JP5128515B2 - Manufacturing apparatus and manufacturing method for internally grooved tube - Google Patents

Manufacturing apparatus and manufacturing method for internally grooved tube Download PDF

Info

Publication number
JP5128515B2
JP5128515B2 JP2009032645A JP2009032645A JP5128515B2 JP 5128515 B2 JP5128515 B2 JP 5128515B2 JP 2009032645 A JP2009032645 A JP 2009032645A JP 2009032645 A JP2009032645 A JP 2009032645A JP 5128515 B2 JP5128515 B2 JP 5128515B2
Authority
JP
Japan
Prior art keywords
diameter
tube
grooved
processing
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009032645A
Other languages
Japanese (ja)
Other versions
JP2010188356A (en
Inventor
利明 橋爪
弘太郎 釣
栄徳 尹
和昭 正武家
忠 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009032645A priority Critical patent/JP5128515B2/en
Priority to PCT/JP2009/006674 priority patent/WO2010067576A1/en
Priority to MYPI2011002613A priority patent/MY167025A/en
Priority to KR1020117014300A priority patent/KR101278827B1/en
Priority to CN200980150021.9A priority patent/CN102245323B/en
Publication of JP2010188356A publication Critical patent/JP2010188356A/en
Application granted granted Critical
Publication of JP5128515B2 publication Critical patent/JP5128515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Description

この発明は、冷凍機や空調機等の熱交換器用の伝熱管に使用される内面溝付管の製造装置及び製造方法に関する。   The present invention relates to an apparatus and a method for manufacturing an internally grooved tube used for a heat transfer tube for a heat exchanger such as a refrigerator or an air conditioner.

エアコンや給湯器の熱交換器に用いられる伝熱管は、熱交換性能の要求から、内面に溝のついた銅管が用いられることが多い。
近年は特に、熱交換器の軽量化や金属の省資源化のために、伝熱管用の内面溝付管は、より薄いものが求められている。
A heat transfer tube used for a heat exchanger of an air conditioner or a water heater is often a copper tube with a groove on the inner surface because of the requirement for heat exchange performance.
In recent years, in particular, thinner inner-surface grooved tubes for heat transfer tubes have been demanded in order to reduce the weight of heat exchangers and save metal resources.

このような内面溝付管を製造するための内面溝付管の製造装置及び製造方法は、特許文献1,2に開示されている。   Patent Documents 1 and 2 disclose a manufacturing apparatus and a manufacturing method of an internally grooved tube for manufacturing such an internally grooved tube.

特許文献1の内面溝付管の製造装置は、素管を縮径するために縮径ダイスとフローティングプラグとを備えるとともに、素管の引抜き方向下流側に素管内面に多数の溝を形成する溝付プラグと押圧用工具を備えている。さらに前記縮径ダイスと前記加工ヘッドとの間には、加工途中における素管の破断を防止するため、素管の引抜き方向に沿って、ワイパー、引抜き装置(中間引抜き部)、中間整形ダイスを備えた構成である。   The apparatus for manufacturing an internally grooved tube of Patent Document 1 includes a diameter reducing die and a floating plug for reducing the diameter of the element tube, and forms a large number of grooves on the inner surface of the element tube on the downstream side in the drawing direction of the element tube. A grooved plug and a pressing tool are provided. Further, a wiper, a drawing device (intermediate drawing portion), and an intermediate shaping die are provided between the reduced diameter die and the machining head along the drawing direction of the blank tube in order to prevent breakage of the blank tube during the machining. This is a configuration provided.

特許文献2の内面溝付管の製造装置も同様に、素管を縮径するために縮径加工部と、素管の引抜き方向下流側に素管内面に多数の溝を形成する溝加工部と、加工済みの内面溝付管を巻き取る巻取りドラムを兼ねた引抜き手段を備えている。さらに、前記引抜き手段を補助する補助引抜き装置(中間引抜き部)と、前記引抜き手段や補助引抜き装置の引き抜き力を目標範囲に収まるよう制御する制御手段を備えた構成である。   Similarly, the manufacturing apparatus of the inner surface grooved pipe of Patent Document 2 also reduces the diameter of the element pipe, and the groove processing part forms a large number of grooves on the inner surface of the element pipe on the downstream side in the drawing direction of the element pipe. And a drawing means that also serves as a take-up drum for winding up the processed inner grooved tube. Furthermore, it is a structure provided with the auxiliary | assistant extraction apparatus (intermediate extraction part) which assists the said extraction means, and the control means which controls the extraction force of the said extraction means and an auxiliary extraction apparatus so that it may be settled in a target range.

特許文献1,2に開示の内面溝付管の製造装置によれば、中間引抜き部によって加工時の引抜き荷重を低減させ、加工中における管の破断の抑制を図ることができる。   According to the inner grooved pipe manufacturing apparatus disclosed in Patent Documents 1 and 2, the intermediate pulling portion can reduce the drawing load during processing and suppress breakage of the pipe during processing.

しかし、引張り荷重全体を低減することができても、引張り荷重に変動が発生した場合、このような荷重変動に対して十分に対応した加工を行うことができなかった。   However, even if the entire tensile load can be reduced, if the tensile load fluctuates, it has not been possible to perform processing sufficiently corresponding to such a load fluctuation.

例えば、特許文献1に開示の製造装置では、中間引抜き部に備え、素管に接触されるパッドが素管に対して滑ることを防止するためにワイパーを設けたり、パッドの溝形状を規定する対策が施されているが、それでも荷重変動は起こりうる。   For example, in the manufacturing apparatus disclosed in Patent Document 1, a wiper is provided to prevent the pad that comes into contact with the element pipe from sliding against the element pipe, or the groove shape of the pad is defined in the intermediate extraction unit. Although measures have been taken, load fluctuations can still occur.

一方、特許文献2に開示の製造装置では、制御手段により引抜き手段や補助引抜き装置の引抜き力を目標範囲内に収めるように制御を行っている。しかし、制御しきれない瞬間的な荷重変動は起こりうる。   On the other hand, in the manufacturing apparatus disclosed in Patent Document 2, control is performed so that the pulling force of the pulling means and the auxiliary pulling apparatus falls within the target range. However, instantaneous load fluctuations that cannot be controlled can occur.

このように加工中に荷重が変動すると、管内面に形成される溝の形状が変化したり、加工の際に素管が破断してしまうという問題があった。   Thus, when the load fluctuates during processing, there is a problem that the shape of the groove formed on the inner surface of the tube changes, or the raw tube breaks during processing.

特開2008−36640号公報JP 2008-36640 A 特開2008−87004号公報JP 2008-87004 A

そこで本発明では、引張り荷重の低減と安定を図ることで、長い管でも破断せずに管全長に亘って内面形状が安定した加工を実現し、優れた伝熱性能を有した内面溝付管を構成することができる内面溝付管の製造装置及び製造方法の提供を目的とする。   Therefore, in the present invention, by reducing and stabilizing the tensile load, it is possible to realize processing with a stable inner surface shape over the entire length of the tube without breaking even a long tube, and an internally grooved tube having excellent heat transfer performance. It is an object of the present invention to provide a manufacturing apparatus and a manufacturing method for an internally grooved tube.

本発明は、素管の引抜き方向に沿って、素管を縮径させる縮径加工部と、素管内面に多数の溝を形成する溝加工部を備えるとともに、前記縮径加工部と前記溝加工部との間に前記縮径加工部で縮径した素管を引抜く中間引抜き部を備え、前記縮径加工部を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで構成し、前記溝加工部を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで構成した内面溝付管の製造装置であって、前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、R={(D−D)/D}×100(%)であらわされる素管の縮径率R(%)を、前記縮径加工部においてR≦30に設定し、前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、D−D≧0.1となるよう設定したことを特徴とする。 The present invention includes a diameter reducing portion that reduces the diameter of the raw tube along the drawing direction of the raw tube, and a groove processing portion that forms a large number of grooves on the inner surface of the raw tube, and the diameter reducing portion and the groove An intermediate drawing portion for drawing the raw pipe reduced in diameter by the reduced diameter processed portion is provided between the processed portion, and the reduced diameter processed portion is disposed in the reduced diameter die and the raw pipe, and the raw diameter together with the reduced diameter die And a grooved plug having a plurality of grooves formed on the outer periphery thereof, and a grooved plug formed by a floating plug for reducing a diameter of the tube, the groove processing portion being rotatably connected to the floating plug in the element tube, and an outer side of the element tube And a pressing tool arranged to revolve around the pipe axis while pressing the element pipe toward the grooved plug side, and an outer diameter D of the element pipe the o (mm), the diameter D 2 (mm) of the diameter die, R D = {( o -D 2) / D o} radial contraction rate of mother tube represented by × 100 (%) R D (percent), is set to R D ≦ 30 in the diametral reduction part, the outer diameter of the floating plug D 1 (mm) and the diameter D 2 (mm) of the reduced diameter die are set to satisfy D 1 −D 2 ≧ 0.1.

また、本発明は、素管が引抜き方向へ進む過程で、素管を縮径させる縮径加工工程と、素管内面に多数の溝を形成する溝加工工程を行い、前記縮径加工工程と前記溝加工工程とを行なう間、前記縮径加工工程で縮径した素管を引抜く中間引抜き工程を行い、前記縮径加工工程を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで行い、前記溝加工工程を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで行なう内面溝付管の製造方法であって、前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、R={(D−D)/D}×100(%)であらわされる素管の縮径率R(%)を、R≦30に設定し、前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、D−D≧0.1となるよう設定することを特徴とする。 Further, the present invention performs a diameter reducing process for reducing the diameter of the element pipe and a groove forming process for forming a plurality of grooves on the inner surface of the element pipe in the process of moving the element pipe in the drawing direction, While performing the grooving step, an intermediate drawing step of pulling out the raw pipe reduced in the diameter reduction processing step is performed, and the diameter reduction processing step is arranged in the diameter reducing die and the raw pipe, and the diameter reduction is performed. A grooved plug having a plurality of grooves formed on the outer periphery thereof, wherein the groove processing step is pivotally connected to the floating plug in the element pipe, and the element pipe And a pressing tool arranged to revolve around the tube axis while pressing the raw tube toward the grooved plug side, the inner grooved tube manufacturing method, D o (mm), the diameter D 2 (mm) of the reduced diameter die Therefore, the diameter reduction ratio R D (%) of the raw tube expressed by R D = {(D o −D 2 ) / D o } × 100 (%) is set to R D ≦ 30, and the floating plug The outer diameter D 1 (mm) and the diameter D 2 (mm) of the reduced diameter die are set to satisfy D 1 −D 2 ≧ 0.1.

前記内面溝付管の製造装置及び製造方法のように、素管の縮径率を、前記縮径加工部において30%以下に設定することで、前記縮径加工部で縮径後に素管が微振動するいわゆるビビリ現象が抑えられ、前記中間引抜き部で引抜き荷重を補助する荷重補助を安定させることができる。
詳しくは、素管の縮径率が30%より大きくなると、素管と前記縮径ダイスの接触面積が大きくなって摩擦抵抗が大きくなるため、前記縮径ダイスでの加工荷重が大きくなり、素管の外径が前記縮径ダイスの出口の径よりも細くなる引き細りが発生する。
As in the manufacturing apparatus and the manufacturing method of the inner surface grooved pipe, by setting the diameter reduction rate of the raw pipe to 30% or less in the diameter reduction processing section, the base pipe is reduced in diameter after the diameter reduction processing section. The so-called chatter phenomenon that slightly vibrates is suppressed, and the load assist that assists the pull-out load at the intermediate pull-out portion can be stabilized.
Specifically, if the diameter reduction ratio of the blank pipe is greater than 30%, the contact area between the blank pipe and the diameter reduction die increases, and the frictional resistance increases, so the processing load on the diameter reduction die increases, The thinning of the outer diameter of the tube is smaller than the diameter of the outlet of the reduced diameter die.

