JP2008085096A - Heat radiating member, electronic component storing package using the member, and electronic apparatus using the member - Google Patents

Heat radiating member, electronic component storing package using the member, and electronic apparatus using the member Download PDF

Info

Publication number
JP2008085096A
JP2008085096A JP2006263855A JP2006263855A JP2008085096A JP 2008085096 A JP2008085096 A JP 2008085096A JP 2006263855 A JP2006263855 A JP 2006263855A JP 2006263855 A JP2006263855 A JP 2006263855A JP 2008085096 A JP2008085096 A JP 2008085096A
Authority
JP
Japan
Prior art keywords
metal plate
inorganic particles
electronic component
heat
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006263855A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ueda
義明 植田
Tetsuo Abumita
哲郎 鐙田
Junro Yoneda
淳郎 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006263855A priority Critical patent/JP2008085096A/en
Publication of JP2008085096A publication Critical patent/JP2008085096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiating member, an electronic-component storing package using the member, and an electronic apparatus using the member wherein it excels in heat radiating performance and a heat radiating property is favorably maintained even in a long-term use. <P>SOLUTION: The heat radiating member A has a one-side metal plate 2a present, the other-side metal plate 2b, and inorganic particles 1 each of which has thermal conductivity larger than those of the metal plates, and is interposed between the one-side metal plate 2a and the other-side metal plate 2b, and further, is so joined via a brazing filler metal 5 to the metal plates that respective portions of each inorganic particle are buried in the one-side metal plate 2a and the other-side metal plate 2b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高出力の電子部品が作動時に発する熱を効率良く外部に放散させ得る放熱部材、この放熱部材を用いた熱放散性のよい電子部品用収納用パッケージおよび電子装置に関するものである。   The present invention relates to a heat radiating member that can efficiently dissipate heat generated by a high-power electronic component during operation to the outside, an electronic component housing package and an electronic device that use this heat radiating member and have good heat dissipation.

従来の放熱部材の例を図7の断面図に示す。従来の放熱部材として、平均粒径50μm以上800μm以下のダイヤモンド粒子101と銀,銅,アルミニウム,金等の1つ以上を主成分とする金属102から成るヒートシンク(以下、放熱部材という)がある(例えば、特許文献1参照)。   An example of a conventional heat radiating member is shown in the cross-sectional view of FIG. As a conventional heat dissipating member, there is a heat sink (hereinafter referred to as a heat dissipating member) composed of diamond particles 101 having an average particle diameter of 50 μm or more and 800 μm or less and a metal 102 mainly composed of one or more of silver, copper, aluminum, gold or the like ( For example, see Patent Document 1).

この放熱部材は、所定の放熱部材の治具となる枠にダイヤモンド粒子101を入れ、揺すりを加えることでダイヤモンド粒子101を敷き詰め、その後、放熱部材枠に粉末もしくはペースト状の金属102を流し込むことにより、ダイヤモンド粒子101が一層に並べられた状態のダイヤモンド粒子101と金属102を複合した複合材を形成する。そして、一層が完了後、この動作を繰り返すことによって、所定の厚みの放熱部材が得られる。   This heat dissipating member is obtained by putting diamond particles 101 in a frame serving as a jig for a predetermined heat dissipating member, spreading diamond particles 101 by adding shaking, and then pouring powder or paste-like metal 102 into the heat dissipating member frame. Then, a composite material is formed by combining the diamond particles 101 and the metal 102 in a state where the diamond particles 101 are arranged in a single layer. Then, after one layer is completed, the operation is repeated to obtain a heat dissipation member having a predetermined thickness.

この放熱部材においては、ダイヤモンド粒子101と金属102との密着性を強固にするために、チタン等の周期律表の4a〜7a族の金属を少量添加したり、ダイヤモンドに予め付着させたりしていた。
特開平9−312362号公報
In this heat radiating member, in order to strengthen the adhesion between the diamond particles 101 and the metal 102, a small amount of a metal of the 4a to 7a group of the periodic table such as titanium is added, or it is preliminarily adhered to the diamond. It was.
Japanese Patent Laid-Open No. 9-312362

しかしながら、上記従来の放熱部材においては、ロウ付け工程等において放熱部材に熱が加わった際に、周期律表の4a〜7a族の金属が金属102中に拡散してしまい、ダイヤモンド粒子101の周囲に配置された金属102とダイヤモンド粒子101との密着が不十分となって、ダイヤモンド粒子101と金属102との間で熱を良好に伝達させることができなくなる場合があった。その結果、搭載される半導体等の電子部品から発生する熱を、放熱部材を介して良好に放散させることができないという問題点が発生していた。   However, in the conventional heat radiating member, when heat is applied to the heat radiating member in the brazing step or the like, the metals in groups 4a to 7a of the periodic table diffuse into the metal 102, and the surroundings of the diamond particles 101 In some cases, adhesion between the metal 102 and the diamond particles 101 disposed on the surface becomes insufficient, and heat cannot be transferred between the diamond particles 101 and the metal 102. As a result, there has been a problem that heat generated from electronic components such as semiconductors to be mounted cannot be dissipated well through the heat dissipation member.

したがって、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、放熱性能に優れ、長期使用においても放熱性が良好に維持される放熱部材およびこれを用いた電子部品収納用パッケージおよび電子装置を提供することにある。   Accordingly, the present invention has been completed in view of the above-described conventional problems, and the object thereof is a heat radiating member having excellent heat radiating performance and excellent heat radiability even in long-term use, and an electronic component using the same. It is to provide a storage package and an electronic device.

本発明の放熱部材は、一方金属板と、該一方金属板表面に対向配置された他方金属板と、前記一方金属板および前記他方金属板の熱伝導率よりも大きい熱伝導率を有するとともに前記一方金属板と前記他方金属板との間に介在し、前記一方金属板と前記他方金属板とに一部が埋入されるようにロウ材を介して接合された、表面に金属膜が被着されている無機粒子とを具備していることを特徴とする。   The heat dissipating member of the present invention has one metal plate, the other metal plate opposed to the surface of the one metal plate, and a thermal conductivity larger than the thermal conductivity of the one metal plate and the other metal plate, and One surface of the metal plate is interposed between the metal plate and the other metal plate, and is joined to the one metal plate and the other metal plate through a brazing material so as to be partially embedded. It is characterized by comprising inorganic particles being worn.

本発明の放熱部材は、上記構成において好ましくは、前記一方金属板および前記他方金属板は、銀,銅またはアルミニウムから成ることを特徴とする。   The heat dissipating member of the present invention preferably has the above-described configuration, wherein the one metal plate and the other metal plate are made of silver, copper or aluminum.

本発明の放熱部材は、上記構成において好ましくは、前記無機粒子は、ダイヤモンド粒子および立方晶窒化硼素粒子の少なくとも一方を含むことを特徴とする。   The heat dissipating member of the present invention preferably has the above structure, wherein the inorganic particles include at least one of diamond particles and cubic boron nitride particles.

本発明の放熱部材は、上記構成において好ましくは、前記ロウ材は、銀−銅ロウ,アルミニウムロウ,銀ロウまたは銅ロウであることを特徴とする。   The heat dissipating member of the present invention preferably has the above-described configuration, wherein the brazing material is silver-copper brazing, aluminum brazing, silver brazing or copper brazing.

本発明の放熱部材は、上記構成において好ましくは、前記ロウ材は、厚さが5μm以上25μm以下であることを特徴とする。   The heat dissipating member of the present invention preferably has the above-described configuration, wherein the brazing material has a thickness of 5 μm or more and 25 μm or less.

本発明の放熱部材は、上記構成において好ましくは、前記無機粒子の間に、前記一方金属板および前記他方金属板を接続するように導電体が配置されていることを特徴とする。   In the above configuration, the heat dissipating member of the present invention is preferably characterized in that a conductor is disposed between the inorganic particles so as to connect the one metal plate and the other metal plate.

本発明の放熱部材は、上記構成において好ましくは、上記本発明の放熱部材が、複数層積層されて成ることを特徴とする。   The heat dissipating member of the present invention preferably has the above-described configuration, and the heat dissipating member of the present invention is laminated in a plurality of layers.

本発明の電子部品用収納用パッケージは、上記本発明の放熱部材と、配線導体を有し、前記放熱部材の表面外周部に取着された端子とを具備していることを特徴とする。 An electronic component storage package according to the present invention includes the heat dissipation member according to the present invention, and a terminal having a wiring conductor and attached to the outer peripheral portion of the surface of the heat dissipation member.

