付プラグ
541…溝加工荷重測定用ロードセル
551…中間抽伸部
P…加工荷重
DESCRIPTION OF SYMBOLS 11 ... Internal grooved pipe 12 ... Internal grooved pipe manufacturing apparatus 13 ... Diameter reduction part 14 ... Groove processing part 16 ... Drawing apparatus 17 ... Auxiliary drawing apparatus 33 ... Movable stand 35 ... Load cell 45 ... Control device 50 ... Fixed stand 101 ... Inner grooved tube manufacturing device 120 ... Reducing device 130 ... Auxiliary feeding device 140 ... Groove processing device 160 ... Winding drum 171 ... Controller 176 ... Calculator 182 ... Upper movable table 184 ... Whole movable table 192 ... Upstream load detection 194 ... Overall load detector 201 ... Element tube 202 ... Reduced diameter tube 204 ... Inner grooved tube 311 ... Inner surface grooved tube 311a ... Element tube 312 ... Inner grooved tube manufacturing apparatus 313 ... Reduced diameter means 314 ... Groove processing Means 317 ... intermediate extraction part 322 ... reduced diameter die 323 ... floating plug 324 ... grooved plug 326 ... processed balls 510A, 510B, 510C ... inner surface grooved pipe manufacturing apparatus 511 ... inside Grooved tube 511a ... Raw tube 513 ... Diameter reduction processing part 514 ... Groove processing part 516 ... Drawing part 517, 545, 552 ... Processing related data detection part 518, 546, 553 ... Control part 524 ... Grooved plug 541 ... Groove processing Load cell for load measurement 551 ... Intermediate drawing part P ... Processing load
 (実施形態1) 
 この発明の一実施形態を以下図面と共に説明する。 
 本実施形態における内面溝付管11の製造方法は、図1に示すような製造装置12を用いて製造することができる。
(Embodiment 1)
An embodiment of the present invention will be described below with reference to the drawings.
The manufacturing method of the internally grooved tube 11 in this embodiment can be manufactured using a manufacturing apparatus 12 as shown in FIG.
 なお、図1は、本実施形態における内面溝付管の製造装置12の説明図である。 In addition, FIG. 1 is explanatory drawing of the manufacturing apparatus 12 of an inner surface grooved pipe | tube in this embodiment.
 前記製造装置12は、引抜き方向(抽伸方向)(図1中のX方向)の上流側から下流側へ沿って、順に縮径部13、補助引抜き装置17、溝加工部14、仕上げ加工部15を配設し、さらに下流側に、引抜き装置16を備え、これら構成により素管11aを連続加工して内面溝付管11を製造している。 The manufacturing apparatus 12 has a reduced diameter portion 13, an auxiliary drawing device 17, a groove processing portion 14, and a finishing processing portion 15 in order from the upstream side to the downstream side in the drawing direction (drawing direction) (X direction in FIG. 1). The drawing device 16 is further provided on the downstream side, and the inner tube 11a is manufactured by continuously processing the raw tube 11a with these configurations.
 詳しくは、前記製造装置12は、素管11aを引抜いて縮径させる縮径部13と、素管11a内面に多数の溝を形成する溝加工部14と、該溝加工部14の下流側で加工済みの内面溝付管11を巻き取る巻取りドラム36を兼ねた引抜き装置16と、縮径部13と溝加工部14との間で素管11aを引抜く補助引抜き装置17とで構成している。 Specifically, the manufacturing apparatus 12 includes a diameter-reduced portion 13 that draws and reduces the diameter of the raw tube 11 a, a groove processed portion 14 that forms a large number of grooves on the inner surface of the raw tube 11 a, and a downstream side of the groove processed portion 14. It comprises a drawing device 16 that also serves as a winding drum 36 for winding the machined inner grooved tube 11, and an auxiliary drawing device 17 that draws the raw tube 11 a between the reduced diameter portion 13 and the groove processing portion 14. ing.
 さらに、前記製造装置12は、固定台50に対して引抜き方向へ移動可能に、縮径部13、補助引抜き装置17および溝加工部14を支持する可動台33と、該可動台33の前記固定台50に対する移動に応じて作用する加工荷重Pを検出するロードセル35と、該ロードセル35により検出した前記加工荷重Pに基づいて、補助引抜き装置17を制御する制御装置45とで構成している。 Further, the manufacturing apparatus 12 is movable with respect to the fixed base 50 so as to be movable in the drawing direction, the movable base 33 supporting the reduced diameter portion 13, the auxiliary drawing device 17 and the groove processing portion 14, and the fixing of the movable base 33. The load cell 35 detects a processing load P acting in accordance with the movement with respect to the table 50, and the control device 45 controls the auxiliary extraction device 17 based on the processing load P detected by the load cell 35.
 以下、上述した各部の構成について説明する。 
 前記縮径部13は、通過する素管11aを縮径するための円筒状のダイス22を構成している。前記ダイス22は、上流側へ向けて末広がり状に開口したダイス孔22aを有している。
Hereinafter, the structure of each part mentioned above is demonstrated.
The reduced diameter portion 13 constitutes a cylindrical die 22 for reducing the diameter of the passing raw tube 11a. The die 22 has a die hole 22a that opens toward the upstream side.
 さらに、前記縮径部13は、素管11aの内側にフローティングプラグ23を備えている。該フローティングプラグ23は、素管11aを介して前記ダイス22と係合可能に外周面の軸方向の一部を円錐状に形成している。これにより、フローティングプラグ23は、前記ダイス22部分において回動自在に係合される。 Further, the reduced diameter portion 13 is provided with a floating plug 23 inside the raw tube 11a. The floating plug 23 is formed so that a part of the outer peripheral surface in the axial direction is conical so as to be engageable with the die 22 via the raw tube 11a. Thereby, the floating plug 23 is rotatably engaged in the die 22 portion.
 また、前記溝加工部14は、素管11a内側において、外周に複数の螺旋状溝が形成された溝付プラグ24を備えている。 Further, the groove processing portion 14 includes a grooved plug 24 in which a plurality of spiral grooves are formed on the outer periphery inside the raw tube 11a.
 前記溝付プラグ24と前記フローティングプラグ23とは、連結棒25を介してそれぞれ独立して回動自在に連結されている。さらに、前記溝加工部14には、複数のボール26を備え、該複数のボール26は、素管11aの外側において該素管11aを押圧しながら管軸回りに回転自在に配設されている。 The grooved plug 24 and the floating plug 23 are rotatably connected to each other via a connecting rod 25. Further, the groove processing portion 14 includes a plurality of balls 26, and the plurality of balls 26 are disposed around the tube axis while being pressed against the tube 11a outside the tube 11a. .
 前記溝加工部14は、溝付プラグ24が素管11aの内周面に当接し、素管11aが軸回りに回転しながら引抜き方向へ引っ張られるとともに複数のボール26による押圧により、素管11aの内周面に多数の平行な螺旋状をした螺旋状溝を形成することができる。 
 前記溝加工部14を通過することで、内面溝付管11を得ることができる。
The grooved portion 14 is configured such that the grooved plug 24 abuts on the inner peripheral surface of the raw tube 11 a, the raw tube 11 a is pulled in the drawing direction while rotating around the axis, and pressed by a plurality of balls 26, thereby being pressed. A large number of parallel spiral grooves can be formed on the inner peripheral surface of the substrate.
The inner grooved tube 11 can be obtained by passing through the grooved portion 14.
 前記仕上げ加工部15では、整径ダイス27を備え、該整径ダイス27のダイス孔27aを内面溝付管11が通過することにより、例えば、前記溝加工部14におけるボール26の押圧により生じた管表面の歪み等を滑らかに整径する加工を行っている。 The finishing portion 15 is provided with a diameter adjusting die 27, and the inner grooved tube 11 passes through the die hole 27 a of the diameter adjusting die 27, for example, by pressing the ball 26 in the groove processing portion 14. Processing to smooth the diameter of the tube surface distortion is performed.
 前記引抜き装置16は、巻取りドラム36および巻取り用のモータM1を備え、該モータM1の回転駆動により内面溝付管11を引張りながら巻取りドラム36に巻き付けている。 The drawing device 16 includes a winding drum 36 and a winding motor M1, and winds around the winding drum 36 while pulling the inner grooved tube 11 by rotational driving of the motor M1.
 前記補助引抜き装置17は、縮径部13と溝加工部14との間で、素管11aを引抜き方向へ引き抜くことで引抜き装置16による引抜きを補助している。すなわち、前記溝加工部14による溝加工は、素管11aを引抜く際の抵抗となり、この溝加工の際の引抜きの負荷が大きくなるが、補助引抜き装置17により素管11aにかかる前記引抜き負荷を分散させることができる。 The auxiliary drawing device 17 assists the drawing by the drawing device 16 by drawing the raw tube 11a in the drawing direction between the reduced diameter portion 13 and the groove processing portion 14. That is, the grooving by the grooving section 14 becomes a resistance when pulling out the raw tube 11a, and the pulling load during the grooving increases, but the pulling load applied to the raw tube 11a by the auxiliary drawing device 17 is increased. Can be dispersed.
 前記補助引抜き装置17は、素管11aに対して上下各側、或いは、左右各側に配置された一対のベルト42a,42bを備えている。各ベルト42a,42bは、ループ状(無端状)に形成され、モータM2の回転駆動により回転可能にプーリー43に張架されている。ベルト42a,42bは、外周面に、その長さ方向に沿って複数のパッド44を連設したキャタピラ式に構成している。 The auxiliary drawing device 17 includes a pair of belts 42a and 42b arranged on the upper and lower sides or the left and right sides with respect to the raw tube 11a. Each of the belts 42a and 42b is formed in a loop shape (endless shape), and is stretched around the pulley 43 so as to be rotatable by the rotational drive of the motor M2. The belts 42a and 42b are configured in a caterpillar type in which a plurality of pads 44 are continuously provided along the length direction on the outer peripheral surface.
 前記補助引抜き装置17における一対のベルト42a,42bは、十分な引抜き力を得ることと素管11aの変形を防止するといった観点からパッド44による素管11aの押し付け力が例えば、0.3MPaの所望の押し付け力に保たれるよう素管11aに対して各側に備えている。 The pair of belts 42a and 42b in the auxiliary pulling device 17 is desired to have a pressing force of the raw tube 11a by the pad 44 of, for example, 0.3 MPa from the viewpoint of obtaining a sufficient pulling force and preventing deformation of the raw tube 11a. It is provided on each side with respect to the element tube 11a so as to be kept at the pressing force of.
 前記パッド44には、図示しないが、縮径部13により縮径後の素管11aの外面との接触部分に、複数のパッド44の連設方向に対する切断面が円弧状となるパッド溝44aを形成している。 
 なお、前記補助引抜き装置17の上流側には、素管11aの外表面に付着した油膜や異物を除去するためのワイパーを備えてもよい(図示せず)。
Although not shown in the drawing, the pad 44 has a pad groove 44a having a circular cut surface in the connecting direction of the plurality of pads 44 at the contact portion with the outer surface of the base tube 11a after being reduced in diameter by the reduced diameter portion 13. Forming.
In addition, you may provide the wiper for removing the oil film and foreign material adhering to the outer surface of the element | tube 11a in the upstream of the said auxiliary extraction apparatus 17 (not shown).
 前記可動台33は、固定台50に対して引抜き方向、或いは、その逆方向に平行移動可能なように複数の車輪33aを介して固定台50に設置され、上述した縮径部13、溝加工部14、仕上げ加工部15および補助引抜き装置17を、ボックス32に収容した状態で設置している。 The movable table 33 is installed on the fixed table 50 via a plurality of wheels 33a so as to be movable in the drawing direction or the opposite direction with respect to the fixed table 50. The part 14, the finishing part 15, and the auxiliary drawing device 17 are installed in a state of being accommodated in the box 32.
 ロードセル35は、固定台50上であって可動台33における引抜き方向の下流側端部分に、素管11aの引抜き力に応じて可動台33から受ける加工荷重Pを検出可能に設けている。 The load cell 35 is provided on the fixed base 50 and at the downstream end portion of the movable base 33 in the drawing direction so as to detect the processing load P received from the movable base 33 according to the pulling force of the raw tube 11a.
 前記制御装置45は、ロードセル35により検出した加工荷重Pを電気信号化した荷重検出信号Sinが入力され、制御プログラムに従って、補助引抜き装置17のモータM2の駆動を制御する制御信号Soutを出力する。 The control device 45 receives a load detection signal S in obtained by converting the machining load P detected by the load cell 35 into an electrical signal, and outputs a control signal S out for controlling the driving of the motor M2 of the auxiliary drawing device 17 according to the control program. To do.
 さらに、前記制御装置45は、図示しないが信号の解析処理および演算処理を実行するための演算機(CPU)、必要な制御プログラムを格納するためのハードディスクおよび前記荷重検出信号Sinを一時格納するためのメモリを備え、その他にも、制御パラメータを入力するキーボードなどの入力手段、モニタなどの表示手段を適宜、備えることができる。 Further, although not shown, the control device 45 temporarily stores an arithmetic unit (CPU) for executing signal analysis processing and arithmetic processing, a hard disk for storing necessary control programs, and the load detection signal S in. In addition, an input unit such as a keyboard for inputting control parameters and a display unit such as a monitor can be appropriately provided.
 本実施形態における内面溝付管11の製造方法は、上述した内面溝付管の製造装置12を用いて行なう。 
 詳しくは、本実施形態における内面溝付管11の製造方法は、整径ダイス27を通過後の内面溝付管11を一次仕上げ管とすると、一次仕上げ管の軸方向断面積をAC1(mm)、一次仕上げ管の破断応力をσ(N/mm)としたとき、加工荷重Pが(AC1×σ)の0.5倍から0.9倍の間になるよう補助引抜き装置17のモータM2の速度を制御することにより、所望の形状の一次仕上げ管を製造する方法である。
The manufacturing method of the inner surface grooved tube 11 in the present embodiment is performed using the inner surface grooved tube manufacturing apparatus 12 described above.
Specifically, in the manufacturing method of the internally grooved tube 11 in the present embodiment, when the internally grooved tube 11 after passing through the sizing die 27 is a primary finish tube, the axial cross-sectional area of the primary finish tube is A C1 (mm 2 ) When the breaking stress of the primary finish pipe is σ M (N / mm 2 ), the auxiliary drawing is performed so that the processing load P is between 0.5 and 0.9 times (A C1 × σ M ). This is a method of manufacturing a primary finished tube of a desired shape by controlling the speed of the motor M2 of the device 17.
 このように、補助引抜き装置17のモータM2の速度を、P≧0.5×(AC1×σ)の間になるよう制御するのは、P<0.5×(AC1×σ)であると、補助引抜き装置17の駆動力の僅かな変動で管内面形状が変化し易くなり、溝深さ等が一定でなくなるからである。 Thus, the control of the speed of the motor M2 of the auxiliary pulling device 17 so as to be between P ≧ 0.5 × (A C1 × σ M ) is P <0.5 × (A C1 × σ M ), The shape of the inner surface of the tube is likely to change due to slight fluctuations in the driving force of the auxiliary drawing device 17, and the groove depth and the like are not constant.
 補助引抜き装置17のモータM2の速度を、P≦0.9×(AC1×σ)の間になるよう制御するのは、P>0.9×(AC1×σ)であると、管に有する僅かな肉厚変動や、引抜き力の変動により、管が破断してしまうからである。 It is P> 0.9 × (A C1 × σ M ) that controls the speed of the motor M2 of the auxiliary drawing device 17 so that P ≦ 0.9 × (A C1 × σ M ). This is because the tube breaks due to slight wall thickness variations in the tube and fluctuations in the pulling force.
 上述した内面溝付管11の製造方法により、図2および図3に示すように、外径Dが3mm以上6mm以下の範囲、溝2の深さHが0.07mm以上であって0.10mmから0.30mmの範囲、管の中心軸に対する溝2のねじれ角βが30度から60度の範囲、隣り合う溝2と溝2の間で形成されるフィン1の頂角αが5度から20度の範囲であり、管の軸方向に対する断面積をAC1(mm)としたとき、AC1<0.8×Dである内面溝付管11を製造することができる。 
 なお、AC1<0.8×Dというのは、従来と比較して肉厚が薄い管であることを示す。 
 これは、断面積を変えずにフィン1をならして溝2をなくしたときの平均肉厚がt’mmであると仮定すると、肉厚が十分薄い場合において、A≒πDt’との関係が成り立ち、管の肉厚が、薄肉である例えば、t’<0.255を実現するためには、上述したように、断面積がA<0.8×Dの関係を満たす必要があるからである。
2 and 3, the outer diameter D is in the range of 3 mm to 6 mm, and the depth H of the groove 2 is 0.07 mm to 0.10 mm. To 0.30 mm, the twist angle β of the groove 2 with respect to the central axis of the tube is in the range of 30 to 60 degrees, and the apex angle α of the fin 1 formed between adjacent grooves 2 is from 5 degrees. When the cross-sectional area with respect to the axial direction of the pipe is A C1 (mm 2 ) in the range of 20 degrees, the internally grooved pipe 11 satisfying A C1 <0.8 × D can be manufactured.
Note that A C1 <0.8 × D indicates that the tube is thinner than the conventional one.
Assuming that the average thickness when the fins 1 are leveled and the grooves 2 are eliminated without changing the cross-sectional area is t ′ mm, when the thickness is sufficiently thin, A c ≈πDt ′ For example, in order to realize t ′ <0.255, the cross-sectional area needs to satisfy the relationship of A C <0.8 × D as described above. Because there is.
 また、A<0.8×Dのように、従来と比較して管の肉厚が薄い場合には、加工が困難になる。これは、単に断面積が小さくなることで破断荷重が小さくなるからだけでなく、以下のように溝付け加工特有の問題があるからである。 Moreover, when the wall thickness of the pipe is smaller than the conventional one, such as A C <0.8 × D, processing becomes difficult. This is not only because the breaking load is reduced simply by reducing the cross-sectional area, but also because there are problems specific to grooving as described below.
 すなわち、肉厚が薄くなると、管壁がボールの公転方向に座屈し易くなり、管壁の一部がプラグの溝に充填される前に、管を構成する材料が半径方向外側に逃げてしまうからである。 That is, when the wall thickness is reduced, the tube wall tends to buckle in the ball revolving direction, and the material constituting the tube escapes radially outward before a portion of the tube wall is filled in the plug groove. Because.
 特に、従来の加工では、管の引抜き方向に加わる荷重が大きくなるが、このように、軸方向の引張り力が大きいほど、周方向への変形が困難になり、溝加工がし難くなる。 In particular, in the conventional processing, the load applied in the drawing direction of the pipe increases, but as the axial tensile force increases, the deformation in the circumferential direction becomes difficult and the groove processing becomes difficult.
 これに対して、上述した内面溝付管11の製造方法によれば、管に加わる引抜き方向への荷重が上述した制御により低減され、肉厚が薄い管に対して溝付け加工する場合でも、周方向の座屈を抑えることが可能になる。 On the other hand, according to the manufacturing method of the inner surface grooved tube 11 described above, the load in the drawing direction applied to the tube is reduced by the control described above, and even when grooving a thin wall tube, It becomes possible to suppress circumferential buckling.
 以上により、前記内面溝付管11は、従来技術よりも溝深さを大きく、ねじれ角を大きく、頂角を小さくすることができ、熱伝達性能が大きい伝熱管とすることができる。さらに、断面積を小さくすることにより、軽量で省資源化した伝熱管とすることができる。また、このような高性能で軽量な伝熱管を用いることにより、熱交換器を小型、軽量にすることができる。 As described above, the inner grooved tube 11 can be a heat transfer tube having a larger groove depth, a larger torsion angle, a smaller apex angle, and a higher heat transfer performance than the conventional technology. Furthermore, by reducing the cross-sectional area, a heat transfer tube that is lightweight and resource-saving can be obtained. Further, by using such a high-performance and lightweight heat transfer tube, the heat exchanger can be made small and light.
 また、上述した実施形態では、制御装置により補助引抜き装置17のモータM2の速度を制御する方法について述べたが、速度を制御パラメータとして制御するに限らず、モータM2の加速度、トルク、回転角度、或いは、これら複数を制御パラメータとして制御してもよい。 In the above-described embodiment, the method for controlling the speed of the motor M2 of the auxiliary extraction device 17 by the control device has been described. However, not only the speed is controlled as a control parameter, but also the acceleration, torque, rotation angle, Alternatively, a plurality of these may be controlled as control parameters.
 また、図1では前記補助引抜き装置17の駆動に、モーターM2を1つ取り付けた例を示しているが、左右それぞれにモーターを取り付けて2台で運転させてもよい。 
 このような場合、サーボ機構のような目標運転制御値に追従できるようなモーターを使用して、本発明のような破断が生じやすい難加工形状を有する内面溝付管加工時の加工荷重Pを、より詳細に制御できるようになって、設備運転の安定化に有効である。
Further, FIG. 1 shows an example in which one motor M2 is attached to drive the auxiliary pulling device 17, but two motors may be attached to the left and right for operation.
In such a case, by using a motor that can follow the target operation control value such as a servo mechanism, the machining load P at the time of machining the internally grooved tube having the difficult-to-break shape as in the present invention is generated. This makes it possible to control in more detail and is effective in stabilizing the operation of the equipment.
 さらにまた、本発明の製造方法は、少なくとも補助引抜き装置17を制御する方法であればよく、例えば、Pが(AC1×σ)の0.5倍から0.9倍の間になるよう例えば、補助引抜き装置17と引抜き装置16との双方を制御してもよい。 Furthermore, the manufacturing method of the present invention only needs to be a method for controlling at least the auxiliary drawing device 17. For example, P is between 0.5 and 0.9 times (A C1 × σ M ). For example, both the auxiliary drawing device 17 and the drawing device 16 may be controlled.
 続いて、前記方法で構成した内面溝付管11について実施した性能比較実験について説明する。 
 まず、前記各素管11aを、以下に示す適宜の条件の下、内面溝加工装置にかけ、内面溝付管として一次仕上げ管を作製する加工実験を行った。 
 本実験において、外径D、溝数、底肉厚t、溝深さH、ねじれ角β、頂角α、溝底幅W、山底幅W、溝底幅Wと溝深さHの比、軸方向に対する断面積AC1(それぞれ図2参照)をパラメータとして、以下の表1に示すような実施例1,2の内面溝付管11およびこれらの比較対照として比較例1から4の内面溝付管の製造を試みた。
Then, the performance comparison experiment implemented about the inner surface grooved pipe 11 comprised by the said method is demonstrated.
First, each elementary tube 11a was subjected to an internal groove processing apparatus under the appropriate conditions shown below, and a processing experiment was performed to produce a primary finish tube as an internal grooved tube.
In this experiment, the outer diameter D, the number of grooves, the bottom thickness t, the groove depth H, the torsion angle β, the apex angle α, the groove bottom width W 1 , the mountain bottom width W 2 , the groove bottom width W 1 and the groove depth. Using the ratio of H and the cross-sectional area A C1 (refer to FIG. 2) with respect to the axial direction as parameters, the inner grooved tube 11 of Examples 1 and 2 as shown in Table 1 below and Comparative Example 1 as a comparison between them Attempts were made to manufacture the inner grooved tube of No.4.
 詳しくは、実施例1,2、比較例1から4のそれぞれについて、加工原料として外径8mmで内面が平滑な銅管(素管11a)を複数本準備し、連続1000m以上を目標とする加工を5回行い、破断なく1000m以上の加工ができた回数を比較する加工歩留り実験を行なった。 Specifically, for each of Examples 1 and 2 and Comparative Examples 1 to 4, a plurality of copper tubes (element tubes 11a) having an outer diameter of 8 mm and a smooth inner surface are prepared as processing raw materials, and processing is performed with a target of continuous 1000 m or more. Was performed five times, and a processing yield experiment was performed to compare the number of times 1000 mm or more could be processed without breaking.
 実施例1,2は、上述した本発明の加工方法で行ったもの、すなわち、上述した製造装置12を用いて、加工荷重Pが0.5×(AC1×σ)≦P≦0.9×(AC1×σ)になるよう補助引抜き装置17のモータM2の速度を制御する加工方法で製造したものである。 
 なお、実施例1,2では、目標引抜き荷重をそれぞれ1200N、700Nに設定して実験を行なっている。
In the first and second embodiments, the processing load P is 0.5 × (A C1 × σ M ) ≦ P ≦ 0. It is manufactured by a processing method for controlling the speed of the motor M2 of the auxiliary drawing device 17 so as to be 9 × (A C1 × σ M ).
In Examples 1 and 2, experiments were performed with the target pull-out loads set to 1200 N and 700 N, respectively.
 これに対して、比較例1,2では、上述した製造装置12を用いて加工しているが、加工荷重Pが本発明の条件から外れた設定で製造したものである。 
 なお、比較例1,2では、目標引抜き荷重をそれぞれ1250N、600Nに設定して実験を行なっている。
On the other hand, in the comparative examples 1 and 2, it processes using the manufacturing apparatus 12 mentioned above, However, It manufactures by the setting from which the process load P remove | deviated from the conditions of this invention.
In Comparative Examples 1 and 2, experiments were performed with the target pull-out loads set to 1250 N and 600 N, respectively.
 比較例3,4では、前記特許文献3(特開2001-241877号公報)に開示の内面溝付管の製造方法で行なったものである。すなわち、比較例3,4では、補助引抜き装置17を具備せずに、引抜き装置のみで素管11aを引抜く製造装置を用いて製造したものである。 Comparative Examples 3 and 4 were performed by the method for manufacturing an internally grooved tube disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2001-241877). That is, in the comparative examples 3 and 4, the auxiliary drawing device 17 is not provided, and the manufacturing is performed using a manufacturing device that draws the raw tube 11a only with the drawing device.
 実施例1,2、比較例1から4のそれぞれについて、一次仕上げ管の加工実験の結果を表1に示す。  Table 1 shows the results of the primary finishing tube processing experiment for each of Examples 1 and 2 and Comparative Examples 1 to 4. *
Figure JPOXMLDOC01-appb-T000001
 この結果からわかるように、実施例1,2については、本発明の装置構成12を用い、Pを(AC1×σ)の0.5倍から0.9倍の間に制御して加工することにより、いずれも5回の試験中5回とも、表1に示すような形状の内面溝付管に安定して加工することができた。
Figure JPOXMLDOC01-appb-T000001
As can be seen from this result, in Examples 1 and 2, the apparatus configuration 12 of the present invention was used, and P was controlled between 0.5 times and 0.9 times (A C1 × σ M ). As a result, it was possible to stably process the internally grooved tube having the shape shown in Table 1 in all 5 out of 5 tests.
 なお、一次仕上げ管の頂角が16度より小さい場合、溝付プラグ24の溝を細く形成しておく必要があり、この溝付プラグ24の細い溝に管肉をしっかりと充填できないため、加工が困難になる。 
 よって、実施例1,2のように、頂角を16度で加工することができる本発明の製造方法は特に有効であるといえる。
When the apex angle of the primary finish tube is smaller than 16 degrees, it is necessary to form the groove of the grooved plug 24 in a thin shape, and the thin groove of the grooved plug 24 cannot be filled with the tube meat. Becomes difficult.
Therefore, it can be said that the manufacturing method of the present invention capable of processing the apex angle at 16 degrees as in Examples 1 and 2 is particularly effective.
 一方、比較例1,2では、5回の加工中問題なく加工できたのはそれぞれ3回、1回となり、いずれも歩留まりが低下した。この結果より、加工荷重Pの範囲が本発明の条件を外れると、加工の安定性が低下することが明らかになり、本発明の製造方法の有効性を実証することができた。 On the other hand, in Comparative Examples 1 and 2, it was possible to process without problems during the 5 times of machining, 3 times and 1 time, respectively, and the yield decreased in both cases. From this result, it became clear that when the range of the processing load P deviated from the conditions of the present invention, the stability of the processing decreased, and the effectiveness of the manufacturing method of the present invention could be verified.
 比較例3では、5回全て破断せずに加工できたが、例えば、外径Dが6mmより大きい8mmであり、頂角αが20度より大きい23度であり、軸方向に対する断面積AC1が0.8Dより大きい7.6mmとなり、実施例1,2のような本発明の形状は得られなかった。 In Comparative Example 3, it was possible to process all five times without breaking. For example, the outer diameter D is 8 mm larger than 6 mm, the apex angle α is 23 degrees larger than 20 degrees, and the cross-sectional area A C1 with respect to the axial direction is Was larger than 0.8D to 7.6 mm 2 , and the shape of the present invention as in Examples 1 and 2 was not obtained.
 比較例4では、比較例3と同じ製造装置を用い、特に、外径Dが実施例1,2と同じ6mmに加工することを試みたが、5回の加工中問題なく加工できたものは0回であり、いずれも加工を開始するとすぐに破断し、加工の継続が不可能であった。 In Comparative Example 4, the same manufacturing apparatus as in Comparative Example 3 was used, and in particular, an attempt was made to process the outer diameter D to 6 mm, which was the same as in Examples 1 and 2. It was 0 times, and all of them were broken immediately after starting the processing, and the processing could not be continued.
 続いて、上述した加工実験で得られた実施例1,2、比較例3の一次仕上げ管について、それぞれ空引きダイス(図示せず)によって空引きし、所望の外径の最終仕上げ管として伝熱管を得る空引き加工実験を行なった。 Subsequently, the primary finish pipes of Examples 1 and 2 and Comparative Example 3 obtained in the above-described processing experiments are each pulled by a blanking die (not shown) and transmitted as a final finish pipe having a desired outer diameter. An emptying experiment was conducted to obtain a heat tube.
 詳しくは、空引きとは、一次仕上げ管の内面に直接、加工を加えずに、該一次仕上げ管をダイスに通して引き抜くもので、該空引きにより、外径が減少するとともに、肉厚も若干減少する。また、長手方向に伸びるのに伴い、ねじり角は低下する。 
 なお、空引きは、一般に一次仕上げ管が所望の外径であれば、行わず、所望の外径よりも大きい場合に、一次仕上げ管に対して行なう加工であるが、本実験では、空引き後の管形状について評価するために実施例1または2および比較例3について空引き加工実験を行なった。
Specifically, empty drawing is a method in which the primary finish pipe is pulled through a die without directly processing the inner surface of the primary finish pipe, and the outer diameter is reduced and the wall thickness is reduced by the empty drawing. Slightly decreases. Further, the torsion angle decreases as it extends in the longitudinal direction.
In general, empty drawing is not performed if the primary finish pipe has a desired outer diameter, but is performed on the primary finish pipe when the primary finish pipe is larger than the desired outer diameter. In order to evaluate the later tube shape, a blanking experiment was performed on Example 1 or 2 and Comparative Example 3.
 これにより、以下の表2に示すような実施例3、比較例5の伝熱管を製造することができる。 Thereby, the heat transfer tubes of Example 3 and Comparative Example 5 as shown in Table 2 below can be manufactured.
Figure JPOXMLDOC01-appb-T000002
 なお、実施例3は、実施例1または2の一次仕上げ管を空引きして外径を5mmまで縮径したものである。比較例5は、比較例3の一次仕上げ管を空引きして外径7mmまで縮径したものである。
Figure JPOXMLDOC01-appb-T000002
In Example 3, the primary finish tube of Example 1 or 2 was evacuated to reduce the outer diameter to 5 mm. In Comparative Example 5, the primary finish tube of Comparative Example 3 was evacuated and reduced in diameter to 7 mm in outer diameter.