さらに引き細りにより素管と前記縮径ダイスとの接触が安定せず、ビビリ現象が発生し易くなり、肉厚減少も生じる。ビビリ現象による振動は前記中間引抜き部まで伝わり、また引き細りで素管外径が細くなるので、前記中間引抜き部において素管を押さえるために備えたパッドの素管に対する押え力が不安定になり、その結果、前記中間引抜き部での荷重補助が不安定になる。   Further, due to the thinning, the contact between the raw tube and the reduced diameter die is not stable, the chatter phenomenon is likely to occur, and the thickness is reduced. Vibration due to chattering phenomenon is transmitted to the intermediate pull-out part, and the outer diameter of the pipe becomes thin by pulling, so the pressing force against the base pipe of the pad provided to hold the pipe in the intermediate pull-out part becomes unstable. As a result, load assistance at the intermediate drawing portion becomes unstable.

よって、加工時にこのような不具合が生じないよう、本発明では、素管の縮径率を、前記縮径加工部において30%以下に設定している。   Therefore, in the present invention, the diameter reduction rate of the raw pipe is set to 30% or less in the diameter reduction processed portion so that such a problem does not occur during processing.

さらに、前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、D−D≧0.1となるよう設定することにより、より効果的にビビリ現象の発生を抑えることができる。
詳述すると、前記フローティングプラグと前記縮径ダイスの径の差(D−D)が0.1mm以下であると、前記フローティングプラグと前記縮径ダイスがオーバーラップする面積が小さくなる。
Furthermore, the chatter phenomenon is more effectively achieved by setting the outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die so that D 1 −D 2 ≧ 0.1. Can be suppressed.
More specifically, when the difference in diameter (D 1 -D 2 ) between the floating plug and the reduced diameter die is 0.1 mm or less, the area where the floating plug and the reduced diameter die overlap is reduced.

このように、前記フローティングプラグと前記縮径ダイスとがオーバーラップする面積が小さくなることで、この間に素管が引き込まれる際、前記フローティングプラグの角部、詳しくは、前記フローティングプラグの外周面における上流側の非テーパ面と下流側のテーパ面との境界部分に、管内面が強く当たることで、前記フローティングプラグでの負荷が過大になるので、さらに、引き細り、ビビリ現象による振動、肉厚減少、中間引き抜き機での荷重補助不安定が発生し易くなる。   Thus, the area where the floating plug and the reduced diameter die overlap is reduced, so that when the blank tube is pulled in between, the corner of the floating plug, more specifically, the outer peripheral surface of the floating plug Since the inner surface of the pipe strongly hits the boundary between the upstream non-tapered surface and the downstream tapered surface, the load on the floating plug becomes excessive. Reduction, load assist instability in the intermediate drawing machine is likely to occur.

よって、加工時にこのような不具合が生じないよう、本発明では、D−D≧0.1となるよう設定している。 Therefore, in the present invention, D 1 −D 2 ≧ 0.1 is set so that such a problem does not occur during processing.

またこの発明の態様として、前記押圧用工具の公転方向を、前記溝付プラグの回転方向と逆向き(以下、「逆方向」とする。)に設定し、前記押圧用工具の加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定することができる。   As an aspect of the present invention, the revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug (hereinafter referred to as “reverse direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ≦ P ≦ 0.7.

前記構成により、加工精度が高い溝を有した内面溝付管を、安定して製造できるようになる。
Pを0.2mmより小さくすると、前記中間引抜き部による荷重補助を大きくしても、経験上、素管内面に溝が形成され難くなることが確認されているからである。一方、0.7mmよりも大きくすると、引張り荷重が安定せず、変動が大きくなるからである。
With this configuration, it is possible to stably manufacture an internally grooved tube having a groove with high processing accuracy.
This is because, when P is smaller than 0.2 mm, it has been confirmed from experience that it is difficult to form a groove on the inner surface of the raw tube even if the load assistance by the intermediate drawing portion is increased. On the other hand, if it is larger than 0.7 mm, the tensile load is not stable and the fluctuation becomes large.

なお、前記中間引抜き部による荷重補助をより安定させ、溝の加工精度を高くするには、前記押圧用工具の公転方向を、逆方向に設定し、加工ピッチPを、P≧0.2を満たす範囲で小さく設定する方がよい。
詳しくは、内面溝付管の生産性よりも溝の加工精度がより高くなる加工を優先させる場合には、加工ピッチPを、0.2≦P≦0.7の範囲の中でも、例えば、0.2≦P≦0.4に設定することがよい。
In addition, in order to further stabilize the load assistance by the intermediate drawing portion and increase the groove machining accuracy, the revolution direction of the pressing tool is set in the reverse direction, and the machining pitch P is set to P ≧ 0.2. It is better to set it as small as possible.
In detail, when giving priority to the processing in which the processing accuracy of the groove is higher than the productivity of the internally grooved tube, the processing pitch P is within the range of 0.2 ≦ P ≦ 0.7, for example, 0 .2 ≦ P ≦ 0.4 is preferable.

一方、内面溝付管の生産性を高めるためには、前記押圧用工具の公転方向を、逆方向に設定し、加工ピッチPを、P≦0.7を満たす範囲で大きく設定する方がよい。
詳しくは、溝の加工精度がより高くなる加工よりも内面溝付管の生産性を優先させる場合には、加工ピッチPを、0.2≦P≦0.7の範囲の中でも、例えば、0.4≦P≦0.7に設定するのがよい。
On the other hand, in order to increase the productivity of the internally grooved tube, it is better to set the revolution direction of the pressing tool in the reverse direction and to set the machining pitch P large in a range satisfying P ≦ 0.7. .
Specifically, in the case where the productivity of the internally grooved tube is given priority over the processing with higher groove processing accuracy, the processing pitch P is set within the range of 0.2 ≦ P ≦ 0.7, for example, 0 It is better to set 4 ≦ P ≦ 0.7.

またこの発明の態様として、前記押圧用工具の公転方向を、前記溝付プラグの回転方向と同じ向き(以下、「正方向」とする。)に設定し、前記押圧用工具の加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することができる。   As an aspect of the present invention, the revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug (hereinafter referred to as “positive direction”), and the processing pitch P of the pressing tool ( mm) can be set in a range of 0.2 ≦ P ≦ 0.4.

前記構成のように、前記押圧用工具の公転方向が、正方向の場合でも、加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することで、内面フィンの裾部にエグレが生じず、溝深さが深くて加工精度が高いものを得ることができる。   Even if the revolving direction of the pressing tool is the positive direction as in the above configuration, the inner surface fin is set by setting the machining pitch P (mm) to be in the range of 0.2 ≦ P ≦ 0.4. In this case, the hems of the slabs do not have any glazing, and the groove depth is deep and the machining accuracy is high.

詳しくは、管内面に深い溝を有する内面溝付管を製造するためには、前記押圧用工具の公転方向が、正方向であることが望ましいが、正方向の場合、管内面において溝と溝との間に形成されるフィンの裾部にエグレとよばれる材料の未充填部分が生じ易くなる。さらに、加工ピッチPが大きくなるほどエグレが発生し易くなる。   Specifically, in order to manufacture an internally grooved tube having a deep groove on the tube inner surface, it is desirable that the revolving direction of the pressing tool is a positive direction. An unfilled portion of a material called “egre” is likely to occur at the bottom of the fin formed between the two. Further, the greater the processing pitch P is, the easier it is to generate the egress.

このため、深い溝を形成しつつ、エグレを防ぐためには、前記押圧用工具の公転方向が正方向で、且つ、0.2≦P≦0.4であるのが望ましい。   For this reason, in order to prevent aggression while forming a deep groove, it is desirable that the revolution direction of the pressing tool is a positive direction and 0.2 ≦ P ≦ 0.4.

なお、一般に、素管が薄肉になるほど、フィンを形成し難く、破断し易くなり、加工が困難になるが、本発明は、薄肉な素管も含めて素管の肉厚に関係なく適用可能であるため、素管が薄肉になるほど、本発明の製造条件がさらに有効になる。   In general, the thinner the pipe, the harder it is to form the fins, and the easier it is to break. However, the present invention can be applied regardless of the thickness of the pipe, including thin pipes. Therefore, the thinner the pipe is, the more effective the production conditions of the present invention.

また、本発明によって、長い管全長に亘って内面形状も安定し、破断せずに加工できるようになるので、素管の長さに関係なく適用可能となり、歩留まりと生産性を向上させることができる。   In addition, according to the present invention, the shape of the inner surface is stable over the entire length of the long tube and can be processed without breaking, so that it can be applied regardless of the length of the raw tube, and the yield and productivity can be improved. it can.

本発明では、引張り荷重の低減と安定を図ることで、長い管でも破断せずに管全長に亘って内面形状が安定した加工が可能となり、優れた伝熱性能を有した内面溝付管を構成することができる内面溝付管の製造装置及び製造方法を提供することができる。   In the present invention, by reducing and stabilizing the tensile load, it is possible to process a stable inner surface shape over the entire length of the tube without breaking even a long tube, and an internally grooved tube having excellent heat transfer performance can be obtained. An apparatus and a method for manufacturing an internally grooved tube that can be configured can be provided.

本実施形態の内面溝付管の製造装置を示す断面図。Sectional drawing which shows the manufacturing apparatus of the inner surface grooved pipe | tube of this embodiment. 本実施形態の縮径加工部を一部断面で示した縮径加工部の構成説明図。The structure explanatory view of the diameter-reduction processing part which showed the diameter-reduction processing part of this embodiment in the partial cross section. 本実施形態の縮径加工部により素管を縮径する様子を示す作用説明図。Action | operation explanatory drawing which shows a mode that an element pipe is diameter-reduced by the diameter-reduction process part of this embodiment. 本実施形態の加工ボールの加工ピッチを説明する説明図。Explanatory drawing explaining the processing pitch of the processing ball of this embodiment. エグレが発生したフィンを有する管内面の一部を示す断面図。Sectional drawing which shows a part of pipe inner surface which has the fin which the egle has generate | occur | produced. 従来の縮径加工部により素管を縮径する様子を示す説明図。Explanatory drawing which shows a mode that an element pipe is diameter-reduced by the conventional diameter reduction process part.

この発明の一実施形態を、以下図面を用いて説明する。
なお、図1は、本実施形態における内面溝付管の製造装置12の説明図である。
An embodiment of the present invention will be described below with reference to the drawings.
In addition, FIG. 1 is explanatory drawing of the manufacturing apparatus 12 of the inner surface grooved pipe | tube in this embodiment.

本実施形態における内面溝付管の製造装置12は、図1に示すように、素管11aの引抜き方向Xに沿って、素管11aを縮径させる縮径加工部13と、素管11a内面に多数の溝を形成する溝加工部14を備えるとともに、前記縮径加工部13と前記溝加工部14との間に前記縮径加工部13で縮径した素管11aを引抜く中間引抜き部17を備えている。   As shown in FIG. 1, the inner grooved tube manufacturing apparatus 12 in this embodiment includes a diameter reducing portion 13 for reducing the diameter of the element tube 11 a along the drawing direction X of the element tube 11 a, and the inner surface of the element tube 11 a. And an intermediate drawing portion for drawing the element tube 11a having a diameter reduced by the diameter reducing portion 13 between the diameter reducing portion 13 and the groove processing portion 14. 17 is provided.

前記縮径加工部13は、縮径ダイス22と、素管11a内に配置され、前記縮径ダイス22とともに素管11aを縮径するフローティングプラグ23とで構成している。   The reduced diameter processing portion 13 includes a reduced diameter die 22 and a floating plug 23 that is disposed in the raw tube 11 a and reduces the diameter of the raw tube 11 a together with the reduced diameter die 22.

前記溝加工部14は、素管11a内において連結棒25を介して前記フローティングプラグ23と回動自在に連結され、外周に複数の溝が形成された溝付プラグ24と、素管11aの外側において該素管11aを前記溝付プラグ24の側へ押圧しながら管軸回りに公転自在に配設された複数の加工ボール26とで構成している。   The grooved portion 14 is rotatably connected to the floating plug 23 via a connecting rod 25 in the raw tube 11a, and a grooved plug 24 having a plurality of grooves formed on the outer periphery, and the outer side of the raw tube 11a. In FIG. 3, the base tube 11a is composed of a plurality of processed balls 26 arranged to revolve around the tube axis while pressing the grooved plug 24 side.

