JP2008086888A - 流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法 - Google Patents

流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法 Download PDF

Info

Publication number
JP2008086888A
JP2008086888A JP2006269526A JP2006269526A JP2008086888A JP 2008086888 A JP2008086888 A JP 2008086888A JP 2006269526 A JP2006269526 A JP 2006269526A JP 2006269526 A JP2006269526 A JP 2006269526A JP 2008086888 A JP2008086888 A JP 2008086888A
Authority
JP
Japan
Prior art keywords
liquid
bubbles
flow path
staying
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006269526A
Other languages
English (en)
Inventor
Yoshiyuki Miyoshi
良幸 三好
Takayuki Fujiwara
隆行 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006269526A priority Critical patent/JP2008086888A/ja
Publication of JP2008086888A publication Critical patent/JP2008086888A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡単な方法及び構成で、液体中の気泡を捕捉又は除去でき、液体を微細な流路内に安定かつ均一に供給できる。
【解決手段】
流通する液体中の気泡を捕捉する機能を備えた流路構造体であって、第2の滞留部28と、第2の滞留部28に連通する複数の流路と、を備え、複数の流路のうち、少なくとも1つの流路が第2の滞留部28に液体を供給する供給流路26であり、供給流路26以外の流路が第2の滞留部28内の液体を排出する第2の分岐流路30A〜30Dであり、第2の滞留部28の上部には、供給流路26から第2の滞留部28内に供給した第2の液体L2中の気泡64を捕捉する気泡捕捉手段が設けられている。
【選択図】 図4

