JP2008081395A - Porous lightweight material by inorganic material sintering and method of manufacturing the same - Google Patents

Porous lightweight material by inorganic material sintering and method of manufacturing the same Download PDF

Info

Publication number
JP2008081395A
JP2008081395A JP2007225203A JP2007225203A JP2008081395A JP 2008081395 A JP2008081395 A JP 2008081395A JP 2007225203 A JP2007225203 A JP 2007225203A JP 2007225203 A JP2007225203 A JP 2007225203A JP 2008081395 A JP2008081395 A JP 2008081395A
Authority
JP
Japan
Prior art keywords
magnesium
glass
arsenic
porous lightweight
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007225203A
Other languages
Japanese (ja)
Inventor
Masatake Minei
政武 嶺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORIMU KK
Original Assignee
TORIMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORIMU KK filed Critical TORIMU KK
Priority to JP2007225203A priority Critical patent/JP2008081395A/en
Publication of JP2008081395A publication Critical patent/JP2008081395A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous lightweight material capable of suppressing the elution of arsenic of equal to or above reference value by adding a proper quantity of magnesium or a magnesium compound and natural derivation magnesium and exhibiting finish performance of a product in the manufacture of the porous lightweight material using waste glass as a raw material and a method of manufacturing the same. <P>SOLUTION: In the manufacture of the porous lightweight material using glass or other inorganic material as a main raw material, the main raw material of glass alone or a mixture of the glass and one or more of other inorganic material is fired after magnesium, the magnesium compound or naturally derived magnesium is added thereinto. When the method carried out by adding magnesium, the magnesium compound or naturally derived magnesium into the glass alone or the mixture of the glass and one or more inorganic materials and firing is employed, the elution of arsenic of equal to or above reference value from the resultant product is not detected clearly different from a magnesium-free method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガラス、陶磁器類、土壌、粘土、焼却灰などの無機質材料を、ガラス単独で又は他の1種類以上と混合し、かつ発泡剤を加えて焼成し多孔質軽量材を製品化した際に、製品からヒ素が環境中に溶出することの無い製品とその製造方法に関する。 The present invention commercializes inorganic lightweight materials such as glass, ceramics, soil, clay, incinerated ash, etc. with glass alone or with one or more other types, and baked by adding a foaming agent to produce a porous lightweight material. In particular, the present invention relates to a product in which arsenic is not eluted from the product into the environment and a method for manufacturing the product.

無機質材料によるリサイクル製品の内、廃ガラス発泡製品は、主に一般家庭から排出される容器ガラスびんが使われているが、以前はガラスびん製造時に泡抜き剤としてヒ素が使用されていたことから、現在でも少量ではあるがヒ素を含有しているびんがある。また日本国外製品のびんにも、ヒ素の存在が認められ、当該ガラスを原料とした製品からは、環境に関する溶出許容値を超えるヒ素が溶出する場合がある。或いは、火山国である日本の土壌には、微量だがヒ素が存在することがあることから、使用済みびんの保管や移送の途中でヒ素が外部から微量でも混入することがある。 Among the recycled products made of inorganic materials, waste glass foam products are mainly used for container glass bottles discharged from ordinary households. Previously, arsenic was used as a defoaming agent when manufacturing glass bottles. Even now, there are bottles that contain arsenic, albeit in small quantities. The presence of arsenic is also observed in bottles of products manufactured outside Japan, and arsenic exceeding the elution allowance for the environment may be eluted from products made from the glass. Alternatively, since arsenic may be present in a small amount in the soil of Japan, which is a volcanic country, arsenic may be mixed in from the outside even during storage and transfer of used bottles.

したがって、これらを含め、無機質材料による再資源化製品(ガラス発泡製品)を製造した時に、主にヒ素を抑制し、環境中に溶出することの無い製品を製造する必要がある。また、原料とする容器ガラスびんに限らず、他の無機物との混合製品を製造する際にも、その原材料を焼成した製品において、主にヒ素を抑制し、環境中に溶出することの無い製品が必要である。 Therefore, it is necessary to manufacture a product that does not elute into the environment, mainly including arsenic, when manufacturing recycled products (glass foam products) using inorganic materials. In addition to container glass bottles used as raw materials, products produced by firing the raw materials, mainly containing arsenic, do not elute into the environment when manufacturing mixed products with other inorganic substances. is required.