前記製造装置12、及び、該製造装置12を用いた内面溝付管11の製造方法では、図2に示すように、前記素管11aの外径D(mm)、前記縮径ダイス22の径D(mm)により、R={(D−D)/D}×100(%)であらわされる素管11aの縮径率Rを、前記縮径加工部13において30%以下に設定している。 In the manufacturing apparatus 12 and the manufacturing method of the inner surface grooved tube 11 using the manufacturing apparatus 12, as shown in FIG. 2, the outer diameter D o (mm) of the raw tube 11 a and the reduced diameter die 22 The diameter reduction ratio R D of the raw tube 11a represented by R D = {(D o −D 2 ) / D o } × 100 (%) by the diameter D 2 (mm) is 30 in the diameter reduction processing portion 13. % Or less is set.

さらに、前記フローティングプラグ23の外径D(mm)、前記縮径ダイス22の径D(mm)を、D−D≧0.1となるよう設定している。 Furthermore, the outer diameter D 1 (mm) of the floating plug 23 and the diameter D 2 (mm) of the reduced diameter die 22 are set to satisfy D 1 −D 2 ≧ 0.1.

さらにまた、前記加工ボール26の公転方向を、逆方向に設定し、前記加工ボール26の加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定している。   Furthermore, the revolution direction of the processed ball 26 is set in the reverse direction, and the processed pitch P (mm) of the processed ball 26 is set in a range of 0.2 ≦ P ≦ 0.7.

または、前記加工ボール26の公転方向を、正方向に設定した場合には、加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定している。   Alternatively, when the revolution direction of the processed ball 26 is set to the positive direction, the processing pitch P (mm) is set to be in a range of 0.2 ≦ P ≦ 0.4.

以下、本実施形態における内面溝付管の製造装置12について詳述する。
前記製造装置12は、引抜方向Xの上流側から下流側へ沿って、縮径加工部13、中間引抜き部17、溝加工部14、整形ダイス15、引抜き部16を構成している。
Hereinafter, the manufacturing apparatus 12 for an internally grooved tube in the present embodiment will be described in detail.
The manufacturing apparatus 12 constitutes a diameter reducing portion 13, an intermediate drawing portion 17, a groove processing portion 14, a shaping die 15, and a drawing portion 16 along the drawing direction X from the upstream side to the downstream side.

さらに、前記製造装置12は、固定台50に対して引抜方向へ移動可能に、縮径部13、中間引抜装置17、及び、溝加工部14を支持する可動台33と、該可動台33の前記固定台50に対する移動に応じて作用する荷重Fを検出するロードセル28と、該ロードセル28により検出した前記荷重Fに基づいて、中間引抜き部17、及び、引抜き部16を制御する制御装置45とで構成している。   Further, the manufacturing apparatus 12 is movable in the drawing direction with respect to the fixed base 50, a movable base 33 that supports the reduced diameter portion 13, the intermediate drawing device 17, and the groove processing portion 14, and the movable base 33. A load cell 28 for detecting a load F acting in accordance with the movement with respect to the fixed base 50, and a control device 45 for controlling the intermediate pulling portion 17 and the pulling portion 16 based on the load F detected by the load cell 28; It consists of.

前記縮径加工部13は、上述したように縮径ダイス22とフローティングプラグ23とで構成している。
前記縮径ダイス22は、引抜き方向Xへ連通した連通孔22aを有した筒状に構成し、連通孔22aは、引抜き方向Xの上流側部分(入口側)を下流側部分(出口側)に対して上流側へ向けて末広がり状に開口した形状で構成している。
As described above, the diameter reducing portion 13 includes the diameter reducing die 22 and the floating plug 23.
The diameter-reducing die 22 is formed in a cylindrical shape having a communication hole 22a communicating with the drawing direction X, and the communication hole 22a has an upstream portion (inlet side) in the drawing direction X as a downstream portion (outlet side). On the other hand, it is configured in a shape that opens toward the upstream side.

前記フローティングプラグ23は、円柱状に構成し、下流側部分の外周をテーパ状に構成している。   The floating plug 23 is formed in a cylindrical shape, and the outer periphery of the downstream portion is formed in a tapered shape.

なお、図2に示すように、フローティングプラグ23の外径をD(mm)、縮径ダイス22の出口側の内径をD(mm)に設定している。 As shown in FIG. 2, the outer diameter of the floating plug 23 is set to D 1 (mm), and the inner diameter on the outlet side of the reduced diameter die 22 is set to D 2 (mm).

前記溝加工部14は、溝付プラグ24と複数の加工ボール26と、加工ボール26を外周側から保持する加工ヘッド27とで構成している。   The groove processing portion 14 includes a grooved plug 24, a plurality of processing balls 26, and a processing head 27 that holds the processing balls 26 from the outer peripheral side.

前記加工ヘッド27は、断面半円状の加工ボール保持溝27aが形成されている。
複数の加工ボール26は、前記加工ボール保持溝27aによって素管11aの表面を押圧しながら公転可自在に保持されている。複数の加工ボール26は、前記加工ボール保持溝27aによって正方向、或いは、逆方向のいずれの方向にも素管11aの表面を押圧しながら公転速度を変更可能に保持されている。
The processing head 27 is formed with a processing ball holding groove 27a having a semicircular cross section.
The plurality of processed balls 26 are held so as to revolve freely while pressing the surface of the raw tube 11a by the processed ball holding grooves 27a. The plurality of processed balls 26 are held by the processed ball holding grooves 27a so that the revolution speed can be changed while pressing the surface of the raw tube 11a in either the forward direction or the reverse direction.

前記整形ダイス15は、内面溝付管11が通過することにより、例えば、前記溝加工部14における加工ボール26の押圧により生じた管表面の歪み等を滑らかに整形する加工を行う。   The shaping die 15 performs a process of smoothly shaping, for example, distortion of the pipe surface caused by pressing of the machining ball 26 in the grooving part 14 when the inner grooved pipe 11 passes.

前記引抜き部16は、加工済みの内面溝付管11を巻き取る巻取りドラム36を兼ね備え、巻取りドラム36を駆動するモータMを備え、該モータMの回転駆動により内面溝付管11を引張りながら巻取りドラム36に巻き付けている。 The drawing portion 16 also has a winding drum 36 for winding the processed inner surface grooved tube 11, and includes a motor M 1 that drives the winding drum 36, and the inner surface grooved tube 11 is driven by rotation of the motor M 1. Is wound around the winding drum 36.

前記中間引抜き部17は、縮径部13と溝加工部14との間で、素管11aを引抜き方向Xへ引き抜くことで引抜装置16による引抜きを補助している。すなわち、前記溝加工部14による溝加工は、素管11aを引抜く際の抵抗となり、この溝加工の際の引抜きの負荷が大きくなるが、中間引抜き部17により素管11aにかかる前記引抜き負荷を分散させることができる。   The intermediate drawing portion 17 assists drawing by the drawing device 16 by drawing the base tube 11 a in the drawing direction X between the reduced diameter portion 13 and the groove processing portion 14. That is, the grooving by the grooving portion 14 becomes resistance when the raw tube 11a is pulled out, and the drawing load during the grooving increases, but the drawing load applied to the raw tube 11a by the intermediate drawing portion 17 is increased. Can be dispersed.

前記中間引抜き部17は、素管11aに対して上下各側、或いは、左右各側に配置された一対のベルト42a,42aを備えている。各ベルト42a,42aは、ループ状(無端状)に形成され、モータMの回転駆動により回転可能にプーリー43に張架されている。ベルト42a,42aは、外周面に、その長さ方向に沿って複数のパッド44を連設している。 The intermediate extraction portion 17 includes a pair of belts 42a and 42a disposed on the upper and lower sides or the left and right sides of the raw tube 11a. Each belt 42a, 42a are formed in a loop shape (endless) and is tensioned by a rotatable pulley 43 by the rotation of the motor M 2. The belts 42a, 42a are provided with a plurality of pads 44 on the outer peripheral surface thereof along the length direction.

前記パッド44には、図示しないが、縮径部13により縮径後の素管11aの外面との接触部分に、複数のパッド44の連設方向に対する切断面が円弧状となるパッド溝を形成している。   Although not shown, the pad 44 is formed with a pad groove in which the cut surface with respect to the connecting direction of the plurality of pads 44 has an arc shape at the contact portion with the outer surface of the base tube 11a after being reduced in diameter by the reduced diameter portion 13. doing.

前記中間引抜き部17は、モータMの駆動によりパッド44を素管11a表面に押し付け可能に構成している。
なお、前記中間引抜き部17の上流側には、素管11aの外表面に付着した油膜や異物を除去するためのワイパー51を設け、下流側には、中間整形ダイス52を設けている。
The intermediate withdrawal unit 17 is a pad 44 configured to be pressed against the base pipe 11a surface by driving of the motor M 3.
A wiper 51 for removing an oil film and foreign matter adhering to the outer surface of the raw tube 11a is provided on the upstream side of the intermediate drawing portion 17, and an intermediate shaping die 52 is provided on the downstream side.

前記ワイパー51は、素管11aの外表面に付着した油膜や異物も除去するために設けられ、素管11aを通過させるため、該素管11aの外径よりも一回り小さい径の貫通穴が中央部に形成された例えば、ゴム製の筒状体である。
なお、ワイパー51を設置しない場合、油膜や異物により、中間引抜き部17で滑りが生じてしまい、素管1cの引抜きが安定せず、また断面形状が安定しないため、溝の寸法がばらつくという問題が生じてしまう。
The wiper 51 is provided to remove an oil film and foreign matter adhering to the outer surface of the raw tube 11a, and a through hole having a diameter slightly smaller than the outer diameter of the raw tube 11a is passed through the raw tube 11a. For example, a rubber cylindrical body formed in the central portion.
In addition, when the wiper 51 is not installed, slipping occurs in the intermediate extraction portion 17 due to an oil film or foreign matter, and the drawing of the raw tube 1c is not stable, and the cross-sectional shape is not stable, so that the dimension of the groove varies. Will occur.

中間整形ダイス52は、前記中間引抜き部17で扁平した素管11aの断面形状を真円に近い形状に戻すために設けられ、前記素管11aの形状に応じて、フローティングダイス22の径と同じか小さなダイス径で構成している。
なお、前記中間整形ダイス52は金属、セラミック等の金属素管11aの材質より硬質なものからなる。好ましくは超硬合金製である。
The intermediate shaping die 52 is provided to return the cross-sectional shape of the element tube 11a flattened by the intermediate extraction portion 17 to a shape close to a perfect circle, and has the same diameter as the floating die 22 according to the shape of the element tube 11a. It is configured with a small die diameter.
The intermediate shaping die 52 is made of a material harder than the material of the metal tube 11a such as metal or ceramic. Preferably, it is made of cemented carbide.

前記可動台33は、固定台50に対して引抜方向、或いは、その逆方向に平行移動可能なように複数の車輪33aを介して固定台50に設置され、上述した縮径部13、溝加工部14、仕上げ加工部15、中間引抜装置17、ワイパー51、及び、中間整形ダイス52を、ボックス32に収容した状態で設置している。   The movable table 33 is installed on the fixed table 50 via a plurality of wheels 33a so as to be movable in the drawing direction or the opposite direction with respect to the fixed table 50. The part 14, the finishing part 15, the intermediate drawing device 17, the wiper 51, and the intermediate shaping die 52 are installed in a state where they are accommodated in the box 32.

ロードセル28は、固定台50上であって可動台33における引抜方向の下流側端部分に、素管11aの引抜き力に応じて可動台33から受ける荷重Fを検出可能に設けている。   The load cell 28 is provided at the downstream end portion of the movable table 33 in the pulling direction on the fixed table 50 so that the load F received from the movable table 33 according to the pulling force of the raw tube 11a can be detected.

前記制御部45は、ロードセル28により検出した荷重Fを電気信号化した荷重検出信号Sinが入力され、制御プログラムに従って、引抜き部16、及び、中間引抜き部17の各モータM,M,Mの駆動を制御する制御信号Soutを出力する。 The control unit 45 receives a load detection signal S in obtained by converting the load F detected by the load cell 28 into an electrical signal, and the motors M 1 , M 2 , and M of the extraction unit 16 and the intermediate extraction unit 17 according to a control program. A control signal S out for controlling the driving of M 3 is output.