本発明の電子装置は、上記本発明の電子部品収納用パッケージと、前記端子が取着された放熱部材の表面中央部に設置され、前記配線導体に接続された電子部品と、この電子部品を覆うように設けられた封止樹脂または蓋体とを具備したことを特徴とする。   An electronic device according to the present invention includes the electronic component storage package according to the present invention, an electronic component that is installed at the center of the surface of the heat dissipation member to which the terminal is attached, and is connected to the wiring conductor. A sealing resin or a lid provided so as to cover is provided.

本発明の放熱部材は、一方金属板と、この一方金属板表面に対向配置された他方金属板と、前記一方金属板および前記他方金属板の熱伝導率よりも大きい熱伝導率を有するとともに前記一方金属板と前記他方金属板との間に介在し、前記一方金属板と前記他方金属板とに一部が埋入されるようにロウ材を介して接合された、表面に金属膜が被着されている無機粒子とを具備していることから、放熱部材の表面に設置される電子部品が作動する際に発する熱は、一方金属板から他方金属板に熱伝導率の大きい無機粒子を介して良好に伝わり、電子部品を効率良く冷却することができる。   The heat dissipating member of the present invention has one metal plate, the other metal plate opposed to the surface of the one metal plate, and a thermal conductivity larger than the thermal conductivity of the one metal plate and the other metal plate, and One surface of the metal plate is interposed between the metal plate and the other metal plate, and is joined to the one metal plate and the other metal plate through a brazing material so as to be partially embedded. The heat generated when the electronic component installed on the surface of the heat radiating member is operated is changed from one metal plate to the other metal plate with high thermal conductivity. Therefore, the electronic component can be efficiently cooled.

また、本発明の放熱部材は、一方金属板および他方金属板は、銀,銅またはアルミニウムから成るのが良く、これら金属の熱伝導率は大きいことから、電子部品が作動時に発生する熱を無機粒子に良く伝え、または無機粒子から伝わった熱を外部へ良く伝えることができる。   In the heat dissipating member of the present invention, the one metal plate and the other metal plate may be made of silver, copper or aluminum, and the heat conductivity of these metals is large. The heat transmitted from the inorganic particles can be well transmitted to the outside.

また、本発明の放熱部材は、無機粒子は、ダイヤモンド粒子および立方晶窒化硼素粒子の少なくとも一方を含んでおれば良く、これら無機粒子は、非常に高い熱伝導率を有していることから、放熱部材の熱放散性が向上する。   In the heat dissipation member of the present invention, the inorganic particles only need to contain at least one of diamond particles and cubic boron nitride particles, and these inorganic particles have a very high thermal conductivity. The heat dissipating property of the heat dissipating member is improved.

また、本発明の放熱部材は、ロウ材は、銀−銅ロウ,アルミニウムロウ,銀ロウまたは銅ロウであるのが良い。これらロウ材は、金属膜、一方金属板および他方金属板に対する濡れ性が良く、無機粒子と一方金属板または他方金属板との接合性が良くなる。   In the heat dissipating member of the present invention, the brazing material may be silver-copper brazing, aluminum brazing, silver brazing or copper brazing. These brazing materials have good wettability to the metal film, the one metal plate and the other metal plate, and the bondability between the inorganic particles and the one metal plate or the other metal plate is improved.

また、本発明の放熱部材は、ロウ材の厚さが5μm以上25μm以下であるのが良く、無機粒子と一方金属板または他方金属板とを良好に接合するとともに熱伝達性を大きく損なうことがない。   In the heat radiating member of the present invention, the thickness of the brazing material is preferably 5 μm or more and 25 μm or less, and the inorganic particles and the one metal plate or the other metal plate can be satisfactorily bonded and the heat transfer performance can be greatly impaired. Absent.

また、本発明の放熱部材は、無機粒子の間に、一方金属板および他方金属板を接続するように導電体が配置されていても良く、一方金属板と他方金属板との間の電気抵抗を小さくできることから、放熱部材を電子部品に対する接地(グランド)として機能させることができる。   In the heat dissipation member of the present invention, a conductor may be disposed between the inorganic particles so as to connect the one metal plate and the other metal plate, and the electric resistance between the one metal plate and the other metal plate. Therefore, the heat radiating member can function as a ground for the electronic component.

また、本発明の放熱部材は、上記本発明の放熱部材が、複数層積層されて成っても良く、層方向に整列された無機粒子を整然と積み上げることができるので、作製が容易で且つ、積層後であっても一律な熱伝導性を有する放熱部材となる。   Further, the heat radiating member of the present invention may be formed by laminating a plurality of layers of the heat radiating member of the present invention, and the inorganic particles aligned in the layer direction can be stacked in an orderly manner. Even after this, the heat dissipation member has uniform thermal conductivity.

また、本発明の電子部品収納用パッケージは、上記本発明の放熱部材と、配線部材を有し、放熱部材の表面外周部に取着された端子とを具備していることから、発熱量の多い電子部品を収容するパッケージとして好適に使用できる。   In addition, the electronic component storage package of the present invention includes the heat dissipating member of the present invention, a wiring member, and a terminal attached to the outer peripheral portion of the surface of the heat dissipating member. It can be suitably used as a package that accommodates many electronic components.

また、本発明の電子装置は、上記本発明の電子部品収納用パッケージと、端子が取着された放熱部材の表面中央部に設置され、配線導体に接続された電子部品と、この電子部品を覆うように設けられた封止樹脂または蓋体とを具備したことから、電子部品の温度上昇を抑制し、電子部品を非常に良好に作動させ得る電子装置となる。   An electronic device according to the present invention includes the electronic component storage package according to the present invention, an electronic component that is installed in the center of the surface of the heat dissipation member to which the terminal is attached, and is connected to the wiring conductor. Since the sealing resin or the lid provided so as to cover is provided, an electronic device that can suppress the temperature rise of the electronic component and operate the electronic component very well is obtained.

本発明の放熱部材およびこれを用いた電子部品収納用パッケージおよび電子装置について以下に詳細に説明する。図1(a),図1(b),図1(c)は本発明の放熱部材の実施の形態の一例を示す断面図であり、図2(a),図2(b),図2(c)は本発明の放熱部材の実施の形態の他の例を示す断面図である。また、図3(a),図3(b)は本発明の放熱部材の要部拡大断面図である。図4は図1(b)に示す放熱部材を用いた電子部品収納用パッケージの一例を示す断面図であり、図5は図4に示す電子部品収納用パッケージを用いた電子装置の一例を示す断面図である。   The heat radiating member of the present invention, the electronic component storage package using the heat radiating member, and the electronic device will be described in detail below. 1 (a), 1 (b), and 1 (c) are cross-sectional views showing an example of an embodiment of a heat radiating member of the present invention. FIG. 2 (a), FIG. 2 (b), and FIG. (C) is sectional drawing which shows the other example of embodiment of the thermal radiation member of this invention. Moreover, Fig.3 (a) and FIG.3 (b) are the principal part expanded sectional views of the thermal radiation member of this invention. 4 is a sectional view showing an example of an electronic component storage package using the heat dissipation member shown in FIG. 1B, and FIG. 5 shows an example of an electronic device using the electronic component storage package shown in FIG. It is sectional drawing.

これらの図において、1は無機粒子、2aは一方金属板(以下、上側金属板ともいう)、2bは一方金属板の下側表面に対して上側表面が対向するように配置された他方金属板(以下、下側金属板ともいう)、3は無機粒子1の間に一方金属板2aおよび他方金属板2bを接続するように配置された導電体、4は無機粒子1の表面に被着された金属膜、5は一方金属板2aまたは他方金属板2bと無機粒子1との間に介在し、無機粒子1と一方金属板2aまたは他方金属板2bとを接合するロウ材であり、これら無機粒子1、一方金属板2a、他方金属板2b、およびロウ材5とで本発明の放熱部材Aが構成される。   In these drawings, 1 is inorganic particles, 2a is one metal plate (hereinafter also referred to as an upper metal plate), and 2b is the other metal plate arranged so that the upper surface faces the lower surface of the one metal plate. (Hereinafter also referred to as a lower metal plate) 3 is a conductor disposed so as to connect the one metal plate 2a and the other metal plate 2b between the inorganic particles 1, and 4 is deposited on the surface of the inorganic particles 1. The metal film 5 is a brazing material that is interposed between the one metal plate 2a or the other metal plate 2b and the inorganic particles 1 and joins the inorganic particles 1 to the one metal plate 2a or the other metal plate 2b. The heat radiating member A of the present invention is constituted by the particles 1, the one metal plate 2a, the other metal plate 2b, and the brazing material 5.