Description

本発明は、流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法に係り、特に、複数種類の液体同士を混合・反応させるマイクロ流路内に気泡が混入するのを抑制する流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法に関する。
マイクロ空間内では、単位体積あたりの表面積が大きくなる性質から、反応流体の反応界面を多く形成でき、温度制御も容易にできるため、流体間の反応や混合の高効率化又は高速化ができる技術として注目されている。
このようなマイクロ空間内で液体同士を混合又は反応させる場合、液体中の気泡が液体の流動状態に与える影響は大きい。たとえば、気泡が微細な流路内に混入すると、気泡が流路の内壁面に付着し、目詰まりすることにより圧損が上昇したり、気泡が流路を塞いで送液できなくなったりする。また、気泡が混入したまま液体同士を混合又は反応させると流れ場が乱れ、混合性能や反応性能が著しく低下するという問題もあった。このように、液体同士の混合又は反応において、気泡が流路内に混入するのを極力防止する必要があった。
この対策としては、例えば、気泡を除去する対象となる表面に親水処理を施す方法(特許文献1〜3)、フィルタを用いて気泡をトラップする方法(特許文献4)、超音波により気泡を凝集後、外部に排出する方法(特許文献5)等が提案されている。
また、並行接触する2つのチャンネルの一方の内表面を疎水性にし、他方の内表面を親水性にしたマイクロチャンネル構造体において、親水性のチャンネルに水性溶液をある一定条件の流速で流すと、水性溶液から疎水性のチャンネルに気泡を排出できることが記載されている(特許文献6)。
特開平5−312153号公報 特開2001−165737号公報 特開2001−232792号公報 特開平10−272783号公報 特開2002−18202号公報 特開2005−169386号公報
しかしながら、上記各特許文献では、以下のような問題があった。
すなわち、特許文献1〜3は、微細な流路内に気泡が既に混入しているので、反応・混合性能が低下するという問題があった。また、特許文献4では、フィルタを利用することにより気泡をトラップすることはできるが、これと同時にごみや異物もトラップするため、目詰まりを起こし易く定期的に洗浄する必要があった。また、特許文献5では、超音波を用いる方法は、材質によっては超音波を吸収して発熱するため、材質が劣化する虞があった。また、特許文献6では、並行接触する2つのチャンネルの深さを変えて製作するため、製作工程が複雑であるという問題があった。
このように、簡単な方法及び構成で、マイクロ流路に気泡が入らないようにする方法はこれまでなかった。
本発明はこのような事情に鑑みてなされたもので、簡単な方法及び構成で、液体中の気泡を捕捉又は除去でき、液体を微細な流路内に安定かつ均一に供給できる流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法を提供することを目的とする。
本発明の請求項1は前記目的を達成するために、流通する液体中の気泡を捕捉する機能を備えた流路構造体であって、滞留部と、該滞留部に連通する複数の流路と、を備え、前記複数の流路のうち、少なくとも1つの流路が前記滞留部に前記液体を供給する供給流路であり、前記供給流路以外の流路が前記滞留部内の液体を排出する排出流路であり、前記滞留部の上部には、前記供給流路から該滞留部内に供給した液体中の気泡を捕捉する気泡捕捉手段が設けられていることを特徴とする流路構造体を提供する。
請求項1によれば、液体中の気泡が滞留しやすい滞留部の上部に気泡捕捉手段を設けたので、供給流路から滞留部へ流入する液体中の気泡を、比重差を利用して滞留部の上部に捕捉し、気泡が除去された液体を排出流路に排出することができる。これにより、簡単な方法及び構成で、気泡が滞留部と流路の連通部分を閉塞したり、滞留部から微細な流路内に気泡が混入したりするのを抑制し、液体を安定かつ均一に供給できる。ここで、滞留部とは、連通した流路において、流れが滞る領域をいい、例えば流路の流路交差部分をいう。また、上部とは、滞留部における液体中の気泡が、比重差により浮上して接する部分をいう。
請求項2は請求項1において、前記気泡捕捉手段が、前記滞留部の上部のうちの上面に形成された撥水面であることを特徴とする。
請求項2によれば、撥水面は、液体中の気泡を選択的に捕捉できるだけでなく、一旦捕捉すると再び液体中に混入させにくいため、気泡を安定に保持できる。なお、請求項2において、上面全体、上面の一部を撥水面とする場合のいずれも含む。
請求項3は請求項2において、前記撥水面は、撥水領域と非撥水領域とを備えた撥水パターニングであることを特徴とする。
請求項3によれば、撥水面が撥水領域と非撥水領域とを備えるようにパターニングするので、撥水領域で気泡を選択的に捕捉できると共に、非撥水領域で液体の流通を確保することができる。
請求項4は請求項2又は3において、前記滞留部の側面及び/又は底面は、親水面が形成されたことを特徴とする。
請求項4によれば、滞留部の側面及び/又は底面に形成された親水面により、側面や底面には気泡が付着しにくくなるため、液体中に気泡が混入するのを抑制できる。特に、滞留部と流路との連通部分の表面は、親水面とするのが好ましい。
請求項5は請求項1〜4のいずれか1項において、前記気泡捕捉手段が、前記滞留部の上部のうちの上面に形成された粗面であることを特徴とする。
請求項5によれば、粗面は、液体中の気泡を捕捉し易いだけでなく、一旦捕捉すると再
び液体中に脱離させにくく、気泡を安定に保持できる。なお、請求項5において、上面全体、上面の一部を粗面とする場合のいずれも含む。
請求項6は請求項1〜5のいずれか1項において、前記気泡捕捉手段が、前記滞留部の上部のうちの上面に形成された凹部であることを特徴とする。
請求項6によれば、比重差により浮上した液体中の気泡を液面の上方で捕捉し、保持できる。
請求項7は請求項6において、前記凹部の表面は、撥水面であることを特徴とする。
請求項7によれば、気泡を撥水面で安定に保持できるので、液体中に気泡が再び混入するのを抑制できる。
請求項8は請求項1〜7のいずれか1項において、前記捕捉した気泡を前記滞留部から除去するための除去手段を備えたことを特徴とする。
請求項8によれば、滞留部の上部で捕捉した気泡を保持するだけでなく、外部に排出することにより除去できる。これにより、保持した気泡が蓄積することにより、気泡が液体中に再び混入したり、流路を閉塞したりするのを抑制できる。