 ここで、一次仕上げ管と、空引きを経た最終仕上げ管では、外径と断面積の比が厳密には一致しないが、実施の範囲では空引きの縮径率(外径の減少率)は10~20%程度であり、この範囲内では、AC1/D≒A/Dとなっている。 
 なお、AC1,Dは、それぞれ一次仕上げ管の軸方向に対する断面積、外径を示し、A,Dは、それぞれ最終仕上げ管の軸方向に対する断面積、外径を示す。
Here, the ratio of the outer diameter and the cross-sectional area does not exactly match in the primary finishing pipe and the final finishing pipe that has undergone empty drawing, but in the scope of implementation, the diameter reduction rate of the empty drawing (the reduction rate of the outer diameter) is It is about 10 to 20%, and within this range, A C1 / D 1 ≈A C / D.
A C1 and D 1 indicate the cross-sectional area and outer diameter in the axial direction of the primary finish pipe, respectively, and A C and D indicate the cross-sectional area and outer diameter in the axial direction of the final finish pipe, respectively.
 表2からわかるように、実施例3では、外径Dが3mm以上6mm以下である5mm、溝2の深さHが0.07mm以上であって0.10mmから0.30mmである0.15mm、管の中心軸に対する溝2のねじれ角βが30度から60度である40度、隣り合う溝2と溝2の間で形成されるフィン1の頂角αが5度から20度である10度であり、管の軸方向に対する断面積Aが外径Dの0.8倍よりも小さな3.8mmとなり、空引き後も本発明の条件を満たす所望の形状の伝熱管が得られた。 As can be seen from Table 2, in Example 3, the outer diameter D is 5 mm which is 3 mm or more and 6 mm or less, and the depth H of the groove 2 is 0.07 mm or more and 0.15 mm which is 0.10 mm to 0.30 mm. The twist angle β of the groove 2 with respect to the central axis of the tube is 40 degrees, which is 30 degrees to 60 degrees, and the apex angle α of the fin 1 formed between the adjacent grooves 2 is 2 degrees to 20 degrees. is 10 degrees, the heat transfer tube is obtained for satisfying the desired shape of the cross-sectional area a C with respect to the axial direction is smaller 3.8 mm 2 next than 0.8 times the outer diameter D, sinking after the invention of the tube It was.
 一方、比較例5は、上述したとおり比較例3を一次仕上げ管として空引きしたものであるが、例えば、AC1>0.8Dであるなどの点で所望の形状から外れている比較例3を空引きしても所望の形状に加工できなかった(A>0.8Dのまま)。 On the other hand, Comparative Example 5 is obtained by emptying Comparative Example 3 as a primary finish pipe as described above. For example, Comparative Example 5 deviates from a desired shape in that A C1 > 0.8D 1 or the like. Even when 3 was emptied, it could not be processed into the desired shape (A C > 0.8D).
 これは、空引きによる縮径率があまり大きすぎるとねじれ角が小さくなったり、フィン1が分断されてしまい、空引きで縮径できる縮径率には、限界があるからである。 
 また、実施例3、比較例5は、表2に示すように伝熱性能の評価も行なった。実施例3の伝熱性能は、比較例5の凝縮管内熱伝達率の値を100としたときの相対的な伝熱性能で示している。
This is because if the diameter reduction ratio due to idling is too large, the torsion angle becomes small or the fin 1 is divided, and there is a limit to the diameter reduction ratio that can be reduced by idling.
In Example 3 and Comparative Example 5, the heat transfer performance was also evaluated as shown in Table 2. The heat transfer performance of Example 3 is shown as relative heat transfer performance when the value of the heat transfer coefficient in the condensing tube of Comparative Example 5 is 100.
 伝熱性能の算出に用いる凝縮管内熱伝達率は、以下の測定方法によって測定している。 
 前記各サンプル管を、それぞれ水平に設置した二重管式熱交換器サンプルの内管として挿入し、それらのサンプル内へ冷媒(R410a)を流すとともに、外管と内管との間の二重管部に冷却水を冷媒に対して対抗流となるように流し、冷却水と冷媒とで熱交換させることにより、冷媒を冷却させた。
The heat transfer coefficient in the condensation tube used for calculating the heat transfer performance is measured by the following measurement method.
Each of the sample tubes is inserted as an inner tube of a double-tube heat exchanger sample installed horizontally, and the refrigerant (R410a) flows into the samples, and the double tube between the outer tube and the inner tube is inserted. Cooling water was allowed to flow in the pipe portion so as to counteract the refrigerant, and the refrigerant was cooled by heat exchange between the cooling water and the refrigerant.
 そのときの熱交換量から、冷媒の質量流速300kg/msecにおける管内熱(凝縮熱)伝達率を測定(管外面基準で測定)した。 From the heat exchange amount at that time, the heat transfer rate in the tube (condensation heat) at a refrigerant mass flow rate of 300 kg / m 2 sec was measured (measured based on the tube outer surface reference).
 表2に示すように、本発明の実施例3では、137となり、比較例5よりも高い伝熱性能が得られた。 
 なお、凝縮管内熱伝達率は、径にも依存するため、本来は、実施例3、比較例5は、同径のもの同士で伝熱性能を比較評価すべきであるが、上述したとおり、比較例5(すなわち、比較例3,4)の製造方法では、本発明のような外径Dが6mm以下という小径な管が製造できないため、表2には、異なる径の管同士で比較した伝熱性能を示している。
As shown in Table 2, in Example 3 of this invention, it was set to 137 and the heat-transfer performance higher than the comparative example 5 was obtained.
In addition, since the heat transfer coefficient in the condensing tube also depends on the diameter, originally, Example 3 and Comparative Example 5 should compare and evaluate the heat transfer performance between those having the same diameter. In the manufacturing method of Comparative Example 5 (that is, Comparative Examples 3 and 4), since a small-diameter tube having an outer diameter D of 6 mm or less as in the present invention cannot be manufactured, Table 2 compares pipes having different diameters. It shows heat transfer performance.
 最後に、上述した本発明の製造方法により、最終仕上げ管として表3に示すような実施例4から8を製造し、これら実施例4から8をもとに本発明の内面溝付管の製造方法の有効性の検証を行なった。 
 なお、実施例6は、実施例1または2の一次仕上げ管を空引きしたものを用いている。
Finally, Examples 4 to 8 as shown in Table 3 are manufactured as final finished pipes by the manufacturing method of the present invention described above, and the inner grooved pipes of the present invention are manufactured based on these Examples 4 to 8. The effectiveness of the method was verified.
In Example 6, the primary finish tube of Example 1 or 2 was used.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例4から8は、いずれも上述した本発明の内面溝付管11の範囲を満たす所望の形状となり、高い歩留まりで加工することができた。
Figure JPOXMLDOC01-appb-T000003
As shown in Table 3, each of Examples 4 to 8 had a desired shape satisfying the above-described range of the internally grooved tube 11 of the present invention, and could be processed with a high yield.
 表3の結果より、本発明の製造方法によれば、従来技術よりも溝深さが大きく、ねじれ角が大きく、頂角が小さい本発明の内面溝付管11の範囲を満たす所望の形状の内面溝付管11を製造することができ、熱伝達性能が大きい伝熱管を製造することができることを実証することができた。 From the results shown in Table 3, according to the manufacturing method of the present invention, the groove depth is larger than that of the prior art, the twist angle is larger, and the apex angle is smaller. The inner grooved tube 11 can be manufactured, and it has been proved that a heat transfer tube having high heat transfer performance can be manufactured.
 さらに、断面積を小さくすることにより、軽量で省資源化できる。これはエアコンや給湯器などのヒートポンプ機器の熱交換器用として最適で、高性能な伝熱管である。 Furthermore, by reducing the cross-sectional area, light weight and resource saving can be achieved. This is a high-performance heat transfer tube that is ideal for heat exchangers of heat pump equipment such as air conditioners and water heaters.
 なお、上述した性能評価実験では、一次仕上げ管を作成後に空引きを行なったが、本発明の内面溝付管については、空引きを行なったものを製品とする形態に限らず、一次仕上げ管の形状で製品とする形態も含む。 In the performance evaluation experiment described above, the blanking was performed after the primary finish tube was created. However, the inner grooved tube of the present invention is not limited to the form in which the blanked tube is used as a product, but the primary finish tube. The form made into a product with the shape of is also included.
 なお、上述の実施形態1と、この発明の構成との対応において、この実施形態の縮径部13は、この発明の縮径手段に対応し、以下同様に、
溝加工部14は、溝加工手段に対応し、
引抜き装置16は、引抜き手段に対応し、
補助引抜き装置17は、補助引抜き手段に対応し、
可動部33は、可動手段に対応し、
ロードセル35は、荷重検出手段に対応し、
制御装置45は、制御手段に対応し、
固定台50は、設置部に対応し、
一次仕上げ管、或いは、最終仕上げ管は、溝加工手段通過後の管に対応するも、この発明は、実施形態1の構成のみに限定されるものではなく、多くの実施形態を得ることができる。
In the correspondence between the above-described first embodiment and the configuration of the present invention, the reduced diameter portion 13 of this embodiment corresponds to the reduced diameter means of the present invention.
The groove processing section 14 corresponds to the groove processing means,
The drawing device 16 corresponds to the drawing means,
The auxiliary extraction device 17 corresponds to auxiliary extraction means,
The movable part 33 corresponds to the movable means,
The load cell 35 corresponds to the load detection means,
The control device 45 corresponds to the control means,
The fixed base 50 corresponds to the installation part,
The primary finishing pipe or the final finishing pipe corresponds to the pipe after passing the grooving means, but the present invention is not limited to the configuration of the first embodiment, and many embodiments can be obtained. .
 (実施形態2) 
 次に、実施形態2の内面溝付管の製造装置101および製造方法について説明する。 
 内面溝付管の製造装置101は、加工対象200である素管201を縮径する縮径装置120と、縮径された縮径管202の内面に溝加工を施す溝加工装置140と、溝加工された内面溝付管204を引き抜く巻取りドラム160とを上流側からこの順に備えている。 
 なお、縮径装置120と溝加工装置140の間には、縮径管202を溝加工装置140へ向う送り方向に送り補助する補助送り装置130が設けられている。
(Embodiment 2)
Next, the manufacturing apparatus 101 and manufacturing method of the inner surface grooved tube of Embodiment 2 will be described.
The inner surface grooved pipe manufacturing apparatus 101 includes a diameter reducing device 120 that reduces the diameter of the raw pipe 201 that is the object to be processed 200, a groove processing apparatus 140 that performs groove processing on the inner surface of the reduced diameter reduced pipe 202, and a groove A winding drum 160 for pulling out the processed inner grooved tube 204 is provided in this order from the upstream side.
An auxiliary feeding device 130 is provided between the diameter reducing device 120 and the groove processing device 140 to assist the feeding of the reduced diameter tube 202 in the feeding direction toward the groove processing device 140.
 また、内面溝付管製造装置101には、縮径装置120と補助送り装置130とが固定されて巻取りドラム160の引抜き方向と平行に溝加工装置140に対して相対移動可能な上流可動台182が設けられ、上流可動台182が溝加工装置140に対して相対移動する際に上流可動台182にかかる相対移動方向の荷重を検出する上流荷重検出器192を備えている。 Further, in the inner surface grooved pipe manufacturing apparatus 101, an upstream movable base that is fixed to the diameter reducing apparatus 120 and the auxiliary feeding apparatus 130 and is relatively movable with respect to the groove processing apparatus 140 in parallel with the drawing direction of the winding drum 160. 182 is provided, and an upstream load detector 192 that detects a load in the relative movement direction applied to the upstream movable table 182 when the upstream movable table 182 moves relative to the groove processing device 140 is provided.
 また、内面溝付管製造装置101は、溝加工装置140が固定されて引抜き方向と平行に巻取りドラム160に対して相対移動可能な全体可動台184が備えられている。なお、上流可動台182は、全体可動台184に対して引抜き方向に相対移動可能に構成されている。 Further, the inner surface grooved pipe manufacturing apparatus 101 is provided with an entire movable stand 184 to which the groove processing apparatus 140 is fixed and which can move relative to the winding drum 160 in parallel with the drawing direction. The upstream movable table 182 is configured to be movable relative to the entire movable table 184 in the drawing direction.
 さらにまた、全体可動台184が巻取りドラム160に対して相対移動する際に全体可動台184にかかる相対移動方向の荷重を検出する全体荷重検出器194を備えている。 Furthermore, an overall load detector 194 that detects a load in the relative movement direction applied to the entire movable table 184 when the entire movable table 184 moves relative to the winding drum 160 is provided.
 また内面溝付管製造装置101は、補助送り装置130の動作を制御する制御器171および演算器176を備えている。そして、制御器171および演算器176は、上流荷重検出器192および全体荷重検出器194のうち少なくとも一方により検出した負荷に基づいて、補助送り装置130の送り補助速度を調節する送り補助速度調整処理および補助送り装置130の送り補助トルクを調節する送り補助トルク調整処理のうち少なくともいずれか一方を実行する構成である。 Also, the inner surface grooved pipe manufacturing apparatus 101 includes a controller 171 and a calculator 176 that control the operation of the auxiliary feeder 130. Then, the controller 171 and the calculator 176 adjust the feed assist speed adjustment process for adjusting the feed assist speed of the auxiliary feed device 130 based on the load detected by at least one of the upstream load detector 192 and the overall load detector 194. And at least one of the feed assist torque adjustment processing for adjusting the feed assist torque of the auxiliary feed device 130.
 なお、補助速度調整処理において制御器171および演算器176が実行する送り補助速度は第1送り補助速度であり、制御器171および演算器176が実行する送り補助トルク調整処理では、送り補助トルクとの相関関係に基づいて定まる第2送り補助速度をもって調整する。 The feed assist speed executed by the controller 171 and the calculator 176 in the assist speed adjustment process is the first feed assist speed. In the feed assist torque adjustment process executed by the controller 171 and the calculator 176, the feed assist torque and It adjusts with the 2nd feed auxiliary speed defined based on the correlation.
 さらに詳述すると、制御器171および演算器176は、補助送り装置130の送り補助速度を調節する送り補助速度調整処理および補助送り装置130の送り補助トルクを調節する送り補助トルク調整処理のうち少なくともいずれか一方を、上流荷重検出器192および全体荷重検出器194で検出した荷重の差分に基づいて調整する。 More specifically, the controller 171 and the calculator 176 include at least a feed assist speed adjustment process for adjusting the feed assist speed of the auxiliary feed device 130 and a feed assist torque adjustment process for adjusting the feed assist torque of the auxiliary feed device 130. Either one is adjusted based on the difference between the loads detected by the upstream load detector 192 and the overall load detector 194.
 (実施例9) 
 この発明の一実施形態を以下図面と共に説明する。 
 図4は、実施形態2の内面溝付管製造装置101の構成を示す構成図である。この図4では、加工に用いる装置、センシングに用いる装置、および制御に用いる装置が図示されている。また、図5は、内面溝付管製造装置101において素材にかかる負荷、加工に用いる引抜き力や補助送り力、および検出する負荷を説明する説明図である。
Example 9
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 4 is a configuration diagram illustrating a configuration of the inner surface grooved pipe manufacturing apparatus 101 according to the second embodiment. FIG. 4 shows a device used for processing, a device used for sensing, and a device used for control. FIG. 5 is an explanatory diagram for explaining the load applied to the material, the pulling force and auxiliary feed force used for processing, and the load to be detected in the inner surface grooved pipe manufacturing apparatus 101.
 加工に用いる装置について説明すると、上流から下流に向けて、縮径装置120、補助送り装置130、溝加工装置140、および仕上げ加工装置150が、それぞれの加工部が水平かつ一直線となるようにこの順で配置され、さらにその下流に素管201を一直線に引抜いて巻き取る巻取りドラム160が設けられている。加工対象である素管201の材料は、例えば銅、アルミニウム、またはこれらの合金など、熱伝導性に優れた金属とすることができる。 The apparatus used for processing will be described. From the upstream side to the downstream side, the diameter reducing device 120, the auxiliary feeding device 130, the groove processing device 140, and the finishing device 150 are arranged so that their processing parts are horizontal and straight. A take-up drum 160 that is arranged in order and that further draws and unwinds the tube 201 in a straight line is provided downstream thereof. The material of the raw tube 201 to be processed can be a metal having excellent thermal conductivity, such as copper, aluminum, or an alloy thereof.
 縮径装置120は、上流側から供給される円筒形の素管201を、素管201の周囲を内側へ押圧する縮径ダイス121と、素管201内部に配置されるフローティングプラグ111との隙間を通して縮径する装置である。 The diameter reducing device 120 includes a gap between a diameter reducing die 121 that presses the periphery of the cylindrical pipe 201 inwardly and a floating plug 111 disposed inside the raw pipe 201. It is a device that reduces the diameter through.
 縮径ダイス121は、上流側へ向けて末広がりとなるすり鉢状の斜面が形成されたダイス孔122が設けられている。フローティングプラグ111は、ダイス孔122の半径最小部よりも大きいサイズで、かつ、素管201の内周サイズよりも少し小さいサイズに形成され、素管201内に自由状態で挿入されている。このため、縮径ダイス121のダイス孔122で縮径されつつ素管201が引抜かれる際に、フローティングプラグ111が一緒に引抜かれることがない。 The diameter-reducing die 121 is provided with a die hole 122 in which a mortar-shaped slope that is widened toward the upstream side is formed. The floating plug 111 is formed in a size larger than the minimum radius portion of the die hole 122 and slightly smaller than the inner peripheral size of the element tube 201, and is inserted into the element tube 201 in a free state. For this reason, when the base tube 201 is pulled out while being reduced in diameter by the die hole 122 of the reduced diameter die 121, the floating plug 111 is not pulled out together.
 また、フローティングプラグ111のダイス孔122との対向面は、円錐台形状の傾斜面に形成されている。これにより、ダイス孔122で外周面が押圧されて縮径される素管201の内面を押さえることができ、縮径加工を安定させることができる。 Further, the surface of the floating plug 111 facing the die hole 122 is formed as a truncated cone-shaped inclined surface. Thereby, the inner surface of the raw tube 201 whose diameter is reduced by pressing the outer peripheral surface with the die hole 122 can be pressed, and the diameter reduction processing can be stabilized.
 上流側から供給される素管201は、この縮径装置120で縮径されて縮径管202となる。 
 この縮径加工の際に、素管201には、図5に示すように縮径引抜き負荷R3がかかる。
The raw tube 201 supplied from the upstream side is reduced in diameter by the diameter reducing device 120 to become a reduced diameter tube 202.
At the time of the diameter reduction processing, the diameter reduction drawing load R3 is applied to the raw tube 201 as shown in FIG.
 補助送り装置130は、押圧装置131、取付板132、プーリ133、およびベルト134により構成されている。 
 押圧装置131は、取付板132ごとベルト134を縮径管202に向けて押圧する(図4参照)。
The auxiliary feeding device 130 includes a pressing device 131, a mounting plate 132, a pulley 133, and a belt 134.
The pressing device 131 presses the belt 134 together with the mounting plate 132 toward the reduced diameter tube 202 (see FIG. 4).
 取付板132は、上流機枠102に上下動可能(引抜き方向と直角方向に移動可能)に取り付けられ、引抜き方向に並ぶ一対のプーリ133を回転可能に軸受けしている。この一対のプーリ133は、無端のベルト134がたるみ無く張架されており、ベクトルモータであるモータM2の駆動力によりベルト134を回転させる。 
 ベルト134は、無端のループ状に形成されており、複数のパッド135が外周に連続的に配置されている。このパッド135は、素管201よりも硬質の材質で構成されることが好ましく、例えば工具鋼で構成される。
The attachment plate 132 is attached to the upstream machine casing 102 so as to be movable up and down (movable in a direction perpendicular to the drawing direction), and rotatably supports a pair of pulleys 133 arranged in the drawing direction. In this pair of pulleys 133, an endless belt 134 is stretched without slack, and the belt 134 is rotated by the driving force of the motor M2 that is a vector motor.
The belt 134 is formed in an endless loop shape, and a plurality of pads 135 are continuously arranged on the outer periphery. The pad 135 is preferably made of a material harder than the base tube 201, and is made of, for example, tool steel.
 このプーリ133とベルト134が設けられた取付板132は、縮径管202を挟んで上下対称(引抜き方向と直角方向に対称)に設けられている。さらに、前記押圧装置131も、上下対称に設けられている。これにより、上下の押圧装置131が、上下の押圧装置131を縮径管202に向けて押圧し、縮径管202をパッド135で挟み込む。 The mounting plate 132 provided with the pulley 133 and the belt 134 is provided symmetrically in the vertical direction (symmetrical in the direction perpendicular to the drawing direction) with the reduced diameter tube 202 interposed therebetween. Furthermore, the pressing device 131 is also provided vertically symmetrically. As a result, the upper and lower pressing devices 131 press the upper and lower pressing devices 131 toward the reduced diameter tube 202, and the reduced diameter tube 202 is sandwiched between the pads 135.
 補助送り装置130は、この構成と制御器171の制御により、補助送り動作を行う。すなわち、押圧装置131は、縮径管202が過大変形しない一定圧力でパッド135により縮径管202を上下から挟んで把持する。そして、制御器171の制御に従ったモータM2の回転駆動によってプーリ133が定比率で回転し、これに伴ってベルト134が回転しパッド135と縮径管202との間に材料進行方向(引抜き方向)の送り摩擦力を発生させる。 The auxiliary feeding device 130 performs an auxiliary feeding operation under the control of the configuration and the controller 171. In other words, the pressing device 131 holds the reduced diameter tube 202 from above and below with the pad 135 at a constant pressure at which the reduced diameter tube 202 is not excessively deformed. Then, the pulley 133 is rotated at a constant ratio by the rotational drive of the motor M2 according to the control of the controller 171, and the belt 134 is rotated along with this, and the material traveling direction (drawing) between the pad 135 and the reduced diameter tube 202 is rotated. Direction) feed friction force.
 この送り摩擦力による送り補助の際に、補助送り装置130は、図5に示すように補助送り力F2、すなわち補助送りトルクを縮径管202に付与することができる。このため、パッド135の送り方向の速度は、巻取りドラム160の巻き取り速度と同調以上の速度となっている。 In the feed assist by the feed friction force, the auxiliary feed device 130 can apply the auxiliary feed force F2, that is, the auxiliary feed torque to the reduced diameter tube 202 as shown in FIG. For this reason, the speed of the pad 135 in the feeding direction is higher than or equal to the winding speed of the winding drum 160.
 溝加工装置140は、溝付プラグ113、加工ヘッド141、転造工具142、押圧部材143、およびベアリング144を備えている。 
 溝付プラグ113は、縮径管202内に自由状態で挿入されており、上述したフローティングプラグ111に連結棒112で回転自在に連結されている。これにより、溝付プラグ113の引抜き方向における位置が前後しないように構成されている。
The groove processing device 140 includes a grooved plug 113, a processing head 141, a rolling tool 142, a pressing member 143, and a bearing 144.
The grooved plug 113 is inserted into the reduced diameter tube 202 in a free state, and is rotatably connected to the above-described floating plug 111 by a connecting rod 112. Thereby, it is comprised so that the position in the extraction direction of the grooved plug 113 may not move back and forth.
 加工ヘッド141は、下流へ向けて末広がりとなる円錐面が形成されている。この円錐面も含めた貫通孔の内径は、縮径管202の外径よりも少し大きく形成されている。 
 押圧部材143は、リング状に形成されており、ベアリング144により回転自在に取り付けられている。
The processing head 141 is formed with a conical surface that expands toward the downstream. The inner diameter of the through hole including this conical surface is formed to be slightly larger than the outer diameter of the reduced diameter tube 202.
The pressing member 143 is formed in a ring shape and is rotatably attached by a bearing 144.
 転造工具142は、複数のボールで構成されており、加工ヘッド141の円錐面と押圧部材143の押圧面(上流側面)とで遊星回転可能に挟まれ、縮径管202を管内側に向かって押圧する。これにより、転造工具142が遊星回転して縮径管202を溝付プラグ113に押圧し、溝付プラグ113の螺旋状の溝に沿った多数のフィン205(螺旋状の溝)を縮径管202の内面に形成することができる。このフィン205は、管軸に対して所定の捩れ角(リード角)、所定のフィン高さ、所定のフィン間隔に形成することができる。なお、転造工具142は、複数のローラで構成する、あるいはローラとボールを併用して構成することができる。 The rolling tool 142 is composed of a plurality of balls. The rolling tool 142 is sandwiched between the conical surface of the machining head 141 and the pressing surface (upstream side surface) of the pressing member 143 so as to be planetary rotatable, and the reduced diameter tube 202 faces the inner side of the tube. And press. As a result, the rolling tool 142 rotates in a planetary manner and presses the reduced diameter tube 202 against the grooved plug 113, thereby reducing the number of fins 205 (spiral grooves) along the spiral groove of the grooved plug 113. It can be formed on the inner surface of the tube 202. The fins 205 can be formed with a predetermined twist angle (lead angle), a predetermined fin height, and a predetermined fin interval with respect to the tube axis. The rolling tool 142 can be composed of a plurality of rollers, or can be composed of rollers and balls.
 この溝加工装置140により、上流側から供給された縮径管202が、内面に溝(フィン205)が形成された溝付与管203となる。 
 この溝加工の際に、縮径管202には、図5に示すように溝加工負荷R2がかかる。
By this groove processing device 140, the reduced diameter tube 202 supplied from the upstream side becomes a groove applying tube 203 having grooves (fins 205) formed on the inner surface.
During the grooving, a grooving load R2 is applied to the reduced diameter tube 202 as shown in FIG.
 仕上げ加工装置150は、整形ダイス151により構成されている。この整形ダイス151は、上流側へ向かって末広がりになる円錐面を有するダイス孔152が設けられている。このダイス孔152の半径最小部の半径は、溝付与管203の外周半径よりも少し小さく形成されている。溝付与管203をダイス孔152に通すことで、溝付与管203の外周面がわずかに縮径されて形状が整えられ、完成品の内面溝付管204を得ることができる。 
 この仕上げ加工の際に、溝付与管203には、図5に示すように仕上げ引抜き負荷R1がかかる。
The finishing device 150 includes a shaping die 151. The shaping die 151 is provided with a die hole 152 having a conical surface that widens toward the upstream side. The radius of the minimum radius portion of the die hole 152 is formed slightly smaller than the outer peripheral radius of the groove providing tube 203. By passing the groove-applying tube 203 through the die hole 152, the outer peripheral surface of the groove-applying tube 203 is slightly reduced in diameter and the shape is adjusted, and the finished inner surface grooved tube 204 can be obtained.
During this finishing process, a finish drawing load R1 is applied to the groove imparting pipe 203 as shown in FIG.
 巻取りドラム160は、内面溝付管204を巻き取るドラムである。この巻き取りは、制御器173の速度指示信号に従ったモータM1の回転力によって実行される。また、この巻取りの力が、素管201に対する一定方向の一直線な引抜き力F1となり、引抜きトルクを発生して縮径加工や内面溝加工を実行できる。 The winding drum 160 is a drum that winds the inner grooved tube 204. This winding is executed by the rotational force of the motor M1 according to the speed instruction signal of the controller 173. Further, the winding force becomes a straight drawing force F1 in a certain direction with respect to the raw tube 201, and a drawing torque can be generated to perform diameter reduction processing or inner surface groove processing.
 すなわち、素管201を巻取りドラム160で引抜きつつ、縮径装置120で縮径し、溝加工装置140で溝加工をし、仕上げ加工装置150で外周面の仕上げ加工をすることができる。 That is, it is possible to reduce the diameter with the diameter reducing device 120 while drawing the raw tube 201 with the winding drum 160, perform groove processing with the groove processing device 140, and finish the outer peripheral surface with the finishing device 150.
 次に、センシングに用いる装置について説明すると、前記縮径装置120および補助送り装置130は、上流機枠102に固定されている。このように構成された上流機枠102は、上流可動台182に固定されており、この上流可動台182と共に全体可動台184上を引抜き方向と平行(この実施例では水平)に往復スライド移動できる。すなわち、上流可動台182は、車輪182aが設けられ、この車輪182aが全体可動台184のレール184bに係合しており、これによってレール184bに沿ってスムーズに移動できる。またこれにより、前記縮径装置120および補助送り装置130は、上流可動台182と一体に移動する。 Next, the apparatus used for sensing will be described. The diameter reducing device 120 and the auxiliary feeding device 130 are fixed to the upstream machine casing 102. The upstream machine casing 102 configured as described above is fixed to the upstream movable table 182 and can be reciprocally slid along the upstream movable table 182 in parallel with the drawing direction (horizontal in this embodiment). . That is, the upstream movable table 182 is provided with wheels 182a, and the wheels 182a are engaged with the rails 184b of the entire movable table 184, and can thereby move smoothly along the rails 184b. Accordingly, the diameter reducing device 120 and the auxiliary feeding device 130 move integrally with the upstream movable table 182.
 また、上流可動台182の引抜き方向側端部には、上流荷重検出器192が設けられている。この上流荷重検出器192は、ロードセルなど荷重を検出できる適宜の検出器で構成する。この上流荷重検出器192により、引抜き加工時に引抜き方向にかかる上流可動台182の荷重を上流荷重検出値V(T1)(図5参照)として検出することができる。 Further, an upstream load detector 192 is provided at the end of the upstream movable table 182 in the drawing direction. The upstream load detector 192 is constituted by an appropriate detector capable of detecting a load such as a load cell. The upstream load detector 192 can detect the load of the upstream movable table 182 applied in the drawing direction during drawing as an upstream load detection value V (T1) (see FIG. 5).
 前記溝加工装置140と仕上げ加工装置150は、全体機枠104に固定されている。また、このように構成された全体機枠104は、全体可動台184に固定されており、この全体可動台184と共に固定台186上を引抜き方向と平行(この実施例では水平)に往復スライド移動できる。すなわち、全体可動台184には車輪184aが設けられ、この車輪184aが固定台186のレール186bに係合しており、これによってレール186bに沿ってスムーズに移動できる。またこれにより、前記溝加工装置140および仕上げ加工装置150は、全体可動台184と一体に移動する。 The groove processing device 140 and the finishing device 150 are fixed to the entire machine casing 104. Further, the entire machine casing 104 configured as described above is fixed to the entire movable base 184, and reciprocally slides on the fixed base 186 along with the whole movable base 184 in parallel with the drawing direction (horizontal in this embodiment). it can. That is, the entire movable base 184 is provided with a wheel 184a, and the wheel 184a is engaged with the rail 186b of the fixed base 186, thereby being able to move smoothly along the rail 186b. Accordingly, the groove processing device 140 and the finishing device 150 are moved integrally with the entire movable table 184.
 また、全体可動台184の引抜き方向側端部には、全体荷重検出器194が設けられている。この全体荷重検出器194は、ロードセルなど荷重を検出できる適宜の検出器で構成する。この全体荷重検出器194により、引抜き加工時に引抜き方向にかかる全体可動台184の荷重を下流荷重検出値V(T2)(図5参照)として検出することができる。 Also, an overall load detector 194 is provided at the end of the overall movable stand 184 in the drawing direction. The total load detector 194 is formed of an appropriate detector that can detect a load such as a load cell. With this total load detector 194, the load on the entire movable base 184 applied in the drawing direction during the drawing process can be detected as the downstream load detection value V (T2) (see FIG. 5).
 次に、制御に用いる装置について説明すると、制御器171、速度設定器172、制御器173、上流信号変換器174、全体信号変換器175、および演算器176が設けられている。 Next, the apparatus used for control will be described. A controller 171, a speed setter 172, a controller 173, an upstream signal converter 174, an overall signal converter 175, and a calculator 176 are provided.