さらに、前記制御部45は、図示しないが信号の解析処理および演算処理を実行するための演算機(CPU)、必要な制御プログラムを格納するためのハードディスク、及び、前記荷重検出信号Sinを一時格納するためのメモリを備え、その他にも、制御パラメータを入力するキーボードなどの入力手段、モニタなどの表示手段を適宜、備えることができる。 Further, although not shown, the control unit 45 temporarily stores a computing unit (CPU) for executing signal analysis processing and arithmetic processing, a hard disk for storing necessary control programs, and the load detection signal S in . In addition to the memory for storing, input means such as a keyboard for inputting control parameters and display means such as a monitor can be appropriately provided.

前記制御部45は、中間引抜き部17のモータMの駆動を制御することにより、中間引抜き部17のパッド44による素管11aに対する押し付け力を制御する。
パッド44を素管11aに対して適切な押し付け力で押し付けることによって、パッド44と素管11aの間のスリップを低減させ、荷重Fの変動が小さくなるようにする。
The control unit 45, by controlling the driving of the motor M 3 of the intermediate withdrawal unit 17 controls the pressing force by the pad 44 of the intermediate pullout portion 17 against base pipe 11a.
By pressing the pad 44 against the base tube 11a with an appropriate pressing force, the slip between the pad 44 and the base tube 11a is reduced, and the variation in the load F is reduced.

荷重Fの変動が大きくなると、長手方向での溝形状にばらつきが生じ、長手方向での溝の深さがばらつくと、一定の伝熱性能を確保できなくなることや、熱交換器のアルミフィンへの拡管組み込み時に拡管の度合いにばらつきが生じるため、部分的に拡管不足となり、アルミフィンとの密着不足による熱交換器性能の低下を起こすからである。   When the fluctuation of the load F becomes large, the shape of the groove in the longitudinal direction varies, and if the depth of the groove in the longitudinal direction varies, a certain heat transfer performance cannot be secured, and the aluminum fin of the heat exchanger This is because there is a variation in the degree of tube expansion when the tube is installed, and therefore the tube expansion is partially insufficient, resulting in a decrease in heat exchanger performance due to insufficient adhesion with the aluminum fins.

なお、荷重Fの変動を小さくするためには、中間引抜き部17でのベルト42a,42aの回転を制御してもよい。その際、前記制御部45は、プーリ43の回転トルクに限らず、回転速度や加速度など他の制御パラメータを制御する構成であってもよい。   In order to reduce the fluctuation of the load F, the rotation of the belts 42a and 42a at the intermediate extraction portion 17 may be controlled. At this time, the controller 45 is not limited to the rotational torque of the pulley 43, and may be configured to control other control parameters such as the rotational speed and acceleration.

続いて、上述した内面溝付管の製造装置12を用いた内面溝付管11の製造方法は、素管11aが引抜き方向Xへ進む過程で、素管11aを縮径させる縮径加工工程と、素管11a内面に多数の溝を形成する溝加工工程を行い、前記縮径加工工程と前記溝加工工程とを行なう間、前記縮径加工工程で縮径した素管11aを引抜く中間引抜き工程を行う。   Then, the manufacturing method of the inner surface grooved tube 11 using the inner surface grooved tube manufacturing apparatus 12 described above includes a diameter reduction processing step of reducing the diameter of the raw tube 11a in the process in which the raw tube 11a advances in the drawing direction X. An intermediate drawing is performed in which a groove forming step for forming a large number of grooves on the inner surface of the element tube 11a is performed, and the element tube 11a reduced in the diameter reducing step is extracted during the diameter reducing step and the groove forming step. Perform the process.

前記縮径加工工程では、縮径ダイス22と、素管11a内に配置され、前記縮径ダイス22とともに素管11aを縮径するフローティングプラグ23とで行う。
前記溝加工工程では、素管11a内において連結棒25を介して前記フローティングプラグ23と回動自在に連結され、外周に複数の溝が形成された溝付プラグ24と、素管11aの外側において該素管11aを前記溝付プラグ24の側へ押圧しながら管軸回りに公転自在に配設された複数の加工ボール26とで行なう。
The diameter reduction process is performed by a diameter reducing die 22 and a floating plug 23 that is disposed in the element tube 11 a and reduces the diameter of the element tube 11 a together with the diameter reducing die 22.
In the groove machining step, a grooved plug 24 that is rotatably connected to the floating plug 23 via a connecting rod 25 in the raw tube 11a and has a plurality of grooves formed on the outer periphery, and on the outer side of the raw tube 11a. This is performed with a plurality of processing balls 26 arranged to revolve around the tube axis while pressing the base tube 11a toward the grooved plug 24 side.

前記製造装置12、及び、製造方法は、以下のような作用効果を奏することができる。
前記製造装置12、及び、前記製造方法は、上述したように、前記素管11aの外径D(mm)、前記縮径ダイス22の径D(mm)により、R={(D−D)/D}×100(%)であらわされる素管11aの縮径率Rを、前記縮径加工部13において30%以下に設定している。
The said manufacturing apparatus 12 and a manufacturing method can have the following effects.
As described above, the manufacturing apparatus 12 and the manufacturing method are configured such that R D = {(D, based on the outer diameter D o (mm) of the raw tube 11 a and the diameter D 2 (mm) of the reduced diameter die 22. o -D 2) / D o} the radial contraction rate R D of the mother tube 11a represented by × 100 (%), is set to 30% or less in the diameter reduction portion 13.

このため、前記縮径加工部13で縮径後に素管11aが微振動するいわゆるビビリ現象が抑えられ、前記中間引抜き部17で引抜き荷重を補助する荷重補助を安定させることができる。   For this reason, the so-called chatter phenomenon in which the tube 11a slightly vibrates after the diameter reduction at the diameter reduction processing portion 13 is suppressed, and the load assist for assisting the extraction load at the intermediate extraction portion 17 can be stabilized.

前記製造装置12、及び、前記製造方法は、上述したように、前記フローティングプラグ23の外径D(mm)、前記縮径ダイス22の径D(mm)を、D−D≧0.1となるよう設定している。 As described above, in the manufacturing apparatus 12 and the manufacturing method, the outer diameter D 1 (mm) of the floating plug 23 and the diameter D 2 (mm) of the reduced diameter die 22 are set such that D 1 −D 2 ≧ It is set to be 0.1.

このため、より効果的にビビリ現象の発生を抑えることができ、縮径加工工程の際に引き細り、肉厚減少を防ぐことができる。   For this reason, generation | occurrence | production of a chatter phenomenon can be suppressed more effectively and it can be thinned in the diameter reduction process and can prevent thickness reduction.

前記製造装置12、及び、前記製造方法は、上述したように、加工ボール26の公転方向を、逆方向に設定した場合、加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定している。   As described above, in the manufacturing apparatus 12 and the manufacturing method, when the revolution direction of the processing ball 26 is set in the reverse direction, the processing pitch P (mm) is set to 0.2 ≦ P ≦ 0.7. The range is set.

このため、溝の加工精度が高い溝付き管を、安定して製造することができる。   For this reason, it is possible to stably manufacture a grooved tube with high groove processing accuracy.

または、前記製造装置12、及び、前記製造方法は、上述したように、加工ボール26の公転方向を、正方向に設定した場合、加工ボール26の加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定している。   Alternatively, as described above, in the manufacturing apparatus 12 and the manufacturing method, when the revolution direction of the processed ball 26 is set to the positive direction, the processing pitch P (mm) of the processed ball 26 is set to 0.2 ≦ It is set to be in the range of P ≦ 0.4.

これにより、内面フィンの裾部にエグレが生じず、溝深さが深くて加工精度が高いものを得ることができる。   As a result, there is no aggression at the skirt portion of the inner fin, and a groove having a deep groove depth and high processing accuracy can be obtained.

続いて、前記製造装置12、及び、前記製造方法の有効性を検証するために素管11aを内面溝付管11に加工する加工実験を行なった。
実施例1では、縮径加工部13での素管11aの縮径率R、実施例2では、フローティングプラグ23と縮径ダイス22の噛み合せ(D−D)、実施例3では、加工ボール26の加工ピッチP、実施例4では、溝付プラグ24の溝深さとねじれ角、実施例5では、加工ボール26の公転回転数、実施例6では、加工ボール26の個数を、それぞれパラメータとして変化させ、加工の出来栄えを評価した。
Subsequently, in order to verify the effectiveness of the manufacturing apparatus 12 and the manufacturing method, a processing experiment for processing the raw tube 11a into the inner grooved tube 11 was performed.
In Example 1, the diameter reduction rate R D of the raw tube 11a in the diameter reducing portion 13 is engaged, in Example 2, the engagement of the floating plug 23 and the diameter reducing die 22 (D 1 -D 2 ), and in Example 3, The processing pitch P of the processing ball 26, the groove depth and the twist angle of the grooved plug 24 in Example 4, the revolution speed of the processing ball 26 in Example 5, and the number of processing balls 26 in Example 6, respectively. It was changed as a parameter and the processing quality was evaluated.

以下、実施例1〜6のそれぞれについて詳述する。   Hereinafter, each of Examples 1 to 6 will be described in detail.

(実施例1)
実施例1では、縮径加工部13での素管11aの縮径率Rを変化させることにより加工に及ぼす影響を調べる溝付け加工実験を行なった。
Example 1
In Example 1, it was subjected to grooving experiment to investigate the effect on the processing by changing the radial contraction rate R D of the base pipe 11a in the diameter reduction portion 13.

本加工実験では、本発明例1〜3、比較例1,2ごとに加工条件を設定して素管11aを加工し、内面溝付管11を作成した。   In this machining experiment, machining conditions were set for each of Invention Examples 1 to 3 and Comparative Examples 1 and 2 to machine the raw tube 11a, thereby creating an internally grooved tube 11.

本発明例1〜3、比較例1,2では、素管11aの肉厚(T)、縮径ダイス22の径(D)、フローティングプラグ23の外径(D)、溝付プラグ24の外径、溝数、ねじれ角、溝深さ、溝頂角、加工ボール26の数、公転回転数、加工ピッチについては、表1に示すとおり共通の条件で加工を行なった。 In Invention Examples 1 to 3 and Comparative Examples 1 and 2, the wall thickness (T o ) of the raw tube 11a, the diameter (D 2 ) of the reduced diameter die 22, the outer diameter (D 1 ) of the floating plug 23, and the grooved plug The outer diameter, the number of grooves, the twist angle, the groove depth, the groove apex angle, the number of processed balls 26, the revolution speed, and the processing pitch of 24 were processed under common conditions as shown in Table 1.

Figure 0005128515
さらに加工実験では、本発明例1〜3、比較例1,2のそれぞれについて表2に示すように、縮径ダイス22のダイス径Dを一定とし、素管11aの外径Dのみを変化させることで、縮径率Rを変化させた。
Figure 0005128515
The further processing experiments, Examples 1 to 3, each of Comparative Examples 1 and 2 As shown in Table 2, the die diameter D 2 of the diameter reduction dies 22 is constant, only the outer diameter D o of the blank pipe 11a The diameter reduction ratio RD was changed by changing.

表2に示すように、本発明例1〜3では、いずれも縮径率Rが30%以下になる設定の下で、比較例1,2では、縮径率Rが30%より大きくなる設定の下で加工を行なった。 As shown in Table 2, in Examples 1 to 3 of the present invention, in each of Comparative Examples 1 and 2, the diameter reduction ratio RD is larger than 30% under the setting that the diameter reduction ratio RD is 30% or less. Processing was performed under the following settings.

加工結果は、溝付加工後に素管11a内面に形成される溝の長手方向での溝深さのばらつきによって評価した。
また、長手方向での溝深さのばらつき具合と、縮径加工部13に設置したロードセル28により縮径加工時に検出される荷重Fの安定の度合いとは、密接に関連している。このため、荷重変動が生じると、素管11aの内面に形成される溝形状(特に溝深さ)に影響し、荷重変動の大きさは、そのまま溝の長手方向での溝深さのばらつきの大きさとなって現れる。
The processing result was evaluated by the variation in the groove depth in the longitudinal direction of the groove formed on the inner surface of the raw tube 11a after the grooving.
Further, the variation in the groove depth in the longitudinal direction and the degree of stability of the load F detected during the diameter reduction processing by the load cell 28 installed in the diameter reduction processing portion 13 are closely related. For this reason, when a load variation occurs, it affects the groove shape (particularly the groove depth) formed on the inner surface of the raw tube 11a, and the magnitude of the load variation is the same as the variation of the groove depth in the longitudinal direction of the groove. Appears in size.