請求項9は、マイクロデバイスが請求項1〜8のいずれか1項に記載の流路構造体を備えたことを特徴とする。
微細な流路内で複数の液体同士を混合・反応させるマイクロデバイスにおいて、本発明が特に有効である。
請求項10は、請求項1〜8のいずれか1項に記載の流路構造体を用いて気泡を除去することを特徴とする気泡除去方法を提供する。
本発明によれば、簡単な方法及び構成で、液体中の気泡を捕捉又は除去でき、液体を微細な流路内に安定かつ均一に供給できる。
以下添付図面に従って本発明に係る流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法の好ましい実施の形態について説明する。
本発明において、「マイクロデバイス」とは、微小流路(マイクロチャンネル)で流体を流し、及び(又は)そこで合流させ、それに起因する混合、反応、熱交換等の操作を行うための装置の総称であって、特に、混合を主目的とするマイクロデバイスをマイクロミキサ、反応を主目的とするマイクロデバイスをマイクロリアクタ、熱交換を主目的とするマイクロデバイスをマイクロ熱交換器(マイクロヒートエクスチェンジャー)という。その微小流路(マイクロチャンネル)又はそこを通過するストリームの直径または相当直径(チャンネルまたはストリームの断面が円形でない場合)は、1mm以下であり、特に直径または相当直径が通常500μm以下であり、好ましくは100μm以下である。また、「相当直径」とは、流体力学の分野において用いられる意味で使用している。なお、マイクロチャンネルを構成する各種流路は、真直ぐであっても、湾曲していてもよい。
まず、第1の実施形態について説明する。本実施形態の流体操作方法は、重力方向に対
して上側と下側から2液を供給し、マイクロ流路内で混合させるマイクロデバイスにおいて、2液の供給経路上で気泡を捕捉することにより、マイクロ流路内に気泡を混入させないようにする方法である。
図1は、本実施形態におけるマイクロデバイス10の主要部を説明する分解斜視図である。図2は、第1の滞留部の部分拡大図であり、図3は、第2の滞留部の部分拡大図である。なお、図1において、重力方向(下向き)を矢印Gで示す。
図1に示すように、マイクロデバイス10は、第1の液体L1を供給する第1の供給プレート12と、第2の液体L2を供給する第2の供給プレート14と、第1、第2の液体L1、L2を合流するための合流プレート16と、を備えている。マイクロデバイス10を構成する際は、上記の各プレートを一体に積層した後、締結することにより組み立てる。この組み立て方法としては、特に限定されないが、例えば、各プレートの周辺部に各プレートを貫通するボア(孔、図示せず)を等間隔に設けてボルト及びナットでこれらの各プレートを一体に締結する方法がある。
第1の供給プレート12の上面(第2の供給プレート14に対向する面と反対側の面)には、第1の供給プレート12の中央付近に凹状に形成され、第1の液体L1が供給される第1の滞留部18と、該第1の滞留部18から放射状に4本に分岐する第1の分岐流路20A、20B、20C及び20D(排出流路)と、が形成される(図2参照)。さらに、第1の供給プレート12の厚さ方向に貫通するボア(孔)22A〜22Dが形成され、第1の分岐流路20A〜20Dの各先端と連通している。
第2の供給プレート14には、その厚さ方向に貫通するボア24A〜24Dが形成され、第1の供給プレート12のボア22A〜22Dと連通している(図3参照)。また、第2の供給プレート14の中央には、厚さ方向に貫通し、第2の液体L2が供給される供給流路26が形成される。この供給流路26は、後述する合流プレート16の中央に形成され、厚さ方向に貫通した供給流路27と連通している。
第2の供給プレート14の上面(第1の供給プレート12に対向する面)には、供給流路26と連通し、該供給流路26よりも幅広の凹状に形成された第2の滞留部28と、該第2の滞留部28から放射状に4本に分岐する第2の分岐流路30A、30B、30C及び30D(排出流路)と、が形成される。さらに、第2の供給プレート14の厚さ方向に貫通するボア32A〜32Dが形成され、第2の分岐流路30A〜30Dの各先端と連通している(図3参照)。また、第1の液体L1が流れるボア24A〜24Dと、第2の液体L2が流れるボア32A〜32Dとは相互に重ならない位置、すなわち、ボア24A〜24Dとボア32A〜32Dは、交互に位置するように配置される。
合流プレート16の上面(第2の供給プレート14に対向する面)には、第1の供給プレート12、第2の供給プレート14により各4つに分岐された第1、第2の液体L1、L2をそれぞれ合流させる4つのY字型のマイクロチャンネル34A〜34Dが形成される。Y字型のマイクロチャンネル34A(〜34G)は、主に、第1の液体L1が供給される第1の供給流路36A(〜36D)と、第2の液体L2が供給される第2の供給流路38A(〜38D)と、該第1、第2の供給流路36A(〜36D)、38A(〜38D)と連通して1本の流路を形成する合流流路40A(〜40D)と、より構成される。第1の供給流路36A〜36Dの上流端は、合流プレート16の上面に凹状に形成された第1の供給口42A〜42Dと連通している。この第1の供給口42A〜42Dは、第2の供給プレート14のボア24A〜24Dと連通している。これと同様に、第2の供給流路38A〜38Dの上流端は、合流プレート16の上面に凹状に形成された第2の供給口44A〜44Dと連通し、該第2の供給口44A〜44Dは、第2の供給プレート14のボ
ア32A〜32Dと連通している。合流流路40A(〜40D)の各下流端は、合流プレート16の厚さ方向に貫通するボア46A〜46Dと連通している。このボア46A〜46Dは、更に下流側に設けられた図示しない回収流路と連通し、外部へ回収できるようになっている。
本実施形態において、滞留部とは、平均流速がマイクロデバイス全体における最速部の1/100以下、好ましくは1/10以下、より好ましくは1/2以下のものをいう。
上記第1、第2の分岐流路20A〜20D、30A〜30Dの断面形状は、矩形でも円形(半円形も含む)でもよく、特に限定されない。流路断面積は、特に規定しないが、層流を形成できる範囲であることが、系の安定性の観点から好ましい。層流を形成できる条件としては、通常、相当直径2mm以下、好ましくは600μm以下が好ましい。また、分岐する供給流路の数も本実施形態の4本であるが、2〜3本、又は5本以上でもよく、特に限定されない。また、Y字型のマイクロチャンネル34A〜34Dを構成する各流路の相当直径は、1mm以下であり、500μm以下であるのが好ましく、100μm以下であるのがより好ましい。