 制御器171は、演算器176から回転指示速度S(H)を受け、この速度でモータM2を回転させる。また、モータM2の実際の回転速度およびトルクを演算器176にフィードバックする。 
 速度設定器172は、巻取りドラム160による引抜き速度を設定する装置であり、設定値を制御器173および演算器176に送信する。
The controller 171 receives the rotation instruction speed S (H) from the calculator 176, and rotates the motor M2 at this speed. Further, the actual rotational speed and torque of the motor M2 are fed back to the calculator 176.
The speed setting unit 172 is a device that sets the drawing speed by the winding drum 160, and transmits a set value to the controller 173 and the calculator 176.
 制御器173は、速度設定器172から受けた引抜き速度に基づいてモータM1の回転速度を設定、指示する。 
 上流信号変換器174は、上流機枠102を載せた上流可動台182が引抜き方向(材料進行方向)へ向かうことによる押付力の信号(上流荷重検出器192で検出)を電気信号に変換し、この信号を上流荷重検出値V(T1)として演算器176に送信する。
Controller 173 sets and instructs the rotational speed of motor M1 based on the drawing speed received from speed setter 172.
The upstream signal converter 174 converts a signal of a pressing force (detected by the upstream load detector 192) caused by the upstream movable base 182 carrying the upstream machine casing 102 in the drawing direction (material traveling direction) into an electrical signal, This signal is transmitted to the computing unit 176 as the upstream load detection value V (T1).
 全体信号変換器175は、全体機枠104を載せた全体可動台184が引抜き方向(材料進行方向)へ向かうことによる押付力の信号(全体荷重検出器194で検出)を電気信号に変換し、この信号を下流荷重検出値V(T2)として演算器176に送信する。 The overall signal converter 175 converts a signal of pressing force (detected by the overall load detector 194) caused by the overall movable base 184 carrying the overall machine casing 104 in the drawing direction (material traveling direction) into an electrical signal, This signal is transmitted to the computing unit 176 as the downstream load detection value V (T2).
 演算器176は、上流信号変換器174から受信した上流荷重検出値V(T1)と、全体信号変換器175から受信した下流荷重検出値V(T2)と、各種設定情報とに基づいて演算を行い、モータM2の回転指示速度S(H)を随時調節しつつ制御器171に送信する。 The computing unit 176 performs computation based on the upstream load detection value V (T1) received from the upstream signal converter 174, the downstream load detection value V (T2) received from the overall signal converter 175, and various setting information. The rotation instruction speed S (H) of the motor M2 is adjusted as needed and transmitted to the controller 171.
 次に、図6とともに、内面溝付管製造装置101の動作について説明する。なお、図6は内面溝付管製造装置101の全体動作についてのフローチャートを示している。 
 まず、内面溝付管製造装置101は、巻取りドラム160を始動させる(ステップs1)。なお、制御器173は、素管201の材質や径に応じた一定の引抜き力F1で巻き取るように、速度設定器172から受けた引抜き速度に基づいて、内面溝付管204の製造完了まで巻取りドラム160のモータM1に対して速度制御する。
Next, the operation of the internally grooved pipe manufacturing apparatus 101 will be described with reference to FIG. FIG. 6 is a flowchart showing the overall operation of the inner surface grooved pipe manufacturing apparatus 101.
First, the inner surface grooved pipe manufacturing apparatus 101 starts the winding drum 160 (step s1). Note that the controller 173 completes the manufacture of the internally grooved tube 204 based on the drawing speed received from the speed setting device 172 so as to be wound with a constant drawing force F1 according to the material and diameter of the raw tube 201. The speed of the motor M1 of the winding drum 160 is controlled.
 次に、内面溝付管製造装置101は、補助送り装置130を始動する(ステップs2)。このとき、制御器171は、素管201の材質や径に応じた初期補助送り速度(第1補助送り速度)となるようにモータM2に対して第1補助送り速度制御を実行する(ステップs3)。なお、初期補助送り速度とは、加工対象である素管201の材質や径に応じて、素管201が内面溝付管製造装置101で破断しない範囲における高速度であり、予め設定された送り速度である。 Next, the inner surface grooved pipe manufacturing apparatus 101 starts the auxiliary feeding apparatus 130 (step s2). At this time, the controller 171 performs the first auxiliary feed speed control on the motor M2 so that the initial auxiliary feed speed (first auxiliary feed speed) corresponding to the material and diameter of the raw tube 201 is obtained (step s3). ). The initial auxiliary feed speed is a high speed in a range where the raw pipe 201 is not broken by the inner surface grooved pipe manufacturing apparatus 101 according to the material and diameter of the raw pipe 201 to be processed, and is set in advance. Is speed.
 この状態の内面溝付管製造装置101では、素管201は破断しないものの、溝加工装置140で縮径管202にかかる溝加工負荷R2が大きすぎ、溝加工装置140において、フィン205が形成されない、或いは形成されたフィン205が所定の精度を確保できない。 In the inner surface grooved pipe manufacturing apparatus 101 in this state, the raw pipe 201 is not broken, but the groove processing load R2 applied to the reduced diameter pipe 202 by the groove processing apparatus 140 is too large, and the fin 205 is not formed in the groove processing apparatus 140. Alternatively, the formed fin 205 cannot secure a predetermined accuracy.
 そして、この状態において、内面溝付管製造装置101は、上流荷重検出器192で上流荷重検出値V(T1)を検出し(ステップs4)、全体荷重検出器194で下流荷重検出値V(T2)を検出し(ステップs5)、演算器176に送信する。 In this state, the inner surface grooved pipe manufacturing apparatus 101 detects the upstream load detection value V (T1) with the upstream load detector 192 (step s4), and the downstream load detection value V (T2) with the overall load detector 194. ) Is detected (step s5) and transmitted to the computing unit 176.
 演算器176は、上流荷重検出器192および全体荷重検出器194から受信した上流荷重検出値V(T1)および下流荷重検出値V(T2)の差分である荷重差分値(T3)を算出する(ステップs6)。 The computing unit 176 calculates a load difference value (T3) that is a difference between the upstream load detection value V (T1) and the downstream load detection value V (T2) received from the upstream load detector 192 and the overall load detector 194 ( Step s6).
 この荷重差分値(T3)は、溝加工装置140にかかる溝加工負荷R2と仕上げ加工装置150にかかる仕上げ引抜き負荷R1との合計負荷を示している。詳述すると、上述したように、上流荷重検出値V(T1)は、引抜き加工時に引抜き方向にかかる上流可動台182の荷重、すなわち縮径装置120における縮径引抜き負荷R3および補助送り装置130による補助送り力F2の合計負荷を示している。 This load difference value (T3) indicates the total load of the grooving load R2 applied to the grooving device 140 and the finish drawing load R1 applied to the finishing device 150. More specifically, as described above, the upstream load detection value V (T1) is determined by the load of the upstream movable table 182 in the drawing direction during the drawing process, that is, the reduced diameter drawing load R3 in the diameter reducing device 120 and the auxiliary feed device 130. The total load of the auxiliary feed force F2 is shown.
 これに対し、下流荷重検出値V(T2)は、引抜き加工時に引抜き方向にかかる全体可動台184の荷重、すなわち、縮径装置120における縮径引抜き負荷R3、縮径装置120による補助送り力F2、溝加工装置140における溝加工負荷R2および仕上げ加工装置150における仕上げ引抜き負荷R1の合計負荷を示している。 On the other hand, the downstream load detection value V (T2) is the load of the entire movable base 184 in the drawing direction during the drawing process, that is, the reduced diameter drawing load R3 in the diameter reducing device 120, and the auxiliary feed force F2 by the diameter reducing device 120. The total load of the grooving load R2 in the grooving device 140 and the finish drawing load R1 in the finishing device 150 is shown.
 したがって、上流荷重検出値V(T1)および下流荷重検出値V(T2)の差分である荷重差分値(T3)は、溝加工装置140にかかる溝加工負荷R2と仕上げ加工装置150にかかる仕上げ引抜き負荷R1の合計負荷となる。 Therefore, the load difference value (T3), which is the difference between the upstream load detection value V (T1) and the downstream load detection value V (T2), is the grooving load R2 applied to the grooving device 140 and the finish drawing applied to the finishing device 150. The total load of the load R1.
 ここで仕上げ加工装置150では、完成品となる内面溝付管20を得るために溝付与管203の外周面をわずかに縮径する。その際にかかる仕上げ加工装置150における仕上げ引抜き負荷R1は、ほぼ一定であるとともに、溝加工装置140における縮径引抜き負荷R3と比べて無視できる程度に小さい。よって、荷重差分値(T3)は、実質的には溝加工装置140における縮径引抜き負荷R3であると考えて良い。 Here, in the finishing device 150, the outer peripheral surface of the groove-applying tube 203 is slightly reduced in diameter in order to obtain the inner-surface grooved tube 20 as a finished product. At this time, the finish drawing load R1 in the finishing device 150 is substantially constant and is negligibly small as compared with the reduced diameter drawing load R3 in the groove processing device 140. Therefore, the load difference value (T3) may be considered to be the reduced diameter drawing load R3 in the grooving apparatus 140 substantially.
 なお、溝加工装置140における縮径引抜き負荷R3は、上流側から供給された縮径管202から溝付与管203を形成する際のフィン205の形成において大きな影響を及ぼす。詳しくは、溝加工装置140における縮径引抜き負荷R3が予め設定された所定範囲より小さい場合、つまり、溝加工装置140におけるフィン205の形成における負荷が小さいということは、十分なフィン205が形成できていないことを意味している。 Note that the reduced diameter drawing load R3 in the groove processing device 140 has a great influence on the formation of the fin 205 when forming the groove imparting pipe 203 from the reduced diameter pipe 202 supplied from the upstream side. Specifically, when the reduced diameter drawing load R3 in the groove processing apparatus 140 is smaller than a predetermined range set in advance, that is, the load in forming the fin 205 in the groove processing apparatus 140 is small, sufficient fins 205 can be formed. It means not.
 また、逆に、溝加工装置140における縮径引抜き負荷R3が所定範囲より大きい場合、つまり、溝加工装置140におけるフィン205の形成における負荷が大きすぎる場合も同様に、所望のフィン205が形成できない。 Conversely, when the reduced diameter drawing load R3 in the groove processing apparatus 140 is larger than a predetermined range, that is, when the load in forming the fin 205 in the groove processing apparatus 140 is too large, the desired fin 205 cannot be formed in the same manner. .
 したがって、演算器176は、荷重差分値(T3)が素管201の材質や径に応じて予め設定された所定範囲内となるように、補助送り装置130によって縮径管202に作用させる補助送りトルクを算出する(ステップs7)。 Therefore, the arithmetic unit 176 causes the auxiliary feed device 130 to act on the reduced diameter pipe 202 so that the load difference value (T3) is within a predetermined range set in advance according to the material and diameter of the raw pipe 201. Torque is calculated (step s7).
 前記補助送りトルクは、無負荷トルクと棒摩擦トルクに基づいて算出され、補助送り装置130で縮径管202を溝加工装置140に向かって送り出すトルクとなるが、補助送り装置130におけるモータM2をステップs7で算出された補助送りトルクに合うようトルクコントロールすることはできない。 The auxiliary feed torque is calculated based on the no-load torque and the rod friction torque, and becomes a torque for feeding the reduced diameter tube 202 toward the groove processing device 140 by the auxiliary feed device 130. The motor M2 in the auxiliary feed device 130 is Torque control cannot be performed to match the auxiliary feed torque calculated in step s7.
 したがって、演算器176は、制御器171に対して、素管201の材質および径に応じて予め設定された補助送りトルクに対する相関関係に基づいて決まる第2補助送り速度となるように増減速指示を送信し、制御器171はモータM2に対して受信した増減速指示に基づくトルク制御を実行する(ステップs8)。 Therefore, the arithmetic unit 176 instructs the controller 171 to increase or decrease the speed so that the second auxiliary feed speed is determined based on the correlation with the auxiliary feed torque set in advance according to the material and diameter of the raw tube 201. The controller 171 executes torque control based on the received acceleration / deceleration instruction to the motor M2 (step s8).
 なお、ステップs3において、素管201の材質や径に応じて、素管201が内面溝付管製造装置101で破断しない範囲における高速度である初期補助送り速度(第1補助送り速度)に速度制御する本実施形態では、ステップs8で補助送り装置130に対するトルク制御する補助送りトルク、つまり補助送りトルクに対する相関関係に基づいて決まる第2補助送り速度は初期補助送り速度(第1補助送り速度)より低速であり、制御器171はモータM2に減速制御することとなる。 In step s3, depending on the material and diameter of the raw pipe 201, the speed is increased to the initial auxiliary feed speed (first auxiliary feed speed), which is a high speed within a range in which the raw pipe 201 is not broken by the inner surface grooved pipe manufacturing apparatus 101. In this embodiment to be controlled, the second auxiliary feed speed determined based on the auxiliary feed torque for controlling the torque to the auxiliary feed device 130 in step s8, that is, the correlation with the auxiliary feed torque, is the initial auxiliary feed speed (first auxiliary feed speed). The speed is lower, and the controller 171 controls the motor M2 to decelerate.
 ステップs8で補助送り装置130に対するトルク制御を実行した内面溝付管製造装置101は、ステップs4~s6と同様に、上流荷重検出器192および全体荷重検出器194で上流荷重検出値V(T1)および下流荷重検出値V(T2)を検出するとともに、演算器176は補助送り装置130をトルク制御した後の荷重差分値(T3)を算出して、算出された荷重差分値(T3)が予め設定された所定範囲内であるか判定する(ステップs9)。 The inner surface grooved pipe manufacturing apparatus 101 that has executed the torque control for the auxiliary feeder 130 in step s8 uses the upstream load detector 192 and the overall load detector 194 to detect the upstream load detection value V (T1) as in steps s4 to s6. And the downstream load detection value V (T2), and the calculator 176 calculates the load difference value (T3) after torque control of the auxiliary feeder 130, and the calculated load difference value (T3) is calculated in advance. It is determined whether it is within the set predetermined range (step s9).
 補助送り装置130をトルク制御した後の荷重差分値(T3)が所定範囲内でない場合(ステップs9:No)、ステップs4に戻って、演算器176は、荷重差分値(T3)が所定範囲内となるように、補助送りトルクを算出する。 When the load difference value (T3) after torque control of the auxiliary feeder 130 is not within the predetermined range (step s9: No), the process returns to step s4, and the calculator 176 has the load difference value (T3) within the predetermined range. The auxiliary feed torque is calculated so that
 逆に、補助送り装置130をトルク制御した後の荷重差分値(T3)が予め設定された所定範囲内であった場合(ステップs9:Yes)、制御器171は所定量の内面溝付管204が製造できているか判定し(ステップs10)、既に所定量の内面溝付管204が製造できている場合は内面溝付管製造装置101による内面溝付管204の製造を停止する(ステップs10:Yes)。これに対し、まだ所定量の内面溝付管204が製造できていない場合は(ステップs10:No)、ステップs4に戻って、所定量の内面溝付管204が製造できるまで前記ステップs4~s9までを繰り返す。 On the other hand, when the load difference value (T3) after torque control of the auxiliary feeder 130 is within a predetermined range set in advance (step s9: Yes), the controller 171 has a predetermined amount of the internally grooved tube 204. Is manufactured (step s10). If a predetermined amount of the internally grooved tube 204 has already been manufactured, the manufacture of the internally grooved tube 204 by the internally grooved tube manufacturing apparatus 101 is stopped (step s10: Yes). On the other hand, when the predetermined amount of the internally grooved tube 204 has not been manufactured yet (step s10: No), the process returns to step s4 until the predetermined amount of the internally grooved tube 204 can be manufactured. Repeat until.
 このように、上述の構成の内面溝付管製造装置101を用い、上述の制御を実行することによって、高精度なフィン205が形成された内面溝付管204の生産性を向上することができる。 
 詳しくは、内面溝付管製造装置101は、演算器176により、上流荷重検出器192で検出した上流荷重検出値V(T1)と全体荷重検出器194で検出した下流荷重検出値V(T2)の差分であり、実質的に溝加工装置140における縮径引抜き負荷R3を示す荷重差分値(T3)が素管201の材質や径に応じて予め設定された所定範囲内となるように、補助送り装置130によって縮径管202に作用させる補助送りトルクを制御する。このため、フィン205の形成において大きな影響を及ぼす縮径引抜き負荷R3を安定させ、加工限界に近い加工条件であっても、所望の精度のフィン205を形成することができる。
Thus, by using the inner surface grooved pipe manufacturing apparatus 101 having the above-described configuration and executing the above-described control, it is possible to improve the productivity of the inner surface grooved pipe 204 in which the highly accurate fins 205 are formed. .
Specifically, the inner surface grooved pipe manufacturing apparatus 101 uses the calculator 176 to detect the upstream load detection value V (T1) detected by the upstream load detector 192 and the downstream load detection value V (T2) detected by the overall load detector 194. So that the load difference value (T3) substantially indicating the reduced diameter drawing load R3 in the groove processing device 140 is within a predetermined range set in advance according to the material and diameter of the raw tube 201. The auxiliary feed torque applied to the reduced diameter tube 202 is controlled by the feed device 130. For this reason, it is possible to stabilize the reduced diameter drawing load R3 that greatly affects the formation of the fins 205, and to form the fins 205 with desired accuracy even under the processing conditions close to the processing limit.
 したがって、例えば、従来不可能であった精度の内面溝付管204(例えば管軸に対して40~60°の高捩れ角(リード角)を持つフィン高さ0.2mm以上のフィンを、フィン高さHと隣合うフィン間の溝底肉厚tとの比H/tが1.2以下となるように内面に複数形成した管など)を生産性高く製造することができる。 Therefore, for example, an internally grooved tube 204 with a precision that was impossible in the past (for example, a fin having a high twist angle (lead angle) of 40 to 60 ° with respect to the tube axis and having a fin height of 0.2 mm or more) A plurality of pipes formed on the inner surface such that the ratio H / t between the height H and the groove bottom wall thickness t between adjacent fins is 1.2 or less can be manufactured with high productivity.
 また、補助送り装置130をトルク制御するための補助送りトルクを、素管201の材質および径に応じて予め設定された補助送りトルクに対する相関関係に基づいて決まる第2補助送り速度を用いてトルク制御するため、トルクコントロール不可能なモータM2に対して確実にトルク制御して、確実に所望の精度のフィン205を形成することができる。 Further, the auxiliary feed torque for controlling the torque of the auxiliary feed device 130 is determined by using the second auxiliary feed speed determined based on the correlation with the auxiliary feed torque set in advance according to the material and diameter of the raw tube 201. Therefore, it is possible to surely control the torque of the motor M2, which cannot be torque controlled, and to form the fins 205 with desired accuracy.
 さらにまた、内面溝付管製造装置101では、加工対象である素管201の材質や径に応じて、該内面溝付管製造装置101において素管201が破断しない範囲における高速度であり、予め設定された第1補助送り速度で制御する。その後、初期補助送り速度(第1補助送り速度)より低速であり、補助送りトルクに対する相関関係に基づいて決まる第2補助送り速度で補助送り装置130をトルク制御する。このため、所望の精度で形成されたフィン205を有する内面溝付管204の生産性を向上することができる。 Furthermore, the inner grooved pipe manufacturing apparatus 101 has a high speed in a range in which the inner pipe 201 is not broken in the inner grooved pipe manufacturing apparatus 101 according to the material and diameter of the raw pipe 201 to be processed. Control is performed at the set first auxiliary feed speed. Thereafter, the auxiliary feed device 130 is torque-controlled at a second auxiliary feed speed that is lower than the initial auxiliary feed speed (first auxiliary feed speed) and determined based on the correlation with the auxiliary feed torque. For this reason, the productivity of the internally grooved tube 204 having the fins 205 formed with a desired accuracy can be improved.
 また、内面溝付管製造装置101は、巻取りドラム160による引抜き力F1を一定としながら、補助送り装置130をトルク制御して所望の精度のフィン205を有する内面溝付管204を製造するため、制御を複雑化することなく、内面溝付管204を生産性高く製造することができる。 Further, the inner grooved tube manufacturing apparatus 101 manufactures the inner grooved tube 204 having the fins 205 with a desired accuracy by controlling the torque of the auxiliary feeding device 130 while keeping the drawing force F1 by the winding drum 160 constant. The inner grooved tube 204 can be manufactured with high productivity without complicating the control.
 また、巻取りドラム160における引抜き力F1、初期補助送り速度(第1補助送り速度)、荷重差分値(T3)を制御する基準となる所定範囲および第2補助送り速度を、素管201の材質や径に応じた速度、範囲および相関関係に基づいて設定しているため、素管201の材質や径による負荷変動に対応して加工することができる。したがって、素管201の材質や径によらず高精度なフィン205を形成できるとともに、破断の発生を低減することができる。 In addition, a predetermined range and a second auxiliary feed speed that serve as a reference for controlling the drawing force F1, the initial auxiliary feed speed (first auxiliary feed speed), and the load difference value (T3) in the winding drum 160 are determined according to the material of the raw tube 201. Since it is set based on the speed, range and correlation according to the diameter, it can be processed corresponding to the load fluctuation due to the material and diameter of the raw tube 201. Therefore, it is possible to form the fin 205 with high accuracy regardless of the material and diameter of the raw tube 201 and to reduce the occurrence of breakage.
 なお、内面溝付管製造装置101は、巻取りドラム160に対して相対移動可能な上流可動台182に縮径装置120と補助送り装置130とを固定するとともに、巻取りドラム160による素管201の引き抜きの際に相対移動する上流可動台182の荷重を検出する上流荷重検出器192を備えている。 The inner grooved tube manufacturing apparatus 101 fixes the diameter reducing device 120 and the auxiliary feeding device 130 to the upstream movable table 182 that can move relative to the winding drum 160, and the raw tube 201 by the winding drum 160. An upstream load detector 192 is provided for detecting the load of the upstream movable table 182 that moves relative to each other when it is pulled out.
 これにより、例えば、巻取りドラム160に対して相対移動可能な全体可動台184に縮径装置120、補助送り装置130、溝加工装置140および仕上げ加工装置150全体を固定し、全体可動台184にかかる荷重を検出する内面溝付管製造装置と比べて、フィン205の形成に影響の大きな補助送り装置130による補助送りトルクを上流荷重検出器192による検出結果から推測できるとともに、トルク制御できる。 Thereby, for example, the diameter reducing device 120, the auxiliary feeding device 130, the groove processing device 140, and the finishing device 150 are fixed to the entire movable table 184 that can move relative to the winding drum 160, and the entire movable table 184 is fixed to the entire movable table 184. Compared with the internally grooved pipe manufacturing apparatus that detects such a load, the auxiliary feed torque by the auxiliary feed apparatus 130 that has a large influence on the formation of the fin 205 can be estimated from the detection result by the upstream load detector 192, and the torque can be controlled.
 したがって、より高精度のフィン205を有する内面溝付管204を、生産性高く製造することができる。 Therefore, the inner grooved tube 204 having the fins 205 with higher accuracy can be manufactured with high productivity.
 また、内面溝付管製造装置101は、上流可動台182にかかる荷重を検出する上流荷重検出器192と、全体可動台184にかかる全体荷重検出器194とを備えているため、演算器176は、上流荷重検出器192と全体荷重検出器194で検出した上流荷重検出値V(T1)および下流荷重検出値V(T2)から算出した荷重差分値(T3)に加えて上流荷重検出値V(T1)を考慮して補助送り装置130をトルク制御してもよい。 The inner surface grooved pipe manufacturing apparatus 101 includes an upstream load detector 192 that detects a load applied to the upstream movable table 182 and an overall load detector 194 that is applied to the entire movable table 184. In addition to the load difference value (T3) calculated from the upstream load detection value V (T1) and the downstream load detection value V (T2) detected by the upstream load detector 192 and the overall load detector 194, the upstream load detection value V ( The auxiliary feeder 130 may be torque controlled in consideration of T1).
 さらには、荷重差分値(T3)に加えて全体荷重検出器194で検出する下流荷重検出値V(T2)を考慮して、巻取りドラム160による引抜き力F1を制御する構成であってもよい。 Further, the pulling force F1 by the winding drum 160 may be controlled in consideration of the downstream load detection value V (T2) detected by the overall load detector 194 in addition to the load difference value (T3). .
 この様に、内面溝付管製造装置101に上流可動台182にかかる荷重を検出する上流荷重検出器192と、全体可動台184にかかる全体荷重検出器194とを備えているため、さらなる薄肉化やフィン205の捩れ角(リード角)がさらに大きくなった場合であっても、制御の複雑化は増大するものの、より高精度なフィン205が形成された内面溝付管204の生産性を向上することができる。 Thus, since the inner surface grooved pipe manufacturing apparatus 101 includes the upstream load detector 192 for detecting the load applied to the upstream movable table 182 and the overall load detector 194 applied to the entire movable table 184, further thinning is achieved. Even if the twist angle (lead angle) of the fin 205 is further increased, the complexity of the control is increased, but the productivity of the internally grooved tube 204 in which the fin 205 with higher accuracy is formed is improved. can do.
 また、上流荷重検出器192と全体荷重検出器194を同一の装置で構成しているため、両検出器から検出する値の変化曲線が近似し、補助送り装置130や巻取りドラム160の速度やトルクを精度良く調整することができる。 Further, since the upstream load detector 192 and the entire load detector 194 are configured by the same device, the change curves of the values detected from both detectors are approximated, and the speed of the auxiliary feeding device 130 and the winding drum 160 are Torque can be adjusted with high accuracy.
 なお、上述の実施形態2と、この発明の構成との対応において、この実施形態の縮径装置120は、縮径手段に対応し、以下同様に、
補助送り装置130は、送り補助手段に対応し、
溝加工装置140は、溝加工手段に対応し、
巻取りドラム160は、引抜き手段に対応し、
制御器171および演算器176は、制御手段に対応し、
補助送り速度は、送り補助速度に対応し、
補助送りトルクは、送り補助トルクに対応し、
上流可動台182は、移動台に対応し、
全体可動台184は、基台に対応し、
上流荷重検出器192は、移動台荷重検出装置に対応し、
全体荷重検出器194は、基台荷重検出装置に対応し、
ステップs3は、送り補助速度調整処理に対応し、
ステップs8は、送り補助トルク調整処理に対応し、
押圧用工具は、加工ボール326に対応するも、この発明は、実施形態2の構成のみに限定されるものではなく、多くの実施形態を得ることができる。
Note that, in the correspondence between the above-described Embodiment 2 and the configuration of the present invention, the diameter reducing device 120 of this embodiment corresponds to a diameter reducing means.
The auxiliary feeding device 130 corresponds to the feeding assisting means,
The groove processing device 140 corresponds to the groove processing means,
The winding drum 160 corresponds to the drawing means,
The controller 171 and the calculator 176 correspond to control means,
The auxiliary feed speed corresponds to the feed auxiliary speed,
The auxiliary feed torque corresponds to the feed auxiliary torque,
The upstream movable table 182 corresponds to the moving table,
The entire movable base 184 corresponds to the base,
The upstream load detector 192 corresponds to the moving table load detector,
The total load detector 194 corresponds to the base load detection device,
Step s3 corresponds to the feed assist speed adjustment process,
Step s8 corresponds to the feed assist torque adjustment process,
Although the pressing tool corresponds to the processed ball 326, the present invention is not limited only to the configuration of the second embodiment, and many embodiments can be obtained.
 (実施形態3) 
 次に、実施形態3の内面溝付管の製造装置312および製造方法について図面を用いて説明する。 
 なお、図7は、本実施形態における内面溝付管の製造装置312の説明図である。
(Embodiment 3)
Next, a manufacturing apparatus 312 and a manufacturing method for an internally grooved tube according to Embodiment 3 will be described with reference to the drawings.
In addition, FIG. 7 is explanatory drawing of the manufacturing apparatus 312 of an inner surface grooved pipe | tube in this embodiment.
 本実施形態における内面溝付管の製造装置312は、図7に示すように、素管311aの引抜き方向Xに沿って、素管311aを縮径させる縮径手段313と、素管311a内面に多数の溝を形成する溝加工手段314を備えるとともに、前記縮径手段313と前記溝加工手段314との間に前記縮径手段313で縮径した素管311aを引抜く中間引抜き部317を備えている。 As shown in FIG. 7, the inner surface grooved tube manufacturing apparatus 312 according to the present embodiment has a diameter reducing means 313 for reducing the diameter of the element tube 311a along the drawing direction X of the element tube 311a, and an inner surface of the element tube 311a. A groove processing means 314 for forming a large number of grooves is provided, and an intermediate extraction portion 317 is provided between the diameter reducing means 313 and the groove processing means 314 for extracting the raw tube 311a reduced in diameter by the diameter reducing means 313. ing.
 前記縮径手段313は、縮径ダイス322と、素管311a内に配置され、前記縮径ダイス322とともに素管311aを縮径するフローティングプラグ323とで構成している。 The diameter-reducing means 313 includes a diameter-reducing die 322 and a floating plug 323 that is disposed in the element tube 311a and reduces the diameter of the element tube 311a together with the diameter-reducing die 322.
 前記溝加工手段314は、素管311a内において連結棒325を介して前記フローティングプラグ323と回動自在に連結され、外周に複数の溝が形成された溝付プラグ324と、素管311aの外側において該素管311aを前記溝付プラグ324の側へ押圧しながら管軸回りに公転自在に配設された複数の加工ボール326とで構成している。 The groove processing means 314 is rotatably connected to the floating plug 323 via a connecting rod 325 in the raw tube 311a, and has a grooved plug 324 having a plurality of grooves formed on the outer periphery, and an outer side of the raw tube 311a. In FIG. 2, the raw tube 311a is composed of a plurality of processed balls 326 arranged to revolve around the tube axis while being pressed toward the grooved plug 324 side.
 前記製造装置312および該製造装置312を用いた内面溝付管311の製造方法では、図8に示すように、前記素管311aの外径D(mm)、前記縮径ダイス322の径D(mm)により、R={(D-D)/D}×100(%)であらわされる素管311aの縮径率Rを、前記縮径手段313において30%以下に設定している。 In the manufacturing apparatus 312 and the manufacturing method of the internally grooved tube 311 using the manufacturing apparatus 312, as shown in FIG. 8, the outer diameter D o (mm) of the raw pipe 311 a and the diameter D of the reduced diameter die 322. 2 (mm), the diameter reduction ratio R D of the element tube 311a represented by R D = {(D o −D 2 ) / D o } × 100 (%) is reduced to 30% or less in the diameter reducing means 313. It is set.
 さらに、前記フローティングプラグ323の外径D(mm)、前記縮径ダイス322の径D(mm)を、D-D≧0.1となるよう設定している。 Further, the outer diameter D 1 (mm) of the floating plug 323 and the diameter D 2 (mm) of the reduced diameter die 322 are set to satisfy D 1 −D 2 ≧ 0.1.
 さらにまた、前記加工ボール326の公転方向を、逆方向に設定し、前記加工ボール326の加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定している。 Furthermore, the revolution direction of the processed ball 326 is set in the reverse direction, and the processed pitch P (mm) of the processed ball 326 is set in a range of 0.2 ≦ P ≦ 0.7.
 または、前記加工ボール326の公転方向を、正方向に設定した場合には、加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定している。 Alternatively, when the revolution direction of the processed ball 326 is set to the positive direction, the processing pitch P (mm) is set to be in the range of 0.2 ≦ P ≦ 0.4.