このため、素管11aの内面に形成される溝の長手方向での溝深さのばらつきを評価することにより、縮径加工時に検出される荷重Fの安定の度合いについても評価することができる。   For this reason, the degree of stability of the load F detected at the time of diameter reduction can be evaluated by evaluating the variation in the groove depth in the longitudinal direction of the groove formed on the inner surface of the element tube 11a.

加工結果は、荷重の安定具合を示す長手方向での溝深さのばらつきが0〜0.020mmである場合を「◎」とし、0.021〜0.050mmである場合を「○」とし、0.051mm以上である場合を「×」として評価した。   The processing result is “◎” when the variation in the groove depth in the longitudinal direction indicating the stability of the load is 0 to 0.020 mm, and “◯” when 0.021 to 0.050 mm. The case of 0.051 mm or more was evaluated as “x”.

本発明例1〜3、比較例1,2の各条件で行なった加工結果を表2に示す。   Table 2 shows the results of processing performed under the conditions of Invention Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 0005128515
表2のとおり、本発明例1は「○」、本発明例2,3は「◎」となり、本発明例1〜3は、所望の内面溝付管11が得られたのに対して、比較例1、2は、いずれも「×」となり、所望の内面溝付管11が得られなかった。
Figure 0005128515
As shown in Table 2, Example 1 of the present invention is “◯”, Examples 2 and 3 of the present invention are “◎”, and Examples 1 to 3 of the present invention obtained the desired internally grooved tube 11, In Comparative Examples 1 and 2, both were “x”, and the desired internally grooved tube 11 was not obtained.

詳しくは、縮径率Rが30%より大きくなると、比較例1,2のように、溝の長手方向での溝深さのばらつきが大きくなった。 Specifically, when the diameter reduction ratio RD is greater than 30%, as in Comparative Examples 1 and 2, the variation in groove depth in the longitudinal direction of the groove increases.

素管11aの縮径率Rが30%より大きくなると、図6(a)に示すように、素管11aと前記縮径ダイス22Aの接触面積Aが大きくなって摩擦抵抗が大きくなる。そうすると、前記縮径ダイス22Aでの加工荷重が大きくなり、素管11aの外径Dが前記縮径ダイス22Aの出口の径Dよりも細くなる引き細りが発生してしまう(図6(a)の領域Z1の拡大図参照)。 When radial contraction rate R D of the base pipe 11a is greater than 30%, as shown in FIG. 6 (a), the frictional resistance increases the contact area A of the base pipe 11a and the reduced diameter die 22A is increased. Then, the processing load at diameter die 22A is increased, pulling the outer diameter D f of the mother tube 11a is thinner than the diameter D 2 of the outlet of the reduced diameter die 22A thinning occurs (FIG. 6 ( (See an enlarged view of the area Z1 in a)).

さらに引き細りにより素管11aと前記縮径ダイス22Aとの接触が安定せず、ビビリ現象が発生し易くなり、肉厚減少も生じる。   Further, due to the thinning, the contact between the element tube 11a and the reduced diameter die 22A is not stable, the chatter phenomenon is likely to occur, and the thickness is reduced.

このように、縮径加工部13通過後の素管11aの外径Dが縮径ダイス22Aの径Dよりも小さくなる「引き細り」や「肉厚減少」の度合いが大きくなり、中間引抜き部17での荷重補助が不安定になった。また管が微振動するビビリ現象も発生し、それに伴って、荷重の瞬時的な変動が大きくなった。
このため、比較例1,2で溝の長手方向での溝深さのばらつきが大きくなった結果に現れたものと考えられる。
Thus, the degree of outer diameter D f of the base pipe 11a after diameter reduction portion 13 passes is smaller than the diameter D 2 of the diameter reduction dies 22A "pull thinning" and "thickness reduction" is increased, the intermediate The load assistance at the drawing portion 17 became unstable. In addition, chatter phenomenon in which the pipe vibrates slightly occurred, and the instantaneous fluctuation of the load increased accordingly.
For this reason, it is thought that it appeared in the result of the variation of the groove depth in the longitudinal direction of the groove increased in Comparative Examples 1 and 2.

比較例1,2のように長手方向で溝深さのばらついた内面溝付管11では、伝熱性能が低下する。また、熱交換器のアルミフィンへの拡管組み込み時に拡管の度合いにばらつきが生じるため、部分的に拡管不足となり、アルミフィンとの密着不足による熱交換器性能の低下を起こす。   In the inner surface grooved tube 11 in which the groove depth varies in the longitudinal direction as in Comparative Examples 1 and 2, the heat transfer performance decreases. In addition, since the degree of expansion of pipes varies when the heat exchanger is expanded and incorporated into the aluminum fins, the expansion of the pipes is partially insufficient and the heat exchanger performance is deteriorated due to insufficient adhesion with the aluminum fins.

さらに荷重の変動が大きい場合、加工中に破断を起こす時もあるので荷重の変動は小さい方が望ましい。   Furthermore, if the load fluctuation is large, it may break during processing, so it is desirable that the load fluctuation be small.

これに対して、表2の結果のとおり、縮径加工部13での縮径率Rが30%以下であれば、本発明例1〜3のように長手方向での溝深さのばらつきが小さくなった。これにより、荷重Fの安定がよく、特に、縮径率Rが小さいほど荷重Fの安定がよくなることを実証できた。 In contrast, as the results in Table 2, if radial contraction rate R D is less than 30% at the diameter reduction portion 13, variation of the groove depth in the longitudinal direction as in the present invention Examples 1-3 Became smaller. Thereby, it was proved that the stability of the load F was good, and in particular, the stability of the load F was improved as the diameter reduction ratio RD was small.

具体的には、本発明例1〜3では、図3に示すように、縮径率Rが30%以下、D−D≧0.1の場合、縮径加工後の素管11aの外径Dは、縮径ダイス22の径Dと略同じになり、縮径加工後の素管11aの肉厚Tは、素管11aの肉厚Tと同じか若干増えるという加工を実現できた。 Specifically, in Invention Examples 1 to 3, as shown in FIG. 3, when the diameter reduction ratio RD is 30% or less and D 1 −D 2 ≧ 0.1, the raw tube 11 a after the diameter reduction processing is performed. since the outer diameter D f, becomes substantially the same as the diameter D 2 of the diameter reduction dies 22, the thickness T f of the base pipe 11a after diameter reduction is increased equal to or slightly thicker T o of the base pipe 11a Processing was realized.

(実施例2)
実施例2では、縮径加工部13でのフローティングプラグ23と縮径ダイス22の噛み合わせ(D−D)を変化させることにより加工に及ぼす影響を調べる溝付け加工実験を行なった。
本加工実験では、本発明例4〜8、比較例3の各条件ごとに素管11aを加工し、内面溝付管11を作成した。
(Example 2)
In Example 2, a grooving experiment was conducted to examine the influence on the machining by changing the meshing (D 1 -D 2 ) of the floating plug 23 and the reduced diameter die 22 in the reduced diameter processing portion 13.
In this processing experiment, the raw tube 11a was processed for each of the conditions of Invention Examples 4 to 8 and Comparative Example 3, and the inner grooved tube 11 was created.

本加工実験では、本発明例4〜8、比較例3の各加工条件において、表3に示すように、一定の縮径ダイス22のダイス径Dに対してフローティングプラグ23の外径Dを変化させ、フローティングプラグ23と縮径ダイス22の噛み合わせ(D−D)の度合いを変化させることで加工を行なった。 In this machining experiment, the outer diameter D 1 of the floating plug 23 with respect to the die diameter D 2 of the constant diameter-reduced die 22 as shown in Table 3 under the machining conditions of Invention Examples 4 to 8 and Comparative Example 3. And the degree of engagement (D 1 -D 2 ) between the floating plug 23 and the reduced diameter die 22 was changed.

本発明例4〜8では、いずれも(D−D)が0.1以上の設定の下で、比較例3では、(D−D)が0.1より小さくなる設定の下で加工を行なった。 In Examples 4 to 8 of the invention, (D 1 -D 2 ) is all set under 0.1 or more, and in Comparative Example 3, (D 1 -D 2 ) is set under 0.1. Was processed.

本発明例4〜8、比較例3の各加工条件で行なった加工の結果を表3に示す。
なお、本発明例4〜8、比較例3では、素管11aの外径Dを9.53mm、内径を8.93mmの共通した寸法の素管11aを用い、それ以外の条件についても、表1に示すように共通の条件で加工を行なった。また、加工結果は、実施例1と同様に、溝付け加工後に形成される溝の長手方向での溝深さのばらつき具合をもとに「◎」、「○」、「×」で評価した。
Table 3 shows the results of machining performed under the machining conditions of Invention Examples 4 to 8 and Comparative Example 3.
The present invention examples 4-8, Comparative Example 3, 9.53 mm outer diameter D o of the blank pipe 11a, with a common size of base pipe 11a of 8.93mm internal diameter, for the other conditions, As shown in Table 1, processing was performed under common conditions. In addition, the processing results were evaluated as “評 価”, “◯”, and “×” based on the variation in the groove depth in the longitudinal direction of the grooves formed after the grooving process, as in Example 1. .

Figure 0005128515
表3から明らかなように、本発明例4〜8は、加工結果が「◎」か「○」となり所望の内面溝付管11が得られたのに対して、比較例3では、加工結果が「×」となり所望の内面溝付管11が得られなかった。
Figure 0005128515
As is clear from Table 3, the inventive examples 4 to 8 have a processing result of “◎” or “◯” and a desired inner grooved tube 11 is obtained, whereas in the comparative example 3, the processing result is obtained. Was “x”, and the desired internally grooved tube 11 could not be obtained.

このように(D−D)が0.1より小さい場合、比較例1のように縮径加工部13Aでの荷重が不安定になった。 Thus, when (D 1 -D 2 ) is smaller than 0.1, the load at the reduced diameter processed portion 13A becomes unstable as in Comparative Example 1.

詳しくは、フローティングプラグ23Aと縮径ダイス22Aの噛み合わせ(D1−D2)が0.10mmより小さくなると、図6(b)の領域Z3の拡大図に示すように、フローティングプラグ23Aの角部C付近のみが素管11aの内面に接触することになり、引抜き方向Xにかかる荷重を角部C付近のみで受けることになる。   Specifically, when the engagement (D1-D2) of the floating plug 23A and the reduced diameter die 22A is smaller than 0.10 mm, as shown in the enlarged view of the region Z3 in FIG. 6B, the corner portion C of the floating plug 23A. Only the vicinity contacts the inner surface of the raw tube 11a, and the load applied in the drawing direction X is received only in the vicinity of the corner C.

通常、縮径の際には、素管11aの肉厚は減肉させず、逆に0.01mm以内で増肉することもあるのに対して、(D−D)が0.1より小さい場合、素管11aの肉厚を減肉をさせながら縮径することになり、負荷が過大にかかり過ぎて図6(b)の領域Z2の拡大図に示すように、管外径の引き細りが発生する。 Normally, when the diameter is, the thickness of the mother tube 11a is without thinning, for some of be thickened within 0.01mm Conversely, the (D 1 -D 2) 0.1 If it is smaller, the diameter of the tube 11a will be reduced while reducing the thickness, and the load will be excessively increased, as shown in the enlarged view of the region Z2 in FIG. Thinning occurs.

フローティングプラグ23Aと縮径ダイス22Aの噛み合わせ(D−D)が小さくなるほど荷重の瞬時的な変動が大きくなり、特に、(D−D)が0.10mmより小さくなると管が微振動するビビリ現象も発生し、それに伴って荷重の瞬時的な変動がさらに大きくなり、引き細りの程度も変動する。
これによって、縮径加工部13Aで素管11aが破断することもあった。
The smaller the engagement (D 1 -D 2 ) between the floating plug 23A and the reduced diameter die 22A is, the larger the instantaneous fluctuation of the load becomes. In particular, when (D 1 -D 2 ) is smaller than 0.10 mm, the tube becomes finer. The vibration chatter phenomenon also occurs, and the instantaneous fluctuation of the load further increases, and the degree of thinning also changes.
As a result, the raw tube 11a may break at the reduced diameter processed portion 13A.