このような構成を有するマイクロデバイス10において、第1の滞留部18や、第2の滞留部28では、それぞれ第1、第2の液体L1、L2中の気泡が滞留し易い。このような気泡が微細な第1、第2の分岐流路20A〜20G、30A〜30G内に混入するのを抑制するために、本発明では、第1、第2の滞留部18、28の上部に、液体中の気泡を捕捉するための撥水領域(気泡捕捉手段)を形成する。なお、第1、第2の滞留部18、28の上部とは、液体中の気泡が比重差により浮上して接する壁面や空間をいい、たとえば、第1、第2の滞留部18、28の上面をいう。
図4は、第1、第2の滞留部18、28近傍の構成(流路構造体)を示すA−A線に沿った部分断面図である。このうち、図4(a)は、第1の滞留部18であり、図4(b)は、第2の滞留部28である。なお、同図において、通常、第1の供給プレート12の上面には、第1の液体L1を供給する供給流路48を備えたプレート50が設けられるので、点線部分で表した。
図4(a)に示すように、プレート50の第1の供給プレート12と対向する面のうち、第1の滞留部18に対向する領域18A(以下、「第1の滞留部18の上面18A」という)には、撥水パターニング52が形成される。これと同様に、図4(b)に示すように、第2の供給プレート14の上面に対向する第1の供給プレート12の面のうち、第2の滞留部28に対向する領域28A(以下、「第2の滞留部28の上面28A」という)にも撥水パターニング52が形成される。さらに、上記第1の滞留部18、第2の滞留部28の底面28B及び側面28Cには、気泡が付着するのを防止するために、それぞれ親水処理54が施される。特に、第1、第2の滞留部18、28と第1、第2の分岐流路20A〜20D、30A〜30Dとが連通する部分の表面は、親水処理を施すことが好ましい。
また、第1、第2の滞留部18、28の上面18A、28Aには、捕捉した気泡を除去するための気泡除去機構58(除去手段)が備えられる。すなわち、気泡除去機構58として、第1の滞留部18では、上面18Aと大気とを連通する通気孔58aが設けられ、第2の滞留部28では、上面28Aと連通する微細な孔58bと、該孔58bと大気とを連通する通気孔58cと、が形成される。これにより、捕捉した気泡を大気へ開放し、除去できるようになっている。なお、本実施形態では、気泡除去機構58を備えた例を示しているが、備えない形態も有り得る。
第1、第2の滞留部28の上面18A、28Aに形成される撥水パターニング52は、撥水パターニングが施される領域が異なること以外はほぼ同様であるため、以下、第2の滞留部28について説明する。
図5は、第2の滞留部28の上面28Aに形成された撥水パターニング52を説明する説明図である。同図に示すように、第2の滞留部28の上面28Aには、撥水領域52aと非撥水領域52bが格子状に配された撥水パターニング52が形成される。このように、撥水領域52aと非撥水領域52bとを設けることにより、気泡を捕捉し易くするだけでなく、液体の流路を確保することができる。なお、第2の滞留部28の上面28Aの全体を、撥水領域52aとすることも可能である。
次に、撥水パターニング52の形成方法について説明する。
撥水パターニング52は、撥水パターニング52に合わせて凸部が形成されたスタンプ部材を用いて形成できる。図6は、スタンプ部材の製造方法を説明する部分断面図である。図7は、図6で製造されたスタンプ部材を示す斜視図である。
まず、撥水パターニング52の反転形状が表面に形成されている反転型板60を準備する(図6(a)参照)。この反転型板60は、後述する微細加工技術、特に、フォトリソグラフィ法を用いて製造できる。この反転型板60の表面には、剥離剤を塗布する。この剥離剤としては、スタンプ部材となる樹脂材の種類、加工条件(温度等)等に応じて適宜のものが採用できる。
次いで、反転型板60の表面に樹脂材62を塗布し、この樹脂材を硬化させる(図6(b)参照)。樹脂材62が、たとえば紫外線硬化樹脂である場合には、塗布後の樹脂材に紫外線を照射して硬化させる。樹脂材62が、たとえばポリ塩化ビニル(PVC)のような熱可塑性樹脂である場合には、反転型板60の表面に樹脂材を当ててホットプレス機により熱転写成形を行う。
そして、硬化後の樹脂材62を反転型板60より剥離する(図6(c))。この樹脂材62は、第2の滞留部28とほぼ同じ径のスタンプ部材62Aとして使用される。
このような方法によれば、図7に示すように、撥水パターニングの模様に合わせた凹部が表面に形成されたスタンプ部材を精度よく形成でき、かつ、安価に形成できる。
スタンプ部材62Aの材質は、特に限定しないが、PDMS等のゴム系プラスチック等が使用できる。
図8は、図7のスタンプ部材62Aを用いて、第1の供給プレート12の第2の供給プレート14に対向する面(第2の滞留部28の上面28A)に撥水パターニング52を形成する方法を示す部分断面図である。
図8(a)に示すように、スタンプ部材62Aの凹凸面に、撥水剤52Lを付着させる。次いで、第1の供給プレート12の(第2の供給プレート14に対向する)面12Aにスタンプ部材62Aの撥水剤52L付着面を直接押し当てる(図8(b)参照)。そして、面12Aを十分に乾燥させることにより、面12A上に撥水パターニング52を形成する(図8(c)参照)。
さらに、第2の滞留部28の側面及び底面(図4(b)参照)に、気泡が付着するのを抑制するために、親水処理を施すことが好ましい。この方法としては、第2の滞留部28
と同径で、表面が平滑なスタンプ部材を用いて親水剤を塗布する方法や、直接親水剤を第2の滞留部28内に流した後、乾燥させることにより親水処理する方法等、が挙げられる。
撥水剤52Lとしては、公知公用の撥水剤が使用でき、たとえば、シリコーン系化合物、フッ素系化合物等を使用できる。
親水剤としては、公知公用の親水剤が使用でき、たとえば、ポリエチレングリコール、リン脂質ポリマー(MPCポリマー等)が使用できる。
マイクロデバイス10を構成する各種プレートの材質としては、強度が高く、腐食防止性があり、原料流体の流動性を高めるものが好ましい。例えば、金属(鉄、アルミ、ステンレス鋼、チタン、ハステロイ、その他の各種金属)、樹脂(フッ素樹脂、アクリル樹脂、PS、PP等)、ガラス(石英等)、セラミックス(シリコン等)、アルミナ等などが好ましく使用できる。