 以下、本実施形態における内面溝付管の製造装置312について詳述する。 
 前記製造装置312は、引抜き方向Xの上流側から下流側へ沿って、縮径手段313、中間引抜き部317、溝加工手段314、整形ダイス315、引抜き部316を構成している。
Hereinafter, the manufacturing apparatus 312 of the inner surface grooved pipe in the present embodiment will be described in detail.
The manufacturing apparatus 312 includes a diameter reducing means 313, an intermediate drawing portion 317, a groove processing means 314, a shaping die 315, and a drawing portion 316 along the drawing direction X from the upstream side to the downstream side.
 さらに、前記製造装置312は、固定台350に対して引抜き方向へ移動可能に、縮径部313、中間引抜き部317および溝加工手段314を支持する可動台333と、該可動台333の前記固定台350に対する移動に応じて作用する荷重Fを検出するロードセル328と、該ロードセル328により検出した前記荷重Fに基づいて、中間引抜き部317および引抜き部316を制御する制御装置345とで構成している。 Further, the manufacturing apparatus 312 supports a movable base 333 that supports the reduced diameter portion 313, the intermediate extraction portion 317, and the groove processing means 314 so as to be movable in the drawing direction with respect to the fixed base 350, and the fixing of the movable base 333. A load cell 328 that detects a load F that acts in response to movement relative to the table 350, and a control device 345 that controls the intermediate pull-out portion 317 and the pull-out portion 316 based on the load F detected by the load cell 328. Yes.
 前記縮径手段313は、上述したように縮径ダイス322とフローティングプラグ323とで構成している。 
 前記縮径ダイス322は、引抜き方向Xへ連通した連通孔322aを有した筒状に構成し、連通孔322aは、引抜き方向Xの上流側部分(入口側)を下流側部分(出口側)に対して上流側へ向けて末広がり状に開口した形状で構成している。
The diameter reducing means 313 includes the diameter reducing die 322 and the floating plug 323 as described above.
The diameter-reducing die 322 is formed in a cylindrical shape having a communication hole 322a communicating with the drawing direction X, and the communication hole 322a has an upstream portion (inlet side) in the drawing direction X as a downstream portion (outlet side). On the other hand, it is configured in a shape that opens toward the upstream side.
 前記フローティングプラグ323は、円柱状に構成し、下流側部分の外周をテーパ状に構成している。 The floating plug 323 is formed in a cylindrical shape, and the outer periphery of the downstream portion is formed in a tapered shape.
 なお、図8に示すように、フローティングプラグ323の外径をD(mm)、縮径ダイス322の出口側の内径をD(mm)に設定している。 As shown in FIG. 8, the outer diameter of the floating plug 323 is set to D 1 (mm), and the inner diameter on the outlet side of the reduced diameter die 322 is set to D 2 (mm).
 前記溝加工手段314は、溝付プラグ324と複数の加工ボール326と、加工ボール326を外周側から保持する加工ヘッド327とで構成している。 The groove processing means 314 includes a grooved plug 324, a plurality of processing balls 326, and a processing head 327 that holds the processing balls 326 from the outer peripheral side.
 前記加工ヘッド327は、断面半円状の加工ボール保持溝327aが形成されている。 
 複数の加工ボール326は、前記加工ボール保持溝327aによって素管311aの表面を押圧しながら公転可自在に保持されている。複数の加工ボール326は、前記加工ボール保持溝327aによって正方向、或いは、逆方向のいずれの方向にも素管311aの表面を押圧しながら公転速度を変更可能に保持されている。
The processing head 327 is formed with a processing ball holding groove 327a having a semicircular cross section.
The plurality of processed balls 326 are held so as to revolve freely while pressing the surface of the raw tube 311a by the processed ball holding grooves 327a. The plurality of processed balls 326 are held by the processed ball holding grooves 327a so that the revolution speed can be changed while pressing the surface of the raw tube 311a in either the forward direction or the reverse direction.
 前記整形ダイス315は、内面溝付管311が通過することにより、例えば、前記溝加工手段314における加工ボール326の押圧により生じた管表面の歪み等を滑らかに整形する加工を行う。 The shaping die 315 performs a process of smoothly shaping, for example, the distortion of the pipe surface caused by the pressing of the machining ball 326 in the grooving means 314 when the inner grooved pipe 311 passes.
 前記引抜き部316は、加工済みの内面溝付管311を巻き取る巻取りドラム336を兼ね備え、巻取りドラム336を駆動するモータMを備え、該モータMの回転駆動により内面溝付管311を引張りながら巻取りドラム336に巻き付けている。 The drawing portion 316 also has a winding drum 336 that winds up the processed inner surface grooved tube 311, and includes a motor M 1 that drives the winding drum 336, and the inner surface grooved tube 311 is driven by rotation of the motor M 1. Is wound around the winding drum 336.
 前記中間引抜き部317は、縮径部313と溝加工手段314との間で、素管311aを引抜き方向Xへ引き抜くことで引抜き装置316による引抜きを補助している。すなわち、前記溝加工手段314による溝加工は、素管311aを引抜く際の抵抗となり、この溝加工の際の引抜きの負荷が大きくなるが、中間引抜き部317により素管311aにかかる前記引抜き負荷を分散させることができる。 The intermediate drawing portion 317 assists the drawing by the drawing device 316 by drawing the raw tube 311a in the drawing direction X between the reduced diameter portion 313 and the groove processing means 314. That is, the grooving by the grooving means 314 becomes a resistance when pulling out the raw tube 311a, and the pulling load during the grooving increases, but the pulling load applied to the raw tube 311a by the intermediate pulling portion 317 is increased. Can be dispersed.
 前記中間引抜き部317は、素管311aに対して上下各側、或いは、左右各側に配置された一対のベルト342a,342aを備えている。各ベルト342a,342aは、ループ状(無端状)に形成され、モータMの回転駆動により回転可能にプーリー343に張架されている。ベルト342a,342aは、外周面に、その長さ方向に沿って複数のパッド344を連設している。 The intermediate extraction portion 317 includes a pair of belts 342a and 342a arranged on the upper and lower sides or the left and right sides with respect to the raw tube 311a. Each belt 342a, 342a are formed in a loop shape (endless) and is tensioned by a rotatable pulley 343 by the rotation of the motor M 2. The belts 342a and 342a have a plurality of pads 344 arranged on the outer peripheral surface along the length direction.
 前記パッド344には、図示しないが、縮径部313により縮径後の素管311aの外面との接触部分に、複数のパッド344の連設方向に対する切断面が円弧状となるパッド溝を形成している。 Although not shown in the drawing, the pad 344 is formed with a pad groove in which a cut surface with respect to the connecting direction of the plurality of pads 344 has an arc shape at a contact portion with the outer surface of the base tube 311a after the diameter reduction by the diameter reducing portion 313. is doing.
 前記中間引抜き部317は、モータMの駆動によりパッド344を素管311a表面に押し付け可能に構成している。 
 なお、前記中間引抜き部317の上流側には、素管311aの外表面に付着した油膜や異物を除去するためのワイパー351を設け、下流側には、中間整形ダイス352を設けている。
The intermediate withdrawal part 317 has a pad 344 configured to be pressed against the base pipe 311a surface by driving of the motor M 3.
A wiper 351 is provided on the upstream side of the intermediate extraction portion 317 to remove an oil film and foreign matter adhering to the outer surface of the raw tube 311a, and an intermediate shaping die 352 is provided on the downstream side.
 前記ワイパー351は、素管311aの外表面に付着した油膜や異物も除去するために設けられ、素管311aを通過させるため、該素管311aの外径よりも一回り小さい径の貫通穴が中央部に形成された例えば、ゴム製の筒状体である。 
 なお、ワイパー351を設置しない場合、油膜や異物により、中間引抜き部317で滑りが生じてしまい、素管331cの引抜きが安定せず、また断面形状が安定しないため、溝の寸法がばらつくという問題が生じてしまう。
The wiper 351 is provided to remove an oil film and foreign matter adhering to the outer surface of the raw tube 311a, and a through hole having a diameter slightly smaller than the outer diameter of the raw tube 311a is provided to pass the raw tube 311a. For example, a rubber cylindrical body formed in the central portion.
In addition, when the wiper 351 is not installed, slipping occurs in the intermediate extraction portion 317 due to an oil film or a foreign substance, and the drawing of the raw tube 331c is not stable, and the cross-sectional shape is not stable, so that the size of the groove varies. Will occur.
 中間整形ダイス352は、前記中間引抜き部317で扁平した素管311aの断面形状を真円に近い形状に戻すために設けられ、前記素管311aの形状に応じて、フローティングダイス322の径と同じか小さなダイス径で構成している。 
 なお、前記中間整形ダイス352は金属、セラミック等の金属素管311aの材質より硬質なものからなる。好ましくは超硬合金製である。
The intermediate shaping die 352 is provided to return the cross-sectional shape of the element tube 311a flattened by the intermediate extraction portion 317 to a shape close to a perfect circle, and has the same diameter as the floating die 322 depending on the shape of the element tube 311a. It is configured with a small die diameter.
The intermediate shaping die 352 is made of a material harder than the material of the metal element tube 311a such as metal or ceramic. Preferably, it is made of cemented carbide.
 前記可動台333は、固定台350に対して引抜き方向、或いは、その逆方向に平行移動可能なように複数の車輪333aを介して固定台350に設置され、上述した縮径部313、溝加工手段314、仕上げ加工部315、中間引抜き部317、ワイパー351および中間整形ダイス352を、ボックス332に収容した状態で設置している。 The movable table 333 is installed on the fixed table 350 via a plurality of wheels 333a so that the movable table 333 can be translated in the drawing direction or the opposite direction with respect to the fixed table 350. Means 314, finishing section 315, intermediate drawing section 317, wiper 351 and intermediate shaping die 352 are installed in a state where they are housed in box 332.
 ロードセル328は、固定台350上であって可動台333における引抜き方向の下流側端部分に、素管311aの引抜き力に応じて可動台333から受ける荷重Fを検出可能に設けている。 The load cell 328 is provided on the fixed base 350 at the downstream end portion in the drawing direction of the movable table 333 so that the load F received from the movable table 333 according to the pulling force of the raw tube 311a can be detected.
 前記制御部345は、ロードセル328により検出した荷重Fを電気信号化した荷重検出信号Sinが入力され、制御プログラムに従って、引抜き部316および中間引抜き部317の各モータM,M,Mの駆動を制御する制御信号Soutを出力する。 The control unit 345 receives a load detection signal S in obtained by converting the load F detected by the load cell 328 into an electrical signal, and the motors M 1 , M 2 , M 3 of the extraction unit 316 and the intermediate extraction unit 317 according to a control program. A control signal S out for controlling the driving of the signal is output.
 さらに、前記制御部345は、図示しないが信号の解析処理および演算処理を実行するための演算機(CPU)、必要な制御プログラムを格納するためのハードディスクおよび前記荷重検出信号Sinを一時格納するためのメモリを備え、その他にも、制御パラメータを入力するキーボードなどの入力手段、モニタなどの表示手段を適宜、備えることができる。 Further, although not shown, the control unit 345 temporarily stores an arithmetic unit (CPU) for executing signal analysis processing and arithmetic processing, a hard disk for storing necessary control programs, and the load detection signal S in. In addition, an input unit such as a keyboard for inputting control parameters and a display unit such as a monitor can be appropriately provided.
 前記制御部345は、中間引抜き部317のモータMの駆動を制御することにより、中間引抜き部317のパッド344による素管311aに対する押し付け力を制御する。 
 パッド344を素管311aに対して適切な押し付け力で押し付けることによって、パッド344と素管311aの間のスリップを低減させ、荷重Fの変動が小さくなるようにする。
The control unit 345, by controlling the driving of the motor M 3 of the intermediate withdrawal unit 317, and controls the pressing force by the pad 344 of the intermediate pullout portion 317 against base pipe 311a.
By pressing the pad 344 against the raw tube 311a with an appropriate pressing force, the slip between the pad 344 and the raw tube 311a is reduced, and the variation in the load F is reduced.
 荷重Fの変動が大きくなると、長手方向での溝形状にばらつきが生じ、長手方向での溝の深さがばらつくと、一定の伝熱性能を確保できなくなることや、熱交換器のアルミフィンへの拡管組み込み時に拡管の度合いにばらつきが生じるため、部分的に拡管不足となり、アルミフィンとの密着不足による熱交換器性能の低下を起こすからである。 When the fluctuation of the load F becomes large, the shape of the groove in the longitudinal direction varies, and if the depth of the groove in the longitudinal direction varies, a certain heat transfer performance cannot be secured, and the aluminum fin of the heat exchanger This is because there is a variation in the degree of tube expansion when the tube is installed, and therefore the tube expansion is partially insufficient, resulting in a decrease in heat exchanger performance due to insufficient adhesion with the aluminum fins.
 なお、荷重Fの変動を小さくするためには、中間引抜き部317でのベルト342a,342aの回転を制御してもよい。その際、前記制御部345は、プーリー343の回転トルクに限らず、回転速度や加速度など他の制御パラメータを制御する構成であってもよい。 In order to reduce the fluctuation of the load F, the rotation of the belts 342a and 342a at the intermediate extraction portion 317 may be controlled. In this case, the control unit 345 may be configured to control other control parameters such as the rotation speed and acceleration, not limited to the rotation torque of the pulley 343.
 続いて、上述した内面溝付管の製造装置312を用いた内面溝付管311の製造方法は、素管311aが引抜き方向Xへ進む過程で、素管311aを縮径させる縮径加工工程と、素管311a内面に多数の溝を形成する溝加工工程を行い、前記縮径加工工程と前記溝加工工程とを行なう間、前記縮径加工工程で縮径した素管311aを引抜く中間引抜き工程を行う。 Then, the manufacturing method of the inner surface grooved tube 311 using the inner surface grooved tube manufacturing apparatus 312 described above includes a diameter reduction process step of reducing the diameter of the raw tube 311a in the process of moving the raw tube 311a in the drawing direction X. An intermediate drawing is performed in which a groove machining step for forming a large number of grooves on the inner surface of the element tube 311a is performed, and the element tube 311a reduced in diameter in the diameter reduction process step is drawn during the diameter reduction process and the groove machining process. Perform the process.
 前記縮径加工工程では、縮径ダイス322と、素管311a内に配置され、前記縮径ダイス322とともに素管311aを縮径するフローティングプラグ323とで行う。 
 前記溝加工工程では、素管311a内において連結棒325を介して前記フローティングプラグ323と回動自在に連結され、外周に複数の溝が形成された溝付プラグ324と、素管311aの外側において該素管311aを前記溝付プラグ324の側へ押圧しながら管軸回りに公転自在に配設された複数の加工ボール326とで行なう。
The diameter reducing process is performed by a diameter reducing die 322 and a floating plug 323 which is disposed in the element pipe 311a and reduces the diameter of the element pipe 311a together with the diameter reducing die 322.
In the groove processing step, a grooved plug 324 that is rotatably connected to the floating plug 323 through a connecting rod 325 in the raw tube 311a and has a plurality of grooves formed on the outer periphery, and on the outer side of the raw tube 311a. This is performed with a plurality of processed balls 326 arranged to revolve around the tube axis while pressing the raw tube 311a toward the grooved plug 324 side.
 前記製造装置312および製造方法は、以下のような作用効果を奏することができる。 
 前記製造装置312および前記製造方法は、上述したように、前記素管311aの外径D(mm)、前記縮径ダイス322の径D(mm)により、R={(D-D)/D}×100(%)であらわされる素管311aの縮径率Rを、前記縮径手段313において30%以下に設定している。
The manufacturing apparatus 312 and the manufacturing method can achieve the following operational effects.
As described above, the manufacturing apparatus 312 and the manufacturing method are configured such that R D = {(D o −) by the outer diameter D o (mm) of the raw tube 311a and the diameter D 2 (mm) of the reduced diameter die 322. The diameter reduction ratio R D of the element tube 311a expressed by D 2 ) / D o } × 100 (%) is set to 30% or less in the diameter reduction means 313.
 このため、前記縮径手段313で縮径後に素管311aが微振動するいわゆるビビリ現象が抑えられ、前記中間引抜き部317で引抜き荷重を補助する荷重補助を安定させることができる。 For this reason, the so-called chatter phenomenon in which the tube 311a slightly vibrates after the diameter reduction by the diameter reducing means 313 is suppressed, and the load assist for assisting the extraction load by the intermediate extraction portion 317 can be stabilized.
 前記製造装置312および前記製造方法は、上述したように、前記フローティングプラグ323の外径D(mm)、前記縮径ダイス322の径D(mm)を、D-D≧0.1となるよう設定している。 As described above, in the manufacturing apparatus 312 and the manufacturing method, the outer diameter D 1 (mm) of the floating plug 323 and the diameter D 2 (mm) of the reduced diameter die 322 are set such that D 1 −D 2 ≧ 0. It is set to be 1.
 このため、より効果的にビビリ現象の発生を抑えることができ、縮径加工工程の際に引き細り、肉厚減少を防ぐことができる。 For this reason, it is possible to more effectively suppress the occurrence of chattering phenomenon, and it is possible to reduce the thickness by thinning during the diameter reduction process.
 前記製造装置312および前記製造方法は、上述したように、加工ボール326の公転方向を、逆方向に設定した場合、加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定している。 As described above, in the manufacturing apparatus 312 and the manufacturing method, when the revolution direction of the processing ball 326 is set in the reverse direction, the processing pitch P (mm) is in the range of 0.2 ≦ P ≦ 0.7. It is set to become.
 このため、溝の加工精度が高い溝付き管を、安定して製造することができる。 Therefore, it is possible to stably manufacture a grooved tube with high groove processing accuracy.
 または、前記製造装置312および前記製造方法は、上述したように、加工ボール326の公転方向を、正方向に設定した場合、加工ボール326の加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定している。 Alternatively, as described above, in the manufacturing apparatus 312 and the manufacturing method, when the revolution direction of the processed ball 326 is set to the positive direction, the processing pitch P (mm) of the processed ball 326 is set to 0.2 ≦ P ≦. It is set to be in the range of 0.4.
 これにより、内面フィンの裾部にエグレが生じず、溝深さが深くて加工精度が高いものを得ることができる。 This makes it possible to obtain a deep groove and a high machining accuracy without causing any escaping at the bottom of the inner fin.
 (実施例) 
 続いて、実施形態3の製造装置312および前記製造方法の有効性を検証するために素管311aを内面溝付管311に加工する加工実験を行なった(実施例10~15)。 
 実施例10では、縮径手段313での素管311aの縮径率R、実施例11では、フローティングプラグ323と縮径ダイス322の噛み合せ(D-D)、実施例12では、加工ボール326の加工ピッチP、実施例13では、溝付プラグ324の溝深さとねじれ角、実施例14では、加工ボール326の公転回転数、実施例15では、加工ボール326の個数を、それぞれパラメータとして変化させ、加工の出来栄えを評価した。
(Example)
Subsequently, in order to verify the effectiveness of the manufacturing apparatus 312 of the third embodiment and the manufacturing method, a processing experiment was performed in which the raw tube 311a was processed into the internally grooved tube 311 (Examples 10 to 15).
In the tenth embodiment, the diameter reduction ratio R D of the raw tube 311a in the diameter reducing means 313, in the eleventh embodiment, the floating plug 323 and the reduced diameter die 322 are engaged (D 1 -D 2 ). The processing pitch P of the ball 326, the groove depth and the twist angle of the grooved plug 324 in Example 13, the revolution speed of the processing ball 326 in Example 14, and the number of the processing balls 326 in Example 15 are parameters. And the quality of processing was evaluated.
 以下、実施例10~15のそれぞれについて詳述する。 Hereinafter, each of Examples 10 to 15 will be described in detail.
 (実施例10) 
 実施例10では、縮径手段313での素管311aの縮径率Rを変化させることにより加工に及ぼす影響を調べる溝付け加工実験を行なった。
(Example 10)
In Example 10, it was subjected to grooving experiment to investigate the effect on the processing by changing the radial contraction rate R D of the base pipe 311a at reduced diameter section 313.
 本加工実験では、本発明例1~3、比較例1,2ごとに加工条件を設定して素管311aを加工し、内面溝付管311を作成した。 In this machining experiment, machining pipes 311a were machined by setting machining conditions for each of Invention Examples 1 to 3 and Comparative Examples 1 and 2, and an internally grooved tube 311 was created.
 本発明例1~3、比較例1,2では、素管311aの肉厚(T)、縮径ダイス322の径(D)、フローティングプラグ323の外径(D)、溝付プラグ324の外径、溝数、ねじれ角、溝深さ、溝頂角、加工ボール326の数、公転回転数、加工ピッチについては、表4に示すとおり共通の条件で加工を行なった。  In Invention Examples 1 to 3 and Comparative Examples 1 and 2, the thickness (T o ) of the raw tube 311a, the diameter (D 2 ) of the reduced diameter die 322, the outer diameter (D 1 ) of the floating plug 323, and the grooved plug The outer diameter, the number of grooves, the twist angle, the groove depth, the groove apex angle, the number of processed balls 326, the revolution speed, and the processing pitch of 324 were processed under common conditions as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 さらに加工実験では、本発明例1~3、比較例1,2のそれぞれについて表5に示すように、縮径ダイス322のダイス径Dを一定とし、素管311aの外径Dのみを変化させることで、縮径率Rを変化させた。
Figure JPOXMLDOC01-appb-T000004
The further processing experiments, the present invention Examples 1-3, as shown in Table 5 for each of Comparative Examples 1 and 2, a die diameter D 2 of the diameter reduction dies 322 is constant, only the outer diameter D o of the base pipe 311a The diameter reduction ratio RD was changed by changing.
 表5に示すように、本発明例1~3では、いずれも縮径率Rが30%以下になる設定の下で、比較例1,2では、縮径率Rが30%より大きくなる設定の下で加工を行なった。 As shown in Table 5, in each of Invention Examples 1 to 3, the diameter reduction ratio RD was set to be 30% or less, and in Comparative Examples 1 and 2, the diameter reduction ratio RD was larger than 30%. Processing was performed under the following settings.
 加工結果は、溝付加工後に素管311a内面に形成される溝の長手方向での溝深さのばらつきによって評価した。 
 また、長手方向での溝深さのばらつき具合と、縮径手段313に設置したロードセル328により縮径加工時に検出される荷重Fの安定の度合いとは、密接に関連している。このため、荷重変動が生じると、素管311aの内面に形成される溝形状(特に溝深さ)に影響し、荷重変動の大きさは、そのまま溝の長手方向での溝深さのばらつきの大きさとなって現れる。
The processing result was evaluated by the variation in the groove depth in the longitudinal direction of the groove formed on the inner surface of the raw tube 311a after the grooving.
Further, the variation in the depth of the groove in the longitudinal direction and the degree of stability of the load F detected at the time of diameter reduction by the load cell 328 installed in the diameter reduction means 313 are closely related. For this reason, when a load fluctuation occurs, it affects the groove shape (particularly the groove depth) formed on the inner surface of the raw tube 311a, and the magnitude of the load fluctuation is the same as the fluctuation of the groove depth in the longitudinal direction of the groove. Appears in size.
 このため、素管311aの内面に形成される溝の長手方向での溝深さのばらつきを評価することにより、縮径加工時に検出される荷重Fの安定の度合いについても評価することができる。 Therefore, by evaluating the variation in the groove depth in the longitudinal direction of the groove formed on the inner surface of the raw tube 311a, it is possible to evaluate the degree of stability of the load F detected during the diameter reduction processing.
 加工結果は、荷重の安定具合を示す長手方向での溝深さのばらつきが0~0.020mmである場合を「◎」とし、0.021~0.050mmである場合を「○」とし、0.051mm以上である場合を「×」として評価した。 The processing result is “◎” when the variation in the groove depth in the longitudinal direction indicating the stability of the load is 0 to 0.020 mm, and “◯” when the variation is 0.021 to 0.050 mm. The case of 0.051 mm or more was evaluated as “x”.
 本発明例1~3、比較例1,2の各条件で行なった加工結果を表5に示す。 Table 5 shows the results of machining performed under the conditions of Invention Examples 1 to 3 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000005
 表5のとおり、本発明例1は「○」、本発明例2,3は「◎」となり、本発明例1~3は、所望の内面溝付管311が得られたのに対して、比較例1、2は、いずれも「×」となり、所望の内面溝付管311が得られなかった。
Figure JPOXMLDOC01-appb-T000005
As shown in Table 5, Example 1 of the present invention was “◯”, Examples 2 and 3 of the present invention were “◎”, and Examples 1 to 3 of the present invention obtained the desired internally grooved tube 311, In Comparative Examples 1 and 2, both were “x”, and the desired internally grooved tube 311 was not obtained.
 詳しくは、縮径率Rが30%より大きくなると、比較例1,2のように、溝の長手方向での溝深さのばらつきが大きくなった。 Specifically, when the diameter reduction ratio RD is greater than 30%, as in Comparative Examples 1 and 2, the variation in groove depth in the longitudinal direction of the groove increases.
 素管311aの縮径率Rが30%より大きくなると、図12(a)に示すように、素管311aと前記縮径ダイス322Aの接触面積Aが大きくなって摩擦抵抗が大きくなる。そうすると、前記縮径ダイス322Aでの加工荷重が大きくなり、素管311aの外径Dが前記縮径ダイス322Aの出口の径Dよりも細くなる引き細りが発生してしまう(図12(a)の領域Z1の拡大図参照)。 When radial contraction rate R D of the base pipe 311a is greater than 30%, as shown in FIG. 12 (a), the frictional resistance increases the contact area A of the the mother tube 311a diameter die 322A is increased. Then, the processing load at diameter reduction dies 322A is increased, pulling the outer diameter D f of the base pipe 311a is narrower than the diameter D 2 of the outlet of the reduced diameter die 322A thinning occurs (FIG. 12 ( (See an enlarged view of the area Z1 in a)).
 さらに引き細りにより素管311aと前記縮径ダイス322Aとの接触が安定せず、ビビリ現象が発生し易くなり、肉厚減少も生じる。 Further, the contact between the raw tube 311a and the reduced diameter die 322A is not stabilized by the thinning, the chatter phenomenon is likely to occur, and the thickness is reduced.
 このように、縮径手段313通過後の素管311aの外径Dが縮径ダイス322Aの径Dよりも小さくなる「引き細り」や「肉厚減少」の度合いが大きくなり、中間引抜き部317での荷重補助が不安定になった。また管が微振動するビビリ現象も発生し、それに伴って、荷重の瞬時的な変動が大きくなった。 
 このため、比較例1,2で溝の長手方向での溝深さのばらつきが大きくなった結果に現れたものと考えられる。
Thus, reduced diameter section 313 the outer diameter D f of the base pipe 311a after passing becomes smaller than the diameter D 2 of the diameter reduction dies 322A "pull thinning" or degree of "thickness reduction" is increased, the intermediate pullout The load assist at the portion 317 became unstable. In addition, chatter phenomenon in which the pipe vibrates slightly occurred, and the instantaneous fluctuation of the load increased accordingly.
For this reason, it is thought that it appeared in the result of the variation in the groove depth in the longitudinal direction of the groove increased in Comparative Examples 1 and 2.
 比較例1,2のように長手方向で溝深さのばらついた内面溝付管311では、伝熱性能が低下する。また、熱交換器のアルミフィンへの拡管組み込み時に拡管の度合いにばらつきが生じるため、部分的に拡管不足となり、アルミフィンとの密着不足による熱交換器性能の低下を起こす。 In the inner grooved tube 311 having the groove depth varying in the longitudinal direction as in Comparative Examples 1 and 2, the heat transfer performance decreases. In addition, since the degree of expansion of pipes varies when the heat exchanger is expanded and incorporated into the aluminum fins, the expansion of the pipes is partially insufficient and the heat exchanger performance is deteriorated due to insufficient adhesion with the aluminum fins.
 さらに荷重の変動が大きい場合、加工中に破断を起こす時もあるので荷重の変動は小さい方が望ましい。 ∙ If the load fluctuation is large, it may break during processing, so it is desirable that the load fluctuation is small.
 これに対して、表5の結果のとおり、縮径手段313での縮径率Rが30%以下であれば、本発明例1~3のように長手方向での溝深さのばらつきが小さくなった。これにより、荷重Fの安定がよく、特に、縮径率Rが小さいほど荷重Fの安定がよくなることを実証できた。 In contrast, as the results in Table 5, if radial contraction rate R D is 30% or less in diameter means 313, variation of the groove depth in the longitudinal direction as in the present invention Examples 1-3 It has become smaller. Thereby, it was proved that the stability of the load F was good, and in particular, the stability of the load F was improved as the diameter reduction ratio RD was small.
 具体的には、本発明例1~3では、図9に示すように、縮径率Rが30%以下、D-D≧0.1の場合、縮径加工後の素管311aの外径Dは、縮径ダイス322の径Dと略同じになり、縮径加工後の素管311aの肉厚Tは、素管311aの肉厚Tと同じか若干増えるという加工を実現できた。 Specifically, in Examples 1 to 3 of the present invention, as shown in FIG. 9, when the diameter reduction ratio RD is 30% or less and D 1 −D 2 ≧ 0.1, the raw tube 311a after the diameter reduction processing is performed. since the outer diameter D f, becomes substantially the same as the diameter D 2 of the diameter reduction dies 322, the thickness T f of the base pipe 311a after diameter reduction is increased equal to or slightly thicker T o of the base pipe 311a Processing was realized.
 (実施例11) 
 実施例11では、縮径手段313でのフローティングプラグ323と縮径ダイス322の噛み合わせ(D-D)を変化させることにより加工に及ぼす影響を調べる溝付け加工実験を行なった。 
 本加工実験では、本発明例4~8、比較例3の各条件ごとに素管311aを加工し、内面溝付管311を作成した。
Example 11
In Example 11, a grooving experiment was conducted to examine the influence on the machining by changing the engagement (D 1 -D 2 ) of the floating plug 323 and the reduced diameter die 322 in the diameter reducing means 313.
In this processing experiment, the raw tube 311a was processed for each of the conditions of Invention Examples 4 to 8 and Comparative Example 3 to create an internally grooved tube 311.
 本加工実験では、本発明例4~8、比較例3の各加工条件において、表6に示すように、一定の縮径ダイス322のダイス径Dに対してフローティングプラグ323の外径Dを変化させ、フローティングプラグ323と縮径ダイス322の噛み合わせ(D-D)の度合いを変化させることで加工を行なった。 In this machining experiment, the outer diameter D 1 of the floating plug 323 with respect to the die diameter D 2 of the constant diameter-reduced die 322 as shown in Table 6 under the machining conditions of Invention Examples 4 to 8 and Comparative Example 3. And the degree of meshing (D 1 -D 2 ) between the floating plug 323 and the reduced diameter die 322 was changed.
 本発明例4~8では、いずれも(D-D)が0.1以上の設定の下で、比較例3では、(D-D)が0.1より小さくなる設定の下で加工を行なった。 In Examples 4 to 8 of the present invention, (D 1 -D 2 ) is all set to 0.1 or more, and in Comparative Example 3, (D 1 -D 2 ) is set to be smaller than 0.1. Was processed.
 本発明例4~8、比較例3の各加工条件で行なった加工の結果を表6に示す。 
 なお、本発明例4~8、比較例3では、素管311aの外径Dを9.53mm、内径を8.93mmの共通した寸法の素管311aを用い、それ以外の条件についても、表4に示すように共通の条件で加工を行なった。また、加工結果は、実施例10と同様に、溝付け加工後に形成される溝の長手方向での溝深さのばらつき具合をもとに「◎」、「○」、「×」で評価した。
Table 6 shows the results of machining performed under the machining conditions of Invention Examples 4 to 8 and Comparative Example 3.