また、A1は放熱部材Aの端子Bが取着された表面中央部において電子部品Cが搭載されて設置される搭載部、Bは信号入出力用の配線導体B1を有する端子であり、これら放熱部材Aと端子Bとで電子部品Cを搭載部A1に収納するための電子部品収納用パッケージが構成される。また、A2は放熱部材Aの下側金属板2bの下側表面であり、電子部品収納用パッケージを外部基板等に実装する際に電子部品収納用パッケージが外部基板等に載置されることによって外部基板等表面に接触する載置面、Cは放熱部材Aの搭載部A1に設置され、電極が配線導体B1に接続された電子部品、Dは端子Bの上面に接合される蓋体であり、前述の電子部品収納用パッケージの搭載部A1に電子部品Cを搭載後、配線導体B1と電子部品Cとをボンディングワイヤ等の電気接続部材により電気接続し、さらに、蓋体Dで電子部品Cを覆うように封止することにより電子装置が構成される。そして、この電子装置は、外部電気回路基板やヒートシンク等の外部基板(図示せず)に載置面A2を密着させて固定される。これによって、本発明の電子装置は、電子部品Cの作動時における発熱を放熱部材Aを介して外部基板に良好に熱伝達させ、電子部品Cの温度上昇を抑制して電子部品Cの作動信頼性を良好なものとさせ得る。   A1 is a mounting portion where the electronic component C is mounted and installed at the center of the surface where the terminal B of the heat dissipation member A is attached, and B is a terminal having a wiring conductor B1 for signal input / output. The member A and the terminal B constitute an electronic component storage package for storing the electronic component C in the mounting portion A1. A2 is the lower surface of the lower metal plate 2b of the heat dissipation member A. When the electronic component storage package is mounted on the external substrate or the like, the electronic component storage package is placed on the external substrate or the like. A mounting surface that contacts the surface of the external substrate, C is an electronic component that is installed on the mounting portion A1 of the heat dissipation member A, and an electrode is connected to the wiring conductor B1, and D is a lid that is bonded to the upper surface of the terminal B. After the electronic component C is mounted on the mounting portion A1 of the electronic component storage package, the wiring conductor B1 and the electronic component C are electrically connected by an electrical connection member such as a bonding wire, and the electronic component C is further connected by the lid D. The electronic device is configured by sealing so as to cover. The electronic device is fixed with the mounting surface A2 in close contact with an external substrate (not shown) such as an external electric circuit substrate or a heat sink. As a result, the electronic device according to the present invention causes heat generated during the operation of the electronic component C to be transferred to the external substrate through the heat radiating member A, and suppresses the temperature rise of the electronic component C to ensure the operation reliability of the electronic component C. The property can be improved.

本発明の放熱部材は、図1(a)および本発明の放熱部材Aの一個の無機粒子1周囲を拡大した断面を示す図3(a)に示すように、上側金属板2aと、この上側金属板2a表面に対向配置され、下面が外部基板に載置される載置面A2を有する下側金属板2bと、上側金属板2aおよび下側金属板2bの熱伝導率よりも大きい熱伝導率を有するとともにビッカース硬度が上側金属板2aおよび下側金属板2bよりも高く、上側金属板2aと下側金属板2bとの間に介在して上側金属板2aと下側金属板2bとに上部1aおよび下部1bの一部が埋入されるようにロウ材5を介して接合された無機粒子1とを具備していることから、放熱部材Aの表面に設置される電子部品Cが作動する際に発する熱は、上側金属板2aから下側金属板2bに熱伝導率の大きい無機粒子1を介して良好に伝わる。そして、外部電気回路基板やヒートシンク等の外部基板に放熱することにより、電子部品Cを効率良く冷却することができる。   As shown in FIG. 1A and FIG. 3A showing an enlarged cross section of one inorganic particle 1 around the heat radiating member A of the present invention, the heat radiating member of the present invention includes an upper metal plate 2a and the upper metal plate 2a. Lower metal plate 2b having a mounting surface A2 disposed opposite to the surface of the metal plate 2a and having a lower surface mounted on the external substrate, and thermal conductivity greater than the thermal conductivity of the upper metal plate 2a and the lower metal plate 2b And the Vickers hardness is higher than that of the upper metal plate 2a and the lower metal plate 2b, and is interposed between the upper metal plate 2a and the lower metal plate 2b to be connected to the upper metal plate 2a and the lower metal plate 2b. The electronic component C installed on the surface of the heat dissipating member A operates because it comprises the inorganic particles 1 joined via the brazing material 5 so that a part of the upper part 1a and the lower part 1b are embedded. The heat generated during the process from the upper metal plate 2a to the lower metal plate 2b Transmitted to good through the large inorganic particles 1 conductivity. The electronic component C can be efficiently cooled by dissipating heat to an external board such as an external electric circuit board or a heat sink.

無機粒子1は、熱伝導率のよい物質から成り、たとえば、人工ダイヤモンドまたは立方晶窒化硼素等の非金属で単結晶性の粒子、窒化アルミニウム(AlN),窒化ケイ素(Si)または炭化ケイ素(SiC)等の熱伝導率のよい非金属の粒子から成る。または銀や銅等の熱伝導率のよい金属の粒子でもよい。 The inorganic particles 1 are made of a material having good thermal conductivity, and are, for example, non-metallic single crystal particles such as artificial diamond or cubic boron nitride, aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), or carbonized. It consists of non-metallic particles with good thermal conductivity such as silicon (SiC). Alternatively, metal particles having good thermal conductivity such as silver and copper may be used.

たとえば、無機粒子1は、上側金属板2aおよび下側金属板2bよりも熱伝導率およびビッカース硬度が高い物質から成り、絶縁性または導電性の人工ダイヤモンド粒子および立方晶窒化硼素粒子の少なくとも一方を含んでいる。すなわち、無機粒子1は人工ダイヤモンド粒子のみ、立方晶窒化硼素粒子のみ、またはこれら粒子の混合物またはこれら粒子を主とする混合物から成る。これら粒子のうち、熱伝導性や硬度の高さの観点より、これら物性に優れた人工ダイヤモンドがより好ましく、またメッキにより金属膜4を容易に形成できる点を考慮すると、人工ダイヤモンドのなかでも導電性を有するものが良い。無機粒子1の粒径は、例えば、メッシュの升目の大きさが650μmおよび750μmのメッシュに通すことにより所定範囲のものとする。   For example, the inorganic particles 1 are made of a material having higher thermal conductivity and Vickers hardness than the upper metal plate 2a and the lower metal plate 2b, and include at least one of insulating or conductive artificial diamond particles and cubic boron nitride particles. Contains. That is, the inorganic particles 1 are composed of only artificial diamond particles, only cubic boron nitride particles, a mixture of these particles, or a mixture mainly composed of these particles. Among these particles, an artificial diamond having excellent physical properties is more preferable from the viewpoint of thermal conductivity and hardness, and considering that the metal film 4 can be easily formed by plating, the conductive diamond is an electrically conductive material among the artificial diamonds. The thing which has property is good. The particle diameter of the inorganic particles 1 is set within a predetermined range by passing through a mesh having mesh sizes of 650 μm and 750 μm, for example.

なお、無機粒子1は1個以上を用いる。無機粒子1としての人工ダイヤモンドまたは立方晶窒化硼素粒子の製造可能な最大径、および電子部品Cの発熱性や大きさを考慮した場合、実際には搭載部A1の面方向に対してこれら無機粒子1を複数個配置させておくほうが良く、放熱面積を大きくすることにより熱伝達特性をさらに良好とできる。無機粒子1が複数個用いられる場合、無機粒子1は、下側金属板2b上において整列機等を用いて密に整列可能であり、無機粒子1を搭載部A1の面方向に対して複数個配置させた放熱部材Aを容易に製造できる。   One or more inorganic particles 1 are used. When considering the maximum manufacturable diameter of the artificial diamond or cubic boron nitride particles as the inorganic particles 1 and the heat generation and size of the electronic component C, these inorganic particles are actually in the plane direction of the mounting portion A1. It is better to arrange a plurality of 1, and heat transfer characteristics can be further improved by increasing the heat radiation area. When a plurality of inorganic particles 1 are used, the inorganic particles 1 can be densely aligned on the lower metal plate 2b using an aligner or the like, and a plurality of inorganic particles 1 are arranged in the plane direction of the mounting portion A1. The arranged heat dissipating member A can be easily manufactured.

整列機による整列は、下側金属板2a上に無機粒子1を敷き詰めるように置いた後、下側金属板2aを振動させることにより行なう。人工ダイヤモンド粒子および立方晶窒化硼素粒子は、不定形の多面体を有する結晶体であるが、このように整列させることにより、結晶体の一平面が下側金属板2bの表面にほぼ平行になるように整列される。そして、無機粒子1の一部が上側金属板2aおよび下側金属板2bに埋入され、上側金属板2aおよび下側金属板2bと無機粒子1とが面で接触することになる。   The alignment by the aligner is performed by placing the inorganic particles 1 on the lower metal plate 2a and then vibrating the lower metal plate 2a. Artificial diamond particles and cubic boron nitride particles are crystal bodies having an irregular polyhedron, and by aligning in this way, one plane of the crystal body becomes substantially parallel to the surface of the lower metal plate 2b. Aligned. A part of the inorganic particles 1 is embedded in the upper metal plate 2a and the lower metal plate 2b, and the upper metal plate 2a, the lower metal plate 2b, and the inorganic particles 1 come into contact with each other on the surface.