マイクロデバイス10を製作するには、微細加工技術が適用される。適用可能な微細加工技術としては、例えば、一部既述したように、X線リソグラフィを用いるLIGA(Roentgen−Lithographie Galvanik Abformung)技術、EPON SU−8(商品名)を用いた高アスペクト比フォトリソグラフィ法、マイクロ放電加工法(μ−EDM(Micro Electro Discharge Machining))、Deep RIE(Reactive Ion Etching)によるシリコンの高アスペクト比加工法、Hot Emboss加工法、光造形法、レーザー加工法、イオンビーム加工法、及びダイアモンドのような硬い材料で作られたマイクロ工具を用いる機械的マイクロ切削加工法等がある。これらの技術を単独で用いてもよいし、組み合わせて用いてもよい。好ましい微細加工技術は、X線リソグラフィを用いるLIGA技術、EPON SU−8を用いた高アスペクト比フォトリソグラフィ法、マイクロ放電加工法(μ−EDM)、及び機械的マイクロ切削加工法である。
プレートを含む各種部材間の接合方法は、高温加熱による材料の変質や変形による流路等の破壊を伴わず、寸法精度を保った精密な方法が望ましく、製作材料との関係から固相接合(例えば圧接接合や拡散接合等)や液相接合(例えば、溶接、共晶接合、はんだ付け、接着等)を選択することが好ましい。例えば、材料にシリコンを使用する場合にシリコン同士を接合するシリコン直接接合等の部材表面の分子間力を利用した直接接合や、ガラス同士を接合する融接、シリコンとガラスを接合する陽極接合、金属同士を接合する拡散接合等が挙げられる。セラミックスの接合については、金属のようなメカニカルなシール技術以外の接合技術が必要であり、アルミナに対してglass solderなる接合剤をスクリーン印刷で、80μm程度の膜厚に印刷し、圧力をかけずに440〜500℃で熱処理する方法がある。また、新しい技術として、表面活性化接合、水素結合を用いた直接接合、HF(フッ化水素)水溶液を用いた接合等がある。このうち、表面活性化接合は、真空中でアルゴンイオンビーム等を部材に照射して部材の表面を原子レベルで洗浄し、常温で加圧接合する常温直接接合である。この方法は、部材の熱変形の影響を低減することができ、特に、異なる材質からなる部材同士を接合する際に、熱的ストレスを緩和することにも利用できる。上記接合方法の他、接着剤を使用することもできる。
送液手段としては、各種マイクロポンプ、ダイヤフラムポンプ、連続流動方式型のシリンジポンプ等を好適に使用することができる。連続流動方式は、マイクロデバイス10を構成する流路全てを第1の液体L1又は第2の液体L2で満たし、外部に用意した送液手段によって液体全体を駆動させる方式であり、供給する第1、第2の液体L1、L2の供給圧力や供給流量を任意に制御することができる。
また、本発明に使用される流体としては、液体、液固混相流体、気固混相流体等が挙げられる。
次に、本実施形態におけるマイクロデバイス10の作用について図1及び図9を参照して説明する。図9は、第1、第2の滞留部18、28近傍における本発明の作用を示す部分断面図である。このうち、図9(a)は、第1の滞留部18近傍を示し、図9(b)は、第2の滞留部28近傍を示す。
図9(a)に示すように、第1の液体L1は、上側から供給流路48を介して第1の供給プレート12に形成された第1の滞留部18に供給される。
第1の滞留部18において、図9(a)に示すように、第1の液体L1中の気泡64は比重差により浮上し、第1の滞留部18の上面に形成された撥水パターニング52の撥水領域52aに捕捉される。捕捉された気泡64は、撥水領域52aから連通孔58aを通して除去される。そして、気泡64が除去された第1の液体L1は、第1の分岐流路20A〜20D(排出流路)へ分岐される。
第1の分岐流路20A〜20Dを流れる第1の液体L1は、ボア22A〜22D、及びボア24A〜24Dを流れた後、合流プレート16に形成された第1の供給口42A〜42Dに至る。
一方、第2の液体L2は、下側から合流プレート16、第2の供給プレート14のそれぞれ中央部を貫通する供給流路26内から第2の滞留部28に供給される。
第2の滞留部28において、図9(b)に示すように、第2の液体L2中の気泡64は比重差により浮上し、第2の滞留部28の上面に形成された撥水パターニング52の撥水領域52aに捕捉される。捕捉された気泡64は、撥水領域52aから孔58b、連通孔58cを通して除去される。そして、気泡が除去された第2の液体L2は、第2の分岐流路30A〜30D(排出流路)へ分岐され、ボア32A〜32D内を流れた後、合流プレート16に形成された第2の供給口44A〜44Dに至る。
そして、合流プレート16において、各第1、第2の液体L1、L2は、Y字型のマイクロチャンネル34A〜34Dの第1、第2の供給流路36A〜36D、38A〜38Dを流れた後、合流流路40A〜40Dで混合される。このとき、各液体中には気泡がほとんど混入していないので、第1、第2の液体L1、L2は安定かつ均一に混合又は反応する。そして、混合又は反応した反応生成物LMは、図示しない回収流路から回収される。
以上に説明した本発明に係る流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法によれば、簡単な方法及び構成で、液体中の気泡を除去することができる。これにより、微細な流路内に気泡が混入したり、気泡同士が合一したりすることによる流路の閉塞や、気泡が流路壁面に付着することにより生じる圧損の変化を抑制できる。したがって、微細な流路内に液体を均一かつ安定に供給できると共に、該液体同士を高効率で混合又は反応させることができる。特に、本発明は、分岐流路構造を有するマイクロデバイスにおいて、液体を均等かつ安定に分配できるので、ナンバリングアップタイプのマイクロデバイスに好適である。
以上、本発明に係る好ましい実施形態について説明したが、本発明は上記実施形態に限定されず、種々の態様を採用しうる。
たとえば、本実施形態では、第1、第2の滞留部18、28の上面に図5の撥水パターニング52を形成したが、これに限定されず、たとえば図10に示すような撥水パターニングも採用できる。図10は、撥水パターニング52の変形例を示す平面図である。
図10において、非撥水領域52bは、図3における第2の分岐流路30A〜30Dから第2の滞留部28内に延長した流路と、供給流路26と、に対応しており、第2の液体L2が流通しやすい形状となっている。これにより、撥水領域52aにより第2の液体L2中の気泡を捕捉できるだけでなく、捕捉した気泡により液体L2の流れを阻害することなく、第2の液体L2をスムーズに供給できる。