本発明の発明者は、特願2005-332986 および特願2005-140857 において、ガラス微粉末と粘土、土壌、木質炭などとの混合型多孔質軽量材とその製造方法を出願しているが、原材料に含まれるCaOや発泡剤のCaCO3 などが適量存在しておれば、高温焼成中にヒ素が抑制され、製品から溶出基準値以上に溶出しないことがある。その理由は、カルシウムが高温焼成中にその働きをしていると考えられる。しかしカルシウム類が少ない場合は、ヒ素の溶出が抑制されないことや、カルシウム類が多いと、製品を予定の規格・形状に製造するのが難しいという問題がある。
特願2005-332986 特願2005-140857
The inventor of the present invention has applied for a mixed porous lightweight material of glass fine powder and clay, soil, wood charcoal, etc. and a method for producing the same in Japanese Patent Application 2005-332986 and Japanese Patent Application 2005-140857. If an appropriate amount of CaO contained in the raw material or CaCO 3 as a foaming agent is present, arsenic may be suppressed during high-temperature firing and may not be eluted from the product above the elution standard value. The reason for this is thought to be the function of calcium during high temperature firing. However, when the amount of calcium is small, there are problems that elution of arsenic is not suppressed, and when the amount of calcium is large, it is difficult to manufacture the product to a predetermined standard and shape.
Japanese Patent Application 2005-332986 Japanese Patent Application 2005-140857

本発明の発明者は、主に廃ガラスびんのマテリアルリサイクル製品製造の経験からヒ素の混入が存在する原材料の扱いに困窮し、その除去・抑制を追求した結果、カルシウムやカルシウムを含む貝類、カルシウムを含む石類が、製品を高温下で焼成する際にヒ素などを抑制することを知見したが、カルシウムの性質上、高温下での化学反応が多孔質軽量材製品の均一な気孔形成を阻害し、製品形状を不安定にすることや焼成温度管理も容易でないこと並びに強度のアルカリ性を呈するので扱いが困難であることが判った。 The inventor of the present invention, as a result of pursuing the removal and suppression of raw materials containing arsenic mainly from the experience of manufacturing material recycling products of waste glass bottles, and as a result of pursuing its removal, control, calcium, shellfish containing calcium, calcium It has been found that stones containing arsenic suppress arsenic when firing products at high temperatures, but due to the nature of calcium, chemical reactions at high temperatures inhibit the formation of uniform pores in porous lightweight products. However, it has been found that the product shape is unstable, the baking temperature control is not easy, and the handling is difficult due to the strong alkalinity.

特許第3581008(ガラス質発砲体の製造法)に記載のように、ガラスの多孔質軽量材製造には、発泡剤として炭化ケイ素や炭酸カルシウムが適当である。これらの発泡剤はその添加剤の形状、純度、添加量比率、用いる温度、原材料の形状、成分値などの条件を適正に用いると、製品化の形状性質を容易にコントロールできる最適な発泡剤である。しかし、ヒ素や他の重金属を抑制するには適当でない。そこで、各種の物質を試用し試行錯誤した末に、これらの発泡剤とマグネシウム又はマグネシウム化合物、特に天然由来のマグネシウムを添加剤として用いることで、無機質材料特にガラス発泡製品製造における主にヒ素の溶出防止に成功した。 As described in Japanese Patent No. 3581008 (manufacturing method of vitreous foam), silicon carbide or calcium carbonate is suitable as a foaming agent for the production of glass porous lightweight materials. These foaming agents are optimal foaming agents that can easily control the shape properties of products when the conditions such as the shape, purity, additive ratio, temperature used, raw material shape, and component values of the additive are properly used. is there. However, it is not suitable for suppressing arsenic and other heavy metals. Therefore, after trial and error of various substances, these effervescent agents and magnesium or magnesium compounds, especially naturally derived magnesium, are used as additives, so that elution of arsenic mainly in the manufacture of inorganic materials, especially glass foam products. Successfully prevented.

本発明の技術的課題は、このような問題に着目し、添加剤として、マグネシウム又はマグネシウム化合物、特に天然由来のマグネシウムを適量使うことで、ヒ素の溶出が抑制され、かつ製品の仕上がりも良好な多孔質軽量材とその製造方法を実現することにあり、本発明により、ガラス発泡製品を経済的に効率生産し、外形上多孔質な気孔が均一な製品並びに製品性状の多様化(軽量化の多様化、吸水率の高低)が可能で、しかもヒ素が溶出しない安全な製品とその製造を可能にするための添加剤開発に成功した。 The technical problem of the present invention focuses on such problems, and by using an appropriate amount of magnesium or a magnesium compound, particularly naturally derived magnesium, as an additive, elution of arsenic is suppressed, and the product finish is also good. It is to realize a porous lightweight material and a manufacturing method thereof. According to the present invention, a glass foam product is economically and efficiently produced, a product having uniform porous pores on the outer shape and diversification of product properties (reducing weight). Diversified, high and low water absorption), and succeeded in developing a safe product that does not elute arsenic and its additive.