The present invention Examples 4-8, Comparative Example 3, 9.53 mm outer diameter D o of the blank tube 311a, using the base tube 311a of the common dimensions of 8.93mm internal diameter, for the other conditions, As shown in Table 4, processing was performed under common conditions. In addition, the processing results were evaluated as “評 価”, “◯”, and “×” based on the variation in groove depth in the longitudinal direction of the grooves formed after grooving, as in Example 10. .
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように、本発明例4~8は、加工結果が「◎」か「○」となり所望の内面溝付管311が得られたのに対して、比較例3では、加工結果が「×」となり所望の内面溝付管311が得られなかった。
Figure JPOXMLDOC01-appb-T000006
As is apparent from Table 6, in Examples 4 to 8 of the present invention, the processing result was “◎” or “◯”, and the desired internally grooved tube 311 was obtained, whereas in Comparative Example 3, the processing result was obtained. Became “x”, and the desired internally grooved tube 311 could not be obtained.
 このように(D-D)が0.1より小さい場合、比較例3のように縮径手段313Aでの荷重が不安定になった。 Thus, when (D 1 -D 2 ) is smaller than 0.1, the load on the diameter reducing means 313A becomes unstable as in Comparative Example 3.
 詳しくは、フローティングプラグ323Aと縮径ダイス322Aの噛み合わせ(D1-D2)が0.10mmより小さくなると、図12(b)の領域Z3の拡大図に示すように、フローティングプラグ323Aの角部C付近のみが素管311aの内面に接触することになり、引抜き方向Xにかかる荷重を角部C付近のみで受けることになる。 Specifically, when the engagement (D1-D2) of the floating plug 323A and the reduced diameter die 322A is smaller than 0.10 mm, as shown in the enlarged view of the region Z3 in FIG. 12B, the corner portion C of the floating plug 323A is shown. Only the vicinity contacts the inner surface of the raw tube 311a, and the load applied in the drawing direction X is received only in the vicinity of the corner C.
 通常、縮径の際には、素管311aの肉厚は減肉させず、逆に0.01mm以内で増肉することもあるのに対して、(D-D)が0.1より小さい場合、素管311aの肉厚を減肉をさせながら縮径することになり、負荷が過大にかかり過ぎて図12(b)の領域Z2の拡大図に示すように、管外径の引き細りが発生する。 Normally, when the diameter is reduced, the thickness of the raw tube 311a is not reduced, and conversely, the thickness may be increased within 0.01 mm, whereas (D 1 -D 2 ) is 0.1. If it is smaller, the diameter of the tube 311a is reduced while reducing the thickness, and the load is excessively applied, and as shown in the enlarged view of the region Z2 in FIG. Thinning occurs.
 フローティングプラグ323Aと縮径ダイス322Aの噛み合わせ(D-D)が小さくなるほど荷重の瞬時的な変動が大きくなり、特に、(D-D)が0.10mmより小さくなると管が微振動するビビリ現象も発生し、それに伴って荷重の瞬時的な変動がさらに大きくなり、引き細りの程度も変動する。 
 これによって、縮径手段313Aで素管311aが破断することもあった。
As the meshing (D 1 -D 2 ) of the floating plug 323A and the reduced diameter die 322A decreases, the instantaneous fluctuation of the load increases. In particular, when (D 1 -D 2 ) is smaller than 0.10 mm, the tube becomes finer. The vibration chatter phenomenon also occurs, and the instantaneous fluctuation of the load further increases, and the degree of thinning also changes.
As a result, the base tube 311a may be broken by the diameter reducing means 313A.
 この状態で中間引抜き部317を備えた場合、該中間引抜き部317でのパッド344と素管311aとの接触面積が変動して接触面積を十分確保できず、中間引抜き部317での荷重補助が不安定になる。また、中間引抜き部317を備えた場合、パッド344の接触個数が変化したり、パッド344の素管311aに対する接触と開放の繰り返しによる振動が影響し、中間引抜き部317を備えていない従来の加工方法に比べ、かえって荷重の瞬時的な変動が大きくなる。 When the intermediate extraction portion 317 is provided in this state, the contact area between the pad 344 and the raw tube 311a at the intermediate extraction portion 317 is fluctuated and a sufficient contact area cannot be secured, and load assistance at the intermediate extraction portion 317 is not possible. It becomes unstable. In addition, when the intermediate extraction portion 317 is provided, the number of contacts of the pads 344 is changed, or vibration due to repeated contact and release of the pads 344 with the base tube 311a is affected, so that conventional processing without the intermediate extraction portion 317 is performed. Compared with the method, the instantaneous fluctuation of the load becomes larger.
 これに対して、(D-D)が0.1以上であれば、本発明例4~8のように、縮径手段313での荷重の安定性がよく、特に、本発明例4~6の加工結果より(D-D)が大きいほど、図9に示すように安定な荷重の下での加工を行なうことができることを実証できた。 On the other hand, if (D 1 -D 2 ) is 0.1 or more, the load stability at the diameter reducing means 313 is good as in Examples 4 to 8 of the present invention. As shown in FIG. 9, it was proved that machining under a stable load can be performed as (D 1 -D 2 ) is larger from the machining results of ˜6.
 (実施例12) 
 実施例12では、加工ピッチPを変化させることにより加工に及ぼす影響を調べる溝付け加工実験を行なった。 
 本加工実験では、表7に示す本発明例9~32の各条件のように、加工ボール326の公転方向が正方向、逆方向それぞれの場合について加工ピッチPを変化させる加工条件で内面溝付管311の加工を行なった。
(Example 12)
In Example 12, a grooving experiment was conducted to examine the effect on machining by changing the machining pitch P.
In this machining experiment, as in the conditions of Invention Examples 9 to 32 shown in Table 7, the inner surface is grooved under the machining conditions in which the machining pitch P is changed when the revolution direction of the machining ball 326 is the forward direction and the reverse direction. The tube 311 was processed.
 本発明例9~32は、いずれも縮径率Rが30%以下となる本発明の条件を満たす加工条件の下で内面溝付管311の加工を行なったものであり、表7中、太枠で囲んだ本発明例11~18、発明例23~25は、本発明例の中でも特に好適な加工条件で内面溝付管311の加工を行なったものである。 Examples 9 to 32 of the present invention were obtained by processing the internally grooved tube 311 under the processing conditions satisfying the conditions of the present invention in which the reduction ratio RD was 30% or less. Invention Examples 11 to 18 and Invention Examples 23 to 25 surrounded by a thick frame are obtained by processing the internally grooved tube 311 under particularly preferable processing conditions.
 詳しくは、本発明例11~18では、加工ボール326の公転方向を逆方向に設定し、加工ピッチP(mm)が0.2mm以上、0.7mm以下の設定の下で加工を行い、本発明例23~25では、加工ボール326の公転方向を正方向に設定し、加工ピッチP(mm)が0.2mm以上、0.4mm以下になる設定の下で加工を行なった。 Specifically, in Examples 11 to 18 of the present invention, the revolution direction of the processed ball 326 is set to the reverse direction, and the processing is performed under the setting where the processing pitch P (mm) is 0.2 mm or more and 0.7 mm or less. In Invention Examples 23 to 25, the revolving direction of the processed ball 326 was set to the positive direction, and the processing was performed under a setting in which the processing pitch P (mm) was 0.2 mm or more and 0.4 mm or less.
 一方、本発明例9,10,19,20では、加工ボール326の公転方向を逆方向に設定し、加工ピッチP(mm)が0.2mmより小さく、或いは0.7mmより大きくなる設定の下で加工を行なった。本発明例21,22,26~32では、いずれも加工ボール326の公転方向を正方向に設定し、加工ピッチP(mm)が0.2mmより小さく、或いは0.4mmより大きくなる設定の下で加工を行なった。 On the other hand, in Examples 9, 10, 19, and 20 of the present invention, the revolution direction of the processed ball 326 is set to the reverse direction, and the processing pitch P (mm) is set to be smaller than 0.2 mm or larger than 0.7 mm. Was processed. In each of the inventive examples 21, 22, 26 to 32, the revolution direction of the processing ball 326 is set to the positive direction, and the processing pitch P (mm) is set to be smaller than 0.2 mm or larger than 0.4 mm. Was processed.
 また、本発明例9~32では、素管311a外径を9.53mm、内径を8.93mmの共通した素管311aを用い、それ以外の条件についても、表4に示すように共通の条件で加工を行なった。 In Examples 9 to 32 of the present invention, the common tube 311a having an outer diameter of 9.53 mm and an inner diameter of 8.93 mm is used, and the other conditions are the same as shown in Table 4. Was processed.
 ここで、加工ピッチP(mm)とは、素管311aの外周を、該外周に配置した加工ボール326の個数で等分配した角度分だけ加工ボール326が素管311a回りを公転する間に素管311aが引抜き方向Xへ進む距離を示す。 
 詳しくは、実施例12では、素管311aの外周に加工ボール326を4個配置しているため、図10に示すように、加工ボール326が素管311a外周を90度回転する間に素管311aが引抜き方向Xへ進む移動距離Pを加工ピッチPとしている。
Here, the processing pitch P (mm) means that the processing ball 326 revolves around the base tube 311a by an angle equally distributed on the outer periphery of the base tube 311a by the number of processing balls 326 arranged on the outer periphery. The distance the tube 311a travels in the drawing direction X is shown.
Specifically, in the twelfth embodiment, since four processed balls 326 are arranged on the outer periphery of the raw tube 311a, as shown in FIG. 10, the processed tube 326 rotates while the outer periphery of the raw tube 311a rotates 90 degrees. The moving distance P that 311a travels in the drawing direction X is set as the processing pitch P.
 なお、図10は、溝加工手段314付近を一部省略して模式的に示した加工ピッチPを説明する説明図である。また、図10中の仮想線で示したLa,Ld,Lbは、それぞれ素管311a外周に配置された4個の加工ボール326のうち、図10中に現される3個の加工ボール326a,326d,326bが素管311aを押圧した軌跡を示す。さらにまた、図10では、前記加工ボール326の公転方向が、逆方向(前記溝付プラグ324の回転方向と逆向き)の場合を示している。なお、加工ボール326が正方向である場合は、加工ボール326の軌跡La,Lb,Ldは、図10中、右下がりとなる。 FIG. 10 is an explanatory diagram for explaining the processing pitch P schematically shown by partially omitting the vicinity of the groove processing means 314. In addition, La, Ld, and Lb indicated by phantom lines in FIG. 10 are the three processed balls 326a, 326a, Reference numerals 326d and 326b indicate trajectories of pressing the raw tube 311a. Furthermore, FIG. 10 shows a case where the revolution direction of the processed ball 326 is the reverse direction (the reverse direction to the rotation direction of the grooved plug 324). When the processed ball 326 is in the positive direction, the trajectories La, Lb, and Ld of the processed ball 326 are lowered to the right in FIG.
 加工結果は、溝付け加工後に素管311a内面に形成される「溝の形成」(管肉の未充填の有無)と「溝の加工精度」(エグレの発生状況)によって評価した。 The processing results were evaluated by “groove formation” (whether or not the tube meat was unfilled) and “groove processing accuracy” (occurrence of aggression) formed on the inner surface of the raw tube 311a after grooving.
 ここで、「エグレ」とは、図11に示すように、溝加工手段314において、内面フィン400の裾部においてフィン400を厚み方向に切り欠いたような形状の材料の未充填部分401を示す。 Here, as shown in FIG. 11, “egre” indicates an unfilled portion 401 of a material having a shape such that the fin 400 is notched in the thickness direction at the skirt of the inner surface fin 400 in the groove processing means 314. .
 「溝の形成」は、溝付プラグ324の溝全体に肉が充填されたもの(所定の深さの溝が形成されたもの)を「○」とし、未充填があったもの(所定の深さの溝が形成されなかったもの)を「△」、或いは「×」として評価した。「△」は、未充填があったが、実用上、使用できる範囲内のものである。さらに、「溝の加工精度」は、エグレがない、またはエグレ深さHがフィン裾幅の10%以内であるものを「◎」とし、エグレ深さHがフィン裾幅の30%以内であるものを「○」とし、30%以上であるものを「△」、或いは「×」として評価した。「△」は、エグレ深さHがフィン裾幅の30%以上であったが、実用上、使用できる範囲内のものである。 “Groove formation” is defined as “◯” when the entire groove of the grooved plug 324 is filled with meat (having a groove with a predetermined depth) and without filling (having a predetermined depth). (Where no groove was formed) was evaluated as “Δ” or “×”. “Δ” is unfilled, but is in a practically usable range. Furthermore, "the processing accuracy of Groove" gouge is missing or gouges depth H e is what is within 10% of the fin Hem and "◎" gouges depth H e is within 30% of the fin Hem Those with a value of “◯” were evaluated, and those with 30% or more were evaluated as “Δ” or “×”. "△" is gouge depth H e is equal to or more than 30% of the fin Hem, practically, is within the range that can be used.
 本発明例9~32の各条件ごとに行なった加工の結果を表7に示す。 Table 7 shows the results of the processing performed for each condition of Invention Examples 9 to 32.
Figure JPOXMLDOC01-appb-T000007
 表7から明らかなように、本発明例9~32は、いずれも「◎」、「○」、「△」のいずれかとなり、「×」のものはなかった。殊に、本発明例11~18,23~25では、いずれも「◎」か「○」となった。
Figure JPOXMLDOC01-appb-T000007
As is clear from Table 7, Examples 9 to 32 of the present invention were any of “◎”, “◯”, and “Δ”, and there was no “×”. In particular, in Examples 11 to 18 and 23 to 25 of the present invention, all were “◎” or “○”.
 詳しくは、表7に示すとおり、「溝の形成」について、本発明例9,10,21,22では「△」であるのに対して、本発明例11~20,23~32では「○」となった。この結果より、加工ボール326の公転方向に関らず、加工ピッチPを0.20mm以上にすると、内面の溝を所定の深さまで形成することができることが実証された。 Specifically, as shown in Table 7, “groove formation” is “△” in Invention Examples 9, 10, 21 and 22, while “O” in Invention Examples 11 to 20, 23 to 32. " From this result, it was proved that the groove on the inner surface can be formed to a predetermined depth when the processing pitch P is 0.20 mm or more regardless of the revolution direction of the processing ball 326.
 また、「溝の加工精度」について、本発明例20では、「△」であるのに対して、本発明例9~19では「◎」或いは「○」となった。この結果より、加工ボール326の公転方向が逆方向の場合において加工ピッチPが0.70mm以下であれば、内面フィンの裾部に特にエグレが生じ難いことが実証された。 Further, “groove processing accuracy” was “△” in Invention Example 20, but “「 ”or“ ◯ ”in Invention Examples 9 to 19. From this result, it was proved that when the machining pitch P is 0.70 mm or less in the case where the revolution direction of the machining ball 326 is the reverse direction, it is particularly difficult to cause the escaping at the hem portion of the inner fin.
 さらにまた、「溝の加工精度」について、本発明例26~32では、「△」であるのに対して、本発明例21~25では「○」、或いは「◎」となり、この結果より、加工ボール326の公転方向が正方向の場合において加工ピッチPが0.40mm以下であれば、内面フィンの裾部に特にエグレが生じ難いことが実証された。 Furthermore, regarding the “groove processing accuracy”, in Examples 26 to 32 of the present invention, “Δ”, whereas in Examples 21 to 25 of the present invention, “◯” or “◎”. In the case where the revolution direction of the processed ball 326 is the positive direction, it has been proved that when the processing pitch P is 0.40 mm or less, it is particularly difficult for the hems of the inner fins to be prone to the occurrence of an egg.
 このようにエグレの深さがフィン裾幅の30%以内であれば、後加工で行なう熱交換器のアルミフィンへの拡管組み込み時に内面フィンの倒れが発生するおそれがなく、好ましい。 Thus, if the depth of the angle is within 30% of the fin hem width, it is preferable that there is no possibility that the inner fin will fall when the heat exchanger is assembled into the aluminum fin in the post-processing.
 以上より、本発明例11~18、発明例23~25は、「溝の形成」、「溝の加工精度」の観点で、本発明例の中でも特に好適な加工条件で内面溝付管311の加工が可能であることを実証することができた。 As described above, the inventive examples 11 to 18 and the inventive examples 23 to 25 have the inner grooved tube 311 of the inner grooved tube 311 under particularly preferable processing conditions in the examples of the present invention from the viewpoints of “groove formation” and “groove processing accuracy”. We were able to demonstrate that processing was possible.
 詳しくは、加工ボール326の公転方向を、逆方向に設定し、加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定した場合、或いは、加工ボール326の公転方向を、正方向に設定し、加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することを特徴とする本発明の有効性を実証できた。 Specifically, when the revolution direction of the processed ball 326 is set to the reverse direction and the processing pitch P (mm) is set to be in the range of 0.2 ≦ P ≦ 0.7, or the revolution of the processed ball 326 is The effectiveness of the present invention characterized by setting the direction to the positive direction and setting the machining pitch P (mm) to be in the range of 0.2 ≦ P ≦ 0.4 could be verified.
 (実施例13) 
 実施例13では、溝加工工程において溝付プラグ324の溝深さとねじれ角を変えたときの加工に及ぼす影響を調べる溝付け加工実験を行なった。 
 本加工実験では、加工ボール326の公転方向が、正方向、逆方向のそれぞれの場合について、加工ボール326の加工ピッチPを、0.20mm、0.40mm、0.60mmのそれぞれの場合に変更させて行なった。 
 また、本加工実験で行う加工では、素管311aの外径Dがφ9.53mmである共通の寸法の素管311aを用い、縮径ダイス径D、フローティングプラグ外径D、溝付プラグ324の外径、溝数、溝頂角、加工ボール326の数、公転速度については、実施例10と同様に表4に示す共通の条件で行なった。
(Example 13)
In Example 13, a grooving experiment was conducted to examine the effect of changing the groove depth and twist angle of the grooved plug 324 in the grooving process.
In this machining experiment, the machining pitch P of the machining balls 326 is changed to 0.20 mm, 0.40 mm, and 0.60 mm when the revolution direction of the machining balls 326 is the forward direction and the reverse direction, respectively. I did it.
Further, in the processing performed in this processing experiment, using a common dimension of base pipe 311a outer diameter D o is φ9.53mm raw tube 311a, reduced diameter die diameter D 2, the floating plug outside diameter D 1, a grooved The outer diameter of the plug 324, the number of grooves, the groove apex angle, the number of processed balls 326, and the revolution speed were the same as in Example 10 under the common conditions shown in Table 4.
 加工結果は、表8~10に示すとおりである。 
 なお、表9,10は、それぞれ加工ボール326の公転方向が正方向、逆方向の場合における溝付プラグ324の溝深さとねじれ角、加工ボール326の加工ピッチPを変化させて行った実験結果を示す。
The processing results are as shown in Tables 8 to 10.
Tables 9 and 10 show the results of experiments performed by changing the groove depth and twist angle of the grooved plug 324 and the processing pitch P of the processing balls 326 when the revolving direction of the processing balls 326 is the forward direction and the reverse direction, respectively. Indicates.
 さらに、表8は、表9、10における加工条件およびその加工結果の一部を抽出した実験結果を示す。 Furthermore, Table 8 shows the experimental results obtained by extracting the processing conditions in Tables 9 and 10 and a part of the processing results.
 なお、加工結果は、実施例12と同様に、「溝の形成」、「溝の加工精度」について検証し、これら全ての要素が「○」または「◎」のものを「○」、いずれかが「×」となったものを「×」、いずれかに「×」を含まずに、「△」を含むものを「△」として総合的に評価した。 As in Example 12, the machining results were verified with respect to “groove formation” and “groove machining accuracy”, and all of these elements were “O” or “◎”. Was evaluated as “x”, and “x” was not included in any of them, and “Δ” was included in one of them.
 なお、表8~表10に示すように、実施例13での加工実験においても、いずれも縮径率Rが30%以下となる本発明の条件を満たす加工条件の下で内面溝付管311の加工を行なったものであるため、「×」のものはなかった。 As shown in Tables 8 to 10, also in the processing experiments in Example 13, the inner grooved tube under the processing conditions satisfying the conditions of the present invention in which the diameter reduction ratio RD is 30% or less. Since 311 was processed, there was no “×”.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 一般に、溝が深く、ねじれ角が大きい加工が困難とされる加工条件の場合、例えば、溝深さが0.20mmよりも大きく、且つねじれ角が55度よりも大きな加工条件の場合、加工時に大きな引抜き力を要する。
Figure JPOXMLDOC01-appb-T000010
Generally, in the case of a machining condition in which machining with a deep groove and a large helix angle is difficult, for example, in a machining condition where the groove depth is greater than 0.20 mm and the helix angle is greater than 55 degrees, Requires a large pulling force.
 表8に示すように、溝付プラグ324の溝深さが0.22mmという0.20mmよりも深く、且つ、ねじれ角が60度という55度よりも大きな場合でも、加工ボール326の公転方向が正方向で、且つ、加工ピッチが0.20mm~0.40mmの範囲内であれば、加工結果は「○」となり、加工可能であった(表8中の※1の欄参照)。 As shown in Table 8, even when the groove depth of the grooved plug 324 is deeper than 0.20 mm (0.22 mm) and the twist angle is larger than 55 degrees (60 degrees), the revolution direction of the processed ball 326 is If it was in the positive direction and the processing pitch was in the range of 0.20 mm to 0.40 mm, the processing result was “◯” and processing was possible (see the column * 1 in Table 8).
 この結果より、溝付プラグ324の溝が深く、ねじれ角が大きい加工が困難な場合でも、加工ボール326の公転方向が正方向であり、且つ、加工ピッチPが大きくなりすぎない0.2mm~0.4mmであれば、加工可能であることを実証できた。 From this result, even when the groove of the grooved plug 324 is deep and machining with a large helix angle is difficult, the revolution direction of the machining ball 326 is the positive direction and the machining pitch P does not become too large. If it was 0.4 mm, it was proved that processing was possible.
 一方、表8に示すように、溝付プラグ324の溝深さが0.18mmや0.15mmという0.20mmがよりも小さく、且つ、ねじれ角が50度という55度よりも小さい場合でも、加工ボール326の公転方向が逆方向であれば、加工ピッチPの設定に関らず加工結果は全て「○」となり、加工可能であった(表8中の※2の欄参照)。 On the other hand, as shown in Table 8, even when the groove depth of the grooved plug 324 is smaller than 0.20 mm such as 0.18 mm or 0.15 mm and the twist angle is smaller than 55 degrees such as 50 degrees, If the revolution direction of the processed ball 326 is the reverse direction, the processing results were all “◯” regardless of the setting of the processing pitch P, and the processing was possible (see the column * 2 in Table 8).
 この結果より、溝付プラグ324の溝深さが小さく、ねじれ角が小さい場合には、同じ加工ピッチPでは、加工ボール326の公転方向が逆方向の方が、正方向の場合と比較すると、フィン内面にエグレは発生し難く、発生しても小さいので、加工ピッチPを例えば0.6mmという大きく設定することができることを実証することができた。 From this result, when the groove depth of the grooved plug 324 is small and the helix angle is small, at the same processing pitch P, the direction of revolution of the processed ball 326 is reverse as compared to the case of the positive direction. Since it is difficult to generate the egress on the inner surface of the fin and is small even if generated, it was proved that the processing pitch P can be set as large as 0.6 mm, for example.
 一般に加工ピッチPが大きいほど加工速度が速くなり、生産性が向上するので、加工ボール326の公転方向が逆方向で加工可能な場合は、加工ボール326の公転方向を逆方向で加工するのが好ましい。 In general, the larger the processing pitch P, the higher the processing speed and the productivity. Therefore, when the revolving direction of the processed ball 326 can be processed in the reverse direction, the revolving direction of the processed ball 326 is processed in the reverse direction. preferable.
 (実施例14) 
 実施例14では、加工ボール326の公転回転数R(rpm)が加工に及ぼす影響を調べる溝付け加工実験を行なった。 
 ここで、一般に、内面溝付管311の加工時の引抜き速度をV(m/min)、加工ボール326の公転回転数をR(rpm)、加工ボール326の加工ピッチをP(mm)、加工ボール326の配置数をC(個)とした場合、引抜き速度をV(m/min)は、V=R×P×C/1000…式(1)であらわすことができる。この式(1)より、公転速度をR(rpm)を変えても、それに応じて引抜き速度をV(m/min)を変えることで加工ピッチP(mm)を一定に保つことができることがわかる。
(Example 14)
In Example 14, a grooving experiment was conducted to examine the effect of the revolution speed R (rpm) of the machining ball 326 on the machining.
Here, generally, the drawing speed at the time of machining the internally grooved tube 311 is V (m / min), the revolution speed of the machining ball 326 is R (rpm), the machining pitch of the machining ball 326 is P (mm), When the arrangement number of the balls 326 is C (pieces), the drawing speed V (m / min) can be expressed by V = R × P × C / 1000 (1). From this equation (1), it can be seen that even if the revolution speed is changed by R (rpm), the machining pitch P (mm) can be kept constant by changing the drawing speed by V (m / min) accordingly. .
 そこで本加工実験では、式(1)に基づき、加工ボール326の公転回転数を10000rpm、30000rpm、40000rpmの各場合について、加工ボール326の加工ピッチが一定になるよう引抜き速度Vを設定して実施例12および実施例13と同様の加工実験を行った。 Therefore, in this machining experiment, the drawing speed V was set based on the formula (1) so that the machining pitch of the machining ball 326 is constant for each revolution speed of the machining ball 326 of 10,000 rpm, 30000 rpm, and 40000 rpm. Processing experiments similar to Example 12 and Example 13 were performed.
 この結果、加工ボール326の公転回転数を変えても、加工ピッチPが同じであれば、実施例12および実施例13と同じ結果であった。 As a result, even if the revolution speed of the processed ball 326 was changed, the same result as in Example 12 and Example 13 was obtained if the processing pitch P was the same.
 結局、加工ピッチPが所定範囲に保てれば、加工ボール326の公転回転数の違いに関らず、同様の評価結果を得ることができることが実証できる。加工ボール326の公転回転数は、加工ボール326等の加工工具の寿命等を考慮し適宜選択すればよい。 After all, if the processing pitch P can be kept within a predetermined range, it can be demonstrated that the same evaluation result can be obtained regardless of the difference in the revolution speed of the processing ball 326. The revolution speed of the processing ball 326 may be appropriately selected in consideration of the life of a processing tool such as the processing ball 326.
 (実施例15) 
 実施例15では、加工ボール326の配置数C(個)の影響を調べる溝付け加工実験を行なった。 
 ここで、式(1)の関係より、加工ボール326の配置数C(個)を変えても、それに応じて引抜き速度をV(m/min)や公転回転数R(rpm)を変えることで加工ピッチP(mm)を一定に保つことができる。
(Example 15)
In Example 15, a grooving experiment was conducted to examine the influence of the number C (number) of processed balls 326 arranged.
Here, according to the relationship of the formula (1), even if the number C (number) of the processing balls 326 is changed, the drawing speed is changed by V (m / min) or the revolution speed R (rpm). The processing pitch P (mm) can be kept constant.
 そこで実施例15では、加工ボール326の配置数Cが3個と5個の各場合について、式(1)の関係に基づき、加工ピッチP(mm)を一定に保つように、引抜き速度をV(m/min)や公転速度をR(rpm)をそれぞれ設定して実施例12、実施例13および実施例14と同様の加工実験を行った。 Therefore, in Example 15, in each of the cases where the number C of the processed balls 326 is 3 and 5, the drawing speed is set to V so as to keep the processing pitch P (mm) constant based on the relationship of the expression (1). (M / min) and revolution speed were set to R (rpm), respectively, and processing experiments similar to those of Example 12, Example 13, and Example 14 were performed.
 この結果、加工ボール326の公転回転数を変えても、加工ピッチPが同じであれば、実施例12、実施例13および実施例14と同じ結果であった。 As a result, even if the revolution speed of the processed ball 326 was changed, the same results as in Example 12, Example 13 and Example 14 were obtained as long as the processing pitch P was the same.
 結局、加工ピッチPが所定範囲に保てれば、加工ボール326の配置数C(個)の違いに関らず、同様の評価結果を得ることができることを実証できた。加工ボール326の配置数は加工する内面溝付管311により適宜選択すればよい。 After all, if the processing pitch P can be kept within a predetermined range, it was proved that the same evaluation result can be obtained regardless of the difference in the number C (number) of processing balls 326. The number of processing balls 326 may be appropriately selected depending on the inner grooved tube 311 to be processed.
 なお、上述の実施形態3と、この発明の構成との対応において、この実施形態の加工ボール326は、押圧用工具に対応し、以下同様に、
縮径加工部313は、縮径加工手段に対応し、
溝加工部314は、溝加工手段に対応し、
中間引抜き部317は、中間引抜き装置に対応するも、この発明は、実施形態3の構成のみに限定されるものではなく、多くの実施形態を得ることができる。
In addition, in the correspondence between the above-described Embodiment 3 and the configuration of the present invention, the processing ball 326 of this embodiment corresponds to a pressing tool.
The diameter reducing portion 313 corresponds to a diameter reducing means,
The groove processing portion 314 corresponds to the groove processing means,
The intermediate extraction portion 317 corresponds to the intermediate extraction device, but the present invention is not limited to the configuration of the third embodiment, and many embodiments can be obtained.
 (実施形態4A) 
 次に、実施形態4Aの内面溝付管の製造装置および製造方法について図面を用いて説明する。 
 実施形態4Aにおける内面溝付管の製造装置510Aは、図13に示すように、管軸方向Xの上流側から下流側(抽伸方向)へ沿って、縮径加工部513、溝加工部514、整径ダイス515、抽伸部516(引抜き部)を構成している。 
 なお、図13は、本実施形態における内面溝付管の製造装置510Aの説明図である。
(Embodiment 4A)
Next, the manufacturing apparatus and manufacturing method of the inner surface grooved tube of Embodiment 4A will be described with reference to the drawings.
As shown in FIG. 13, the manufacturing apparatus 510 </ b> A for inner surface grooved pipes in Embodiment 4A has a diameter reduction processing section 513, a groove processing section 514, from the upstream side in the pipe axial direction X to the downstream side (the drawing direction). A diameter adjusting die 515 and a drawing part 516 (drawing part) are configured.
In addition, FIG. 13 is explanatory drawing of the manufacturing apparatus 510A of an internally grooved pipe | tube in this embodiment.
 さらに、前記製造装置510Aは、素管511aの抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出する加工関連データ検出部517と、断管が発生した場合、該加工関連データ検出部517により検出した加工関連データに基づいて断管が発生したと判定し、抽伸部516に対して抽伸停止指令を出力する制御部518とを備えている。 Further, the manufacturing apparatus 510A includes a machining-related data detection unit 517 that detects machining-related data related to a machining load that occurs in the pipe axis direction in accordance with the drawing of the raw pipe 511a, and the processing-related data detection when a disconnection occurs. A control unit 518 that determines that a disconnection has occurred based on the processing-related data detected by the unit 517 and outputs a drawing stop command to the drawing unit 516.
 前記縮径加工部513は、縮径ダイス522と、素管511a内に配置され、前記縮径ダイス522とともに素管511aを縮径するフローティングプラグ523とで構成している。 The diameter-reduction processing portion 513 includes a diameter-reducing die 522 and a floating plug 523 that is disposed in the element pipe 511a and reduces the diameter of the element pipe 511a together with the diameter-reducing die 522.