なお、本実施形態では、第1、第2の滞留部18、28の上面18A、28Aに撥水領域を形成し、底面28B及び側面28Cには親水処理54を施したが、必ずしもこの組み合わせに限定されない。たとえば、滞留部の底面及び側面にのみ親水処理を施せば、上面には必ずしも撥水領域を形成しなくてもよい。これとは逆に、滞留部の上面のみに撥水領域を形成すれば、底面及び側面には親水処理を施さなくてもよい。要は、液体中の気泡を選択的に上部に収集できる構成であればよい。
また、本実施形態では、第1、第2の滞留部18、28の上面に気泡捕捉手段として撥水パターニングを採用したが、これに限定されず、たとえば、図11及び図12に示すような態様も採用できる。図11及び図12は、気泡捕捉手段の変形例を示す部分断面図である。
図11(a)に示すように、第1、第2の滞留部18、28の上面を粗面(凸凹面)にすることができる。これにより、図11(b)に示すように、液体中の気泡64が比重差により浮上して粗面66と接して安定に捕捉されるとともに、一旦捕捉されると安定に保持される。このため、再び液体中に気泡64が混入するのを抑制できる。
また、図12に示すように、第2の滞留部28の上面28Aに気泡を保持する凹部68を形成することにより、液体中の気泡を比重差により浮上させ、凹部68と液面との間に形成された空間内に安定に保持できる。なお、同図に示すように、凹部68の内面に、撥水パターニング52又は全面が撥水領域となるような処理が施されてもよい。これにより、気泡を再び液体中に混入させることなく、安定に保持できる。
また、本実施形態では、気泡除去機構58として、第1、第2の滞留部18、28の上面と大気とを連通する微細な孔58a及び連通孔58bを備えた例を示したが、更に、図13に示すように、吸引ポンプやシリンジ等の吸引手段(又は減圧手段)70を通気孔58cと接続させて、気泡を吸引除去するように構成することもできる。これにより、第2の滞留部28から気泡を迅速に除去できるだけでなく、気泡を捕捉することにより局所的に圧力が増大するのを抑制できる。なお、吸引手段70は、図5、10の撥水パターニング52、図11の粗面66、及び図12の凹部68が形成された第2の滞留部28の上面28Aにも同様に設けることができる。また、気泡除去機構58は、図4の態様に限定されず、通気孔の数や設置形態等、適宜設定される。
また、本実施形態では、1本の供給流路から第1、第2の滞留部18、28に液体を供給し、複数の排出流路へ排出させる例について説明したが、これに限定されず、例えば、図14に示すように、複数の供給流路30B’、30D’から1本の排出流路26’へ液体を流す場合についても、本発明を適用できる。
次に、本発明に係る第2の実施形態について説明する。なお、既述の第1の実施形態と同一、類似の部材については、同様の符号を附し、その説明を省略する。
図15は、本実施形態のマイクロデバイス10’の概略構成を示す概略図である。
図15に示すように、マイクロデバイス10’は、気泡除去機構58の代わりに、第1の供給プレート12の上面と、該第1の供給プレート12と第2の供給プレート14との間と、の2箇所に繊維シート72、72を設けた以外は図1とほぼ同様に構成される。
図16(a)は、第1の滞留部18の近傍を示す部分断面図であり、図16(b)は、第2の滞留部28の近傍を示す部分断面図である。
図16に示すように、第1、第2の滞留部18、28の上部は、繊維シート72で覆われる。繊維シート72、72の第1、第2の滞留部18、28に対向するそれぞれの領域には、撥水処理(不図示)が施されることが好ましい。これにより、液体が繊維シート72の表面を覆うことにより、気泡の抜け道が閉塞され、繊維シート72の通気性が低下するのを抑制できる。なお、第1、第2の滞留部18、28の底面28B及び側面28Cには、気泡が付着するのを防止するために親水処理54が施される。
繊維シート72としては、特に限定しないが、耐食性や強度が高いものが好ましく、たとえば、カーボン製の織布、不織布、セラミック繊維や金属繊維製のメッシュ、セラミックや金属の多孔質焼結体等が使用できる。特に、耐食性や強度の観点から、ステンレス鋼製金属繊維(例えばナスロン等)やステンレス鋼多孔質焼結体(例えばシンターパウダー等)が好適に使用できる。
また、第2の滞留部28に使用される繊維シート72は、気体を通過させ、液体を通過させないメッシュサイズのものを使用するのが好ましい。また、第1の滞留部18のうち、第1の液体L1の供給流路48との接続部には、繊維シート72が挟持されないように構成するのが好ましい。
このように構成することにより、より簡単な構成で捕捉した気泡を外部に除去することができる。
以上に説明した本発明に係る気泡除去方法によれば、簡単な方法及び構成で、微細な流路や滞留部内に混入する気泡を除去することができる。これにより、微細な流路を有するマイクロデバイスにおいて、複数種類の液体を均一かつ安定に供給できるとともに、該液体同士を高効率で混合又は反応させることができる。
なお、本発明の流路構造体、該流路構造体を備えたマイクロデバイスとしては、上記各実施形態に限定されるものではない。
本発明に係るマイクロデバイス10の主要部を説明する分解斜視図である。 図1における第1の滞留部の部分拡大図である。 図1における第2の滞留部の部分拡大図である。 図1における第1、第2の滞留部近傍の部分断面図である。 第2の滞留部の上面に形成された撥水パターニングを説明する説明図である。 本実施形態で使用されるスタンプ部材の製造過程を説明する部分断面図である。 図6のスタンプ部材を示す斜視図である。 第1の供給プレートの表面に撥水パターニングを形成する方法を示す部分断面図である。 第1、第2の滞留部近傍の作用を示す断面図である。 撥水パターニングの変形例を示す平面図である。 気泡捕捉手段の変形例を示す部分断面図である。 気泡捕捉手段の変形例を示す部分断面図である。 気泡捕捉手段の変形例を示す部分断面図である。 液体の流通方法の変形例を示す部分断面図である。 第2の実施形態におけるマイクロデバイス10’の概略構成を示す概略図である。 図15の第1、第2の滞留部の近傍を示す部分断面図である。
符号の説明
10、10’…マイクロデバイス、12…第1の供給プレート、14…第2の供給プレート、16…合流プレート、18…第1の滞留部、28…第2の滞留部、18A…(第1の滞留部の)上面、28A…(第2の滞留部の)上面、20A〜20D…第1の分岐流路(排出流路)、30A〜30D…第2の分岐流路、26、27…供給流路、52…撥水パターニング、52a…撥水領域、52b…非撥水領域、54…親水処理、66…粗面、58…気泡除去機構、58a、58c…連通孔、58b…孔、68…凹部、62A…スタンプ部材、64…気泡、70…吸引手段、72…繊維シート