このように小粒の無機粒子1を搭載部A1の面方向に対して複数個配置することにより、非常に高い発熱性を有する電子部品を搭載する場合や、大型の電子部品を搭載する場合に、放熱面積を容易に大きくすることができ、熱伝導特性の良好な放熱部材Aとできる。   In this way, by arranging a plurality of small inorganic particles 1 with respect to the surface direction of the mounting portion A1, when mounting an electronic component having a very high exothermic property, or when mounting a large electronic component, The heat dissipating area can be easily increased, and the heat dissipating member A having good heat conduction characteristics can be obtained.

また、無機粒子1の表面には金属膜4を形成しておく。金属膜4は無機粒子1とロウ材5との接合媒体として機能するのみならず、熱伝達媒体としても機能させる必要があるため、銅メッキまたは銀メッキを電気メッキ法によって施すのが好ましい。例えば、厚さ約3μmの銅メッキを被着させる。   A metal film 4 is formed on the surface of the inorganic particles 1. Since the metal film 4 not only functions as a bonding medium between the inorganic particles 1 and the brazing material 5 but also needs to function as a heat transfer medium, it is preferable to perform copper plating or silver plating by electroplating. For example, a copper plating having a thickness of about 3 μm is applied.

また、無機粒子1と上側金属板2aとが接合される部位、および無機粒子1と下側金属板2bとが接合される部位のロウ材5は、熱伝導性が良好な銀−銅ロウ材,アルミニウムロウ材,銀ロウ材または銅ロウ材を用いるのが好ましく、接合後の厚さは5μm以上25μm以下であるのが良い。5μm未満になると、上側金属板2aや下側金属板2bと無機粒子1との接合強度が脆弱になり、電子部品Cの発生熱による熱応力によりロウ材5にクラックが発生し、経時変化に伴い剥がれる場合がある。そのため、電子部品Cの発生熱を外部基板に良好に伝達し難くなる。一方、25μmを超えると、ロウ材5の熱伝導率は、無機粒子1に比し約300W/mK程度と低いため、上側金属板2aや下側金属板2bと無機粒子1との間の熱遮断媒体となってしまう場合がある。したがって、ロウ材5の厚さは5μm以上25μm以下が良い。   Also, the brazing material 5 at the site where the inorganic particles 1 and the upper metal plate 2a are joined and the site where the inorganic particles 1 and the lower metal plate 2b are joined are a silver-copper brazing material with good thermal conductivity. Aluminum brazing material, silver brazing material or copper brazing material is preferably used, and the thickness after bonding is preferably 5 μm or more and 25 μm or less. If the thickness is less than 5 μm, the bonding strength between the upper metal plate 2a or the lower metal plate 2b and the inorganic particles 1 becomes weak, and cracks occur in the brazing material 5 due to the thermal stress caused by the heat generated by the electronic component C. It may be peeled off. Therefore, it becomes difficult to transfer the heat generated by the electronic component C to the external substrate. On the other hand, if it exceeds 25 μm, the thermal conductivity of the brazing material 5 is as low as about 300 W / mK as compared with the inorganic particles 1, so that the heat between the upper metal plate 2 a or the lower metal plate 2 b and the inorganic particles 1 is low. It may become a blocking medium. Therefore, the thickness of the brazing material 5 is preferably 5 μm or more and 25 μm or less.

ロウ材5としては、JIS規定のBAg−1,1A,2,3,4,5,6,7,7A,7B,8,8A,8B,20,20A,21,24、BVAg−0,6b,8,18,29,30,31,32等の銀−銅ロウ材,純銀から成る銀ロウ材,BCu−1,1A等の銅ロウ材、A1085,A1080,A1070,A1060,A1050,A1100,A1200等のアルミニウムロウ材を用いることができる。また、ロウ材5には、チタン(Ti),ジルコニウム(Zr),ニオブ(Nb)等の活性金属を少量添加しておくと、無機粒子1との接合性がさらに強固になる。   As the brazing material 5, JIS-regulated BAg-1, 1A, 2, 3, 4, 5, 6, 7, 7A, 7B, 8, 8A, 8B, 20, 20A, 21, 24, BVAg-0, 6b , 8, 18, 29, 30, 31, 32, etc., silver-copper brazing material, silver brazing material made of pure silver, copper brazing material such as BCu-1, 1A, A1085, A1080, A1070, A1060, A1050, A1100, An aluminum brazing material such as A1200 can be used. Further, when a small amount of an active metal such as titanium (Ti), zirconium (Zr), niobium (Nb) is added to the brazing material 5, the bondability with the inorganic particles 1 is further strengthened.

しかも、ロウ材5は、比較的柔らかい金属であるため、無機粒子1に対する外部からの衝撃等に対する緩衝効果を有する。また、電気伝導性が良いことから、ロウ材5によって無機粒子1の表面を覆うようにしておくと、上側金属板2aおよび下側金属板2bを電気的に接続する機能を果たさせることができる。また、ロウ材5を無機粒子1の間を埋める導電体3として用いてもよい。   Moreover, since the brazing material 5 is a relatively soft metal, the brazing material 5 has a buffering effect against external impacts on the inorganic particles 1. Also, since the electrical conductivity is good, if the surface of the inorganic particles 1 is covered with the brazing material 5, the function of electrically connecting the upper metal plate 2a and the lower metal plate 2b can be achieved. it can. Alternatively, the brazing material 5 may be used as the conductor 3 that fills the space between the inorganic particles 1.

なお、このロウ材5を、図1(b),図2(b),図3(b)に示す如き導電体3として用いる場合に、導電体3中にある程度のボイドがあっても特に問題は無い。すなわち、上側金属板2a、無機粒子1、下側金属板2bを介して外部基板に伝わる熱経路が支配的であるため、導電体3としてのロウ材5中のボイドは問題とならない。また、導電体3は、外部からの衝撃等に対する無機粒子1の保持部材としても機能する。さらには、電子部品収納用パッケージや電子装置において、電子部品を収容する部位(所謂、キャビティ)の気密性検査を行なう際に用いられるヘリウムリーク試験を実施する際に、放熱部材Aの無機粒子1同士の間の空間に残留したヘリウムが検出されてしまうという、所謂、擬似リークが生じるのを防止する機能をも有する。   When this brazing material 5 is used as the conductor 3 as shown in FIGS. 1B, 2B, and 3B, there is a particular problem even if a certain amount of voids are present in the conductor 3. There is no. That is, since the heat path transmitted to the external substrate through the upper metal plate 2a, the inorganic particles 1, and the lower metal plate 2b is dominant, voids in the brazing material 5 as the conductor 3 do not matter. The conductor 3 also functions as a holding member for the inorganic particles 1 against external impacts and the like. Furthermore, in the electronic component storage package or the electronic device, the inorganic particles 1 of the heat radiating member A are used when performing a helium leak test that is used when performing a hermeticity inspection of a portion (so-called cavity) that stores the electronic component. It also has a function of preventing the so-called pseudo leak that helium remaining in the space between them is detected.

なお、導電体3は、導電性であればよく、例えば、銀粒子をエポキシ樹脂中に分散した銀エポキシ等の導電性樹脂を用いても良い。さらに、無機粒子1の表面に被着させた金属膜4またはロウ材5によって上側金属板2aおよび下側金属板2bの間の電気的導通が十分得られる場合は、導電性の無い樹脂を導電体3の代わりに用いてもよい。   The conductor 3 only needs to be conductive. For example, a conductive resin such as silver epoxy in which silver particles are dispersed in an epoxy resin may be used. Furthermore, when sufficient electrical continuity is obtained between the upper metal plate 2a and the lower metal plate 2b by the metal film 4 or the brazing material 5 deposited on the surface of the inorganic particles 1, the resin having no conductivity is made conductive. It may be used instead of the body 3.