 前記縮径ダイス522は、管軸方向Xへ連通した連通孔522aを有した筒状に構成し、連通孔522aは、管軸方向Xの上流側部分(入口側)を下流側部分(出口側)に対して上流側へ向けて末広がり状に開口した形状で構成している。 The diameter-reducing die 522 is formed in a cylindrical shape having a communication hole 522a that communicates with the tube axis direction X. The communication hole 522a has an upstream portion (inlet side) in the tube axis direction X as a downstream portion (outlet side). ) With respect to the upstream side.
 前記フローティングプラグ523は、円柱状に構成し、下流側部分の外周をテーパ状に構成している。 The floating plug 523 is formed in a cylindrical shape, and the outer periphery of the downstream portion is formed in a tapered shape.
 前記溝加工部514は、素管511a内においてプラグロッド525を介して前記フローティングプラグ523と回動自在に連結され、外周に複数の溝が形成された溝付プラグ524と、素管511aの外側において該素管511aを前記溝付プラグ524の側へ押圧しながら管軸回りに公転自在に配設された複数の転造ボール526と、転造ボール526を素管511a側へ押圧する押圧治具527とで構成している。 The grooved portion 514 is rotatably connected to the floating plug 523 via a plug rod 525 in the raw tube 511a, and has a grooved plug 524 having a plurality of grooves formed on the outer periphery, and an outer side of the raw tube 511a. In FIG. 5, a plurality of rolling balls 526 arranged to revolve around the tube axis while pressing the raw tube 511a toward the grooved plug 524, and a pressing treatment for pressing the rolled ball 526 toward the raw tube 511a. It is comprised with the tool 527.
 押圧治具527は、管軸方向X下流側へ向けて拡大した急角度の円錐状の内周面に有し、転造ボール526を外周側から保持するリング状の加工ヘッド528と、加工ヘッドの下流側にベアリング521を介して設置され、各転造ボール526に対して圧力を付与するリング状の押圧部材529とで構成している。 The pressing jig 527 has a ring-shaped processing head 528 that holds the rolling ball 526 from the outer peripheral side, and has a sharp-angled conical inner peripheral surface that expands toward the downstream side in the tube axis direction X. And a ring-shaped pressing member 529 that applies a pressure to each rolling ball 526.
 複数の転造ボール526は、正方向、或いは、逆方向のいずれの方向にも素管511aの表面を押圧しながら公転自在に転造工具として前記加工ヘッド528の内周面によって保持されている。 The plurality of rolling balls 526 are held by the inner peripheral surface of the processing head 528 as a rolling tool that can revolve while pressing the surface of the raw tube 511a in either the forward direction or the reverse direction. .
 前記整径ダイス515は、内面溝付管511が通過することにより、例えば、前記溝加工部514における転造ボール526の押圧により生じた管表面の歪み等を滑らかに整径する加工を行う。 The diameter adjusting die 515 performs a process of smoothly adjusting the diameter of a tube surface caused by pressing of the rolling ball 526 in the groove processing portion 514 when the inner grooved tube 511 passes therethrough.
 前記抽伸部516は、加工済みの内面溝付管511を巻き取る抽伸ドラム531(巻取りドラム)を兼ね備え、抽伸ドラム531を駆動するモータMを備え、該モータMの回転駆動により内面溝付管511を引張りながら抽伸ドラム531に巻き付けている。 The drawing unit 516, combines the drawing drum 531 for winding the processed of the inner surface grooved tube 511 (winding drum), a motor M 1 for driving the drawing drum 531, inner grooved by the rotation of the motor M 1 The drawing tube 511 is wound around the drawing drum 531 while being pulled.
 前記加工関連データ検出部517は、溝加工部514に備えられ、該溝加工部514における加工荷重を測定する溝加工荷重測定用ロードセル541と可動台543で構成している。 The machining-related data detection unit 517 is provided in the groove machining unit 514 and includes a groove machining load measurement load cell 541 for measuring the machining load in the groove machining unit 514 and a movable table 543.
 可動台543は、固定台542に対して管軸方向Xに可動自在に下部に車輪を有して構成し、上部に溝加工部514の押圧治具527を設置している。 
 溝加工荷重測定用ロードセル541は、可動台543を介して溝加工部514にかかる管軸方向Xの加工荷重Fを測定可能に固定治具542aに設置している。
The movable table 543 is configured to have a wheel at the lower part so as to be movable in the tube axis direction X with respect to the fixed table 542, and a pressing jig 527 for the groove processing portion 514 is installed at the upper part.
The groove processing load measuring load cell 541 is installed on the fixing jig 542a so as to be able to measure the processing load F in the tube axis direction X applied to the groove processing portion 514 via the movable table 543.
 前記制御部518は、溝加工荷重測定用ロードセル541から検出した荷重Fを電気信号化した荷重検出信号Sinが入力され、後述する制御プログラムに従って、断管発生時には、断管が発生したと判定して抽伸部516のモータMの駆動を停止する停止信号Soutを出力する。 The control unit 518 receives a load detection signal S in obtained by converting the load F detected from the grooving load measurement load cell 541 into an electrical signal, and determines that a disconnection has occurred according to a control program to be described later. It outputs a stop signal S out to stop driving of the motor M 1 of the drawing portion 516 and.
 前記制御部518は、図示しないが信号の解析処理および演算処理を実行するための演算機(CPU)、必要な制御プログラムを格納するためのハードディスクおよび前記荷重検出信号Sinを一時格納するためのメモリを備え、その他にも、制御パラメータを入力するキーボードなどの入力手段、モニタなどの表示手段を適宜、備えることができる。 Although not shown, the control unit 518 includes an arithmetic unit (CPU) for executing signal analysis processing and arithmetic processing, a hard disk for storing necessary control programs, and the load detection signal S in for temporary storage. In addition, it is possible to appropriately include input means such as a keyboard for inputting control parameters and display means such as a monitor.
 上述した製造装置510Aを用い、以下で説明する製造方法により内面溝付管511を製造することができる。 The inner grooved tube 511 can be manufactured by the manufacturing method described below using the manufacturing apparatus 510A described above.
 まず、素管511a内にはフローティングプラグ523と当該フローティングプラグ523へプラグロッド525を介して回転自在に連結された溝付プラグ524を挿入する。前記素管511aを、前記縮径ダイス522と加工ヘッド528に通して引抜きながら、加工ヘッド528を回転させる。 
 なお、素管511aには銅,その合金,アルミニウムまたはその合金等の熱伝導性のよい金属管を用いることができる。
First, a floating plug 523 and a grooved plug 524 rotatably connected to the floating plug 523 via a plug rod 525 are inserted into the raw tube 511a. The processing head 528 is rotated while the raw tube 511 a is pulled out through the reduced diameter die 522 and the processing head 528.
Note that a metal tube having good thermal conductivity such as copper, an alloy thereof, aluminum, or an alloy thereof can be used for the base tube 511a.
 素管511aは、抽伸に伴って前記縮径ダイス522とフローティングプラグ523とにより縮径される。次いで、溝付プラグ524の位置で前記加工ヘッド528の回転に伴って素管511aの周りを公転しつつ自転する複数の転造ボール526が素管511aを押圧することにより、素管511aの内周面を溝付プラグ524の表面へ押圧し、当該素管511aの内面に溝付プラグ524の周面の溝550を転写する。 The raw tube 511a is reduced in diameter by the reduced diameter die 522 and the floating plug 523 along with the drawing. Next, a plurality of rolling balls 526 that revolve around the raw tube 511a as the machining head 528 rotates at the position of the grooved plug 524 presses the raw tube 511a. The peripheral surface is pressed against the surface of the grooved plug 524, and the groove 550 on the peripheral surface of the grooved plug 524 is transferred to the inner surface of the raw tube 511a.
 これにより、管軸に対して40~60度のリード角β(図13参照)をもつ多数の微細な溝510を内面に有した内面溝付管511を形成することができる。その後、内面溝付管511は、下流側の整径ダイス515により整径され、抽伸ドラム531に巻き付けられる。 Thereby, it is possible to form an internally grooved tube 511 having a large number of fine grooves 510 on the inner surface with a lead angle β (see FIG. 13) of 40 to 60 degrees with respect to the tube axis. Thereafter, the inner grooved tube 511 is adjusted in diameter by a downstream diameter adjusting die 515 and wound around the drawing drum 531.
 内面溝付管の製造過程において、制御部518では、上述した内面溝付管511の製造過程において断管が発生したとき、溝加工荷重測定用ロードセル541により検出した加工関連データとしての加工荷重Fに基づいて断管が発生したと判定して、加工停止を行う制御を行なっている。 In the manufacturing process of the inner grooved tube, the control unit 518 has a processing load F as processing related data detected by the groove processing load measurement load cell 541 when a disconnection occurs in the manufacturing process of the inner grooved tube 511 described above. Based on the above, it is determined that a disconnection has occurred, and control is performed to stop machining.
 詳しくは、前記制御部518は、溝加工荷重測定用ロードセル541により検出した荷重が通常の定常加工時の20%以下に低下したら断管が発生したと判定し、抽伸部516のモータMの駆動を停止させる制御プログラムを実行する。 Specifically, the control unit 518 determines that a disconnection has occurred when the load detected by the load cell 541 for measuring a grooving load decreases to 20% or less during normal steady machining, and the motor M 1 of the drawing unit 516 A control program for stopping driving is executed.
 前記製造装置510Aにより、以下のような作用効果を奏することができる。 
 前記製造装置510Aは、溝加工部514に備えた溝加工荷重測定用ロードセル541により検出した加工荷重Fに基づいて断管が発生したと判定可能な構成であり、整径ダイス515より上流側、特に、溝加工部514またはそれよりも上流側で断管が発生した場合でも断管が発生したと迅速、且つ、確実に判定することができる。
The manufacturing apparatus 510A can provide the following operational effects.
The manufacturing apparatus 510A is configured to be able to determine that a disconnection has occurred based on the processing load F detected by the groove processing load measurement load cell 541 provided in the groove processing section 514, and upstream of the diameter adjusting die 515, In particular, even when a disconnection occurs at the groove processing portion 514 or upstream thereof, it can be quickly and reliably determined that the disconnection has occurred.
 したがって、断管発生後に素管511aの破断部が溝加工部514を通過することにより、転造ボール526が素管511aを介さずに直接的に溝付きプラグ524を押圧し、溝付きプラグ524が破損することを防ぐことができる。 Therefore, when the broken portion of the raw tube 511a passes through the groove processing portion 514 after the disconnection occurs, the rolling ball 526 directly presses the grooved plug 524 without passing through the raw tube 511a, and the grooved plug 524 Can be prevented from being damaged.
 前記製造装置510Aは、加工中において溝加工荷重測定用ロードセル541で検出した加工荷重Fが通常の定常加工時の加工荷重の20%以下に低下したら断管と判定する制御を実行している。このため、荷重がメカロスレベルまで落ち込んだときに断管であると判定することができる。 The manufacturing apparatus 510A performs control to determine that the tube is broken when the processing load F detected by the load cell 541 for measuring the grooving load during processing decreases to 20% or less of the processing load during normal steady processing. For this reason, it can be determined that the tube is broken when the load drops to the mechanical loss level.
 さらに、ロッド間での性状の違いや、周囲の温度などの環境の違いによる変動を考慮して設定されたものであるから断管発生を誤検出することがない。 Furthermore, since it is set in consideration of variations due to differences in properties among rods and environmental differences such as ambient temperature, the occurrence of disconnection will not be erroneously detected.
 したがって、断管発生時には、確実に断管発生を検出することができるとともに、生産効率に優れた製造装置を製造することができる。 Therefore, when disconnection occurs, it is possible to reliably detect the occurrence of disconnection, and to manufacture a manufacturing apparatus with excellent production efficiency.
 また、前記加工関連データ検出部517は、溝加工部514を可動台543に設置し、溝加工部514に加わる管軸方向Xの荷重を、可動台543を介して溝加工荷重測定用ロードセル541で検出する構成であるため、溝加工部514に加わる管軸方向Xの荷重を正確に測定することができる。 Further, the machining-related data detection unit 517 installs the groove machining unit 514 on the movable table 543, and loads the load in the tube axis direction X applied to the groove machining unit 514 via the movable table 543 to measure the groove machining load. Therefore, the load in the tube axis direction X applied to the groove machining portion 514 can be accurately measured.
 以下では、他の実施形態における内面溝付管の製造装置510B,510Cについて説明する。 
 但し、以下で説明する内面溝付管の製造装置510B,510Cの構成のうち、上述した実施形態4Aにおける内面溝付管の製造装置510Aと同様の構成については、同一の符号を付して、その説明を省略する。
Below, the manufacturing apparatus 510B, 510C of the inner surface grooved pipe | tube in other embodiment is demonstrated.
However, among the configurations of the inner grooved tube manufacturing devices 510B and 510C described below, the same reference numerals are given to the same configurations as the inner grooved tube manufacturing device 510A in the above-described embodiment 4A. The description is omitted.
 (実施形態4B) 
 実施形態4Bにおける内面溝付管の製造装置510Bは、図14に示すように、管軸方向Xの上流側から下流側へ沿って、縮径加工部513、溝加工部514、整径ダイス515、抽伸部516を構成するとともに、加工関連データ検出部545と制御部546とを備えている。 
 前記加工関連データ検出部545は、縮径加工部513に備えられ、該縮径加工部513における加工荷重Fを測定する縮径加工荷重測定用ロードセル545で構成している。 
 縮径加工荷重測定用ロードセル545は、縮径ダイス522に取り付けられ、縮径ダイス522に負荷される管軸方向Xの荷重を検出することができる。
(Embodiment 4B)
As shown in FIG. 14, the inner surface grooved pipe manufacturing apparatus 510 </ b> B according to the embodiment 4B is configured to reduce the diameter reducing portion 513, the groove processing portion 514, and the diameter adjusting die 515 along the tube axis direction X from the upstream side to the downstream side. The drawing unit 516 is configured, and a processing related data detection unit 545 and a control unit 546 are provided.
The machining-related data detection unit 545 includes a reduced-diameter machining load measurement load cell 545 that is provided in the reduced-diameter machining unit 513 and measures a machining load F in the reduced-diameter machining unit 513.
The diameter reduction load measuring load cell 545 is attached to the diameter reduction die 522 and can detect the load in the tube axis direction X applied to the diameter reduction die 522.
 なお、実施形態4Bにおける内面溝付管の製造装置510Bには、溝加工部514に溝加工荷重測定用ロードセル541および可動台543を備えていない。 In addition, the inner surface grooved tube manufacturing apparatus 510B according to Embodiment 4B does not include the groove processing load measurement load cell 541 and the movable base 543 in the groove processing portion 514.
 前記制御部546は、縮径加工荷重測定用ロードセル545から検出した荷重Fを電気信号化した荷重検出信号Sinが入力され、制御プログラムに従って、断管の検出を行い、断管発生時には、断管が発生したと判定して抽伸部516のモータMの駆動を停止する停止信号Soutを出力する。 The control unit 546 is input to load F detected from diameter reduction load measuring load cell 545 is an electrical signal of the load detection signal S in, in accordance with a control program, performs detection of the disconnection tube, when the cross-sectional tubes occurred, the cross-sectional tube outputs a stop signal S out to stop driving of the motor M 1 of the drawing unit 516 determines to have occurred.
 詳しくは、前記制御部546は、縮径加工荷重測定用ロードセル545により検出した加工荷重Fが通常の定常加工時の20%以下に低下したら断管と判定し、抽伸部516のモータMの駆動を停止させる制御プログラムを実行する。 Specifically, the control unit 546 determines that the tube is disconnected when the processing load F detected by the load cell 545 for measuring a reduced diameter processing load is reduced to 20% or less during normal steady processing, and determines the motor M 1 of the drawing unit 516. A control program for stopping driving is executed.
 前記製造装置510Bにより、以下のような作用効果を奏することができる。 
 前記製造装置510Bは、縮径加工部513に備えた縮径加工荷重測定用ロードセル545により測定した加工荷重Fに基づいて断管が発生したと判定する構成であり、整径ダイス515よりも上流側で断管が発生した場合でも断管が発生したと迅速、且つ、確実に判定することができる。
The manufacturing apparatus 510B can provide the following operational effects.
The manufacturing apparatus 510 </ b> B is configured to determine that a disconnection has occurred based on the processing load F measured by the load cell 545 for measuring a diameter reduction load provided in the diameter reduction processing portion 513, and is upstream of the diameter adjusting die 515. Even when a disconnection occurs on the side, it can be quickly and reliably determined that the disconnection has occurred.
 特に、前記製造装置510Bは、縮径加工部513よりも下流側で断管が発生した場合は、断管発生と同時に素管の抽伸により縮径加工部513にかかる荷重がゼロになるので、断管が発生したと即時に判定することができる。 In particular, in the manufacturing apparatus 510B, when a tube break occurs on the downstream side of the reduced diameter processing portion 513, the load applied to the reduced diameter processing portion 513 becomes zero due to the drawing of the raw tube simultaneously with the occurrence of the disconnection, It can be immediately determined that a disconnection has occurred.
 したがって、転造ボール526が素管511aを介さずに直接的に溝付きプラグ524を押圧し、溝付きプラグ524が破損することを防ぐことができる。 Therefore, it is possible to prevent the rolled ball 526 from pressing the grooved plug 524 directly without passing through the raw tube 511a and damaging the grooved plug 524.
 (実施形態4C) 
 実施形態4Cにおける内面溝付管の製造装置510Cは、図15に示すように、管軸方向Xの上流側から下流側へ沿って、縮径加工部513、中間抽伸部551(中間引抜き部)、溝加工部514、整径ダイス515、抽伸部516を構成するとともに、加工関連データ検出部552と制御部553とを備えている。 
 なお、図15は、実施形態4Cにおける内面溝付管の製造装置510Cの説明図である。
(Embodiment 4C)
As shown in FIG. 15, the inner surface grooved pipe manufacturing apparatus 510 </ b> C according to Embodiment 4C has a diameter reduction processing part 513 and an intermediate drawing part 551 (intermediate drawing part) along the pipe axis direction X from the upstream side to the downstream side. , A groove processing unit 514, a diameter adjusting die 515, and a drawing unit 516, and a processing related data detection unit 552 and a control unit 553 are provided.
FIG. 15 is an explanatory diagram of an inner grooved tube manufacturing apparatus 510C according to Embodiment 4C.
 前記中間抽伸部551は、縮径部513と溝加工部514との間で、素管511aを管軸方向Xへ抽伸することで抽伸部516による抽伸を補助している。すなわち、前記溝加工部514による溝加工は、素管511aを抽伸する際の抵抗となり、この溝加工の際の抽伸(引抜き)の負荷が大きくなるが、中間抽伸部551により素管511aにかかる抽伸負荷を管軸方向Xにおいて分散させ、その結果、溝加工部514にかかる荷重を低減させることができる。 The intermediate drawing portion 551 assists the drawing by the drawing portion 516 by drawing the raw tube 511a in the tube axis direction X between the reduced diameter portion 513 and the groove processing portion 514. That is, the grooving by the grooving portion 514 becomes resistance when the raw tube 511a is drawn, and the drawing (drawing) load at the time of grooving increases, but the intermediate drawing portion 551 applies to the raw tube 511a. The drawing load can be dispersed in the tube axis direction X, and as a result, the load applied to the groove processing portion 514 can be reduced.
 前記中間抽伸部551は、素管511aに対して上下各側、或いは、左右各側に配置された一対のベルト554を備えている。各ベルト554は、プーリー5555によりループ状(無端状)に張架され、モータMにより回転可能に構成している。ベルト554は、外周面に、その長さ方向に沿って複数のパッド556を連設している。 The intermediate drawing portion 551 includes a pair of belts 554 arranged on the upper and lower sides or the left and right sides with respect to the raw tube 511a. Each belt 554 is stretched by the pulley 5555 in a loop (endless) is configured to be rotated by the motor M 2. The belt 554 has a plurality of pads 556 connected to the outer peripheral surface along the length direction.
 前記パッド556には、図示しないが、縮径部513により縮径後の素管511aの外面との接触部分に、複数のパッド556の連設方向に対する切断面が円弧状となるパッド溝を形成している。 Although not shown, the pad 556 is formed with a pad groove in which the cut surface with respect to the connecting direction of the plurality of pads 556 has an arcuate shape at the contact portion with the outer surface of the base tube 511a after the diameter reduction by the diameter reducing portion 513. is doing.
 前記中間抽伸部551は、モータMの駆動によりパッド556を素管511a表面に押し付け、或いは、退避可能に構成している。 
 なお、前記中間抽伸部551の上流側には、素管511aの外表面に付着した油膜や異物を除去するためのワイパー557を設け、下流側には、中間整径ダイス558を設けている。
The intermediate drawing unit 551 presses the pad 556 to the base pipe 511a surface by driving of the motor M 3, or are retractably configuration.
A wiper 557 is provided on the upstream side of the intermediate drawing portion 551 to remove an oil film and foreign matter adhering to the outer surface of the raw pipe 511a, and an intermediate diameter adjusting die 558 is provided on the downstream side.
 前記ワイパー557は、素管511aの外表面に付着した油膜や異物も除去するために設けられ、素管511aを通過させるため、該素管511aの外径よりも一回り小さい径の貫通穴が中央部に形成された例えば、ゴム製の筒状体である。 
 中間整径ダイス558は、前記中間抽伸部551で扁平した素管511aの断面形状を真円に近い形状に戻すために設けられ、前記素管511aの形状に応じて、縮径ダイス522の径と同じか小さなダイス径で構成している。 
 前記制御部553は、中間抽伸部551のモータMの駆動を制御することにより、中間抽伸部551のパッド556による素管511aに対する押し付け力を制御することができる。 
 パッド556を素管511aに対して適切な押し付け力で押し付けることによって、パッド556と素管511aの間のスリップを低減させ、荷重Fの変動が小さくなるようにする。
The wiper 557 is provided to remove an oil film and foreign matter adhering to the outer surface of the raw tube 511a, and has a through hole having a diameter slightly smaller than the outer diameter of the raw tube 511a in order to pass through the raw tube 511a. For example, a rubber cylindrical body formed in the central portion.
The intermediate diameter adjusting die 558 is provided to return the cross-sectional shape of the flat tube 511a flattened by the intermediate drawing portion 551 to a shape close to a perfect circle, and the diameter of the reduced diameter die 522 is changed according to the shape of the raw tube 511a. It is configured with the same or smaller die diameter.
The control unit 553, by controlling the driving of the motor M 3 of the intermediate drawing unit 551 can control the pressing force against the base pipe 511a by the pad 556 of the intermediate drawing section 551.
By pressing the pad 556 against the base tube 511a with an appropriate pressing force, the slip between the pad 556 and the base tube 511a is reduced, and the fluctuation of the load F is reduced.
 前記加工関連データ検出部552は、中間抽伸部551のモータMの駆動力に関連する信号としてモータMへの駆動力指令値に対応する電流値(電気信号)を検出する電流計552で構成している。 
 なお、製造装置510Cには、溝加工部514に、溝加工荷重測定用ロードセル541や可動台543を備えておらず、縮径加工部513に、縮径加工荷重測定用ロードセル545を備えていない。
The processing related data detection unit 552 is an ammeter 552 that detects a current value (electrical signal) corresponding to a driving force command value to the motor M 3 as a signal related to the driving force of the motor M 3 of the intermediate drawing unit 551. It is composed.
The manufacturing apparatus 510C does not include the groove processing load measurement load cell 541 and the movable base 543 in the groove processing portion 514, and does not include the load cell 545 for diameter reduction processing load measurement in the diameter reduction processing portion 513. .
 また、前記制御部553は、上述したように、電流計552により検出した電流値を微分する演算部を備え、微分値を荷重関連データとして記憶する記憶部を備えている。さらに、前記制御部553は、微分値が定常加工時の変動の5σを超えて大きく変動したら、断管と判定し、抽伸部516のモータM、中間抽伸部551のモータMに対して抽伸停止の指令を出力する制御プログラムを備えている。 Further, as described above, the control unit 553 includes a calculation unit that differentiates the current value detected by the ammeter 552, and includes a storage unit that stores the differential value as load-related data. Further, the control unit 553, when the differential value varies significantly beyond 5σ variations of steady state processing, determines that the cross tube, the motor M 1 of the drawing unit 516, the motor M 3 of the intermediate drawing section 551 A control program for outputting a drawing stop command is provided.
 上述した製造装置510Cを用いて内面溝付管511を製造することができる。 
 制御部553では、素管511aが破断した場合、電流計552で検出した電流値を微分した微分値に基づいて、断管が発生したと判定し、加工停止を行う。 
 詳しくは、内面溝付管511の製造方法によれば、電流計552で検出した電流値を微分した微分値の変化量を計測し、その変動が5σを超えたら断管と判断し、抽伸部516のモータM、中間抽伸部551のモータMなどの装置を停止させる。
The internally grooved tube 511 can be manufactured using the manufacturing apparatus 510C described above.
In the control unit 553, when the raw tube 511a is broken, it is determined that the disconnection has occurred based on the differential value obtained by differentiating the current value detected by the ammeter 552, and the processing is stopped.
Specifically, according to the manufacturing method of the inner surface grooved tube 511, the amount of change in the differential value obtained by differentiating the current value detected by the ammeter 552 is measured, and when the fluctuation exceeds 5σ, it is determined that the tube is broken, and the drawing unit motor M 1 516, to stop the device, such as a motor M 2 of the intermediate drawing section 551.
 前記製造装置510Cにより、以下のような作用効果を奏することができる。 
 前記製造装置510Cは、整径ダイス515よりも上流側で発生した断管であっても、溝付プラグ524が破損する前に確実に検出することができる。
The manufacturing apparatus 510 </ b> C can provide the following operational effects.
The manufacturing apparatus 510 </ b> C can reliably detect a broken tube generated upstream of the diameter adjusting die 515 before the grooved plug 524 is damaged.
 さらに、製造装置510Cは、中間抽伸部551のモータの荷重(駆動力)の指令値となる電流値を微分した微分値に基づいて、断管が発生したと判定することができるため、中間抽伸部551の抽伸補助により荷重変動が大きい状況下でも、中間抽伸部551またはそれよりも上流側で発生した断管を迅速、且つ、確実に検出することができる。 Furthermore, since the manufacturing apparatus 510C can determine that a disconnection has occurred based on a differential value obtained by differentiating a current value that is a command value of the motor load (driving force) of the intermediate drawing unit 551, the intermediate drawing unit 551 Even under a situation in which the load fluctuation is large due to the drawing assistance of the portion 551, it is possible to quickly and reliably detect the disconnection that has occurred on the upstream side of the intermediate drawing portion 551 or the intermediate drawing portion 551.
 したがって、転造ボール526が素管511aを介さずに直接的に溝付きプラグ524を押圧し、溝付きプラグ524が破損することを防ぐことができる。 Therefore, it is possible to prevent the rolled ball 526 from pressing the grooved plug 524 directly without passing through the raw tube 511a and damaging the grooved plug 524.
 さらに、中間抽伸部551のモータMの荷重に対応する電流値の微分値に基づいて、断管が発生したと判定する構成であるため、ロードセルやトルクゲージ、さらには、これらを設置するための可動台等のハードウェアの追加は不要であり、例えば、電流計552といった簡素なハードウェアによって断管検出を行なうことができる。 Furthermore, based on the differential value of the current value corresponding to the load of the motor M 2 of the intermediate drawing unit 551, since it is determined configuration to the cross-sectional tubes occurred, the load cell and torque gauge, further, for installing these It is not necessary to add hardware such as a movable table, and for example, disconnection can be detected by simple hardware such as an ammeter 552.
 なお、実施形態4Cの内面溝付管の製造装置510Cは、中間抽伸部551に備えた前記加工関連データ検出部552(電流計552)のみに基いて断管を検出する構成に限らない。 
 詳しくは、製造装置510Cは、前記加工関連データ検出部552に加えて、溝加工部514に溝加工荷重測定用ロードセル541および/または縮径加工部513に縮径加工荷重測定用ロードセル545を備え、各箇所で断管発生を検出する構成を排除するものでない。
In addition, 510 C of inner surface grooved pipe manufacturing apparatuses of Embodiment 4C are not restricted to the structure which detects a disconnection based only on the said process related data detection part 552 (ammeter 552) with which the intermediate | middle drawing part 551 was equipped.
Specifically, in addition to the processing-related data detection unit 552, the manufacturing apparatus 510C includes a groove processing load measurement load cell 541 in the groove processing unit 514 and / or a diameter reducing processing load measurement load cell 545 in the diameter reduction processing unit 513. It does not exclude the configuration for detecting the occurrence of disconnection at each location.
 (実施例16) 
 続いて、本発明の製造装置を用いて内面溝付管511の加工中に素管511a(内面溝付管511)に断管が発生したとき、代替困難な溝付プラグ524が破損することなく断管発生を判定できるか否かを検証する断管検出実験を行なった。 
 本断管検出実験では、本発明の製造装置として実施形態4Aから4Cの製造装置510A,510B,510Cを用い、さらに、実施形態4Aから4Cの製造装置510A,510B,510Cの比較例として従来技術に係る製造装置を用いて行なった。
(Example 16)
Subsequently, when the tube 511a (inner surface grooved tube 511) is disconnected during the processing of the inner surface grooved tube 511 using the manufacturing apparatus of the present invention, the grooved plug 524, which is difficult to substitute, is not damaged. An experiment for detecting the disconnection was conducted to verify whether or not the occurrence of the disconnection can be determined.
In this disconnection detection experiment, the manufacturing apparatuses 510A, 510B, and 510C of Embodiments 4A to 4C are used as the manufacturing apparatus of the present invention, and the related art is used as a comparative example of the manufacturing apparatuses 510A, 510B, and 510C of Embodiments 4A to 4C. This was performed using the manufacturing apparatus according to the above.
 実施形態4Aから4Cの製造装置510A,510B,510Cでは、上述したとおり、いずれも、抽伸部516よりも、詳しくは、溝加工部514または該溝加工部514よりも管軸方向X上流側に、適宜、加工荷重検出部517,545,552を備え、該加工荷重検出部517,545,552により、加工荷重関連データの検出を行なっている。実施形態4Aから4Cの製造装置510A,510B,510Cについて中間抽伸部551の設置の有無、加工荷重検出部517,545,552の種類、中間抽伸部551の設置箇所についてまとめると表11、図16、図17に示すとおりである。 In the manufacturing apparatuses 510A, 510B, and 510C of the embodiments 4A to 4C, as described above, all of them are more in the tube axial direction X upstream side than the drawing portion 516, more specifically in the groove processing portion 514 or the groove processing portion 514. The processing load detection units 517, 545, and 552 are provided as appropriate, and the processing load detection units 517, 545, and 552 detect processing load related data. Table 11 and FIG. 16 summarize the presence / absence of installation of the intermediate drawing unit 551, the type of the processing load detection units 517, 545, and 552, and the installation location of the intermediate drawing unit 551 for the manufacturing apparatuses 510A, 510B, and 510C of Embodiments 4A to 4C. As shown in FIG.