本発明の技術的課題は次のような手段によって解決される。請求項1は、ガラスその他の無機質材料を主原料とする多孔質軽量材であって、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウム又はマグネシウム化合物又は天然由来のマグネシウムを添加した状態で焼成してなることを特徴とする多孔質軽量材である。このように、ガラスその他の無機質材料を主原料とする多孔質軽量材において、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウムを添加した状態で焼成してなる多孔質軽量材は、その実験を繰り返した結果、マグネシウムを添加した製品は、マグネシウム無添加の製品と違って、明らかにヒ素の溶出が低減された。特に、天然由来のマグネシウムを適量使用した場合は、ヒ素の溶出抑制の効果が顕著であった。なお、マグネシウムに代えてマグネシウム化合物を添加した場合も、同様にヒ素の溶出阻止の効果を奏するものと推察される。 The technical problem of the present invention is solved by the following means. Claim 1 is a porous lightweight material mainly made of glass or other inorganic material, which is mixed with glass alone or with one or more other inorganic materials and added with magnesium, magnesium compound or naturally derived magnesium It is a porous lightweight material characterized by being fired in a state of being processed. Thus, in the porous lightweight material which uses glass and other inorganic materials as the main raw material, the porous lightweight material is obtained by firing glass alone or mixed with one or more other inorganic materials and added with magnesium. As a result of repeating the experiment, leaching of arsenic was clearly reduced in the product added with magnesium, unlike the product without addition of magnesium. In particular, when an appropriate amount of naturally derived magnesium was used, the effect of suppressing arsenic elution was significant. In addition, when it replaces with magnesium and a magnesium compound is added, it is guessed that there exists an effect of the elution prevention of arsenic similarly.

請求項2は、前記のその他の無機質材料が、陶磁器類、土壌、粘土又は焼却灰であることを特徴とする請求項1に記載の多孔質軽量材である。無機質材料としてガラスのみを用いた多孔質軽量材の場合にヒ素の溶出が検出されなかったため、ガラスと陶磁器類、土壌、粘土又は焼却灰などの無機質材料とを混合して焼成した場合も、当然にヒ素は検出されないものと推察される。 A second aspect of the present invention is the porous lightweight material according to the first aspect, wherein the other inorganic material is ceramics, soil, clay, or incinerated ash. In the case of porous lightweight materials using only glass as inorganic material, arsenic elution was not detected, so it is natural that when glass and inorganic materials such as ceramics, soil, clay or incinerated ash are mixed and baked It is assumed that arsenic is not detected.

請求項3は、ガラスその他の無機質材料を主原料とする多孔質軽量材を製造する際に、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウム又はマグネシウム化合物又は天然由来のマグネシウムを添加した状態で焼成することを特徴とする多孔質軽量材の製造方法である。このように、ガラスその他の無機質材料を主原料とする多孔質軽量材を製造する際に、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウム又はマグネシウム化合物又は天然由来のマグネシウムを添加した状態で焼成する方法を採った場合は、マグネシウム無添加の製法と違って、出来上がった製品から明らかにヒ素の溶出が検出されなかった。特に、天然由来のマグネシウムを適量使用した場合は、ヒ素の溶出抑制の効果が顕著であった。なお、マグネシウムに代えてマグネシウム化合物を添加して焼成した場合も、同様にヒ素の溶出阻止の効果を奏するものと推察される。 In claim 3, when manufacturing a porous lightweight material mainly composed of glass or other inorganic material, the glass alone or mixed with one or more other inorganic materials and magnesium or a magnesium compound or naturally derived magnesium It is the manufacturing method of the porous lightweight material characterized by baking in the state which added. Thus, when manufacturing a porous lightweight material mainly made of glass or other inorganic materials, glass alone or mixed with one or more other inorganic materials and magnesium or a magnesium compound or naturally derived magnesium In the case of adopting the method of baking in the added state, arsenic elution was not clearly detected in the finished product, unlike the production method without adding magnesium. In particular, when an appropriate amount of naturally derived magnesium was used, the effect of suppressing arsenic elution was significant. In addition, it is speculated that the effect of preventing arsenic elution is similarly obtained when a magnesium compound is added in place of magnesium and baked.