Claims (10)

  1. 流通する液体中の気泡を捕捉する機能を備えた流路構造体であって、
    滞留部と、
    該滞留部に連通する複数の流路と、を備え、
    前記複数の流路のうち、少なくとも1つの流路が前記滞留部に前記液体を供給する供給流路であり、
    前記供給流路以外の流路が前記滞留部内の液体を排出する排出流路であり、
    前記滞留部の上部には、前記供給流路から該滞留部内に供給した液体中の気泡を捕捉する気泡捕捉手段が設けられていることを特徴とする流路構造体。
  2. 前記気泡捕捉手段が、前記滞留部の上部のうちの上面に形成された撥水面であることを特徴とする請求項1に記載の流路構造体。
  3. 前記撥水面は、撥水領域と非撥水領域とを備えた撥水パターニングであることを特徴とする請求項2に記載の流路構造体。
  4. 前記滞留部の側面及び又は底面は、親水面が形成されたことを特徴とする請求項2又は3に記載の流路構造体。
  5. 前記気泡捕捉手段が、前記滞留部の上部のうちの上面に形成された粗面であることを特徴とする請求項1〜4のいずれか1項に記載の流路構造体。
  6. 前記気泡捕捉手段が、前記滞留部の上部のうちの上面に形成された凹部であることを特徴とする請求項1〜5のいずれか1項に記載の流路構造体。
  7. 前記凹部の表面は、撥水面であることを特徴とする請求項6に記載の流路構造体。
  8. 前記捕捉した気泡を前記滞留部から除去するための除去手段を備えたことを特徴とする請求項1〜7のいずれか1項に記載の流路構造体。
  9. 請求項1〜8のいずれか1項に記載の流路構造体を備えたことを特徴とするマイクロデバイス。
  10. 請求項1〜8のいずれか1項に記載の流路構造体を用いて気泡を除去することを特徴とする気泡除去方法。
JP2006269526A 2006-09-29 2006-09-29 流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法 Pending JP2008086888A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269526A JP2008086888A (ja) 2006-09-29 2006-09-29 流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006269526A JP2008086888A (ja) 2006-09-29 2006-09-29 流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法