Figure JPOXMLDOC01-appb-T000011
 なお、表11は、実施形態4Aから4Cの各製造装置の中間抽伸部551の設置の有無、加工荷重検出部の種類、中間抽伸部の設置箇所を示す表である。 
 図16は、実施形態4A,4B、比較例の各製造装置に設置する加工荷重検出部の設置箇所を示し、中間抽伸部を設置していない製造装置の模式図である。図17は、実施形態4Cの製造装置に設置する加工荷重検出部の設置箇所を示し、中間抽伸部を設置している製造装置の模式図である。
Figure JPOXMLDOC01-appb-T000011
In addition, Table 11 is a table | surface which shows the presence or absence of installation of the intermediate | middle drawing part 551 of each manufacturing apparatus of Embodiment 4A to 4C, the kind of process load detection part, and the installation location of an intermediate | middle drawing part.
FIG. 16 is a schematic diagram of a manufacturing apparatus in which the processing load detection unit is installed in each of the manufacturing apparatuses of Embodiments 4A and 4B and the comparative example, and the intermediate drawing unit is not installed. FIG. 17 is a schematic diagram of a manufacturing apparatus in which an intermediate drawing unit is installed, showing the installation location of the processing load detection unit installed in the manufacturing apparatus of Embodiment 4C.
 一方、表11、図16に示すように、比較例の製造装置では、中間抽伸部551を設置していない構成を例にとり、抽伸部516に抽伸ドラム531のモータの荷重を検出する荷重検出器を備え(図示せず)、該荷重検出器で抽伸荷重を検出し、断管が発生した場合は、断管が発生したとの判定を行う。 On the other hand, as shown in Table 11 and FIG. 16, in the manufacturing apparatus of the comparative example, a configuration in which the intermediate drawing unit 551 is not installed is taken as an example, and the load detector that detects the load of the motor of the drawing drum 531 on the drawing unit 516. (Not shown), the drawing load is detected by the load detector.
 また、断管発生箇所(以下、「断管箇所」という。)は、図16、図17に示すとおり、断管箇所aからiの9通りの箇所とした。 
 断管箇所aからdは、図16に示すとおりであり、詳しくは、断管箇所aは、整径ダイス515と抽伸部516の間であり、断管箇所bは、整径ダイス515内、または、溝加工部514と整径ダイス515の間であり、断管箇所cは、溝加工部514内、または、縮径加工部513と溝加工部514の間であり、断管箇所dは、縮径加工部513内、または、縮径加工部513の上流側から素管511aを供給するペイオフテーブル562と縮径加工部513の間である。
Moreover, the disconnection generation | occurrence | production location (henceforth "the disconnection location") was made into nine places of the disconnection location a to i as shown in FIG. 16, FIG.
The disconnection points a to d are as shown in FIG. 16. Specifically, the disconnection point a is between the diameter adjusting die 515 and the drawing part 516, and the disconnection point b is within the diameter adjusting die 515. Or it is between the groove processing part 514 and the diameter adjustment die 515, and the disconnection part c is in the groove processing part 514 or between the diameter reduction processing part 513 and the groove processing part 514, and the disconnection part d is , Between the payoff table 562 for supplying the raw pipe 511a from the inside of the reduced diameter processing portion 513 or from the upstream side of the reduced diameter processing portion 513 and the reduced diameter processing portion 513.
 断管箇所eからiは、図17に示すとおりであり、詳しくは、断管箇所eは、整径ダイス515と抽伸部516の間であり、断管箇所fは、整径ダイス515内、または、溝加工部514と整径ダイス515の間であり、断管箇所gは、溝加工部514内、または、中間抽伸部551と溝加工部514の間であり、断管箇所hは、縮径加工部513と中間抽伸部551の間であり、断管箇所iは、縮径加工部513内、または、ペイオフテーブル562と縮径加工部513の間である。 The disconnection points e to i are as shown in FIG. 17. Specifically, the disconnection point e is between the diameter adjusting die 515 and the drawing part 516, and the disconnection point f is within the diameter adjusting die 515. Or it is between the groove processing part 514 and the diameter adjusting die 515, the disconnection part g is in the groove processing part 514 or between the intermediate drawing part 551 and the groove processing part 514, and the disconnection part h is Between the reduced diameter processing portion 513 and the intermediate drawing portion 551, the disconnection point i is in the reduced diameter processing portion 513 or between the payoff table 562 and the reduced diameter processing portion 513.
 以上を踏まえ、比較例の製造装置を用いて断管箇所a,b,c,dの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験0-a,0-b,0-c,0-dとする。実施形態4Aの製造装置510Aを用いて断管箇所a,b,c,dの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験1-a,1-b,1-c,1-dとする。実施形態4Bの製造装置510Bを用いて断管箇所a,b,c,dの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験2-a,2-b,2-c,2-dとする。実施形態4Cの製造装置510Cを用いて断管箇所e,f,g,h,iの各箇所で断管が発生した場合の断管検出実験をそれぞれ断管検出実験3-e,3-f,3-g,3-h,3-iとする。 Based on the above, the disconnection detection experiments 0-a, 0-b are respectively performed when the disconnection occurs at each of the disconnection locations a, b, c, d using the manufacturing apparatus of the comparative example. , 0-c, 0-d. The disconnection detection experiments 1-a, 1-b, and 1 are respectively performed when the disconnection occurs at each of the disconnection locations a, b, c, and d using the manufacturing apparatus 510A of Embodiment 4A. -C, 1-d. The disconnection detection experiments 2-a, 2-b, and 2 are performed when the disconnection occurs at each of the disconnection points a, b, c, and d using the manufacturing apparatus 510B of Embodiment 4B. -C, 2-d. The disconnection detection experiment 3-e, 3-f is performed when the disconnection occurs at each of the disconnection locations e, f, g, h, i using the manufacturing apparatus 510C of Embodiment 4C. , 3-g, 3-h, 3-i.
 断管検出実験で行った断管検出制御について、図18から図29を基に説明する。 
 なお、図18から図29は、各断管検出実験において、各加工部に適宜設けた加工荷重検出部が検出する加工荷重と時間の関係のグラフを示す図であり、いずれも測定開始から100秒経過時点で断管が発生したものとする。
The disconnection detection control performed in the disconnection detection experiment will be described with reference to FIGS.
FIG. 18 to FIG. 29 are graphs showing the relationship between the machining load and time detected by the machining load detection unit appropriately provided in each machining unit in each disconnection detection experiment. It is assumed that a disconnection has occurred when the second has elapsed.
 さらに、断管検出後に断管発生であるとの判定ができ次第、装置を停止するので、その後の荷重は、ゼロになるが、図18から図29では、断管検出前後の荷重の変化の様子を示すため、実際に装置を停止しても、断管発生後も装置を停止しない状態の荷重の波形をあらわしている。 Furthermore, since the apparatus is stopped as soon as it is determined that a disconnection has occurred after the detection of the disconnection, the subsequent load becomes zero. However, in FIGS. 18 to 29, the change in the load before and after the disconnection is detected. In order to show the situation, a waveform of a load in a state where the apparatus is not stopped even after the apparatus is actually stopped is shown.
 (比較例の製造装置を用いた断管検出実験) 
 比較例の製造装置では、図18から図21に示すように、上述した抽伸ドラム531の定常加工時のモータMの抽伸荷重に対して20%の割合だけ低下させた値を閾値とする断管検出ラインに設定している。 
 なお、図18から図21は、それぞれ断管検出実験0-a,0-b,0-c,0-dにおける断管検出実験の実験結果を示す。
(A disconnection detection experiment using the manufacturing apparatus of the comparative example)
In the manufacturing apparatus of the comparative example, as shown in FIG. 18 to FIG. 21, the threshold value is a value that is reduced by a ratio of 20% with respect to the drawing load of the motor M 1 at the time of steady processing of the drawing drum 531 described above. Set to tube detection line.
FIGS. 18 to 21 show the experimental results of the disconnection detection experiments in the disconnection detection experiments 0-a, 0-b, 0-c, and 0-d, respectively.
 断管検出ラインは、断管が発生したと判定することができるとともに、断管を誤検出しない範囲で設定する必要がある。 
 詳しくは、抽伸ドラム531の抽伸荷重は、図18に示すように数100秒レベルの加工時間の範囲において、約±50Nの範囲内で変動している。ロットの先頭と終わりの間の数100分レベルの加工時間範囲に着目すると、銅管の前後での焼鈍状態の違いや偏肉、溝付プラグ524の磨耗などの要因によりさらに抽伸ドラム531の荷重には、変動が生じる。
The disconnection detection line needs to be set within a range where it is possible to determine that the disconnection has occurred and to prevent the disconnection from being erroneously detected.
Specifically, the drawing load of the drawing drum 531 fluctuates within a range of about ± 50 N within a machining time range of several hundred seconds as shown in FIG. Paying attention to the machining time range of several hundreds of minutes between the beginning and end of the lot, the load of the drawing drum 531 is further increased due to the difference in the annealing state before and after the copper pipe, uneven thickness, wear of the grooved plug 524, etc. There will be fluctuations.
 さらに、銅管のロット間の違いや、溝付プラグ524の固体差や季節変動での差はもっと大きく、例えば、断管発生前の定常加工時においても、抽伸ドラム531の抽伸荷重は、約1500Nから3000Nの範囲で変動する。 Furthermore, the difference between the lots of copper pipes, the difference in the solids of the grooved plug 524, and the difference due to seasonal variation are larger. For example, the drawing load of the drawing drum 531 is about It fluctuates in the range of 1500N to 3000N.
 そのため、断管検出の閾値としての断管検出ラインを上げると断管発生の誤検出が多くなるため、断管検出ラインは、断管の誤検出が生じない範囲で設定する必要がある。 Therefore, if the disconnection detection line is raised as a threshold for disconnection detection, erroneous detection of the occurrence of disconnection increases. Therefore, it is necessary to set the disconnection detection line within a range in which erroneous detection of disconnection does not occur.
 断管検出実験0-aの結果は、図18に示すとおりである。図18に示すように、断管発生までは、抽伸ドラム531の抽伸荷重は、定常加工時の範囲で変移するが、断管発生と同時に、モータMの抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がるので、制御部では、断管発生と同時に断管が発生したと判定し、装置を停止することで転造ボール526により溝付プラグ524が破損することを防ぐことができる。 The result of the disconnection detection experiment 0-a is as shown in FIG. As shown in FIG. 18, until the cross tube occurs, drawing load drawing drum 531, although shifted in the range of steady state processing, simultaneously with the cross tube occurs, drawing load of the motor M 1 is than the cross tube detection line Since the mechanical loss level is lowered to a low mechanical loss level, it is possible to prevent the grooved plug 524 from being damaged by the rolled ball 526 by determining that the disconnection has occurred simultaneously with the occurrence of the disconnection and stopping the apparatus.
 断管検出実験0-bの結果は、図19に示すとおりである。図19に示すように、断管発生と同時に、抽伸ドラム531の抽伸荷重は、降下するが、断管検出ラインよりも降下せず(図19中の荷重波形のa点参照)、破断部が整径ダイス515を通過すると同時に、抽伸ドラム531の抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がるので、制御部では、断管であると判定し、装置を停止する。 The result of the disconnection detection experiment 0-b is as shown in FIG. As shown in FIG. 19, the drawing load of the drawing drum 531 drops at the same time as the disconnection occurs, but does not fall below the disconnection detection line (see point a of the load waveform in FIG. 19), and the fracture portion is At the same time as passing through the diameter adjusting die 515, the drawing load of the drawing drum 531 falls to a mechanical loss level lower than the broken tube detection line, so the control unit determines that the tube is broken and stops the apparatus.
 このように断管検出実験0-bにおいても、比較例の製造装置は、断管発生後に加工停止することができるが、断管発生から断管発生を検出するまでに僅かに遅れが生じることになる。 Thus, even in the disconnection detection experiment 0-b, the manufacturing apparatus of the comparative example can stop processing after the occurrence of the disconnection, but there is a slight delay between the occurrence of the disconnection and the detection of the disconnection. become.
 但し、断管検出実験0-bでは、溝加工部514よりも下流側である断管箇所bで断管が発生するため、破断部が溝付プラグ524を有する溝加工部514を通過することなく、溝付プラグ524が破損する前に装置を停止することができる。 However, in the disconnection detection experiment 0-b, since the disconnection occurs at the disconnection location b downstream of the groove processing portion 514, the fracture portion passes through the groove processing portion 514 having the grooved plug 524. The device can be stopped before the fluted plug 524 breaks.
 なお、断管発生と同時に降下する荷重値(図19中の荷重波形のa点参照)よりも断管検出ラインを高く設定した場合には、破断部が整径ダイス515通過前に断管発生を遅れなく検出することができる反面、上述したように、様々な要因により加工中に抽伸荷重が変動するに伴い、断管発生の誤検出が生じ易くなり、加工効率が大幅に低下するため、好ましくない。 If the disconnection detection line is set higher than the load value that drops simultaneously with the occurrence of the disconnection (see point a of the load waveform in FIG. 19), the disconnection occurs before the fractured portion passes through the diameter adjusting die 515. However, as described above, as the drawing load fluctuates during processing due to various factors, false detection of disconnection is likely to occur, and processing efficiency is greatly reduced. It is not preferable.
 断管検出実験0-cの結果は、図20に示すとおりである。図20に示すように、断管発生と同時に、抽伸ドラム531の抽伸荷重は、降下するが、破断部が溝加工部514、整径ダイス515を通過するごとに段階的に降下し、破断部が整径ダイス515を通過するまで、抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がらず、制御部では、最終的に整径ダイス515を通過するまで断管が発生したと判定することができない。 The result of the disconnection detection experiment 0-c is as shown in FIG. As shown in FIG. 20, the drawing load of the drawing drum 531 drops at the same time as the disconnection occurs, but drops step by step every time the fractured portion passes through the groove processing portion 514 and the diameter adjusting die 515, and the fractured portion Until the diameter passes through the sizing die 515, the drawing load does not drop to a mechanical loss level lower than that of the disconnection detection line, and the controller determines that the disconnection has occurred until it finally passes through the sizing die 515. I can't.
 よって、断管は、溝加工部514よりも上流側である断管箇所cで発生するが、断管発生後に断管発生であると判定し、装置を停止するまでに要する時間に遅れが生じるため、この間、破断部が溝付プラグ524を有する溝加工部514を通過し、転造ボール526が直接的に溝付プラグ524に接触するので、溝付プラグ524が破損するおそれがある。 Therefore, the disconnection occurs at the disconnection location c that is upstream of the groove processing portion 514, but it is determined that the disconnection has occurred after the disconnection has occurred, and there is a delay in the time required to stop the apparatus. Therefore, during this time, the fractured portion passes through the grooved portion 514 having the grooved plug 524, and the rolling ball 526 directly contacts the grooved plug 524, so that the grooved plug 524 may be damaged.
 なお、図20中の抽伸荷重の波形のa点、b点は、それぞれ破断部が溝加工部514、整径ダイス515を通過中であることを示す。 Note that points a and b in the waveform of the drawing load in FIG. 20 indicate that the fracture portion is passing through the groove processing portion 514 and the diameter-controlling die 515, respectively.
 断管検出実験0-dの結果は、図21に示すとおりである。図21に示すように、断管検出実験0-cと同様に、断管発生と同時に、抽伸ドラム531の抽伸荷重は降下するが、破断部が縮径加工部513、溝加工部514、整径ダイス515を通過するごとに段階的に降下し、整径ダイス515を通過するまで、抽伸荷重が断管検出ラインよりも低いメカロスレベルまで下がらず、制御部では、最終的に整径ダイス515を通過するまで断管が発生したと判定することができない。 The result of the disconnection detection experiment 0-d is as shown in FIG. As shown in FIG. 21, the drawing load of the drawing drum 531 drops at the same time as the occurrence of the broken tube, as in the broken tube detection experiment 0-c, but the fractured portion is the reduced diameter processed portion 513, the groove processed portion 514, Each time it passes through the diameter die 515, it is lowered step by step, and the drawing load does not drop to a mechanical loss level lower than that of the disconnection detection line until it passes through the diameter adjustment die 515. It is not possible to determine that a disconnection has occurred until it passes.
 よって、断管発生後に断管発生であると判定し、装置停止までに要する時間に遅れが生じ、この間、転造ボール526が溝付プラグ524に接触するので、溝付プラグ524が破損するおそれがある。 Therefore, it is determined that the disconnection has occurred after the occurrence of the disconnection, and there is a delay in the time required to stop the apparatus. During this time, the rolling ball 526 contacts the grooved plug 524, so that the grooved plug 524 may be damaged. There is.
 (実施形態4Aの製造装置を用いた断管検出実験) 
 続いて実施形態4Aの製造装置510Aを用いた断管検出実験について説明する。 
 実施形態4Aの製造装置510Aでは、断管検出の閾値として断管検出ラインを、溝加工荷重測定部517で測定した定常加工時の測定荷重(加工荷重F)の20%になるよう設定し、測定荷重が断管検出ライン以下になったら断管と判定し、装置を停止する制御を行なっている。
(A disconnection detection experiment using the manufacturing apparatus of Embodiment 4A)
Subsequently, a disconnection detection experiment using the manufacturing apparatus 510A of Embodiment 4A will be described.
In the manufacturing apparatus 510A of Embodiment 4A, the disconnection detection line is set to be 20% of the measurement load (processing load F) at the time of steady machining measured by the grooving load measuring unit 517 as a threshold for detecting the disconnection, When the measured load falls below the broken tube detection line, it is determined that the tube is broken, and control is performed to stop the apparatus.
 断管検出実験1-aの結果は、図22に示すとおりである。図22に示すように、溝加工荷重測定部517の測定荷重は、断管発生と同時に、測定荷重が断管検出ラインよりも低いゼロにまで降下するため、即時に断管が発生したと判定可能であり、溝付プラグ524を破損せずに装置を停止することができる。 The result of the disconnection detection experiment 1-a is as shown in FIG. As shown in FIG. 22, since the measurement load of the groove processing load measuring unit 517 falls to zero, the measurement load is lower than the disconnection detection line simultaneously with the occurrence of the disconnection, it is determined that the disconnection has occurred immediately. Yes, the device can be stopped without damaging the fluted plug 524.
 なお、断管後に測定荷重がゼロにまで降下するのは、溝加工部514よりも下流側で断管が発生した場合、断管発生と同時に抽伸ドラム531による素管511aの抽伸が溝加工部514まで完全に作用しなくなるためである。 Note that the measured load drops to zero after the disconnection when the disconnection occurs on the downstream side of the groove processing portion 514. When the disconnection occurs, the drawing of the raw pipe 511a by the drawing drum 531 occurs simultaneously with the generation of the disconnection. This is because it does not work completely up to 514.
 また、断管検出実験1-bも、断管検出実験1-aと同様に、断管発生と同時に、測定荷重がゼロにまで降下するため、即時に断管検出可能であり、溝付プラグ524を破損せずに装置を停止することができる。 
 なお、断管検出実験1-bでの溝加工荷重測定部517の測定荷重は、図22と略同じ波形になるため、加工荷重と経過時間との関係を示すグラフは、省略する。
Similarly to the disconnection detection experiment 1-a, the disconnection detection experiment 1-b can detect the disconnection immediately because the measurement load drops to zero as soon as the disconnection occurs. The device can be shut down without damaging 524.
Note that the measurement load of the grooving load measurement unit 517 in the disconnection detection experiment 1-b has substantially the same waveform as that in FIG. 22, and thus a graph showing the relationship between the machining load and the elapsed time is omitted.
 断管検出実験1-cの結果は、図23に示すとおりである。図23に示すように、断管発生と同時に溝加工荷重測定部517の測定荷重は、降下しない。 
 これは、溝加工部514よりも上流側である断管箇所cで断管が発生した場合、破断部が溝加工部514を通過するまで、断管が発生しても抽伸ドラム531による素管511aの抽伸が溝加工部514まで作用するからである。
The result of the disconnection detection experiment 1-c is as shown in FIG. As shown in FIG. 23, the measurement load of the grooving load measurement unit 517 does not drop simultaneously with the occurrence of the broken tube.
This is because, when a disconnection occurs at the disconnection point c that is upstream of the groove processing portion 514, even if the disconnection occurs until the fractured portion passes the groove processing portion 514, the raw pipe by the drawing drum 531 This is because the drawing of 511a acts up to the groove processing portion 514.
 断管部が溝加工部514を通過したと同時に(図23中の荷重波形のa点参照)、一気に断管検出ラインよりも低いゼロにまで降下し、制御部では、断管が発生したと判定し、装置を停止する。 At the same time that the cut-off portion has passed through the groove processing portion 514 (see point a of the load waveform in FIG. 23), the control portion descends to zero, which is lower than the cut-off detection line. Determine and stop the device.
 このように実施形態4Aの製造装置510Aでは、断管箇所cの場合、断管発生と同時に装置を停止することができないが、破断部が溝加工部514を通過すると同時に断管が発生したと判定し、装置を即時停止することができるので、溝付プラグ524が破損することを未然に防止することができる。 As described above, in the manufacturing apparatus 510A of Embodiment 4A, in the case of the disconnection location c, the apparatus cannot be stopped simultaneously with the occurrence of the disconnection, but the disconnection has occurred at the same time as the fracture portion passes the groove processing portion 514. Since the determination and the apparatus can be stopped immediately, it is possible to prevent the grooved plug 524 from being damaged.
 ここで、比較例の製造装置では、断管検出実験0-cで説明したように、断管箇所cで断管が発生した場合、破断部が溝加工部514を通過し、さらに整径ダイス515を通過するまで断管が発生したと判定することができない(図20参照)。すなわち、破断部が溝加工部514と整径ダイス515の間および整径ダイス515内を通過する間の数秒間、転造ボール526が溝付プラグ524に接触することになり、この間に溝付プラグ524を破損させることになる。 Here, in the manufacturing apparatus of the comparative example, as described in the disconnection detection experiment 0-c, when the disconnection occurs at the disconnection location c, the fracture portion passes through the groove processing portion 514, and further the diameter adjusting die. It cannot be determined that the disconnection has occurred until it passes through 515 (see FIG. 20). That is, the rolling ball 526 comes into contact with the grooved plug 524 for a few seconds while the fracture portion passes between the groove processing portion 514 and the diameter adjusting die 515 and passes through the diameter adjusting die 515, and the groove The plug 524 will be damaged.
 これに対して実施形態4Aの製造装置510Aでは、断管箇所cで断管発生した場合において比較例の製造装置よりも、破断部が溝加工部514と整径ダイス515の間および整径ダイス515内を通過する間だけ早く装置を停止することができるため、溝付プラグ524が転造ボール526に接触し、破損することを未然に防ぐことができる。 On the other hand, in the manufacturing apparatus 510A of the embodiment 4A, when the disconnection occurs at the disconnection point c, the fracture portion is between the groove processing part 514 and the diameter adjusting die 515 and the diameter adjusting die compared to the manufacturing apparatus of the comparative example. Since the apparatus can be stopped quickly only while passing through 515, it is possible to prevent the grooved plug 524 from coming into contact with the rolled ball 526 and being damaged.
 断管検出実験1-dにおいても、図24に示すように、実施形態4Aの製造装置510Aでは、断管発生と同時に断管が発生したと判定することができないが、破断部が縮径加工部513を通過し、溝加工部514を通過する際に、溝加工荷重測定部517の測定荷重がゼロにまで降下するので(図24中、荷重波形a点参照)、溝加工部514の通過と同時に断管発生したと判定することができ、断管検出実験1-cの場合と同様に溝付プラグ524が破損することを未然に防ぐことができる。 Also in the disconnection detection experiment 1-d, as shown in FIG. 24, the manufacturing apparatus 510A of Embodiment 4A cannot determine that the disconnection has occurred simultaneously with the occurrence of the disconnection, but the fracture portion is reduced in diameter. When passing through the portion 513 and passing through the groove processing portion 514, the measurement load of the groove processing load measurement portion 517 drops to zero (see point a in the load waveform in FIG. 24), so the passage through the groove processing portion 514 At the same time, it can be determined that the disconnection has occurred, and it is possible to prevent the grooved plug 524 from being damaged in the same manner as in the disconnection detection experiment 1-c.
 (実施形態4Bの製造装置を用いた断管検出実験) 
 続いて実施形態4Bの製造装置510Bを用いた断管検出実験について説明する。 
 断管検出実験2-aでは、断管検出実験1-aと同様に溝加工部514よりも下流側で断管が発生するため、断管発生と同時に抽伸ドラム531による素管511aの抽伸が縮径加工部513まで作用しなくなる。
(A disconnection detection experiment using the manufacturing apparatus of Embodiment 4B)
Subsequently, a disconnection detection experiment using the manufacturing apparatus 510B of Embodiment 4B will be described.
In the disconnection detection experiment 2-a, similar to the disconnection detection experiment 1-a, a disconnection is generated on the downstream side of the groove processing portion 514. Therefore, the drawing pipe 511a is drawn by the drawing drum 531 simultaneously with the disconnection. It does not work up to the reduced diameter processing portion 513.
 このため、縮径加工荷重測定部の測定荷重は、図25に示すように、断管発生と同時に、測定荷重が断管検出ラインよりも低いゼロにまで降下するため、即時に断管発生と判定可能であり、溝付プラグ524を破損せずに装置を停止することができる。 For this reason, as shown in FIG. 25, the measurement load of the reduced diameter processing load measuring unit drops to zero at the same time that the measured load falls to zero, which is lower than the broken line detection line, and the occurrence of broken pipe immediately. The determination can be made, and the apparatus can be stopped without damaging the grooved plug 524.
 同様に、断管検出実験2-b,2-cも、断管発生と同時に、測定荷重がゼロにまで降下するため、即時に断管発生と判定可能であり、溝付プラグ524を破損せずに装置を停止することができる。 
 なお、断管検出実験2-b,2-cでの溝加工荷重測定部517の測定荷重は、図25と略同じ波形になるため、加工荷重と経過時間との関係を示すグラフは、省略する。
Similarly, in the disconnection detection experiments 2-b and 2-c, since the measurement load drops to zero at the same time as the occurrence of the disconnection, it can be immediately determined that the disconnection has occurred, and the grooved plug 524 is damaged. Without stopping the device.
Note that the measurement load of the groove processing load measuring unit 517 in the disconnection detection experiments 2-b and 2-c has substantially the same waveform as that in FIG. 25, and therefore the graph showing the relationship between the processing load and the elapsed time is omitted. To do.
 断管検出実験2-dでは、縮径加工部513よりも上流側である断管箇所dで断管が発生するため、断管が発生しても破断部が縮径加工部513を通過するまでは抽伸ドラム531による素管511aの抽伸が縮径加工部513まで作用する。 In the disconnection detection experiment 2-d, since the disconnection occurs at the disconnection location d upstream of the diameter reduction processing portion 513, the fracture portion passes through the diameter reduction processing portion 513 even if the disconnection occurs. Until then, the drawing of the tube 511a by the drawing drum 531 acts up to the reduced diameter processing portion 513.
 このため、図26に示すように、断管発生と同時に縮径加工荷重測定部の測定荷重は、降下しないが、破断部が縮径加工部513を通過したと同時に断管検出ラインよりも低いゼロにまで降下し、制御部では、断管が発生したと判定し、装置を停止する。 For this reason, as shown in FIG. 26, the measurement load of the reduced diameter processing load measuring portion does not drop at the same time as the occurrence of the disconnection, but is lower than the disconnection detection line at the same time as the broken portion passes the reduced diameter processing portion 513. The controller descends to zero, and the control unit determines that a disconnection has occurred and stops the apparatus.
 このように実施形態4Bの製造装置510Bでは、断管発生と同時に装置を停止することができないが、破断部が縮径加工部513を通過すると同時に断管が発生したと判定し、破断部が溝加工部514を通過する前に装置を停止することができるので、溝付プラグ524が破損することを未然に防止することができる。 As described above, in the manufacturing apparatus 510B of Embodiment 4B, the apparatus cannot be stopped simultaneously with the occurrence of the disconnection, but it is determined that the disconnection has occurred at the same time as the fractured portion passes through the reduced diameter processing portion 513, and the fractured portion is Since the apparatus can be stopped before passing through the grooved portion 514, it is possible to prevent the grooved plug 524 from being damaged.
 (実施形態4Cの製造装置を用いた断管検出実験) 
 続いて実施形態4Cの製造装置510Cを用いた断管検出実験について説明する。 
 実施形態4Cの製造装置510Cでは、上述したように中間抽伸部551のモータMの荷重の微分値をもとに断管が発生したと判定している。 
 詳しくは、中間抽伸部551のモータMの荷重(中間抽伸部551の抽伸荷重F)の変化量(微分値)を監視し、微分値の変動が5σを超えたら断管と判断し、装置を停止する制御を行なっている。
(A disconnection detection experiment using the manufacturing apparatus of Embodiment 4C)
Subsequently, a disconnection detection experiment using the manufacturing apparatus 510C of Embodiment 4C will be described.
In the manufacturing apparatus 510C embodiments 4C, it is determined as the cross-sectional tube a differential value of the load of the motor M 2 of the intermediate drawing section 551 based on occurs as described above.
For more information, monitors the load of the motor M 2 of the intermediate drawing section 551 the amount of change (drawing load F of the intermediate drawing section 551) (differential value), the variation of the differential value is determined as the cross-sectional tube Once beyond the 5Shiguma, device The control which stops is performed.
 ここで、中間抽伸部551での抽伸荷重は、定常加工時でも実際には、上述したように加工前の素管511a(銅管)や装置の状態、加工環境の違いなど、様々な要因により変化量が大きくなる。 Here, the drawing load in the intermediate drawing unit 551 is actually due to various factors such as the state of the raw pipe 511a (copper pipe) before the machining, the state of the apparatus, and the machining environment even during the steady machining. The amount of change increases.
 このため、実施形態4Cの製造装置510Cのように、抽伸荷重の微分値を用いて断管発生を検出することにより、正確に断管を判定できる点で好ましい。 For this reason, it is preferable in that the disconnection can be accurately determined by detecting the occurrence of the disconnection using the differential value of the drawing load as in the manufacturing apparatus 510C of the embodiment 4C.
 断管検出実験3-eの実験結果は、図27に示すとおりである。 
 なお、図27は、断管発生前後の中間抽伸部551での抽伸荷重と、荷重変化量(微分値)とをそれぞれグラフ化して示し、抽伸荷重は、図27中、左側を縦軸とし、荷重の変化量は、図27中、右側を縦軸としている。
The experimental result of the disconnection detection experiment 3-e is as shown in FIG.
FIG. 27 is a graph showing the drawing load and the amount of load change (differential value) in the intermediate drawing unit 551 before and after the occurrence of the broken tube, and the drawing load is plotted on the left side in FIG. The amount of change in the load is indicated on the right side in FIG.
 断管検出実験3-eでは、溝加工部514よりも下流側で断管が発生するが、これにより、中間抽伸部551の負荷が上がり、抽伸ドラムの抽伸荷重の変化量が定常加工時と比較して顕著にあがる。よって、断管発生と略同時に断管が発生したと判定し、装置を停止することができる。 In the disconnection detection experiment 3-e, a disconnection occurs downstream of the groove processing portion 514. This increases the load on the intermediate drawing portion 551, and the amount of change in the drawing load of the drawing drum is the same as that during steady processing. It is remarkable compared. Therefore, it can be determined that the disconnection has occurred substantially simultaneously with the occurrence of the disconnection, and the apparatus can be stopped.
 なお、図27に示すように、数100秒レベルの範囲でみれば中間抽伸部551での抽伸荷重の変動も、抽伸荷重の微分値の変動も大差はないが、上述したように、数100分レベルの範囲でみれば中間抽伸部551での抽伸荷重の変動が大きくなる。 As shown in FIG. 27, when viewed in the range of several hundred seconds, there is no great difference in the variation of the drawing load in the intermediate drawing unit 551 and the variation of the differential value of the drawing load. If it sees in the range of a minute level, the fluctuation | variation of the drawing load in the intermediate drawing part 551 will become large.