請求項4は、前記のその他の無機質材料が、陶磁器類、土壌、粘土又は焼却灰であることを特徴とする請求項3に記載の多孔質軽量材の製造方法である。無機質材料としてガラスのみを用いて焼成し多孔質軽量材を製造した製品からはヒ素の溶出が検出されなかったため、ガラスと陶磁器類、土壌、粘土又は焼却灰などの無機質材料とを混合して焼成する製法の場合も、当然にヒ素は検出されないものと推察される。 Claim 4 is the method for producing a porous lightweight material according to claim 3, wherein the other inorganic material is ceramics, soil, clay, or incinerated ash. Since elution of arsenic was not detected in products made of porous lightweight materials that were fired using only glass as the inorganic material, glass was mixed with inorganic materials such as ceramics, soil, clay, or incinerated ash and fired. Of course, it is assumed that arsenic is not detected in the manufacturing method.

請求項1のように、ガラスその他の無機質材料を主原料とする多孔質軽量材において、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウムを添加した状態で焼成してなる多孔質軽量材は、その実験を繰り返した結果、マグネシウムを添加した製品は、マグネシウム無添加の製品と違って、明らかにヒ素の溶出が検出されなかった。特に、天然由来のマグネシウムを適量使用した場合は、ヒ素の溶出抑制の効果が顕著であった。なお、マグネシウムに代えてマグネシウム化合物を添加した場合も、同様にヒ素の溶出阻止の効果を奏するものと推察される。 A porous lightweight material comprising glass or other inorganic material as a main raw material as in claim 1, wherein the porous light material is fired in a state where glass alone or mixed with one or more other inorganic materials and magnesium is added. As a result of repeating the experiment, the elution of arsenic was clearly not detected in the product with added magnesium, unlike the product without added magnesium. In particular, when an appropriate amount of naturally derived magnesium was used, the effect of suppressing arsenic elution was significant. In addition, when it replaces with magnesium and a magnesium compound is added, it is guessed that there exists an effect of the elution prevention of arsenic similarly.

請求項1のように、無機質材料としてガラスのみを用いた多孔質軽量材の場合にヒ素の溶出が基準値以上検出されなかったため、請求項2のように、ガラスと陶磁器類、土壌、粘土又は焼却灰などの無機質材料を混合して焼成した場合も、当然にヒ素は基準値以上検出されないものと推察される。 In the case of a porous lightweight material using only glass as an inorganic material as in claim 1, since elution of arsenic was not detected more than the reference value, as in claim 2, glass and ceramics, soil, clay or Even when inorganic materials such as incinerated ash are mixed and fired, it is naturally assumed that arsenic is not detected above the reference value.

請求項3のように、ガラスその他の無機質材料を主原料とする多孔質軽量材を製造する際に、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウムを添加した状態で焼成する方法を採った場合は、マグネシウム無添加の製法と違って、出来上がった製品から明らかにヒ素の溶出が基準値以上検出されなかった。特に、天然由来のマグネシウムを適量使用した場合は、ヒ素の溶出抑制の効果が顕著であった。なお、マグネシウムに代えてマグネシウム化合物を添加して焼成した場合も、同様にヒ素の溶出阻止の効果を奏するものと推察される。 As in claim 3, when producing a porous lightweight material mainly made of glass or other inorganic material, it is fired in a state where glass alone or mixed with one or more other inorganic materials and magnesium is added. When this method was adopted, arsenic elution was clearly not detected above the reference value from the finished product, unlike the production method without addition of magnesium. In particular, when an appropriate amount of naturally derived magnesium was used, the effect of suppressing arsenic elution was significant. In addition, it is speculated that the effect of preventing arsenic elution is similarly obtained when a magnesium compound is added in place of magnesium and baked.

請求項3のように、無機質材料としてガラスのみを用いて焼成し多孔質軽量材を製造した製品からはヒ素の溶出が基準値以上検出されなかったため、請求項4のように、ガラスと陶磁器類、土壌、粘土又は焼却灰などの無機質材料とを混合して焼成する製法の場合も、当然にヒ素は基準値以上検出されないものと推察される。 Since the elution of arsenic was not detected more than the standard value from the product produced by baking only the glass as the inorganic material to produce the porous lightweight material as in claim 3, the glass and ceramics as in claim 4 In the case of a manufacturing method in which inorganic materials such as soil, clay, or incinerated ash are mixed and baked, it is naturally assumed that arsenic is not detected above the reference value.