Publications (1)

Publication Number Publication Date
JP2008086888A true JP2008086888A (ja) 2008-04-17

Family

ID=39371602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269526A Pending JP2008086888A (ja) 2006-09-29 2006-09-29 流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法

Country Status (1)

Country Link
JP (1) JP2008086888A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172850A (ja) * 2009-01-30 2010-08-12 Nokodai Tlo Kk マクロチップデバイス
CN103207257A (zh) * 2012-01-12 2013-07-17 中国科学院理化技术研究所 一种仿岩心结构的玻璃介质模型
JP2013537477A (ja) * 2010-07-02 2013-10-03 ソシエテ ビック 水素分離膜装置
JP2017026579A (ja) * 2015-07-28 2017-02-02 株式会社朝日Fr研究所 マイクロ化学チップ及びその製造方法
JP2017120240A (ja) * 2015-12-28 2017-07-06 京セラ株式会社 センサ装置およびそれを用いた検出方法
KR101809071B1 (ko) * 2016-11-22 2017-12-15 한국기계연구원 마이크로채널을 통과하는 유체의 기포제거장치와 이것의 제조방법
KR20190031748A (ko) * 2017-09-18 2019-03-27 한국기계연구원 미소유체소자용 커버, 상기 커버의 제작 방법 및 상기 커버를 가지는 미소유체소자

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172850A (ja) * 2009-01-30 2010-08-12 Nokodai Tlo Kk マクロチップデバイス
JP2013537477A (ja) * 2010-07-02 2013-10-03 ソシエテ ビック 水素分離膜装置
CN103207257A (zh) * 2012-01-12 2013-07-17 中国科学院理化技术研究所 一种仿岩心结构的玻璃介质模型
JP2017026579A (ja) * 2015-07-28 2017-02-02 株式会社朝日Fr研究所 マイクロ化学チップ及びその製造方法
JP2017120240A (ja) * 2015-12-28 2017-07-06 京セラ株式会社 センサ装置およびそれを用いた検出方法
KR101809071B1 (ko) * 2016-11-22 2017-12-15 한국기계연구원 마이크로채널을 통과하는 유체의 기포제거장치와 이것의 제조방법
KR20190031748A (ko) * 2017-09-18 2019-03-27 한국기계연구원 미소유체소자용 커버, 상기 커버의 제작 방법 및 상기 커버를 가지는 미소유체소자
KR102012242B1 (ko) * 2017-09-18 2019-08-21 한국기계연구원 미소유체소자용 커버, 상기 커버의 제작 방법 및 상기 커버를 가지는 미소유체소자

Similar Documents

Publication Publication Date Title
JP2008086888A (ja) 流路構造体、該流路構造体を備えたマイクロデバイス、及びそれを用いた気泡除去方法
Bayareh An updated review on particle separation in passive microfluidic devices
Narayanamurthy et al. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis
US10226768B2 (en) Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting
JP4901260B2 (ja) 流体混合装置及び流体混合方法
Yamada et al. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics
Takagi et al. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches
Weng et al. A suction-type, pneumatic microfluidic device for liquid transport and mixing
KR100564841B1 (ko) 미세 구조화 분리 장치
Patel et al. Lateral cavity acoustic transducer as an on-chip cell/particle microfluidic switch
Volpe et al. Polymeric fully inertial lab-on-a-chip with enhanced-throughput sorting capabilities
Li et al. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer
US7166147B2 (en) Process and device for separating and exhausting gas bubbles from liquids
EP2003438A2 (en) Apparatus for focusing a particle in sheath flow and method of manufacturing the same
KR100509254B1 (ko) 미세 유체의 이송 시간을 제어할 수 있는 미세 유체 소자
JP2005519751A (ja) 微小流体チャネルネットワークデバイス
CN110643681A (zh) 用于检测生物组分的方法和系统
Tsao et al. Bonding of thermoplastic microfluidics by using dry adhesive tape
Lin et al. Acoustofluidic stick-and-play micropump built on foil for single-cell trapping
CN112601613A (zh) 粒子分离设备以及粒子分离装置
WO2004052541A1 (en) Micro-fluidic structure, method and apparatus for its production, and use thereof
Yang et al. Emergence of debubblers in microfluidics: A critical review
GB2472506A (en) A Counter-flow filtrating unit and fluid processing device
JP3905074B2 (ja) 微量流体制御機構及び該機構を有するマイクロチップ
JP2010000428A (ja) マイクロリアクタ