 このため、中間抽伸部551の抽伸荷重の変化量(微分値)に基いて断管が発生したと判定することで、断管を誤検出することなく、断管と同時に即時に断管発生と判定可能であり、溝付プラグ524を破損せずに装置を停止することができる。 For this reason, it is determined that a disconnection has occurred based on the amount of change (differential value) of the drawing load of the intermediate drawing unit 551, so that the disconnection is immediately generated simultaneously with the disconnection without erroneously detecting the disconnection. The determination can be made, and the apparatus can be stopped without damaging the grooved plug 524.
 また、断管検出実験3-f,3-gも、断管検出実験3-eと同様に、断管発生と同時に、中間抽伸部551の抽伸荷重の変化量(微分値)が5σを超えるまで変化し、即時に断管検出可能であり、溝付プラグ524を破損せずに装置を停止することができる。 Similarly to the disconnection detection experiment 3-e, the disconnection detection experiments 3-f and 3-g have a change amount (differential value) of the drawing load of the intermediate drawing portion 551 exceeding 5σ at the same time as the occurrence of the disconnection. The disconnection can be detected immediately, and the apparatus can be stopped without damaging the grooved plug 524.
 なお、断管検出実験3-f,3-gでの中間抽伸部551の測定荷重は、図27と略同じ波形になるため、加工荷重と経過時間との関係を示すグラフは、省略する。 Note that the measurement load of the intermediate drawing portion 551 in the disconnection detection experiments 3-f and 3-g has substantially the same waveform as that in FIG. 27, and thus the graph showing the relationship between the machining load and the elapsed time is omitted.
 断管検出実験3-hでは、中間抽伸部551内または中間抽伸部551よりも上流側である断管箇所hで断管が発生するが、図28に示すように、断管発生と同時に中間抽伸部551の抽伸荷重の変化量(微分値)が5σを超えるまで変化し、即時に断管発生と判定可能であり、溝付プラグ524を破損せずに装置を停止することができる。 In the disconnection detection experiment 3-h, a disconnection occurs in the intermediate drawing portion 551 or at a disconnection location h upstream of the intermediate drawing portion 551. As shown in FIG. The amount of change (differential value) in the drawing load of the drawing unit 551 changes until it exceeds 5σ, and it can be immediately determined that disconnection has occurred, and the apparatus can be stopped without damaging the grooved plug 524.
 断管検出実験3-iでは、図29に示すように、断管発生と同時に中間抽伸部551の荷重および荷重の変化量(微分値)は、降下しない。断管は、縮径加工部513よりも上流側である断管箇所iで発生するため、破断部が縮径加工部513を通過するまでは、中間抽伸部551の抽伸荷重に影響を及ぼさないからである。 In the broken tube detection experiment 3-i, as shown in FIG. 29, the load of the intermediate drawing portion 551 and the change amount (differential value) of the intermediate drawing portion 551 do not drop as soon as the broken tube is generated. Since the disconnection occurs at the disconnection location i upstream of the diameter reducing portion 513, the drawing load of the intermediate drawing portion 551 is not affected until the fracture portion passes the diameter reducing portion 513. Because.
 しかし、破断部が縮径加工部513を通過すると同時に、断管検出実験3-hと同様に中間抽伸部551の荷重の変化量(微分値)が5σを超えるまで変化し、断管発生と判定可能であり、溝付プラグ524を破損せずに装置を停止することができる。 However, at the same time that the fractured portion passes through the reduced diameter processing portion 513, the amount of change (differential value) in the load of the intermediate drawing portion 551 changes in the same manner as the disconnection detection experiment 3-h until the occurrence of disconnection occurs. The determination can be made, and the apparatus can be stopped without damaging the grooved plug 524.
 上述した断管検出実験により、比較例の製造装置は、断管発生箇所によっては、溝付プラグ524が転造ボール526に直接的に押し付けられ破損した。 According to the disconnection detection experiment described above, in the manufacturing apparatus of the comparative example, the grooved plug 524 was directly pressed against the rolled ball 526 and was damaged depending on the location where the disconnection occurred.
 これに対して、実施形態4Aから4Cの各製造装置は、いずれも溝付プラグ524が転造ボール526により破損される前に、加工中に断管発生したと判定し、加工を停止することができた。 In contrast, each of the manufacturing apparatuses of Embodiments 4A to 4C determines that a tube break has occurred during processing before the grooved plug 524 is damaged by the rolled ball 526, and stops processing. I was able to.
 したがって、本発明の内面溝付管の製造装置および製造方法により、溝付プラグ524の破損を防止することができることを実証することができた。 Therefore, it has been proved that the grooved plug 524 can be prevented from being damaged by the inner grooved tube manufacturing apparatus and method of the present invention.
 なお、上述の実施形態4と、この発明の構成との対応において、この実施形態の
縮径加工部513は、この発明の縮径手段に対応し、以下同様に、
溝加工部514は、溝加工手段に対応し、
抽伸部516は、抽伸手段に対応し、
中間抽伸部551は、中間抽伸手段に対応し、
加工関連データ検出部517,545で測定した測定荷重または電流計552で計測した電流は、加工関連データに対応し、
加工関連データ検出部517,545,552は、加工関連データ検出手段に対応し、
演算部、記憶部を備えた制御部518,546,553は、断管判定手段に対応し、
溝加工荷重測定用ロードセル541は、溝加工荷重測定手段に対応し、
縮径加工荷重測定用ロードセル545は、縮径加工荷重測定手段に対応し、
中間抽伸部551の抽伸荷重の微分値は、荷重関連データに対応し、
電流計552および制御部553の演算部は、荷重関連データ検出手段に対応するも、この発明は、上述の実施形態4の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In the correspondence between the above-described Embodiment 4 and the configuration of the present invention, the diameter-reduction processing portion 513 of this embodiment corresponds to the diameter-reducing means of the present invention.
The groove processing portion 514 corresponds to the groove processing means,
The drawing unit 516 corresponds to drawing means,
The intermediate drawing unit 551 corresponds to the intermediate drawing means,
The measurement load measured by the machining-related data detection units 517 and 545 or the current measured by the ammeter 552 corresponds to the machining-related data,
Processing-related data detection units 517, 545, 552 correspond to processing-related data detection means,
Control units 518, 546, and 553 including a calculation unit and a storage unit correspond to the disconnection determination unit,
The groove processing load measuring load cell 541 corresponds to the groove processing load measuring means,
The diameter reducing load measuring load cell 545 corresponds to the diameter reducing load measuring means,
The differential value of the drawing load of the intermediate drawing unit 551 corresponds to the load related data,
The calculation unit of the ammeter 552 and the control unit 553 corresponds to the load-related data detection means, but the present invention is not limited to the configuration of the above-described fourth embodiment, and many embodiments are obtained. Can do.

Claims (24)

  1.  管の中心軸に対する溝のねじれ角をβ(度)、隣り合う溝と溝の間で形成されるフィンの頂角をα(度)としたとき、
    βが30から60、αが5から20であり、
    外径をD(mm)、溝の深さをH(mm)、管の軸方向に対する断面積をA(mm)としたとき、
    Dが6以下、Hが0.07以上で、A<0.8×Dである
    内面溝付管。
    When the twist angle of the groove with respect to the central axis of the tube is β (degrees) and the apex angle of the fin formed between adjacent grooves is α (degrees),
    β is 30 to 60, α is 5 to 20,
    When the outer diameter is D (mm), the groove depth is H (mm), and the cross-sectional area with respect to the axial direction of the tube is A C (mm 2 ),
    An internally grooved tube in which D is 6 or less, H is 0.07 or more, and A C <0.8 × D.
  2.  外径D(mm)が3以上である
    請求項1に記載の内面溝付管。
    The internally grooved tube according to claim 1, wherein the outer diameter D (mm) is 3 or more.
  3.  溝の深さH(mm)が0.10から0.30である
    請求項1または請求項2に記載の内面溝付管。
    The inner grooved tube according to claim 1 or 2, wherein a depth H (mm) of the groove is 0.10 to 0.30.
  4.  素管を引抜いて縮径させる縮径手段と、素管内面に多数の溝を形成する溝加工手段とを備えた内面溝付管の製造装置を用いる
    内面溝付管の製造方法。
    An inner grooved tube manufacturing method using an inner surface grooved tube manufacturing apparatus comprising a diameter reducing means for drawing and reducing a diameter of an element tube and a groove processing means for forming a plurality of grooves on the inner surface of the element tube.
  5.  前記内面溝付管の製造装置に、
    前記溝加工手段の下流側で加工済みの内面溝付管を巻き取る巻取りドラムを兼ねた引抜き手段と、前記縮径手段と前記溝加工手段との間で素管を引抜く補助引抜き手段と、前記縮径手段、前記補助引抜き手段および前記溝加工手段を支持し、設置部に対して引抜き方向へ移動可能な可動手段と、前記可動手段の前記設置部に対する移動に応じて作用する加工荷重を検出する荷重検出手段と、前記荷重検出手段により検出した前記加工荷重に基づいて、前記補助引抜き手段を制御する制御手段とを備え、
    管の中心軸に対する溝のねじれ角をβ(度)、隣り合う溝と溝の間で形成されるフィンの頂角をα(度)としたとき、βが30から60、αが5から20であり、外径をD(mm)、溝の深さをH(mm)、管の軸方向に対する断面積をA(mm)としたとき、Dが6以下、Hが0.07以上で、A<0.8×Dとし、前記加工荷重をP(N)、前記溝加工手段通過後の管の軸方向に対する断面積をAC1(mm)、前記溝加工手段通過後の管の破断応力をσ(N/mm)としたとき、
    Pが(AC1×σ)の0.5倍から0.9倍の間になるよう前記補助引抜き手段を制御する
    請求項4に記載の内面溝付管の製造方法。
    In the manufacturing apparatus of the inner grooved tube,
    A drawing means that also serves as a winding drum for winding the internally grooved pipe that has been processed downstream of the groove processing means; and an auxiliary drawing means that draws the raw pipe between the diameter reducing means and the groove processing means. , A movable means that supports the diameter reducing means, the auxiliary drawing means, and the grooving means, and is movable in the drawing direction with respect to the installation portion, and a machining load that acts in accordance with the movement of the movable means with respect to the installation portion Load detecting means for detecting the control, and control means for controlling the auxiliary pulling means based on the processing load detected by the load detecting means,
    When the twist angle of the groove with respect to the central axis of the tube is β (degrees) and the apex angle of the fin formed between adjacent grooves is α (degrees), β is 30 to 60 and α is 5 to 20 When the outer diameter is D (mm), the groove depth is H (mm), and the cross-sectional area with respect to the axial direction of the tube is A C (mm 2 ), D is 6 or less and H is 0.07 or more. And A C <0.8 × D, the processing load is P (N), the cross-sectional area of the tube after passing through the grooving means is A C1 (mm 2 ), and after passing through the grooving means. When the breaking stress of the tube is σ M (N / mm 2 ),
    The method for producing an internally grooved tube according to claim 4, wherein the auxiliary drawing means is controlled so that P is between 0.5 times and 0.9 times (A C1 × σ M ).
  6.  外径D(mm)が3以上である
    請求項5に記載の内面溝付管の製造方法。
    6. The method for producing an internally grooved tube according to claim 5, wherein the outer diameter D (mm) is 3 or more.
  7.  溝の深さH(mm)が0.10から0.30である
    請求項5または6に記載の内面溝付管の製造方法。
    The method for producing an internally grooved tube according to claim 5 or 6, wherein the depth H (mm) of the groove is 0.10 to 0.30.
  8.  前記内面溝付管の製造装置に、前記縮径手段と、前記溝加工手段と、溝加工された内面溝付管を引き抜く引抜き手段とを上流側からこの順に備え、
    前記縮径手段と前記溝加工手段の間に設けられ、前記縮径管を前記溝加工手段へ向う送り方向に送り補助する送り補助手段と、
    前記縮径手段と前記送り補助手段とが固定されて前記引抜き手段の引抜き方向と平行に前記溝加工手段に対して相対移動可能な移動台と、
    前記溝加工手段が固定されて前記引抜き方向と平行に前記引抜き手段に対して相対移動可能な基台と、
    前記移動台が前記溝加工手段に対して前記相対移動する際に前記移動台にかかる前記相対移動方向の荷重を検出する移動台荷重検出装置と、
    前記基台が前記引抜き手段に対して前記相対移動する際に前記基台にかかる前記相対移動方向の荷重を検出する基台荷重検出装置と、
    前記送り補助手段の動作を制御する制御手段とを備えるとともに、
    前記移動台は、前記基台に対して前記引抜き方向に相対移動可能に構成したものを用い、
    該制御手段が、
    前記送り補助手段の送り補助速度および前記送り補助手段の送り補助トルクのうち少なくともいずれか一方を、前記移動台荷重検出装置および前記基台荷重検出装置が検出した荷重の差分に基づいて調整する
    請求項4に記載の内面溝付管の製造方法。
    The inner surface grooved pipe manufacturing apparatus includes the diameter reducing means, the groove processing means, and a drawing means for pulling out the grooved inner grooved pipe in this order from the upstream side.
    Feed assisting means provided between the diameter reducing means and the groove machining means, and assisting the feeding of the reduced diameter tube in a feed direction toward the groove machining means;
    A moving table in which the diameter reducing means and the feed assisting means are fixed and movable relative to the groove machining means in parallel with the drawing direction of the drawing means;
    A base on which the groove processing means is fixed and movable relative to the drawing means in parallel with the drawing direction;
    A moving table load detecting device for detecting a load in the relative moving direction applied to the moving table when the moving table moves relative to the groove processing means;
    A base load detection device that detects a load in the relative movement direction applied to the base when the base moves relative to the pulling means;
    And a control means for controlling the operation of the feed assist means,
    The moving table is configured to be movable relative to the base in the pulling direction,
    The control means
    At least one of the feed assist speed of the feed assist means and the feed assist torque of the feed assist means is adjusted based on a difference between loads detected by the moving table load detecting device and the base load detecting device. Item 5. A method for producing an internally grooved tube according to Item 4.
  9.  前記制御手段が調整する送り補助速度を、第1送り補助速度とするとともに、
    前記制御手段が調整する送り補助トルクを、前記送り補助トルクとの相関関係に基づいて定まる第2送り補助速度をもって調整する制御とした
    請求項8に記載の内面溝付管の製造方法。
    The feed assist speed adjusted by the control means is the first feed assist speed,
    The method for manufacturing an internally grooved pipe according to claim 8, wherein the feed assist torque adjusted by the control means is controlled to be adjusted with a second feed assist speed determined based on a correlation with the feed assist torque.
  10.  前記内面溝付管の製造装置を用い、
    素管が引抜き方向へ進む過程で、素管を縮径させる縮径加工工程と、素管内面に多数の溝を形成する溝加工工程を行い、前記縮径加工工程と前記溝加工工程とを行なう間、前記縮径加工工程で縮径した素管を引抜く中間引抜き工程を行い、
    前記縮径加工工程を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで行い、
    前記溝加工工程を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで行なう内面溝付管の製造方法であって、
    前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、
    ={(D-D)/D}×100(%)
    であらわされる素管の縮径率R(%)を、
    ≦30に設定し、
    前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、
    -D≧0.1
    となるよう設定する
    請求項4に記載の内面溝付管の製造方法。
    Using the inner grooved pipe manufacturing apparatus,
    In the process of moving the pipe in the drawing direction, a diameter reducing process for reducing the diameter of the pipe, and a groove forming process for forming a plurality of grooves on the inner surface of the pipe, the diameter reducing process and the groove processing process are performed. While performing, an intermediate drawing process is performed to pull out the raw pipe reduced in diameter in the diameter reducing process,
    The diameter reduction processing step is performed with a diameter reduction die and a floating plug that is arranged in the element pipe and reduces the diameter of the element pipe together with the diameter reduction die,
    In the groove processing step, a grooved plug that is rotatably connected to the floating plug in the raw tube and has a plurality of grooves formed on the outer periphery thereof, and the raw tube on the outer side of the raw tube toward the grooved plug. A method for manufacturing an internally grooved tube with a pressing tool arranged to revolve around a tube axis while pressing,
    By the outer diameter D o (mm) of the raw tube and the diameter D 2 (mm) of the reduced diameter die,
    R D = {(D o −D 2 ) / D o } × 100 (%)
    The diameter reduction ratio R D (%) of the elemental tube expressed by
    Set R D ≦ 30,
    The outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die are as follows:
    D 1 -D 2 ≧ 0.1
    The manufacturing method of the internally grooved tube according to claim 4, which is set to be
  11.  前記押圧用工具の公転方向を、前記溝付プラグの回転方向と逆向きに設定し、
    前記押圧用工具の加工ピッチP(mm)を、
    0.2≦P≦0.7
    の範囲になるよう設定する
    請求項10に記載の内面溝付管の製造方法。
    The revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug,
    The processing pitch P (mm) of the pressing tool is
    0.2 ≦ P ≦ 0.7
    The method for producing an internally grooved tube according to claim 10, wherein the inner grooved tube is set so as to fall within a range of
  12.  前記押圧用工具の公転方向を、前記溝付プラグの回転方向と同じ向きに設定し、
    前記押圧用工具の加工ピッチP(mm)を、
    0.2≦P≦0.4
    の範囲になるよう設定する
    請求項10に記載の内面溝付管の製造方法。
    The revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug,
    The processing pitch P (mm) of the pressing tool is
    0.2 ≦ P ≦ 0.4
    The method for producing an internally grooved tube according to claim 10, wherein the inner grooved tube is set so as to fall within a range of
  13.  素管を縮径する縮径手段と、
    縮径された縮径管の内面に溝加工を施す溝加工手段とを備えた
    内面溝付管の製造装置。
    A diameter reducing means for reducing the diameter of the raw tube;
    An apparatus for manufacturing an internally grooved tube, comprising groove processing means for performing groove processing on an inner surface of a reduced diameter reduced tube.
  14.  前記縮径手段と、前記溝加工手段と、溝加工された内面溝付管を引き抜く引抜き手段とを上流側からこの順に備え、
    前記縮径手段と前記溝加工手段の間に設けられ、前記縮径管を前記溝加工手段へ向う送り方向に送り補助する送り補助手段を備えた内面溝付管の製造装置であって、
    前記縮径手段と前記送り補助手段とが固定されて前記引抜き手段の引抜き方向と平行に前記溝加工手段に対して相対移動可能な移動台と、
    前記移動台が前記溝加工手段に対して前記相対移動する際に前記移動台にかかる前記相対移動方向の荷重を検出する移動台荷重検出装置とを備えた
    請求項13に記載の内面溝付管の製造装置。
    The diameter reducing means, the groove processing means, and a drawing means for pulling out the grooved inner grooved tube are provided in this order from the upstream side,
    An apparatus for producing an internally grooved pipe provided with a feed assisting means provided between the diameter reducing means and the groove machining means and assisting in feeding the reduced diameter pipe in a feeding direction toward the groove machining means,
    A moving table in which the diameter reducing means and the feed assisting means are fixed and movable relative to the groove machining means in parallel with the drawing direction of the drawing means;
    The inner surface grooved tube according to claim 13, further comprising a moving table load detecting device that detects a load in the relative moving direction applied to the moving table when the moving table moves relative to the groove processing means. Manufacturing equipment.
  15.  前記溝加工手段が固定されて前記引抜き方向と平行に前記引抜き手段に対して相対移動可能な基台と、
    前記基台が前記引抜き手段に対して前記相対移動する際に前記基台にかかる前記相対移動方向の荷重を検出する基台荷重検出装置と、
    前記送り補助手段の動作を制御する制御手段とを備え、
    前記移動台を、前記基台に対して前記引抜き方向に相対移動可能に構成するとともに、
    該制御手段を、
    前記移動台荷重検出装置および前記基台荷重検出装置のうち少なくとも一方により検出した荷重に基づいて、前記送り補助手段の送り補助速度を調節する送り補助速度調整処理および前記送り補助手段の送り補助トルクを調節する送り補助トルク調整処理のうち少なくともいずれか一方を実行する構成とした
    請求項14に記載の内面溝付管の製造装置。
    A base on which the groove processing means is fixed and movable relative to the drawing means in parallel with the drawing direction;
    A base load detection device that detects a load in the relative movement direction applied to the base when the base moves relative to the pulling means;
    Control means for controlling the operation of the feeding auxiliary means,
    The movable table is configured to be movable relative to the base in the pulling direction, and
    The control means is
    A feed assist speed adjustment process for adjusting a feed assist speed of the feed assisting means based on a load detected by at least one of the moving table load detecting device and the base load detecting device, and a feed assist torque of the feed assisting means The apparatus for manufacturing an internally grooved tube according to claim 14, wherein at least one of feed auxiliary torque adjustment processing for adjusting the pressure is executed.
  16.  前記補助速度調整処理における前記送り補助速度を、第1送り補助速度とするとともに、
    前記送り補助トルク調整処理を、
    前記送り補助トルクとの相関関係に基づいて定まる第2送り補助速度をもって調整する調整処理とした
    請求項15に記載の内面溝付管の製造装置。
    The feed assist speed in the assist speed adjustment process is the first feed assist speed,
    The feed assist torque adjustment process
    The inner grooved pipe manufacturing apparatus according to claim 15, wherein the adjusting process is performed by adjusting with a second feed assist speed determined based on a correlation with the feed assist torque.
  17.  素管の引抜き方向に沿って、前記縮径手段と、前記溝加工手段を備えるとともに、前記縮径手段と前記溝加工手段との間に前記縮径手段で縮径した素管を引抜く中間引抜き部を備え、
    前記縮径手段を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで構成し、
    前記溝加工手段を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで構成した内面溝付管の製造装置であって、
    前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、
    ={(D-D)/D}×100(%)
    であらわされる素管の縮径率R(%)を、前記縮径手段において
    ≦30
    に設定し、
    前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、
    -D≧0.1
    となるよう設定した
    請求項13に記載の内面溝付管の製造装置。
    An intermediate in which the diameter reducing means and the groove processing means are provided along the drawing direction of the element pipe, and the diameter reduced by the diameter reducing means is drawn between the diameter reducing means and the groove processing means. With a pull-out section,
    The diameter-reducing means is constituted by a diameter-reducing die and a floating plug that is disposed in the raw tube and reduces the diameter of the raw tube together with the diameter-reducing die,
    The groove processing means is rotatably connected to the floating plug in the raw tube, and has a grooved plug in which a plurality of grooves are formed on the outer periphery, and the raw tube is moved to the grooved plug side outside the raw tube. An inner grooved pipe manufacturing apparatus configured with a pressing tool arranged to revolve around a pipe axis while pressing,
    By the outer diameter D o (mm) of the raw tube and the diameter D 2 (mm) of the reduced diameter die,
    R D = {(D o −D 2 ) / D o } × 100 (%)
    The diameter reduction ratio R D (%) of the elemental tube expressed by: R D ≦ 30 in the diameter reduction means
    Set to
    The outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die are as follows:
    D 1 -D 2 ≧ 0.1
    The apparatus for manufacturing an internally grooved tube according to claim 13, which is set to be
  18.  前記押圧用工具の公転方向を、前記溝付プラグの回転方向と逆向きに設定し、
    前記押圧用工具の加工ピッチP(mm)を、
    0.2≦P≦0.7
    の範囲になるよう設定した
    請求項17に記載の内面溝付管の製造装置。
    The revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug,
    The processing pitch P (mm) of the pressing tool is
    0.2 ≦ P ≦ 0.7
    The apparatus for manufacturing an internally grooved tube according to claim 17, which is set to fall within the range of
  19.  前記押圧用工具の公転方向を、前記溝付プラグの回転方向と同じ向きに設定し、
    前記押圧用工具の加工ピッチP(mm)を、
    0.2≦P≦0.4
    の範囲になるよう設定した
    請求項17に記載の内面溝付管の製造装置。
    The revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug,
    The processing pitch P (mm) of the pressing tool is
    0.2 ≦ P ≦ 0.4
    The apparatus for manufacturing an internally grooved tube according to claim 17, which is set to fall within the range of
  20.  前記溝加工手段の管軸方向下流側で加工済みの内面溝付管を抽伸する抽伸手段と、該抽伸手段よりも管軸方向上流側に、素管の抽伸に伴って管軸方向に生じる加工荷重に関する加工関連データを検出する加工関連データ検出手段とを備えた
    請求項13に記載の内面溝付管の製造装置。
    Drawing means for drawing an internally grooved pipe that has been processed on the downstream side in the tube axis direction of the groove processing means, and processing that occurs in the pipe axis direction along with the drawing of the raw pipe on the upstream side in the tube axis direction from the drawing means The manufacturing apparatus of the inner surface grooved pipe according to claim 13, further comprising processing related data detecting means for detecting processing related data relating to the load.
  21.  前記加工関連データ検出手段を、前記溝加工手段における前記加工荷重を測定する溝加工荷重測定手段および前記縮径手段における前記加工荷重を測定する縮径加工荷重測定手段のうち、少なくとも一方で構成した
    請求項20に記載の内面溝付管の製造装置。
    The machining-related data detection means is constituted by at least one of a grooving load measuring means for measuring the machining load in the grooving means and a reduced diameter processing load measuring means for measuring the machining load in the reduced diameter means. The apparatus for manufacturing an internally grooved tube according to claim 20.
  22.  前記縮径手段と前記溝加工手段との間で素管を抽伸する中間抽伸手段を備え、
    前記加工関連データ検出手段を、前記中間抽伸手段のモータの抽伸荷重に関連する荷重関連データを検出する荷重関連データ検出手段で構成した
    請求項20または21に記載の内面溝付管の製造装置。
    An intermediate drawing means for drawing a raw pipe between the diameter reducing means and the groove processing means;
    The manufacturing apparatus for an internally grooved tube according to claim 20 or 21, wherein the processing related data detection means is configured by load related data detection means for detecting load related data related to a drawing load of a motor of the intermediate drawing means.
  23.  前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定する断管判定手段を備えた
    請求項20から22のいずれかに記載の内面溝付管の製造装置。
    23. The apparatus for manufacturing an internally grooved tube according to claim 20, further comprising a disconnection determination unit that determines that a disconnection has occurred based on the processing related data detected by the processing related data detection unit.
  24.  請求項23に記載の内面溝付管の製造装置を用いて、
    前記断管判定手段により、前記加工関連データ検出手段により検出した前記加工関連データに基づいて断管が発生したと判定し、加工停止を行う
    内面溝付管の製造方法。
    Using the inner surface grooved pipe manufacturing apparatus according to claim 23,
    A method for manufacturing an internally grooved tube, wherein the disconnection determination means determines that a disconnection has occurred based on the processing related data detected by the processing related data detection means, and stops processing.
PCT/JP2009/006674 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same WO2010067576A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117014300A KR101278827B1 (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
CN200980150021.9A CN102245323B (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008312016A JP5227771B2 (en) 2008-12-08 2008-12-08 Internal grooved tube and manufacturing method thereof
JP2008-312016 2008-12-08
JP2009032645A JP5128515B2 (en) 2009-02-16 2009-02-16 Manufacturing apparatus and manufacturing method for internally grooved tube
JP2009-032645 2009-02-16
JP2009125936A JP5275904B2 (en) 2009-05-26 2009-05-26 Manufacturing apparatus and manufacturing method for internally grooved tube
JP2009-125936 2009-05-26
JP2009273044A JP5356195B2 (en) 2009-12-01 2009-12-01 Internal grooved pipe manufacturing apparatus and manufacturing method thereof
JP2009-273044 2009-12-01

Publications (1)

Publication Number Publication Date
WO2010067576A1 true WO2010067576A1 (en) 2010-06-17

Family

ID=42242570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006674 WO2010067576A1 (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same

Country Status (4)

Country Link
KR (1) KR101278827B1 (en)
CN (1) CN102245323B (en)
MY (1) MY167025A (en)
WO (1) WO2010067576A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216537A3 (en) * 2016-03-08 2017-10-04 Muhr und Bender KG Method and device for transporting long metallic material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097038A (en) * 2013-04-03 2014-10-15 昭和电工株式会社 Method for manufacturing heat pipe type heat exchanging device
JP6169538B2 (en) * 2014-07-18 2017-07-26 三菱アルミニウム株式会社 Manufacturing method and manufacturing apparatus of internally spiral grooved tube
KR102358954B1 (en) * 2020-05-26 2022-02-08 부곡스텐레스(주) Automatic Control System for Drawing Machine Using Load Cell
CN112044800A (en) * 2020-08-25 2020-12-08 宁波思密德机电科技有限公司 Full-automatic machinery for detecting radial clearance of bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207670A (en) * 2004-01-22 2005-08-04 Kobe Steel Ltd Internally grooved tube, and its manufacturing device and method
JP2008036640A (en) * 2006-08-01 2008-02-21 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2008087004A (en) * 2006-09-29 2008-04-17 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing inner grooved tube and inner grooved tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286391A (en) * 1999-08-25 2001-03-07 盛峰科技有限公司 Efficient heat exchanger with guide slots and pipes range in sandwich
JP4665713B2 (en) * 2005-10-25 2011-04-06 日立電線株式会社 Internal grooved heat transfer tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207670A (en) * 2004-01-22 2005-08-04 Kobe Steel Ltd Internally grooved tube, and its manufacturing device and method
JP2008036640A (en) * 2006-08-01 2008-02-21 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing internally grooved tube
JP2008087004A (en) * 2006-09-29 2008-04-17 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing inner grooved tube and inner grooved tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216537A3 (en) * 2016-03-08 2017-10-04 Muhr und Bender KG Method and device for transporting long metallic material
US10167140B2 (en) 2016-03-08 2019-01-01 Muhr Und Bender Kg Device and method for transporting elongated metal material

Also Published As

Publication number Publication date
KR101278827B1 (en) 2013-06-25
MY167025A (en) 2018-07-31
KR20110089189A (en) 2011-08-04
CN102245323B (en) 2014-04-02
CN102245323A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
US10537923B2 (en) Methods to drive material conditioning machines
JP5064749B2 (en) Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube
WO2010067576A1 (en) Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
JP6135390B2 (en) Work roll or backup roll processing method for use in differential thickness steel plate manufacturing equipment
WO2016010113A1 (en) Production method and production device for pipe with spirally grooved inner surface
JP4948073B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP2005207670A (en) Internally grooved tube, and its manufacturing device and method
JP5227771B2 (en) Internal grooved tube and manufacturing method thereof
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP4795322B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP5128515B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP4460064B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP6079344B2 (en) Apparatus and method for manufacturing a differential thickness steel sheet having a thickness difference in the sheet width direction
JP5275904B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP5356195B2 (en) Internal grooved pipe manufacturing apparatus and manufacturing method thereof
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP6964498B2 (en) Manufacturing method of inner spiral grooved tube, heat exchanger and inner spiral grooved tube
JP6316697B2 (en) Internal spiral grooved tube and manufacturing method thereof
JP2006218514A (en) Method for reducing diameter of pipe
JP2005193247A (en) Method for manufacturing seamless steel tube and mandrel mill
JP6316696B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
US20030182980A1 (en) Apparatus for producing internally grooved tube
JP2003294387A (en) Internally grooved pipe and its manufacturing method
JP2012076126A (en) Apparatus and method for manufacturing inner grooved tube
JP2005138149A (en) Method and device for manufacturing inside grooved tube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150021.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117014300

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09831683

Country of ref document: EP

Kind code of ref document: A1