この状態で中間引抜き部17を備えた場合、該中間引抜き部17でのパッド44と素管11aとの接触面積が変動して接触面積を十分確保できず、中間引抜き部17での荷重補助が不安定になる。また、中間引抜き部17を備えた場合、パッド44の接触個数が変化したり、パッド44の素管11aに対する接触と開放の繰り返しによる振動が影響し、中間引抜き部17を備えていない従来の加工方法に比べ、かえって荷重の瞬時的な変動が大きくなる。   When the intermediate extraction portion 17 is provided in this state, the contact area between the pad 44 and the raw tube 11a in the intermediate extraction portion 17 is fluctuated, so that a sufficient contact area cannot be secured, and load assistance at the intermediate extraction portion 17 is prevented. It becomes unstable. In addition, when the intermediate drawing portion 17 is provided, the number of contacts of the pads 44 changes, or vibration due to repeated contact and opening of the pads 44 with the base tube 11a is affected, so that conventional processing without the intermediate drawing portion 17 is provided. Compared with the method, the instantaneous fluctuation of the load becomes larger.

これに対して、(D−D)が0.1以上であれば、本発明例4〜8のように、縮径加工部13での荷重の安定性がよく、特に、本発明例4〜6の加工結果より(D−D)が大きいほど、図3に示すように安定な荷重の下での加工を行なうことができることを実証できた。 On the other hand, if (D 1 -D 2 ) is 0.1 or more, the stability of the load at the diameter-reduced portion 13 is good as in Examples 4-8 of the present invention. As shown in FIG. 3, it was proved that machining under a stable load can be performed as (D 1 -D 2 ) is larger than the machining results of 4-6.

(実施例3)
実施例3では、加工ピッチPを変化させることにより加工に及ぼす影響を調べる溝付け加工実験を行なった。
本加工実験では、表4に示す本発明例9〜32の各条件のように、加工ボール26の公転方向が正方向、逆方向それぞれの場合について加工ピッチPを変化させる加工条件で内面溝付管11の加工を行なった。
(Example 3)
In Example 3, a grooving experiment was conducted to examine the effect on machining by changing the machining pitch P.
In this machining experiment, as in the conditions of Invention Examples 9 to 32 shown in Table 4, the inner groove is formed under the machining conditions in which the machining pitch P is changed in each of the case where the revolution direction of the machining ball 26 is the forward direction and the reverse direction. The tube 11 was processed.

本発明例9〜32は、いずれも縮径率Rが30%以下となる本発明の条件を満たす加工条件の下で内面溝付管11の加工を行なったものであり、表4中、太枠で囲んだ本発明例11〜18、発明例23〜25は、本発明例の中でも特に好適な加工条件で内面溝付管11の加工を行なったものである。 Inventive Examples 9 to 32 were all processed on the internally grooved tube 11 under the processing conditions that satisfy the conditions of the present invention in which the reduction ratio RD was 30% or less. Invention Examples 11 to 18 and Invention Examples 23 to 25 surrounded by a thick frame are obtained by processing the internally grooved tube 11 under particularly preferable processing conditions.

詳しくは、本発明例11〜18では、加工ボール26の公転方向を逆方向に設定し、加工ピッチP(mm)が0.2mm以上、0.7mm以下の設定の下で加工を行い、本発明例23〜25では、加工ボール26の公転方向を正方向に設定し、加工ピッチP(mm)が0.2mm以上、0.4mm以下になる設定の下で加工を行なった。   Specifically, in Invention Examples 11 to 18, the revolution direction of the processed ball 26 is set in the reverse direction, and the processing is performed under the setting where the processing pitch P (mm) is 0.2 mm or more and 0.7 mm or less. In Invention Examples 23 to 25, the revolving direction of the processed ball 26 was set to the positive direction, and the processing was performed under a setting in which the processing pitch P (mm) was 0.2 mm or more and 0.4 mm or less.

一方、本発明例9,10,19,20では、加工ボール26の公転方向を逆方向に設定し、加工ピッチP(mm)が0.2mmより小さく、或いは0.7mmより大きくなる設定の下で加工を行なった。本発明例21,22,26〜32では、いずれも加工ボール26の公転方向を正方向に設定し、加工ピッチP(mm)が0.2mmより小さく、或いは0.4mmより大きくなる設定の下で加工を行なった。   On the other hand, in Examples 9, 10, 19, and 20 of the present invention, the revolution direction of the processed ball 26 is set to the reverse direction, and the processing pitch P (mm) is set to be smaller than 0.2 mm or larger than 0.7 mm. Was processed. In each of Examples 21, 22, 26 to 32 of the present invention, the revolution direction of the processed ball 26 is set to the positive direction, and the processing pitch P (mm) is set to be smaller than 0.2 mm or larger than 0.4 mm. Was processed.

また、本発明例9〜32では、素管11a外径を9.53mm、内径を8.93mmの共通した素管11aを用い、それ以外の条件についても、表1に示すように共通の条件で加工を行なった。   Further, in Examples 9 to 32 of the present invention, a common element tube 11a having an outer diameter of 9.53 mm and an inner diameter of 8.93 mm is used, and other conditions are the same as shown in Table 1. Was processed.

ここで、加工ピッチP(mm)とは、素管11aの外周を、該外周に配置した加工ボール26の個数で等分配した角度分だけ加工ボール26が素管11a回りを公転する間に素管11aが引抜き方向Xへ進む距離を示す。
詳しくは、実施例3では、素管11aの外周に加工ボール26を4個配置しているため、図4に示すように、加工ボール26が素管11a外周を90度回転する間に素管11aが引抜き方向Xへ進む移動距離Pを加工ピッチPとしている。
Here, the processing pitch P (mm) means that the processing ball 26 revolves around the base tube 11a by an angle equally distributed on the outer periphery of the base tube 11a by the number of processing balls 26 arranged on the outer periphery. The distance that the tube 11a travels in the drawing direction X is shown.
Specifically, in the third embodiment, since four processed balls 26 are arranged on the outer periphery of the raw tube 11a, as shown in FIG. 4, the processed tube 26 rotates while the outer periphery of the raw tube 11a rotates 90 degrees. The moving distance P that 11a travels in the drawing direction X is defined as a processing pitch P.

なお、図4は、溝加工部14付近を一部省略して模式的に示した加工ピッチPを説明する説明図である。また、図4中の仮想線で示したLa,Ld,Lbは、それぞれ素管11a外周に配置された4個の加工ボール26のうち、図4中に現される3個の加工ボール26a,26d,26bが素管11aを押圧した軌跡を示す。さらにまた、図4では、前記加工ボール26の公転方向が、逆方向(前記溝付プラグ24の回転方向と逆向き)の場合を示している。なお、加工ボール26が正方向である場合は、加工ボール26の軌跡La,Lb,Ldは、図4中、右下がりとなる。   FIG. 4 is an explanatory diagram for explaining the processing pitch P schematically shown by omitting part of the vicinity of the groove processing portion 14. In addition, La, Ld, and Lb indicated by phantom lines in FIG. 4 are the three processed balls 26a and 4b shown in FIG. 4 among the four processed balls 26 arranged on the outer periphery of the raw tube 11a. 26d and 26b show the locus | trajectory which pressed the raw tube 11a. Furthermore, FIG. 4 shows a case where the revolution direction of the processed ball 26 is the reverse direction (the reverse direction to the rotational direction of the grooved plug 24). Note that when the processed ball 26 is in the positive direction, the trajectories La, Lb, and Ld of the processed ball 26 are lowered to the right in FIG.

加工結果は、溝付け加工後に素管11a内面に形成される「溝の形成」(管肉の未充填の有無)と「溝の加工精度」(エグレの発生状況)によって評価した。   The processing results were evaluated by “groove formation” (whether or not filled with tube flesh) formed on the inner surface of the raw tube 11a after grooving and “groove processing accuracy” (occurrence of aggression).

ここで、「エグレ」とは、図5に示すように、溝加工部14において、内面フィン100の裾部においてフィン100を厚み方向に切り欠いたような形状の材料の未充填部分101を示す。   Here, as shown in FIG. 5, the “egre” indicates an unfilled portion 101 of a material having a shape in which the fin 100 is notched in the thickness direction at the skirt portion of the inner surface fin 100 in the groove processing portion 14. .

「溝の形成」は、溝付プラグ24の溝全体に肉が充填されたもの(所定の深さの溝が形成されたもの)を「○」とし、未充填があったもの(所定の深さの溝が形成されなかったもの)を「△」、或いは「×」として評価した。「△」は、未充填があったが、実用上、使用できる範囲内のものである。さらに、「溝の加工精度」は、エグレがない、またはエグレ深さHがフィン裾幅の10%以内であるものを「◎」とし、エグレ深さHがフィン裾幅の30%以内であるものを「○」とし、30%以上であるものを「△」、或いは「×」として評価した。「△」は、エグレ深さHがフィン裾幅の30%以上であったが、実用上、使用できる範囲内のものである。 “Groove formation” is defined as “◯” when the whole groove of the grooved plug 24 is filled with meat (having a groove with a predetermined depth) and without filling (having a predetermined depth). (Where no groove was formed) was evaluated as “Δ” or “×”. “Δ” is unfilled, but is in a practically usable range. Furthermore, "the processing accuracy of Groove" gouge is missing or gouges depth H e is what is within 10% of the fin Hem and "◎" gouges depth H e is within 30% of the fin Hem Those with a value of “◯” were evaluated, and those with 30% or more were evaluated as “Δ” or “×”. "△" is gouge depth H e is equal to or more than 30% of the fin Hem, practically, is within the range that can be used.

本発明例9〜32の各条件ごとに行なった加工の結果を表4に示す。   Table 4 shows the results of processing performed for each of the conditions of Invention Examples 9 to 32.

Figure 0005128515
表4から明らかなように、本発明例9〜32は、いずれも「◎」、「○」、「△」のいずれかとなり、「×」のものはなかった。殊に、本発明例11〜18,23〜25では、いずれも「◎」か「○」となった。
Figure 0005128515
As is clear from Table 4, Examples 9 to 32 of the present invention were any one of “、”, “◯”, and “Δ”, and there was no “×”. In particular, in Examples 11 to 18 and 23 to 25 of the present invention, all were “◎” or “○”.

詳しくは、表4に示すとおり、「溝の形成」について、本発明例9,10,21,22では「△」であるのに対して、本発明例11〜20,23〜32では「○」となった。この結果より、加工ボール26の公転方向に関らず、加工ピッチPを0.20mm以上にすると、内面の溝を所定の深さまで形成することができることが実証された。   Specifically, as shown in Table 4, “groove formation” is “Δ” in Invention Examples 9, 10, 21, and 22, whereas “O” in Invention Examples 11 to 20, 23 to 32. " From this result, it was proved that the groove on the inner surface can be formed to a predetermined depth when the processing pitch P is 0.20 mm or more regardless of the revolution direction of the processing ball 26.

また、「溝の加工精度」について、本発明例20では、「△」であるのに対して、本発明例9〜18では「◎」或いは「○」となった。この結果より、加工ボール26の公転方向が逆方向の場合において加工ピッチPが0.70mm以下であれば、内面フィンの裾部に特にエグレが生じ難いことが実証された。   In addition, “groove processing accuracy” was “Δ” in Invention Example 20, but “」 ”or“ ◯ ”in Invention Examples 9-18. From this result, it was proved that, when the revolving direction of the processed ball 26 is the reverse direction and the processing pitch P is 0.70 mm or less, it is particularly difficult for the hems of the inner fins to be prone to the occurrence of an egress.

さらにまた、「溝の加工精度」について、本発明例26〜32では、「△」であるのに対して、本発明例21〜25では「○」、或いは「◎」となり、この結果より、加工ボール26の公転方向が正方向の場合において加工ピッチPが0.40mm以下であれば、内面フィンの裾部に特にエグレが生じ難いことが実証された。   Furthermore, regarding the “groove processing accuracy”, in Examples 26 to 32 of the present invention, “△”, whereas in Examples 21 to 25 of the present invention, “◯” or “◎”. From this result, In the case where the revolution direction of the processed ball 26 is the positive direction, if the processing pitch P is 0.40 mm or less, it has been proved that it is particularly difficult for the hem portions of the inner fins to be prone to the occurrence of an egg.