次に本発明による多孔質軽量材とその製造方法が実際上どのように具体化されるか実施形態を説明する。図1は、本発明による多孔質軽量材の製造方法の実施形態を示すフローチャートである。図示のように、ステップS1において、主原料として無機質材料であるガラス粉体を使用し、添加剤として発泡剤を使用し、ヒ素阻止用にマグネシウムを使用する。 Next, an embodiment of how the porous lightweight material and the manufacturing method thereof according to the present invention are practically described will be described. FIG. 1 is a flowchart showing an embodiment of a method for producing a porous lightweight material according to the present invention. As shown in the figure, in step S1, glass powder that is an inorganic material is used as a main raw material, a foaming agent is used as an additive, and magnesium is used for arsenic prevention.

ガラス粉体を得るには、廃ガラスびんを破砕し、かつボールミルなどで微粉砕して約150 μm 以下でメディアン粒径が30μm 程度の微粉体とする。発泡剤として、炭酸カルシウム0.3 〜5.0W%又は炭化ケイ素0.3 〜3.0W%の1種又は両方を採用し、多孔質軽量材の製品形状に見合った適量を加える。ヒ素阻止用の添加剤として、マグネシウム又はマグネシウム化合物0.3〜5.0W%を添加する。0.3%より少ないと、マグネシウムやマグネシウム化合物添加の効果に欠けるし、5.0W%以上添加しないとヒ素を抑制できないほどヒ素が多過ぎる場合は、マグネシウムやマグネシウム化合物の添加を止め、その原料の使用を避ける。次いで、ステップS2において、均一に撹拌混合する。 In order to obtain glass powder, waste glass bottles are crushed and finely pulverized with a ball mill or the like to obtain a fine powder having a median particle size of about 30 μm and a particle size of about 150 μm or less. As the foaming agent, one or both of calcium carbonate 0.3 to 5.0 W% or silicon carbide 0.3 to 3.0 W% is adopted, and an appropriate amount corresponding to the product shape of the porous lightweight material is added. As an additive for preventing arsenic, 0.3 to 5.0 W% of magnesium or a magnesium compound is added. If it is less than 0.3%, the effect of adding magnesium or magnesium compound is lacking, and if there is too much arsenic to suppress arsenic without adding 5.0 W% or more, addition of magnesium or magnesium compound is stopped, Avoid use. Next, in step S2, the mixture is stirred and mixed uniformly.

次いで、ステップS3のように、焼成炉中を通過させて650 〜950 ℃で10〜60分かけて焼成し焼結させる。こうして発泡焼結させた後、炉から急速に大気中に排出することで、自然に粒径が2〜70mm程度に割れ、ステップS4のヒ素抑制ガラス多孔質軽量材となる。この発泡焼結した塊を、土壌に関する溶出検査をした結果、ヒ素の溶出が基準値以下で、安全な資材を製造することが出来た。 Next, as in step S3, the mixture is passed through a firing furnace and fired and sintered at 650 to 950 ° C. for 10 to 60 minutes. After foaming and sintering in this manner, the particle diameter is naturally broken to about 2 to 70 mm by being rapidly discharged from the furnace to the atmosphere, and the arsenic-suppressed glass porous lightweight material in step S4 is obtained. As a result of inspecting the elution of the foam-sintered mass for soil, the elution of arsenic was less than the standard value, and a safe material could be manufactured.

ヒ素の溶出抑制のため添加するマグネシウム又はマグネシウム化合物の量は、原材料に含まれているヒ素の量により添加量を加減することで抑制効果が出る。なお、マグネシウム又はマグネシウム化合物は、ヒ素抑制の目的で使用するが、同時に製品の形状・性質をコントロールするためにも利用できる。例えば、発泡剤の炭酸カルシウムとマグネシウム又はマグネシウム化合物量の組合せと、焼成温度の調整により、多孔質の気孔形状の均一化、焼成温度の熱効率化による省エネ、吸水率の高低コントロール、比重の調整等々、カルシウム添加に比して容易に各種のコントロールができる利点がある。 The amount of magnesium or magnesium compound added to suppress arsenic elution is controlled by adjusting the amount added depending on the amount of arsenic contained in the raw material. In addition, although magnesium or a magnesium compound is used for the purpose of arsenic suppression, it can also be used to control the shape and properties of the product at the same time. For example, by combining the calcium carbonate and magnesium or magnesium compound amount of the foaming agent and adjusting the firing temperature, making the pore shape uniform, saving energy by increasing the thermal efficiency of the firing temperature, controlling the water absorption rate, adjusting the specific gravity, etc. Compared with calcium addition, there is an advantage that various controls can be easily performed.

ステップS3の発泡焼結の後にヒ素(As)が0.043mg /L以上溶出する廃ガラス原料を使い、先ず1回目として、発泡剤CaCO3 を0.5W%、マグネシウム2.0W%それぞれ添加して製造した製品のヒ素溶出試験をした。次いで、2回目として、発泡剤CaCO3 を0.4W%添加すると共に、マグネシウムをそれぞれ1.5W%、1.7W%、2.0W%を添加した3検体の粉体と、マグネシウムを添加しない粉体の計5検体を、条件を同じくした焼成温度、温度保持時間で5検体同時に焼結発泡させた。1回目と2回目の4検体を用いた発泡体をそれぞれ分析試験した結果は、次の表1の通りであった。 Use waste glass material eluting arsenic (As) is 0.043 mg / L or more after the foaming sintering step S3, first, as the first, to produce a blowing agent CaCO 3 0.5 W%, the addition of magnesium 2.0 W%, respectively The product was tested for arsenic elution. Next, for the second time, 0.4 W% of the foaming agent CaCO 3 was added and magnesium was added to 1.5 W%, 1.7 W%, and 2.0 W%, respectively. Five specimens were sintered and foamed simultaneously at the same firing temperature and temperature holding time under the same conditions. The results of the analytical test of the foams using the first and second samples were as shown in Table 1 below.

Figure 2008081395
Figure 2008081395

以上のように、マグネシウムを添加しないで焼成発泡させた製品は0.043mg/Lのヒ素が検出されたのに対し、1回目も2回目も、マグネシウムを1.5W%、1.7W%、2.0W%それぞれ添加した製品は、ヒ素の検出量は0.002 mg/L以下すなわち検出不可能という試験結果となり、マグネシウムの添加によって、ヒ素の溶出が阻止されたことが実証された。 As described above, 0.043mg / L arsenic was detected in the product that was fired and foamed without adding magnesium, whereas magnesium was 1.5W%, 1.7W%, 2.0W% for the first and second time. Each of the products added had a test result that the detected amount of arsenic was 0.002 mg / L or less, that is, undetectable, and it was demonstrated that the addition of magnesium prevented arsenic elution.

ところが、さらに研究を続けている間に、以下のように、天然由来のマグネシウムを用いる方が有効であることを究明できた。このように、マグネシウムとして、天然に由来するマグネシウム鉱物を使う。それは、工業的に製造されるマグネシウム97%以上の製品に比して、マグネシウム以外の無機物例えばカルシウム、アルミニウム、ケイ素、鉄、ホウ素などが微量ながら混在していることで相乗効果を発揮しているものと推察される。純度97%以上の工業的生産品のマグネシウムと天然由来のマグネシウムとでは、天然由来のマグネシウムの方が、原料ガラス粉体の焼成発泡後のヒ素抑制効果が高く、使用時の所要量も少なくてすむ。 However, while continuing research, it was found that it is more effective to use naturally derived magnesium as follows. In this way, naturally occurring magnesium mineral is used as magnesium. It has a synergistic effect due to the presence of inorganic substances other than magnesium, such as calcium, aluminum, silicon, iron, and boron, in small quantities compared to industrially manufactured products with 97% or more magnesium. Inferred. Of industrially produced magnesium with a purity of 97% or more and naturally-derived magnesium, naturally-derived magnesium has a higher arsenic-suppressing effect after firing and firing the raw glass powder, and requires less in use. I'm sorry.