上側金属板2aおよび下側金属板2bは熱伝導率が高く、且つ柔軟な金属が良く、銅,銀またはアルミニウムが用いられる。熱伝導率の点で、純度99%以上の純銀,純銅,純アルミニウムを用いるのがよい。上側金属板2aおよび下側金属板2bは、例えば、純銅のインゴットに圧延加工を施して厚さ約0.1mmの板状体を形成し、さらにプレスによる打ち抜き加工やワイヤ放電加工等の金属加工を施すことによって所定の平面視形状に形成した銅板等に加工して用いる。   The upper metal plate 2a and the lower metal plate 2b have a high thermal conductivity and are preferably a flexible metal, and copper, silver or aluminum is used. From the viewpoint of thermal conductivity, pure silver, pure copper, or pure aluminum having a purity of 99% or more is preferably used. The upper metal plate 2a and the lower metal plate 2b are formed by, for example, rolling a pure copper ingot to form a plate-like body having a thickness of about 0.1 mm, and further performing metal processing such as punching by press or wire electric discharge machining. Are processed into a copper plate or the like formed into a predetermined plan view shape.

銅,銀,アルミニウム金属は、非常に柔らかいため、無機粒子1(無機粒子1の上部1aおよび下部1b)をホットプレス等(圧接する)により上側金属板2aおよび下側金属板2bに埋入させることが容易である。無機粒子1は、上側金属板2aおよび下側金属板2bに埋め込まれた状態となるため、無機粒子1よりも熱伝導率が低い上側金属板2aおよび下側金属板2aの厚みが無機粒子1が埋入されている部分で薄くなり、熱が無機粒子1に伝わり易くなる。   Since copper, silver, and aluminum metal are very soft, the inorganic particles 1 (the upper portion 1a and the lower portion 1b of the inorganic particles 1) are embedded in the upper metal plate 2a and the lower metal plate 2b by hot pressing or the like (pressure contact). Is easy. Since the inorganic particles 1 are embedded in the upper metal plate 2a and the lower metal plate 2b, the thicknesses of the upper metal plate 2a and the lower metal plate 2a, which have lower thermal conductivity than the inorganic particles 1, are less than the inorganic particles 1. It becomes thin at the portion where is embedded, and heat is easily transferred to the inorganic particles 1.

上側金属板2aおよび下側金属板2bは、電子部品Cの搭載や外部基板への載置としての機能以外に、無機粒子1を固定するための支持基板としての機能も有している。また、無機粒子1はその上部1aおよび下部1bが、上側金属板2aや下側金属板2bに埋め込まれた状態でロウ材5を介して接合されるため、上側金属板2aや下側金属板2bへの粒子の接合強度は非常に高い。   The upper metal plate 2a and the lower metal plate 2b have a function as a support substrate for fixing the inorganic particles 1 in addition to the function of mounting the electronic component C and placing the electronic component C on an external substrate. In addition, since the upper part 1a and the lower part 1b of the inorganic particles 1 are bonded via the brazing material 5 with the upper part 1a and the lower part 1b being embedded in the upper metal plate 2a and the lower metal plate 2b, the upper metal plate 2a and the lower metal plate are joined. The bond strength of the particles to 2b is very high.

無機粒子1が上側金属板2aまたは下側金属板2bに埋め込まれた状態であるため、上側金属板2aの下面と無機粒子1の上部1a、および下側金属板2bの上面と無機粒子1の下部1bとの接触面積が広くなり、これら上側金属板2aおよび下側金属板2bと無機粒子1との間の熱伝達性に優れたものとなる。また、無機粒子1は上側金属板2aや下側金属板2bにロウ材5を介して強固に接合されるため、ロウ付け工程等の加工時や電子部品Cの作動時の熱が繰り返し加わっても、無機粒子1と上側金属板2aや下側金属板2bとの密着が不十分となり、熱伝達を損なわせるようなことは無い。そして、本発明の放熱部材Aは、電子部品Cからの熱を上側金属板2aや下側金属板2bの熱伝導率よりも熱伝導率のよい無機粒子1の熱伝導特性によって、効率良く外部基板へ伝え得るものとできる。   Since the inorganic particles 1 are embedded in the upper metal plate 2a or the lower metal plate 2b, the lower surface of the upper metal plate 2a, the upper portion 1a of the inorganic particles 1, the upper surface of the lower metal plate 2b, and the inorganic particles 1 The contact area with the lower portion 1b is increased, and the heat transfer properties between the upper metal plate 2a and the lower metal plate 2b and the inorganic particles 1 are excellent. In addition, since the inorganic particles 1 are firmly bonded to the upper metal plate 2a and the lower metal plate 2b via the brazing material 5, heat during processing of the brazing process or the operation of the electronic component C is repeatedly applied. However, the adhesion between the inorganic particles 1 and the upper metal plate 2a or the lower metal plate 2b becomes insufficient, and heat transfer is not impaired. The heat dissipating member A of the present invention efficiently externalizes heat from the electronic component C due to the heat conduction characteristics of the inorganic particles 1 having better heat conductivity than the heat conductivity of the upper metal plate 2a and the lower metal plate 2b. It can be transmitted to the substrate.

また、無機粒子1の表面には金属膜4が被着され、この金属膜4が無機粒子1とロウ材5との間に介在しているので、金属膜4に対するロウ材5の濡れ性が良くなり、上側金属板2aまたは下側金属板2bに対する無機粒子1の接合性が良好となり、放熱部材の熱伝導性が良くなる。   Further, since the metal film 4 is deposited on the surface of the inorganic particles 1 and this metal film 4 is interposed between the inorganic particles 1 and the brazing material 5, the wettability of the brazing material 5 with respect to the metal film 4 is increased. As a result, the bonding property of the inorganic particles 1 to the upper metal plate 2a or the lower metal plate 2b is improved, and the thermal conductivity of the heat dissipation member is improved.

図6は、本発明の放熱部材Aの製造方法を概略的に説明する説明図である。以下、図6を用いて、本発明の放熱部材Aの製造方法を説明する。   FIG. 6 is an explanatory view schematically illustrating a method for manufacturing the heat dissipation member A of the present invention. Hereinafter, the manufacturing method of the heat radiating member A of this invention is demonstrated using FIG.

本発明の放熱部材Aは、台板の上に下側金属板2b,ロウ材5の薄板,無機粒子1,ロウ材5の薄板,上側金属板2aの順に載置し、ロウ材5が溶融され、上側金属板2a,下側金属板2bが溶融されないように温度を調整しつつ加圧する熱間一軸加圧法(以下、ホットプレスという)によって作製できる。例えば、上側金属板2aおよび下側金属板2bが銅から成る場合、銀72%と銅28%とを含むBAg−8等の銀−銅ロウ材を用いて、ホットプレスする。上側金属板2aおよび下側金属板2bが銅から成り、ロウ材5に銅ロウ材を用いるときは、上側金属板2aおよび下側金属板2bが溶ける前に冷却されるように温度を調整する。   The heat dissipating member A of the present invention is placed on the base plate in the order of the lower metal plate 2b, the thin plate of the brazing material 5, the inorganic particles 1, the thin plate of the brazing material 5, and the upper metal plate 2a. The upper metal plate 2a and the lower metal plate 2b can be manufactured by a hot uniaxial pressing method (hereinafter referred to as hot pressing) in which pressure is applied while adjusting the temperature so as not to melt. For example, when the upper metal plate 2a and the lower metal plate 2b are made of copper, hot pressing is performed using a silver-copper brazing material such as BAg-8 containing 72% silver and 28% copper. When the upper metal plate 2a and the lower metal plate 2b are made of copper and a copper brazing material is used for the brazing material 5, the temperature is adjusted so that the upper metal plate 2a and the lower metal plate 2b are cooled before melting. .

ロウ材5の量を少なく調整することにより、図1(a)または図3(a)に示すように上側金属板2aおよび下側金属板2bと無機粒子1との間、および無機粒子1の側面の上側金属板2aから下側金属板2bにかけて上側金属板2aから下側金属板2bを接続するように作製される。また、図1(b)または図1(b)に示す本発明の放熱部材Aの一個の無機粒子1周囲を拡大した断面を示す図3(b)に示すように、ロウ材5の量を多く調整し、または無機粒子1にロウ材5の粉末を混ぜておいて、余分なロウ材5を無機粒子1同士の間の空間を埋めるように流して、導電体3となるように作製される。   By adjusting the amount of the brazing material 5 to be small, as shown in FIG. 1 (a) or FIG. 3 (a), between the upper metal plate 2a and the lower metal plate 2b and the inorganic particles 1, and between the inorganic particles 1 It is fabricated so as to connect the lower metal plate 2b from the upper metal plate 2a to the lower metal plate 2b on the side surface. Further, as shown in FIG. 3 (b) showing an enlarged cross section around one inorganic particle 1 of the heat dissipating member A of the present invention shown in FIG. 1 (b) or FIG. 1 (b), the amount of the brazing material 5 is adjusted. The conductor 3 is prepared by adjusting a lot or by mixing the powder of the brazing material 5 with the inorganic particles 1 and flowing the excess brazing material 5 so as to fill the space between the inorganic particles 1. The

そして、上側金属板2aと下側金属板2bとに加えられる圧力によって、無機粒子1はロウ材5の薄い膜を介して、その上部1aが上側金属板2aに、その下部1bが下側金属板2bに埋入されるようにして接合される。   Then, due to the pressure applied to the upper metal plate 2a and the lower metal plate 2b, the inorganic particles 1 pass through the thin film of the brazing material 5 so that the upper part 1a is the upper metal plate 2a and the lower part 1b is the lower metal. It joins so that it may be embedded in the board 2b.

なお、無機粒子1同士の側面の間の図3(a)の如く作製された空間に、ロウ材5に加えて、別途、導電性物質3としての銀エポキシ等の導電性樹脂を注入しても良い。また、ホットプレスを真空雰囲気で行なうと、上側金属板2a,下側金属板2b,ロウ材5としての銀−銅ロウ材等が酸化することを避けることができ、接合性や熱伝達特性を良好に維持することができる。   In addition to the brazing material 5, a conductive resin such as silver epoxy as the conductive material 3 is separately injected into the space formed between the side surfaces of the inorganic particles 1 as shown in FIG. Also good. Further, when hot pressing is performed in a vacuum atmosphere, it is possible to avoid oxidation of the upper metal plate 2a, the lower metal plate 2b, the silver-copper brazing material as the brazing material 5, etc., and to improve the bondability and heat transfer characteristics. It can be maintained well.

また、上側金属板2aの下面とロウ材5との間隔、および下側金属板2bの下面とロウ材5との間隔は狭いほど、すなわち無機粒子1直上の上側金属板2aおよび無機粒子1直下の下側金属板2bの厚みが薄いほど、電子部品Cが発生する熱を無機粒子1に速やかに伝えることができ、無機粒子1の熱伝導特性を有効に活用することができる。無機粒子1を埋入させることによる上側金属板2aおよび下側金属板2bの厚みは、ホットプレスにおける加圧力を適宜調整することにより、最小厚みが15μmとなるように設定するとよい。15μmより薄くすると、ロウ材5が上側金属板2aまたは下側金属板2bに拡散することによって、白色の染みが上側金属板2aまたは下側金属板2b表面に透けるように現われて、外観上の問題を生じる場合がある。   Further, the distance between the lower surface of the upper metal plate 2a and the brazing material 5 and the distance between the lower surface of the lower metal plate 2b and the brazing material 5 are narrower, that is, directly below the upper metal plate 2a and the inorganic particles 1 immediately below the inorganic particles 1. As the thickness of the lower metal plate 2b is thinner, the heat generated by the electronic component C can be quickly transmitted to the inorganic particles 1, and the heat conduction characteristics of the inorganic particles 1 can be effectively utilized. The thicknesses of the upper metal plate 2a and the lower metal plate 2b by embedding the inorganic particles 1 are preferably set so that the minimum thickness is 15 μm by appropriately adjusting the pressing force in the hot press. When thinner than 15 μm, the brazing material 5 diffuses into the upper metal plate 2a or the lower metal plate 2b, so that a white stain appears on the surface of the upper metal plate 2a or the lower metal plate 2b. May cause problems.

また、上側金属板2aおよび下側金属板2bを厚いものとし、圧力および温度条件を調整してホットプレスを行なうことにより、図1(c)に示すように、無機粒子1の上部1aおよび下部1bにおいて無機粒子1のほとんどが上側金属板2aおよび下側金属板2bに埋入された放熱部材Aを得ることもできる。   Further, by making the upper metal plate 2a and the lower metal plate 2b thick and performing hot pressing by adjusting the pressure and temperature conditions, as shown in FIG. It is also possible to obtain a heat dissipation member A in which most of the inorganic particles 1 are embedded in the upper metal plate 2a and the lower metal plate 2b in 1b.

なお、電子部品Cを金−錫合金や金−ゲルマニウム合金等の半田で搭載部A1に接合させる場合には、少なくとも上側金属板2a上面にニッケルメッキおよび金メッキを施しておくとよい。   When the electronic component C is joined to the mounting portion A1 with solder such as gold-tin alloy or gold-germanium alloy, at least the upper surface of the upper metal plate 2a is preferably plated with nickel and gold.

そして、粒径650μm〜750μmの人工ダイヤモンド粒子を無機粒子1として用い、その表面に厚み3μmの銅から成る金属膜4を電気メッキ法により被着させ、厚み20μmのロウ材5(BAg−8)を介して板厚0.1mmの銅から成る上側金属板2aおよび下側金属板2bとに接合させ、無機粒子1が埋入されている部分における上側金属板2aおよび下側金属板2bの板厚が15μm以上となるように埋入された放熱部材Aを作製したところ、熱伝導率が500W/mK以上の本発明の放熱部材Aを得ることができた。すなわち、上側金属板2aや下側金属板2bの熱伝導率よりも大きい熱伝導率を有する放熱部材Aを作製できた。   Then, artificial diamond particles having a particle size of 650 μm to 750 μm are used as the inorganic particles 1, and a metal film 4 made of copper having a thickness of 3 μm is deposited on the surface thereof by an electroplating method, and a brazing material 5 (BAg-8) having a thickness of 20 μm. The upper metal plate 2a and the lower metal plate 2b made of copper having a thickness of 0.1 mm are joined to the upper metal plate 2a and the lower metal plate 2b in the portion where the inorganic particles 1 are embedded. When the heat radiating member A embedded to have a thickness of 15 μm or more was produced, the heat radiating member A of the present invention having a thermal conductivity of 500 W / mK or more could be obtained. That is, the heat radiating member A having a thermal conductivity larger than that of the upper metal plate 2a and the lower metal plate 2b could be produced.

さらには、放熱部材Aは、図2(a),図2(b)に示すように、搭載部A1の面方向に対して垂直方向に複数積層することも可能である。図2(a),図2(b)においては、各2層に積層した例を示すが、さらに多層にすることもできる。   Further, as shown in FIGS. 2A and 2B, a plurality of heat radiation members A can be stacked in a direction perpendicular to the surface direction of the mounting portion A1. In FIGS. 2A and 2B, an example in which two layers are stacked is shown, but a multilayer structure can also be used.

大型化において多数の無機粒子1同士を直接垂直方向に積み重ねる方法も考えられるが、無機粒子1は異形状であるため整然と配置して積み重ねることが困難である。また、積層できたとしても無機粒子1が異形状であることから、無機粒子1同士の方向を揃えることは容易でなく、無機粒子1同士が点接触の如く非常に小さな面積で接触したものとなってしまい、粒子間の熱伝達を良好なものにするのは容易ではない。無機粒子1を研磨等により形状の整った角柱状、円柱状等にし、それら無機粒子1同士を整然と積み重ねる方法は、研磨および積み重ね作業に多大な時間とコストを費やすため現実的では無い。これに対し、本発明の放熱部材Aを積み重ねる方法によれば、無機粒子1同士を垂直方向により整然と積み重ねたものとすることができる。   A method of directly stacking a large number of inorganic particles 1 in the vertical direction is also conceivable in increasing the size, but it is difficult to arrange and stack them in an orderly manner because the inorganic particles 1 have an irregular shape. Moreover, even if it can be laminated | stacked, since the inorganic particles 1 are irregularly shaped, it is not easy to align the directions of the inorganic particles 1, and the inorganic particles 1 are in contact with each other in a very small area such as point contact. Therefore, it is not easy to improve the heat transfer between the particles. A method of making the inorganic particles 1 into a prismatic shape, a columnar shape, etc. with a well-shaped shape by polishing or the like and orderly stacking the inorganic particles 1 with each other is not practical because it takes a lot of time and cost for polishing and stacking operations. On the other hand, according to the method of stacking the heat radiation member A of the present invention, the inorganic particles 1 can be stacked in an orderly manner in the vertical direction.

放熱部材A同士の積層は、例えば、一方放熱部材Aの上側金属板2a表面に他方放熱部材Aの下側金属板2bをロウ付け等によって接合することによって行なえばよい。また、一方放熱部材Aの上側金属板2aと他方放熱部材Aの下側金属板2bとを共用の一枚の金属板としてしまい、これをホットプレスすることによって多層の放熱部材Aとしてもよい。但し、一枚の共用金属板としてしまうと、共用金属板の上下に配置される無機粒子1の位置によって、無機粒子1と共用金属板との間に圧力が加わり難く、無機粒子1を共用金属板に埋入させにくい場合がある。   Lamination of the heat radiating members A may be performed, for example, by joining the lower metal plate 2b of the other heat radiating member A to the surface of the upper metal plate 2a of the one heat radiating member A by brazing or the like. Alternatively, the upper metal plate 2a of the one heat radiating member A and the lower metal plate 2b of the other heat radiating member A may be used as a single metal plate and hot-pressed to form a multilayer heat radiating member A. However, if one common metal plate is used, it is difficult to apply pressure between the inorganic particles 1 and the common metal plate depending on the positions of the inorganic particles 1 arranged above and below the common metal plate. It may be difficult to embed in the board.

また、図2(c)に示すように、一方放熱部材Aの上側金属板2aと他方放熱部材Aの下側金属板2bとの間に、板厚20μm程度のモリブデン(Mo)板6を介してロウ付けすると、積層された放熱部材Aの面方向の熱膨張係数が銅,銀,アルミニウム等の熱膨張係数よりも小さなものとなり、電子部品Cの熱膨張係数と適合性のよい放熱部材Aとすることができる。   Further, as shown in FIG. 2C, a molybdenum (Mo) plate 6 having a thickness of about 20 μm is interposed between the upper metal plate 2a of the one heat radiating member A and the lower metal plate 2b of the other heat radiating member A. When brazed, the thermal expansion coefficient in the surface direction of the laminated heat radiating member A becomes smaller than that of copper, silver, aluminum, etc., and the heat radiating member A having good compatibility with the thermal expansion coefficient of the electronic component C It can be.

次に、本発明の電子部品収納用パッケージは、図4に示すように、本発明の放熱部材Aと、載置部A1を有する上面にロウ付け等により取着され、電子部品Cの電極と接続される信号入出力用の配線導体B1を有する端子Bとを具備したものである。放熱部材Aの熱膨張係数は無機粒子1の大きさや数および上側金属板2aや下側金属板2bの大きさや厚さに大きく起因する。無機粒子1の熱膨張係数は上側金属板2aおよび下側金属板2bよりも小さいので、これらを組み合わせて用いることにより、放熱部材Aと端子Bとの熱膨張係数をほぼマッチングさせることが可能である。したがって電子部品収納用パッケージの製造後における残留熱応力も小さくなり、発熱量の多い電子部品Cによって、電子部品収納用パッケージに大きな熱応力が印加されるような電子部品Cを搭載することが可能となる。   Next, as shown in FIG. 4, the electronic component storage package of the present invention is attached to the upper surface having the heat dissipating member A of the present invention and the mounting portion A1 by brazing or the like. And a terminal B having a wiring conductor B1 for signal input / output to be connected. The thermal expansion coefficient of the heat radiating member A largely depends on the size and number of the inorganic particles 1 and the size and thickness of the upper metal plate 2a and the lower metal plate 2b. Since the thermal expansion coefficient of the inorganic particles 1 is smaller than that of the upper metal plate 2a and the lower metal plate 2b, the thermal expansion coefficients of the heat radiating member A and the terminal B can be substantially matched by using these in combination. is there. Therefore, the residual thermal stress after manufacturing the electronic component storage package is also reduced, and it is possible to mount the electronic component C such that a large thermal stress is applied to the electronic component storage package by the electronic component C that generates a large amount of heat. It becomes.

また、端子Bは、アルミナ(Al)質焼結体,窒化アルミニウム(AlN)質焼結体,ムライト(3Al・2SiO)質焼結体,ガラスセラミックス等のセラミックスの表面に信号入出力用のメタライズ層から成る配線導体B1が形成されるとともに、この配線導体B1の電子部品収納用パッケージ外側表面に外部電気回路基板(図示せず)との電気接続用のリード端子が接合される。そして、半田,樹脂,ロウ材,ガラス等を介して放熱部材Aの上面に搭載部A1を取り囲んで取着される。 Further, the terminal B is alumina (Al 2 O 3) sintered material, aluminum nitride (AlN) sintered material, mullite (3Al 2 O 3 · 2SiO 2 ) sintered material, the surface of the ceramics such as glass ceramics A wiring conductor B1 composed of a metallized layer for signal input / output is formed on the outside, and lead terminals for electrical connection with an external electric circuit board (not shown) are provided on the outer surface of the electronic component storage package of the wiring conductor B1. Be joined. Then, the mounting portion A1 is attached to the upper surface of the heat radiating member A via solder, resin, brazing material, glass or the like.

端子Bは、例えば、Al質焼結体から成る場合であれば、Al,酸化珪素(SiO),酸化マグネシウム(MgO),酸化カルシウム(CaO)等の原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤等を混合添加して泥漿状となすとともに、これからドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)を形成し、しかる後に、このセラミックグリーンシートに適当な打ち抜き加工を施すとともに、W,Mo,Mn,Cu,Ag,Ni,Au,パラジウム(Pd)等の金属材料粉末に適当な有機バインダ,溶剤を混合して成る導電性ペーストをグリーンシートに予めスクリーン印刷法等により所定の配線導体B1のパターンに印刷塗布した後に、このグリーンシートを複数枚積層し、約1600℃の温度で焼成することによって作製される。 If the terminal B is made of, for example, an Al 2 O 3 sintered material, it is suitable for a raw material powder such as Al 2 O 3 , silicon oxide (SiO 2 ), magnesium oxide (MgO), calcium oxide (CaO), etc. A mixture of organic binders, solvents, plasticizers, dispersants, etc. is added to form a slurry, and from this, a ceramic green sheet (ceramic raw sheet) is formed by adopting a doctor blade method or a calender roll method. In addition, the ceramic green sheet is subjected to an appropriate punching process, and a conductive material obtained by mixing an appropriate organic binder and solvent with a metal material powder such as W, Mo, Mn, Cu, Ag, Ni, Au, and palladium (Pd). After a functional paste is applied to a green sheet in advance by a screen printing method or the like in a predetermined pattern of the wiring conductor B1, this paste is applied. The green sheet laminating a plurality, is produced by firing at a temperature of about 1600 ° C..

さらに、配線導体B1の露出する表面にNi,Au等の耐食性に優れ、且つボンディングワイヤ等の電気接続手段のボンディング性に優れる金属を1〜20μmの厚みにメッキ法によって被着させておくと、配線導体B1の酸化腐食を有効に防止可能であるとともに配線導体B1への電気接続手段の接合力を強固とできる。   Further, when a metal having excellent corrosion resistance such as Ni and Au and excellent bonding property of electrical connection means such as a bonding wire is deposited on the exposed surface of the wiring conductor B1 to a thickness of 1 to 20 μm by a plating method, The oxidative corrosion of the wiring conductor B1 can be effectively prevented and the bonding force of the electrical connection means to the wiring conductor B1 can be strengthened.

次に、図5に示すように、本発明の電子部品収納用パッケージの搭載部A1に電子部品Cが半田,樹脂,ロウ材,ガラス等の接着材を介して搭載される。電子部品Cとして、半導体素子,圧電振動子,チップコンデンサ,トランジスタ,発光素子等を搭載することができる。特に、電界効果トランジスタ(FET)に代表されるような発熱量が大きな電子部品Cが放熱部材Aの搭載部A1に搭載された場合にも、電子部品Cから発生する熱を効率良く電子部品収納用パッケージ外へ放散させることができる。そして、搭載部A1に接着材を介して電子部品Cを搭載した後、電子部品Cの電極と端子Bの配線導体B1とをボンディングワイヤ等の電気接続手段により電気接続し、さらに封止樹脂によって、所謂、ポッティングしたり、端子B上面を蓋体Dにて気密封止したりすることにより本発明の電子装置が作製される。   Next, as shown in FIG. 5, the electronic component C is mounted on the mounting portion A1 of the electronic component storage package of the present invention via an adhesive such as solder, resin, brazing material, or glass. As the electronic component C, a semiconductor element, a piezoelectric vibrator, a chip capacitor, a transistor, a light emitting element, or the like can be mounted. In particular, even when an electronic component C having a large calorific value as represented by a field effect transistor (FET) is mounted on the mounting portion A1 of the heat dissipation member A, the heat generated from the electronic component C is efficiently stored. Can be dissipated outside the package. Then, after mounting the electronic component C on the mounting portion A1 via an adhesive, the electrode of the electronic component C and the wiring conductor B1 of the terminal B are electrically connected by an electrical connection means such as a bonding wire, and further, by sealing resin The electronic device of the present invention is manufactured by so-called potting or by airtightly sealing the upper surface of the terminal B with the lid D.

かくして、電子部品Cの作動時における発熱量が非常に多い場合であっても、電子部品Cを適正な動作温度に保ち、正常且つ信頼性良く作動させ得る電子装置とできる。   Thus, even when the amount of heat generated during operation of the electronic component C is very large, the electronic device C can be maintained at an appropriate operating temperature and can be operated normally and reliably.

なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更が可能である。例えば、放熱部材Aの上面の搭載部A1にディスクリートな電子部品Cの代わりに、セラミックス製の回路基板が搭載され、この回路基板に電子部品Cが搭載されていてもよい。   In addition, this invention is not limited to the example of the above embodiment, A various change is possible if it is the range which does not deviate from the summary of this invention. For example, instead of the discrete electronic component C, the ceramic circuit board may be mounted on the mounting portion A1 on the upper surface of the heat dissipation member A, and the electronic component C may be mounted on the circuit board.

また、上記実施の形態の説明において上下左右という用語は、単に図面上の位置関係を説明するために用いたものであり、実際の使用時における位置関係を意味するものではない。   In the description of the above embodiment, the terms “upper, lower, left and right” are merely used to describe the positional relationship in the drawings, and do not mean the positional relationship in actual use.

(a),(b),(c)はそれぞれ本発明の放熱部材の実施の形態の一例を示す断面図である。(A), (b), (c) is sectional drawing which shows an example of embodiment of the thermal radiation member of this invention, respectively. (a),(b)はそれぞれ本発明の放熱部材の実施の形態の他の例を示す断面図である。(A), (b) is sectional drawing which shows the other example of embodiment of the thermal radiation member of this invention, respectively. (a)は図1(a)の要部拡大断面図であり、(b)は図1(b)の要部拡大断面図である。(A) is the principal part expanded sectional view of Fig.1 (a), (b) is the principal part expanded sectional view of FIG.1 (b). 本発明の電子部品収納用パッケージの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the electronic component storage package of this invention. 本発明の電子装置の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the electronic device of this invention. 本発明の放熱部材を作製するうえでの概略的な製造方法を説明する概略図である。It is the schematic explaining the schematic manufacturing method in producing the heat radiating member of this invention. 従来の放熱部材の例を示す断面図である。It is sectional drawing which shows the example of the conventional heat radiating member.

符号の説明Explanation of symbols

1:無機粒子
1a:(無機粒子1の)上部
1b:(無機粒子1の)下部
2a:一方金属板(上側金属板)
2b:他方金属板(下側金属板)
3:導電体
4:金属膜
5:ロウ材
A:放熱部材
A1:搭載部
A2:載置面
B:端子
B1:配線導体
C:電子部品
D:蓋体
1: Inorganic particles 1a: Upper part (of inorganic particles 1) 1b: Lower part (of inorganic particles 1) 2a: One metal plate (upper metal plate)
2b: the other metal plate (lower metal plate)
3: Conductor 4: Metal film 5: Brazing material A: Heat radiation member A1: Mounting portion A2: Mounting surface B: Terminal B1: Wiring conductor C: Electronic component D: Lid

Claims (9)

一方金属板と、該一方金属板表面に対向配置された他方金属板と、前記一方金属板および前記他方金属板の熱伝導率よりも大きい熱伝導率を有するとともに前記一方金属板と前記他方金属板との間に介在し、前記一方金属板と前記他方金属板とに一部が埋入されるようにロウ材を介して接合された、表面に金属膜が被着されている無機粒子とを具備していることを特徴とする放熱部材。 One metal plate, the other metal plate opposed to the surface of the one metal plate, the one metal plate and the other metal having a thermal conductivity greater than that of the one metal plate and the other metal plate An inorganic particle having a metal film deposited on a surface thereof, which is interposed between a plate and joined via a brazing material so as to be partially embedded in the one metal plate and the other metal plate. A heat dissipating member characterized by comprising: 前記一方金属板および前記他方金属板は、銀,銅またはアルミニウムから成ることを特徴とする請求項1記載の放熱部材。 2. The heat radiating member according to claim 1, wherein the one metal plate and the other metal plate are made of silver, copper, or aluminum. 前記無機粒子は、ダイヤモンド粒子および立方晶窒化硼素粒子の少なくとも一方を含むことを特徴とする請求項1または請求項2記載の放熱部材。 The heat radiating member according to claim 1, wherein the inorganic particles include at least one of diamond particles and cubic boron nitride particles. 前記ロウ材は、銀−銅ロウ,アルミニウムロウ,銀ロウまたは銅ロウであることを特徴とする請求項1乃至3のいずれかに記載の放熱部材。 The heat radiating member according to claim 1, wherein the brazing material is silver-copper brazing, aluminum brazing, silver brazing, or copper brazing. 前記ロウ材は、厚さが5μm以上25μm以下であることを特徴とする請求項1乃至4のいずれかに記載の放熱部材。 The heat radiating member according to claim 1, wherein the brazing material has a thickness of 5 μm to 25 μm. 前記無機粒子の間に、前記一方金属板および前記他方金属板を接続するように導電体が配置されていることを特徴とする請求項1乃至5のいずれかに記載の放熱部材。 The heat radiating member according to any one of claims 1 to 5, wherein a conductor is disposed so as to connect the one metal plate and the other metal plate between the inorganic particles. 請求項1乃至6のいずれかに記載の放熱部材が複数積層されて成ることを特徴とする放熱部材。 A heat dissipating member comprising a plurality of heat dissipating members according to any one of claims 1 to 6. 請求項1乃至7のいずれかに記載の放熱部材と、配線導体を有し、前記放熱部材の表面外周部に取着された端子とを具備していることを特徴とする電子部品収納用パッケージ。 An electronic component storage package comprising: the heat dissipating member according to claim 1; and a terminal having a wiring conductor and attached to the outer peripheral portion of the surface of the heat dissipating member. . 請求項8記載の電子部品収納用パッケージと、前記端子が取着された前記放熱部材の表面中央部に設置され、前記配線導体に接続された電子部品と、該電子部品を覆うように設けられた封止樹脂または蓋体とを具備したことを特徴とする電子装置 9. The electronic component storage package according to claim 8, and an electronic component that is installed at the center of the surface of the heat dissipation member to which the terminal is attached and is connected to the wiring conductor, and is provided so as to cover the electronic component. An electronic device comprising: a sealing resin or a lid
JP2006263855A 2006-09-28 2006-09-28 Heat radiating member, electronic component storing package using the member, and electronic apparatus using the member Pending JP2008085096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263855A JP2008085096A (en) 2006-09-28 2006-09-28 Heat radiating member, electronic component storing package using the member, and electronic apparatus using the member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263855A JP2008085096A (en) 2006-09-28 2006-09-28 Heat radiating member, electronic component storing package using the member, and electronic apparatus using the member

Publications (1)

Publication Number Publication Date
JP2008085096A true JP2008085096A (en) 2008-04-10

Family

ID=39355632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263855A Pending JP2008085096A (en) 2006-09-28 2006-09-28 Heat radiating member, electronic component storing package using the member, and electronic apparatus using the member

Country Status (1)

Country Link
JP (1) JP2008085096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147610A1 (en) * 2011-04-28 2012-11-01 株式会社アライドマテリアル Heat dissipating substrate
WO2023013501A1 (en) * 2021-08-06 2023-02-09 デンカ株式会社 Heat dissipation member and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147610A1 (en) * 2011-04-28 2012-11-01 株式会社アライドマテリアル Heat dissipating substrate
WO2023013501A1 (en) * 2021-08-06 2023-02-09 デンカ株式会社 Heat dissipation member and electronic device

Similar Documents

Publication Publication Date Title
JP4610414B2 (en) Electronic component storage package, electronic device, and electronic device mounting structure
WO2018179538A1 (en) Power module and method for manufacturing power module
JP2008135532A (en) Heat dissipating member, electronic component housing package using this, and electronic apparatus
JP2008085096A (en) Heat radiating member, electronic component storing package using the member, and electronic apparatus using the member
JP4969389B2 (en) Heat dissipation member, electronic component storage package and electronic device using the same
JP2007242908A (en) Ceramic package for housing electronic components
JP4459031B2 (en) Electronic component storage package and electronic device
JP2004288949A (en) Semiconductor element-accommodating package and semiconductor device
JP2000183253A (en) Package for housing semiconductor element
JP2006013420A (en) Package for electronic component housing, and electronic device
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same
JP2000340716A (en) Wiring substrate
US11417575B2 (en) Board and semiconductor apparatus
JP2008004760A (en) Wiring board and electronic device
JP4377748B2 (en) Electronic component storage package and electronic device
JP2006128589A (en) Electronic component housing package and electronic device
JPH10275879A (en) Semiconductor package
JP2003197803A (en) Semiconductor package
JP2000183236A (en) Package for housing semiconductor element
JP2000183215A (en) Package for housing semiconductor element
JPH10275878A (en) Semiconductor package
JP4430477B2 (en) High heat dissipation type electronic component storage package
JP6406547B2 (en) Electronic component mounting package, electronic device, and electronic module
JP2005340560A (en) Package for accommodating electronic component and electronic device
JP4485893B2 (en) Electronic component storage package and electronic device