このようにエグレの深さがフィン裾幅の30%以内であれば、後加工で行なう熱交換器のアルミフィンへの拡管組み込み時に内面フィンの倒れが発生するおそれがなく、好ましい。   Thus, if the depth of the angle is within 30% of the fin hem width, it is preferable that there is no possibility that the inner fin will collapse when the heat exchanger is assembled into the aluminum fin of the heat exchanger to be post-processed.

以上より、本発明例11〜18、発明例23〜25は、「溝の形成」、「溝の加工精度」の観点で、本発明例の中でも特に好適な加工条件で内面溝付管11の加工が可能であることを実証することができた。   As described above, the inventive examples 11 to 18 and the inventive examples 23 to 25 are those of the inner grooved tube 11 under the processing conditions that are particularly preferable among the inventive examples from the viewpoints of “groove formation” and “groove machining accuracy”. We were able to demonstrate that processing was possible.

詳しくは、加工ボール26の公転方向を、逆方向に設定し、加工ピッチP(mm)を、0.2≦P≦0.7の範囲になるよう設定した場合、或いは、加工ボール26の公転方向を、正方向に設定し、加工ピッチP(mm)を、0.2≦P≦0.4の範囲になるよう設定することを特徴とする本発明の有効性を実証できた。   Specifically, when the revolution direction of the processed ball 26 is set to the reverse direction and the processing pitch P (mm) is set to be in the range of 0.2 ≦ P ≦ 0.7, or the revolution of the processed ball 26 is set. The effectiveness of the present invention characterized by setting the direction to the positive direction and setting the machining pitch P (mm) to be in the range of 0.2 ≦ P ≦ 0.4 could be verified.

(実施例4)
実施例4では、溝加工工程において溝付プラグ24の溝深さとねじれ角を変えたときの加工に及ぼす影響を調べる溝付け加工実験を行なった。
本加工実験では、加工ボール26の公転方向が、正方向、逆方向のそれぞれの場合について、加工ボール26の加工ピッチPを、0.20mm、0.40mm、0.60mmのそれぞれの場合に変更させて行なった。
また、本加工実験で行う加工では、素管11aの外径Dがφ9.53mmである共通の寸法の素管11aを用い、縮径ダイス径D、フローティングプラグ外径D、溝付プラグ24の外径、溝数、溝頂角、加工ボール26の数、公転速度については、実施例1と同様に表1に示す共通の条件で行なった。
Example 4
In Example 4, a grooving experiment was conducted to examine the effect of changing the groove depth and twist angle of the fluted plug 24 in the grooving process.
In this machining experiment, the machining pitch P of the machining balls 26 is changed to 0.20 mm, 0.40 mm, and 0.60 mm in each case where the revolution direction of the machining balls 26 is the forward direction and the reverse direction. I did it.
Further, in the processing performed in this processing experiment, using a base tube 11a of the common dimensions outer diameter D o is φ9.53mm raw tube 11a, diameter die diameter D 2, the floating plug outside diameter D 1, a grooved The outer diameter of the plug 24, the number of grooves, the groove apex angle, the number of processed balls 26, and the revolution speed were the same as in Example 1 under the common conditions shown in Table 1.

加工結果は、表5〜7に示すとおりである。
なお、表6,7は、それぞれ加工ボール26の公転方向が正方向、逆方向の場合における溝付プラグ24の溝深さとねじれ角、加工ボール26の加工ピッチPを変化させて行った実験結果を示す。
The processing results are as shown in Tables 5-7.
Tables 6 and 7 show the results of experiments conducted by changing the groove depth and twist angle of the grooved plug 24 and the processing pitch P of the processed ball 26 when the revolution direction of the processed ball 26 is the forward direction and the reverse direction, respectively. Indicates.

さらに、表5は、表6、7における加工条件、及び、その加工結果の一部を抽出した実験結果を示す。   Further, Table 5 shows the processing conditions in Tables 6 and 7 and the experimental results obtained by extracting a part of the processing results.

なお、加工結果は、実施例3と同様に、「溝の形成」、「溝の加工精度」について検証し、これら全ての要素が「○」または「◎」のものを「○」、いずれかが「×」となったものを「×」、いずれかに「×」を含まずに、「△」を含むものを「△」として総合的に評価した。   As in Example 3, the machining results were verified for “groove formation” and “groove machining accuracy”, and all of these elements were “O” or “◎”. Was evaluated as “x”, and “x” was not included in any of them, and “Δ” was included in one of them.

なお、表5〜表7に示すように、実施例4での加工実験においても、いずれも縮径率Rが30%以下となる本発明の条件を満たす加工条件の下で内面溝付管11の加工を行なったものであるため、「×」のものはなかった。 As shown in Tables 5 to 7, also in the processing experiment in Example 4, the inner surface grooved tube under the processing conditions satisfying the conditions of the present invention in which the diameter reduction ratio RD is 30% or less. There was no "x" because it was processed 11.

Figure 0005128515
Figure 0005128515

Figure 0005128515
Figure 0005128515

Figure 0005128515
一般に、溝が深く、ねじれ角が大きい加工が困難とされる加工条件の場合、例えば、溝深さが0.20mmよりも大きく、且つねじれ角が55度よりも大きな加工条件の場合、加工時に大きな引抜き力を要する。
Figure 0005128515
Generally, in the case of a machining condition in which machining with a deep groove and a large helix angle is difficult, for example, in a machining condition where the groove depth is greater than 0.20 mm and the helix angle is greater than 55 degrees, Requires a large pulling force.

表5に示すように、溝付プラグ24の溝深さが0.22mmという0.20mmよりも深く、且つ、ねじれ角が60度という55度よりも大きな場合でも、加工ボール26の公転方向が正方向で、且つ、加工ピッチが0.20mm〜0.40mmの範囲内であれば、加工結果は「○」となり、加工可能であった(表5中の※1の欄参照)。   As shown in Table 5, even when the groove depth of the grooved plug 24 is deeper than 0.20 mm, which is 0.22 mm, and the twist angle is larger than 55 degrees, which is 60 degrees, the revolution direction of the processed ball 26 is If it was in the positive direction and the processing pitch was in the range of 0.20 mm to 0.40 mm, the processing result was “◯” and processing was possible (see the column of * 1 in Table 5).

この結果より、溝付プラグ24の溝が深く、ねじれ角が大きい加工が困難な場合でも、加工ボール26の公転方向が正方向であり、且つ、加工ピッチPが大きくなりすぎない0.2mm〜0.4mmであれば、加工可能であることを実証できた。   From this result, even when the groove of the grooved plug 24 is deep and machining with a large helix angle is difficult, the revolution direction of the machining ball 26 is the positive direction and the machining pitch P is not too large. If it was 0.4 mm, it was proved that processing was possible.

一方、表5に示すように、溝付プラグ24の溝深さが0.18mmや0.15mmという0.20mmがよりも小さく、且つ、ねじれ角が50度という55度よりも小さい場合でも、加工ボール26の公転方向が逆方向であれば、加工ピッチPの設定に関らず加工結果は全て「○」となり、加工可能であった(表5中の※2の欄参照)。   On the other hand, as shown in Table 5, even when the groove depth of the grooved plug 24 is smaller than 0.20 mm such as 0.18 mm or 0.15 mm and the twist angle is smaller than 55 degrees such as 50 degrees, If the revolution direction of the processed ball 26 is the reverse direction, the processing results were all “◯” regardless of the setting of the processing pitch P, and the processing was possible (see the column * 2 in Table 5).

この結果より、溝付プラグ24の溝深さが小さく、ねじれ角が小さい場合には、同じ加工ピッチPでは、加工ボール26の公転方向が逆方向の方が、正方向の場合と比較すると、フィン内面にエグレは発生し難く、発生しても小さいので、加工ピッチPを例えば0.6mmという大きく設定することができることを実証することができた。   From this result, when the groove depth of the grooved plug 24 is small and the helix angle is small, at the same processing pitch P, the direction of revolution of the processed ball 26 is reverse as compared to the case of the positive direction. Since it is difficult to generate the egress on the inner surface of the fin and is small even if generated, it was proved that the processing pitch P can be set as large as 0.6 mm, for example.

一般に加工ピッチPが大きいほど加工速度が速くなり、生産性が向上するので、加工ボール26の公転方向が逆方向で加工可能な場合は、加工ボール26の公転方向を逆方向で加工するのが好ましい。   In general, the larger the processing pitch P, the higher the processing speed and the productivity. Therefore, when the revolving direction of the processed ball 26 can be processed in the reverse direction, the revolving direction of the processed ball 26 is processed in the reverse direction. preferable.

(実施例5)
実施例5では、加工ボール26の公転回転数R(rpm)が加工に及ぼす影響を調べる溝付け加工実験を行なった。
ここで、一般に、内面溝付管11の加工時の引抜き速度をV(m/min)、加工ボール26の公転回転数をR(rpm)、加工ボール26の加工ピッチをP(mm)、加工ボール26の配置数をC(個)とした場合、引抜き速度をV(m/min)は、V=R×P×C/1000…式(1)であらわすことができる。この式(1)より、公転速度をR(rpm)を変えても、それに応じて引抜き速度をV(m/min)を変えることで加工ピッチP(mm)を一定に保つことができることがわかる。
(Example 5)
In Example 5, a grooving experiment was conducted to examine the influence of the revolution speed R (rpm) of the machining ball 26 on the machining.
Here, generally, the drawing speed at the time of machining the inner grooved tube 11 is V (m / min), the revolution speed of the machining ball 26 is R (rpm), the machining pitch of the machining ball 26 is P (mm), When the arrangement number of the balls 26 is C (pieces), the drawing speed V (m / min) can be expressed by V = R × P × C / 1000 (1). From this equation (1), it can be seen that even if the revolution speed is changed by R (rpm), the machining pitch P (mm) can be kept constant by changing the drawing speed by V (m / min) accordingly. .

そこで本加工実験では、式(1)に基づき、加工ボール26の公転回転数を10000rpm、30000rpm、40000rpmの各場合について、加工ボール26の加工ピッチが一定になるよう引抜き速度をVを設定して実施例3および実施例4と同様の加工実験を行った。   Therefore, in this machining experiment, the drawing speed V is set so that the machining pitch of the machining ball 26 is constant based on the formula (1) for each revolution speed of the machining ball 26 of 10000 rpm, 30000 rpm, and 40000 rpm. Processing experiments similar to those in Example 3 and Example 4 were performed.

この結果、加工ボール26の公転回転数を変えても、加工ピッチPが同じであれば、実施例3および実施例4と同じ結果であった。   As a result, even if the revolution speed of the processed ball 26 was changed, if the processing pitch P was the same, the result was the same as in the third and fourth embodiments.

結局、加工ピッチPが所定範囲に保てれば、加工ボール26の公転回転数の違いに関らず、同様の評価結果を得ることができることが実証できる。加工ボール26の公転回転数は、加工ボール26等の加工工具の寿命等を考慮し適宜選択すればよい。   After all, if the processing pitch P can be maintained within a predetermined range, it can be demonstrated that the same evaluation result can be obtained regardless of the difference in the revolution speed of the processing ball 26. The revolution speed of the processing ball 26 may be appropriately selected in consideration of the life of the processing tool such as the processing ball 26.

(実施例6)
実施例6では、加工ボール26の配置数C(個)の影響を調べる溝付け加工実験を行なった。
ここで、式(1)の関係より、加工ボール26の配置数C(個)を変えても、それに応じて引抜き速度をV(m/min)や公転回転数R(rpm)を変えることで加工ピッチP(mm)を一定に保つことができる。
(Example 6)
In Example 6, a grooving experiment was conducted to examine the influence of the number C (pieces) of processing balls 26 arranged.
Here, from the relationship of the formula (1), even if the arrangement number C (pieces) of the processed balls 26 is changed, the drawing speed is changed by changing V (m / min) and the revolution speed R (rpm) accordingly. The processing pitch P (mm) can be kept constant.