表2は、工業的生産品のマグネシウムと天然由来のマグネシウムとの使用結果を比較する試験データである。

Figure 2008081395
Table 2 shows test data comparing the results of use of industrial product magnesium and naturally derived magnesium.
Figure 2008081395

表2の試験体は、ヒ素の抑制処理をしてないもので、Asが 0.183mg/L検出されたものを使用し、それと同じガラス粉体を使っての上記抑制試験である。表2から明らかなように、工業生産品と天然由来品およびその添加量によって、As溶出の抑制効果に差が生じている。すなわち、工業的生産品のマグネシウムを使用した場合は、A、B、Cのように、添加量を0.6W%、1.5W%、1.7W%というように増やしても、0.033 mg/Lものヒ素溶出が認められた。なお、土壌環境基準における溶出基準値は、As…0.010 mg/L以下となっているで、この溶出基準値もクリアしていないことになる。 The test body of Table 2 is the above-described suppression test using a glass powder not subjected to arsenic suppression treatment and having As detected at 0.183 mg / L and using the same glass powder. As is clear from Table 2, there is a difference in the suppression effect of As elution depending on the industrially produced product, the naturally derived product, and the amount added. In other words, when magnesium, an industrial product, is used, even if the addition amount is increased to 0.6 W%, 1.5 W%, 1.7 W%, such as A, B, C, 0.033 mg / L arsenic Elution was observed. In addition, the elution standard value in soil environmental standard is As ... 0.010 mg / L or less, and this elution standard value is not cleared.

これに対し、本発明による天然由来のマグネシウムの場合は、1.5W%使用しただけで、ヒ素溶出は0.004 mg/Lであって、実質的にヒ素溶出は基準値以上は認められていない。このように、ヒ素の溶出抑制のための添加物として、天然由来のマグネシウムを用いると、工業的生産品のマグネシウムやマグネシウム化合物よりも顕著な抑制効果を奏することが明らかである。なお、マグネシウムは現実には酸化マグネシウムとして存在することが多いので、本発明において「マグネシウム」とは「酸化マグネシウム」含むものとし、しかも工業的に生産されたものを指す。 On the other hand, in the case of the naturally derived magnesium according to the present invention, the arsenic elution is 0.004 mg / L only by using 1.5 W%, and the arsenic elution is not substantially higher than the reference value. Thus, it is clear that when naturally derived magnesium is used as an additive for suppressing elution of arsenic, a remarkable suppression effect is exhibited as compared with magnesium and magnesium compounds as industrial products. In addition, since magnesium often actually exists as magnesium oxide, in the present invention, “magnesium” includes “magnesium oxide” and indicates an industrially produced product.

以上のように、ガラスその他の無機質材料を主原料とする多孔質軽量材を製造する際に、発泡剤を添加して焼成する段階でマグネシウム又はマグネシウム化合物、特に天然由来のマグネシウムを添加することによって、ヒ素の溶出を阻止できると共に、製造を効率化でき、かつ製品の品質低下を阻止できるなどの効果を奏するので、廃ガラスなどを用いてリサイクル製品を製造する際に課題となるヒ素溶出の問題が効果的に解決でき、資源の有効利用と環境浄化が実現される。 As described above, when producing a porous lightweight material mainly made of glass or other inorganic materials, by adding magnesium or a magnesium compound, particularly naturally derived magnesium, at the stage of adding and firing a foaming agent As well as being able to prevent arsenic elution, increase production efficiency and prevent product quality degradation, arsenic elution is a problem when manufacturing recycled products using waste glass, etc. Can be effectively solved, and effective use of resources and environmental purification are realized.

本発明による多孔質軽量材の製造方法の実施形態を示すフローチャートである。It is a flowchart which shows embodiment of the manufacturing method of the porous lightweight material by this invention.

Claims (4)

ガラスその他の無機質材料を主原料とする多孔質軽量材であって、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウム又はマグネシウム化合物又は天然由来のマグネシウムを添加した状態で焼成してなることを特徴とする多孔質軽量材。 A porous lightweight material mainly made of glass or other inorganic material, which is fired in a state where glass alone or mixed with one or more other inorganic materials and magnesium or a magnesium compound or naturally derived magnesium is added. A porous lightweight material characterized by comprising 前記のその他の無機質材料が、陶磁器類、土壌、粘土又は焼却灰であることを特徴とする請求項1に記載の多孔質軽量材。 The porous lightweight material according to claim 1, wherein the other inorganic material is ceramics, soil, clay, or incinerated ash. ガラスその他の無機質材料を主原料とする多孔質軽量材を製造する際に、ガラス単独で又は他の1種以上の無機質材料と混合しかつマグネシウム又はマグネシウム化合物又は天然由来のマグネシウムを添加した状態で焼成することを特徴とする多孔質軽量材の製造方法。 When producing a porous lightweight material mainly made of glass or other inorganic material, in a state where glass alone or mixed with one or more other inorganic materials and magnesium or a magnesium compound or naturally derived magnesium is added. A method for producing a porous lightweight material, characterized by firing. 前記のその他の無機質材料が、陶磁器類、土壌、粘土又は焼却灰であることを特徴とする請求項3に記載の多孔質軽量材の製造方法。 4. The method for producing a porous lightweight material according to claim 3, wherein the other inorganic material is ceramics, soil, clay, or incinerated ash.
JP2007225203A 2006-09-02 2007-08-31 Porous lightweight material by inorganic material sintering and method of manufacturing the same Pending JP2008081395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007225203A JP2008081395A (en) 2006-09-02 2007-08-31 Porous lightweight material by inorganic material sintering and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006238390 2006-09-02
JP2007225203A JP2008081395A (en) 2006-09-02 2007-08-31 Porous lightweight material by inorganic material sintering and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008081395A true JP2008081395A (en) 2008-04-10

Family

ID=39352604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225203A Pending JP2008081395A (en) 2006-09-02 2007-08-31 Porous lightweight material by inorganic material sintering and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008081395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435773A (en) * 2018-04-18 2018-08-24 河海大学 A kind of micro- flotation of Plastics separator and its application method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151437A (en) * 1996-09-26 1998-06-09 Toru Kubota Treatment of heavy metal and dioxin in incineration ash at low temperature
JPH11207301A (en) * 1997-11-19 1999-08-03 Kurita Water Ind Ltd Heavy metal immobilizing agent and treatment of heavy metal-containing ash
JP2006016248A (en) * 2004-07-01 2006-01-19 Nihon Funen Co Ltd Apparatus and method for manufacturing glass foamed body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151437A (en) * 1996-09-26 1998-06-09 Toru Kubota Treatment of heavy metal and dioxin in incineration ash at low temperature
JPH11207301A (en) * 1997-11-19 1999-08-03 Kurita Water Ind Ltd Heavy metal immobilizing agent and treatment of heavy metal-containing ash
JP2006016248A (en) * 2004-07-01 2006-01-19 Nihon Funen Co Ltd Apparatus and method for manufacturing glass foamed body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435773A (en) * 2018-04-18 2018-08-24 河海大学 A kind of micro- flotation of Plastics separator and its application method

Similar Documents

Publication Publication Date Title
Wei et al. Effect of calcium compounds on lightweight aggregates prepared by firing a mixture of coal fly ash and waste glass
WO2013093509A2 (en) Aggregates
CN114105610A (en) Aluminum ash-based porous ceramic material and preparation method thereof
CN109437628B (en) Ultra-light high-strength ceramsite
CN112552072A (en) Construction waste regenerated foamed ceramic and preparation method thereof
KR20200042245A (en) Manufacturing Method of Foaming Ceramic Ball and Foaming Ceramic Ball thereby
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
CN105000907A (en) Light-weight ceramsite wastewater treatment method
CN107353032B (en) Foamed ceramic insulation board taking industrial inorganic hazardous wastes and refractory clay tailings as raw materials and preparation method thereof
JP4088930B2 (en) Foamed glass manufacturing method and foamed glass
JP2008081395A (en) Porous lightweight material by inorganic material sintering and method of manufacturing the same
US6913643B2 (en) Lightweight foamed glass aggregate
KR101558893B1 (en) Admixture for Concrete and Concrete Composite Containing High Durability Additive
EP3805177A1 (en) A method of producing lightweight ceramic sand from lignite fly ash, composition and use thereof
RU2357933C2 (en) Charge for production of glass foam
US20210363057A1 (en) Novel method of producing improved lightweight ceramic sand and uses thereof
CN114394845A (en) High-chromium slag-content sintering formula and production process of synergistic foamed ceramic
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
JP2006314987A (en) Method for treating chlorine-containing dust
JP2001342045A (en) Method of manufacturing cement clinker
JP4391392B2 (en) Method for producing granules for nitrate nitrogen treatment
Kriskova et al. Effect of activating solution on the synthesis and properties of porous Fe-Si-Ca-Rich inorganic polymers
JP2015221735A (en) Low-carbon neutralization suppression mortar and method of manufacturing the same
CN110204312A (en) A kind of preparation method of ferronickel dregs porcelain granule
CN110183121A (en) The application of cobalt melting waste slag, clinker and its preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100813

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110210