そこで実施例6では、加工ボール26の配置数Cが3個と5個の各場合について、式(1)の関係に基づき、加工ピッチP(mm)を一定に保つように、引抜き速度をV(m/min)や公転速度をR(rpm)をそれぞれ設定して実施例3、実施例4および実施例5と同様の加工実験を行った。   Therefore, in Example 6, in each of the cases where the number C of the processed balls 26 is 3 and 5, the drawing speed is set to V so as to keep the processing pitch P (mm) constant based on the relationship of the expression (1). (M / min) and revolution speed were set to R (rpm), respectively, and processing experiments similar to those in Example 3, Example 4, and Example 5 were performed.

この結果、加工ボール26の公転回転数を変えても、加工ピッチPが同じであれば、実施例3、実施例4および実施例5と同じ結果であった。   As a result, even if the revolution speed of the processed ball 26 was changed, the results were the same as those of Example 3, Example 4, and Example 5 as long as the processing pitch P was the same.

結局、加工ピッチPが所定範囲に保てれば、加工ボール26の配置数C(個)の違いに関らず、同様の評価結果を得ることができることを実証できた。加工ボール26の配置数は加工する内面溝付管11により適宜選択すればよい。   Eventually, if the processing pitch P can be kept within a predetermined range, it has been proved that the same evaluation result can be obtained regardless of the difference in the number C (number) of processing balls 26. What is necessary is just to select the arrangement | positioning number of the process ball | bowl 26 suitably with the inner surface grooved pipe | tube 11 to process.

上述した実施形態と、この発明の構成との対応において、
加工ボール26は、押圧用工具に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In the correspondence between the embodiment described above and the configuration of the present invention,
The processing ball 26 corresponds to a pressing tool,
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.

例えば、押圧用工具は、加工ボール26に限らず、ローラーなど、素管11aを押圧できれば、他の工具を用いてもよい。
さらにまた、素管11aは、銅、アルミニウム、又は、それらの合金等など熱伝導性に優れた材料で形成することができる。
For example, the pressing tool is not limited to the processed ball 26, and other tools such as a roller may be used as long as they can press the raw tube 11a.
Furthermore, the elementary tube 11a can be formed of a material having excellent thermal conductivity such as copper, aluminum, or an alloy thereof.

11…内面溝付管
11a…素管
12…内面溝付管の製造装置
13…縮径加工部
14…溝加工部
17…中間引抜き部
22…縮径ダイス
23…フローティングプラグ
24…溝付プラグ
26…加工ボール
DESCRIPTION OF SYMBOLS 11 ... Internal grooved pipe 11a ... Elementary pipe 12 ... Internal grooved pipe manufacturing apparatus 13 ... Diameter reduction processing part 14 ... Groove processing part 17 ... Intermediate drawing part 22 ... Diameter reduction die 23 ... Floating plug 24 ... Grooved plug 26 ... Processed balls

Claims (6)

素管の引抜き方向に沿って、素管を縮径させる縮径加工部と、素管内面に多数の溝を形成する溝加工部を備えるとともに、前記縮径加工部と前記溝加工部との間に前記縮径加工部で縮径した素管を引抜く中間引抜き部を備え、
前記縮径加工部を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで構成し、
前記溝加工部を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで構成した内面溝付管の製造装置であって、
前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、
={(D−D)/D}×100(%)
であらわされる素管の縮径率R(%)を、前記縮径加工部において
≦30
に設定し、
前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、
−D≧0.1
となるよう設定した
内面溝付管の製造装置。
A diameter reducing portion for reducing the diameter of the raw tube along a drawing direction of the raw tube, and a groove processing portion for forming a plurality of grooves on the inner surface of the raw tube, and the diameter reducing portion and the groove processing portion are provided. In the middle, provided with an intermediate extraction part for extracting the raw pipe reduced in diameter at the reduced diameter processing part,
The diameter-reduced portion is composed of a diameter-reduced die and a floating plug that is arranged in the element pipe and that reduces the diameter of the element pipe together with the diameter-reduced die,
The grooved portion is rotatably connected to the floating plug in the raw tube, and a grooved plug having a plurality of grooves formed on the outer periphery thereof, and the raw tube is disposed on the outer side of the raw tube toward the grooved plug. An inner grooved pipe manufacturing apparatus configured with a pressing tool arranged to revolve around a pipe axis while pressing,
By the outer diameter D o (mm) of the raw tube and the diameter D 2 (mm) of the reduced diameter die,
R D = {(D o −D 2 ) / D o } × 100 (%)
The diameter reduction ratio R D (%) of the element pipe expressed by the following formula is obtained: R D ≦ 30 in the diameter reduction processed portion
Set to
The outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die are as follows:
D 1 -D 2 ≧ 0.1
Manufacturing equipment for internally grooved tubes set to be
前記押圧用工具の公転方向を、前記溝付プラグの回転方向と逆向きに設定し、
前記押圧用工具の加工ピッチP(mm)を、
0.2≦P≦0.7
の範囲になるよう設定した
請求項1に記載の内面溝付管の製造装置。
The revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug,
The processing pitch P (mm) of the pressing tool is
0.2 ≦ P ≦ 0.7
The apparatus for manufacturing an internally grooved tube according to claim 1, which is set so as to fall within the range.
前記押圧用工具の公転方向を、前記溝付プラグの回転方向と同じ向きに設定し、
前記押圧用工具の加工ピッチP(mm)を、
0.2≦P≦0.4
の範囲になるよう設定した
請求項1に記載の内面溝付管の製造装置。
The revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug,
The processing pitch P (mm) of the pressing tool is
0.2 ≦ P ≦ 0.4
The apparatus for manufacturing an internally grooved tube according to claim 1, which is set so as to fall within the range.
素管が引抜き方向へ進む過程で、素管を縮径させる縮径加工工程と、素管内面に多数の溝を形成する溝加工工程を行い、前記縮径加工工程と前記溝加工工程とを行なう間、前記縮径加工工程で縮径した素管を引抜く中間引抜き工程を行い、
前記縮径加工工程を、縮径ダイスと、素管内に配置され、前記縮径ダイスとともに素管を縮径するフローティングプラグとで行い、
前記溝加工工程を、素管内において前記フローティングプラグと回動自在に連結され、外周に複数の溝が形成された溝付プラグと、素管の外側において該素管を前記溝付プラグの側へ押圧しながら管軸回りに公転自在に配置された押圧用工具とで行なう内面溝付管の製造方法であって、
前記素管の外径D(mm)、前記縮径ダイスの径D(mm)により、
={(D−D)/D}×100(%)
であらわされる素管の縮径率R(%)を、
≦30に設定し、
前記フローティングプラグの外径D(mm)、前記縮径ダイスの径D(mm)を、
−D≧0.1
となるよう設定する
内面溝付管の製造方法。
In the process of moving the pipe in the drawing direction, a diameter reducing process for reducing the diameter of the pipe, and a groove forming process for forming a plurality of grooves on the inner surface of the pipe, the diameter reducing process and the groove processing process are performed. While performing, an intermediate drawing process is performed to pull out the raw pipe reduced in diameter in the diameter reducing process,
The diameter reduction processing step is performed with a diameter reduction die and a floating plug that is arranged in the element pipe and reduces the diameter of the element pipe together with the diameter reduction die,
In the groove processing step, a grooved plug that is rotatably connected to the floating plug in the raw tube and has a plurality of grooves formed on the outer periphery thereof, and the raw tube on the outer side of the raw tube toward the grooved plug. A method for manufacturing an internally grooved tube with a pressing tool arranged to revolve around a tube axis while pressing,
By the outer diameter D o (mm) of the raw tube and the diameter D 2 (mm) of the reduced diameter die,
R D = {(D o −D 2 ) / D o } × 100 (%)
The diameter reduction ratio R D (%) of the elemental tube expressed by
Set R D ≦ 30,
The outer diameter D 1 (mm) of the floating plug and the diameter D 2 (mm) of the reduced diameter die are as follows:
D 1 -D 2 ≧ 0.1
The manufacturing method of an internally grooved tube set to be
前記押圧用工具の公転方向を、前記溝付プラグの回転方向と逆向きに設定し、
前記押圧用工具の加工ピッチP(mm)を、
0.2≦P≦0.7
の範囲になるよう設定する
請求項4に記載の内面溝付管の製造方法。
The revolution direction of the pressing tool is set to be opposite to the rotation direction of the grooved plug,
The processing pitch P (mm) of the pressing tool is
0.2 ≦ P ≦ 0.7
The method for manufacturing an internally grooved tube according to claim 4, wherein the inner grooved tube is set so as to fall within the range.
前記押圧用工具の公転方向を、前記溝付プラグの回転方向と同じ向きに設定し、
前記押圧用工具の加工ピッチP(mm)を、
0.2≦P≦0.4
の範囲になるよう設定する
請求項4に記載の内面溝付管の製造方法。
The revolution direction of the pressing tool is set to the same direction as the rotation direction of the grooved plug,
The processing pitch P (mm) of the pressing tool is
0.2 ≦ P ≦ 0.4
The method for manufacturing an internally grooved tube according to claim 4, wherein the inner grooved tube is set so as to fall within the range.
JP2009032645A 2008-12-08 2009-02-16 Manufacturing apparatus and manufacturing method for internally grooved tube Expired - Fee Related JP5128515B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009032645A JP5128515B2 (en) 2009-02-16 2009-02-16 Manufacturing apparatus and manufacturing method for internally grooved tube
PCT/JP2009/006674 WO2010067576A1 (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
MYPI2011002613A MY167025A (en) 2008-12-08 2009-12-07 Inner grooved tube, and apparatus and method for producing the same
KR1020117014300A KR101278827B1 (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
CN200980150021.9A CN102245323B (en) 2008-12-08 2009-12-07 Pipe having grooved inner surface, apparatus for producing the same and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032645A JP5128515B2 (en) 2009-02-16 2009-02-16 Manufacturing apparatus and manufacturing method for internally grooved tube

Publications (2)

Publication Number Publication Date
JP2010188356A JP2010188356A (en) 2010-09-02
JP5128515B2 true JP5128515B2 (en) 2013-01-23

Family

ID=42814988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032645A Expired - Fee Related JP5128515B2 (en) 2008-12-08 2009-02-16 Manufacturing apparatus and manufacturing method for internally grooved tube

Country Status (1)

Country Link
JP (1) JP5128515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097047A (en) * 2011-01-14 2013-05-08 古河电气工业株式会社 Internally grooved pipe, manufacturing method therefor, and manufacturing device therefor
CN103017595A (en) * 2012-12-20 2013-04-03 山东北辰机电设备股份有限公司 Anti-blocking device for shell and tube sewage heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207670A (en) * 2004-01-22 2005-08-04 Kobe Steel Ltd Internally grooved tube, and its manufacturing device and method
JP5064749B2 (en) * 2006-09-29 2012-10-31 古河電気工業株式会社 Internal grooved tube manufacturing method, manufacturing apparatus, and internally grooved tube

Also Published As

Publication number Publication date
JP2010188356A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP6169538B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP4948073B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP5128515B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP5224423B2 (en) Internal grooved tube, manufacturing method thereof, and manufacturing apparatus thereof
WO2010067576A1 (en) Pipe having grooved inner surface, apparatus for producing the same and method for producing the same
JP4471134B2 (en) Manufacturing method for seamless pipes for automobile parts
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP4833577B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
WO2006088107A1 (en) Process for producing seamless steel pipe
JP4795322B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP5227771B2 (en) Internal grooved tube and manufacturing method thereof
JP4103082B2 (en) Manufacturing method for seamless pipes using a three-roll mandrel mill
JP2005207670A (en) Internally grooved tube, and its manufacturing device and method
JP4460064B2 (en) Manufacturing apparatus and manufacturing method for internally grooved tube
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP2010247181A (en) Method of manufacturing tube having groove on inside surface
JP6316696B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP6316697B2 (en) Internal spiral grooved tube and manufacturing method thereof
JP2005046906A (en) Device and method for manufacturing inside grooved tube
JP2006218514A (en) Method for reducing diameter of pipe
JP4036044B2 (en) Internal grooved tube processing method
JP2012076126A (en) Apparatus and method for manufacturing inner grooved tube
JPH0957328A (en) Manufacture of heat-transfer tube with internal groove and apparatus therefor
JP2005138149A (en) Method and device for manufacturing inside grooved tube
JP2692524B2 (en) Inclined elongation rolling method of hot seamless steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R151 Written notification of patent or utility model registration

Ref document number: 5128515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees