JP2008078052A - Design method of plate thickness of electric wire crimping part and terminal having electric wire crimping part - Google Patents

Design method of plate thickness of electric wire crimping part and terminal having electric wire crimping part Download PDF

Info

Publication number
JP2008078052A
JP2008078052A JP2006258033A JP2006258033A JP2008078052A JP 2008078052 A JP2008078052 A JP 2008078052A JP 2006258033 A JP2006258033 A JP 2006258033A JP 2006258033 A JP2006258033 A JP 2006258033A JP 2008078052 A JP2008078052 A JP 2008078052A
Authority
JP
Japan
Prior art keywords
reinforced
brass material
mpa
terminal
wire crimping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258033A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
洋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006258033A priority Critical patent/JP2008078052A/en
Publication of JP2008078052A publication Critical patent/JP2008078052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a design method capable of clarifying specifications of materials which can be changed without the need of trial production evaluation or the like at the time of correspondence for thinning of terminals with wire crimping parts of the same shapes. <P>SOLUTION: A reinforced α brass material is used for manufacturing a terminal with a wire crimping part, and when a 0.2% yield strength of a non-reinforced α brass material (I) conventionally used is σ<SB>0.2-I</SB>(MPa), and a plate thickness is t<SB>I</SB>(mm), a reinforced α brass material (F) satisfying a constant relation between a 0.2% yield-strength σ<SB>0.2-F</SB>(MPa) and a plate thickness t<SB>F</SB>(mm) is selected. Then, the reinforced α brass material used is to be composed of copper by 62 to 71.5 wt.% and the rest of zinc, and a crystal particle size is to be aligned at 1 to 2 μm, and the 0.2% yield strength to be 300 to 700 MPa. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本件発明は電線圧着部を有する端子の製造の際の、電線圧着部の圧着強さ(電線保持強度)の低下をきたすこと無く薄肉化を達成するための材料板厚の設計方法と、該材料を用いて得られた電線圧着部を有する端子を提供する。   The present invention relates to a method for designing a material plate thickness to achieve thinning without reducing the crimping strength (wire holding strength) of a wire crimping portion when manufacturing a terminal having a wire crimping portion, and the material The terminal which has an electric wire crimping part obtained using is provided.

従来から黄銅材は、機械的強度が比較的高く、導電率も比較的良好で安価であるため端子、コネクターなどの電子部材や機構部品に多用されてきた。これら端子の種類としては、板厚の厚いものではバッテリー端子やLA端子をはじめとする板端子、そして、板厚の薄いものではオスメスを有する嵌合端子などがある。また、多くの端子では電線との接合が必須であり、接合方法としては圧着法を用いることが多い。そこで、圧着部を有する端子用に用いる材料には、特別に高い強度、導電率や応力緩和性が要求されない限り、黄銅材が用いられてきた。   Conventionally, brass materials have been widely used for electronic members and mechanism parts such as terminals and connectors because they have relatively high mechanical strength, relatively good electrical conductivity, and are inexpensive. As the types of these terminals, there are plate terminals including battery terminals and LA terminals when the plate thickness is thick, and fitting terminals having male and female members when the plate thickness is thin. Moreover, in many terminals, joining with an electric wire is essential, and a crimping method is often used as a joining method. Therefore, a brass material has been used as a material used for a terminal having a crimped portion unless particularly high strength, electrical conductivity, and stress relaxation properties are required.

そして、近年の軽薄短小化の流れから、部品の薄肉化を図って、軽量化に寄与させ、且つ、材料経費も節減しようというニーズが高まっている。そこで、特許文献1には、結晶粒を微細化することにより、黄銅材の強度を上げ、製品の小型化や軽量化を図ることが提案されている。   With the recent trend of thinning and thinning, there is an increasing need to reduce the thickness of parts, contribute to weight reduction, and reduce material costs. Therefore, Patent Document 1 proposes to increase the strength of the brass material by miniaturizing the crystal grains to reduce the size and weight of the product.

特開2004−292875号公報JP 2004-292875 A

上記特許文献1により、部品の軽量化に寄与できる強化黄銅材の製造法は公知となり、新規部品の設計時点であれば、試作によりその材料の適合性を評価することは一般的な手順であり問題はない。しかし、端子など従来用途で、強化α黄銅材を代替材料として検討する場合には、どの程度の強度の強化α黄銅材が適正なのかは、端子の種類によっても選択する基準が異なる。例えば、バッテリー端子のように板厚が厚く、成形加工も複雑な場合には、成形加工性の確保を重要視することになる。そして、丸型端子のような場合には圧着部の強度確保のみが要件となり、雄雌を組み合わせる嵌合端子のような、複雑な加工がなされる場合には、折り曲げ加工性などの成形加工性の確保が重要となる。従って、強度レベルを知るために、非強化α黄銅材を使用した金型を用い、厚みは非強化黄銅と同じだが強度レベルの異なる強化α黄銅材を種々成形して、適正な強度レベルを選択すべく試行錯誤することになる。あるいは、より簡便に、例えば90度折り曲げ性が指標になる場合は、90度折り曲げ性が現行使用の非強化α黄銅材と同等になるように、強化α黄銅材を選べばよい。そして、このようにして強化α黄銅材の強度レベルを決定したとしても、強化による圧着部の薄肉化がどの程度可能なのか、更に各種板厚の圧着部を試作しての試行錯誤が必要となる。   According to the above-mentioned Patent Document 1, a method of manufacturing a reinforced brass material that can contribute to weight reduction of a component is publicly known, and at the time of designing a new component, it is a general procedure to evaluate the suitability of the material by trial manufacture. No problem. However, when a reinforced α brass material is considered as an alternative material in conventional applications such as terminals, the criteria for selection differ depending on the type of terminal to determine how strong the reinforced α brass material is appropriate. For example, when the plate thickness is thick and the molding process is complicated like a battery terminal, securing the molding processability is regarded as important. And in the case of round terminals, it is only necessary to ensure the strength of the crimping part, and in the case of complicated processing such as mating terminals that combine male and female, forming workability such as bending workability Is important. Therefore, in order to know the strength level, a mold using a non-reinforced α brass material is used, various thicknesses of reinforced α brass materials having the same thickness as the non-reinforced brass but different strength levels are selected, and the appropriate strength level is selected. It will be trial and error as much as possible. Alternatively, for example, when 90-degree bendability becomes an index, for example, a reinforced α-brass material may be selected so that the 90-degree bendability is equivalent to the currently used non-reinforced α-brass material. And even if the strength level of the reinforced α brass material is determined in this way, it is necessary to make trial and error by trial manufacture of crimped parts with various plate thicknesses, how much thinning of the crimped parts by reinforcement is possible Become.

そこで、本件発明者は鋭意研究の結果、電線圧着部を有する端子の材料として強化α黄銅材を選択し、その電線圧着部の電線保持強度を維持したまま薄肉化する際の、板厚設計方法に想到したのである。本件発明の方法によれば、強化α黄銅材の強度が、端子に要求される機能(成形加工性に支障を与え無いこと等)から決定されれば、どれだけの薄肉化が図れるかを、簡単に決定できる。   Therefore, as a result of diligent research, the present inventor has selected a reinforced α brass material as a material for a terminal having a wire crimping portion, and a thickness design method for reducing the thickness while maintaining the wire holding strength of the wire crimping portion. I came up with this. According to the method of the present invention, if the strength of the reinforced α brass material is determined from the function required for the terminal (such as not affecting the moldability), how much thinning can be achieved, Easy to determine.

本件発明に係る電線圧着部を有する端子を製造する際の電線圧着部板厚の設計方法: 本件発明に係る電線圧着部を有する端子を製造する際の電線圧着部板厚の設計方法は、結晶粒径を1μm〜2μmに微細化した強化α黄銅材で電線圧着部を有する端子を製造する際の電線圧着部板厚の設計方法であって、強化α黄銅材(F)の0.2%耐力をσ0.2−F(MPa)とし、非強化α黄銅材(I)の0.2%耐力をσ0.2−I(MPa)としたとき、用いる強化α黄銅材(F)の厚さt(mm)が非強化α黄銅材(I)の厚さt(mm)に対して以下の数2を満足するように調製することを特徴としている。 Method for designing wire crimping portion plate thickness when manufacturing a terminal having a wire crimping portion according to the present invention: The method for designing wire crimping portion plate thickness when producing a terminal having a wire crimping portion according to the present invention is a crystal A method for designing the thickness of a wire crimping portion when manufacturing a terminal having a wire crimping portion with a reinforced α brass material whose particle size is refined to 1 μm to 2 μm, and 0.2% of the reinforced α brass material (F) When the proof stress is σ 0.2-F (MPa) and the 0.2% proof stress of the non-reinforced α brass material (I) is σ 0.2-I (MPa), the reinforced α brass material (F) to be used It is characterized in that the thickness t F (mm) is prepared so as to satisfy the following formula 2 with respect to the thickness t I (mm) of the non-reinforced α brass material (I).

前記非強化α黄銅材の0.2%耐力(σ0.2−I)は200MPa〜540MPaであり、強化α黄銅材の0.2%耐力(σ0.2−F)は300MPa〜700MPaであることが好ましい。 The non-reinforced α brass material has a 0.2% yield strength (σ 0.2-I ) of 200 MPa to 540 MPa, and the reinforced α brass material has a 0.2% yield strength (σ 0.2-F ) of 300 MPa to 700 MPa. Preferably there is.

前記強化α黄銅材は銅62wt%〜71.5wt%と不可避不純物以外の残部が亜鉛からなるものであることも好ましい。   The reinforced α brass material is preferably 62 wt% to 71.5 wt% of copper, and the balance other than inevitable impurities is made of zinc.

本件発明に係る電線圧着部を有する端子: 本件発明に係る電線圧着部を有する端子は、上述の電線圧着部板厚の設計方法により選定された板厚の強化α黄銅材を用いたことを特徴としている。 Terminal having electric wire crimping portion according to the present invention: The terminal having the electric wire crimping portion according to the present invention uses a reinforced α brass material having a plate thickness selected by the above-described method for designing the electric wire crimping portion plate thickness. It is said.

本件発明に係る電線圧着部を有する端子の設計方法は、原材料として強化α黄銅材を用いることを特徴としている。そして、前記強化α黄銅材(F)を端子材として用いた場合に、非強化α黄銅材(I)を使用した端子と比べ、その素材厚さをどの程度まで薄くできるかの推測が容易となる。その結果、薄くできる適正な板厚を容易に推定できるため、軽量化など要求レベルに応じて微調整を加えた設計の電線圧着部を有する端子を得ることが可能となった。   The method for designing a terminal having a wire crimping portion according to the present invention is characterized by using a reinforced α brass material as a raw material. And when the said reinforced alpha brass material (F) is used as a terminal material, compared with the terminal which uses the non-reinforced alpha brass material (I), it is easy to estimate how much the material thickness can be reduced. Become. As a result, since it is possible to easily estimate an appropriate thickness that can be thinned, it is possible to obtain a terminal having a wire crimping portion that is designed with fine adjustment according to a required level such as weight reduction.

以下、実施の形態と実施例とを通じて、本件発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail through embodiments and examples.

本件発明に係る電線圧着部を有する端子を製造する際の電線圧着部板厚設計方法の形態: 本件発明に係る電線圧着部を有する端子を製造する際の電線圧着部板厚の設計方法は、結晶粒径を1μm〜2μmに微細化した強化α黄銅材で電線圧着部を有する端子を製造する際の電線圧着部板厚の設計方法であって、該強化α黄銅材(F)の0.2%耐力をσ0.2−F(MPa)とし、非強化α黄銅材(I)の0.2%耐力をσ0.2−I(MPa)としたとき、用いる強化α黄銅材(F)の厚さt(mm)が非強化α黄銅材(I)の厚さt(mm)に対して以下の数3を満足するように調製するのである。 Form of wire crimping part plate thickness design method when producing a terminal having a wire crimping part according to the present invention: The design method of wire crimping part plate thickness when producing a terminal having a wire crimping part according to the present invention is as follows: A method for designing the thickness of a wire crimping portion when a terminal having a wire crimping portion is manufactured from a reinforced α brass material having a crystal grain size refined to 1 μm to 2 μm, which is a 0. When the 2% proof stress is σ 0.2-F (MPa) and the 0.2% proof stress of the non-reinforced α brass material (I) is σ 0.2-I (MPa), the reinforced α brass material (F ) thickness t F (mm) of the to prepare to satisfy Equation 3 below is with respect to the thickness t I (mm) of unreinforced α brass (I).

圧着部の電線保持強度を確保するためには、単に、強化α黄銅材の強化レベルを決めるだけではなく、板厚の異なる強化α黄銅材で圧着部を試作し、実用試験をおこなう必要があった。しかしながら、本件発明では上記式に当てはめて強度の向上に伴う厚さの削減量を試算することが可能であり、0.2%耐力が1.2倍になると約9%の薄肉化が可能になることが判る。更に、0.2%耐力が1.5倍になると薄肉化のレベルは約20%になることが判る。   In order to secure the wire holding strength of the crimping part, it is necessary not only to determine the reinforcement level of the reinforced α brass material, but also to prototype the crimping part with reinforced α brass material with different plate thickness and conduct a practical test. It was. However, in the present invention, it is possible to estimate the amount of reduction in thickness due to the improvement in strength by applying the above formula, and if the 0.2% proof stress is 1.2 times, the thickness can be reduced by about 9%. It turns out that it becomes. Furthermore, it can be seen that when the 0.2% proof stress is 1.5 times, the level of thinning is about 20%.

ただし、電線圧着部の形状を全く変えない場合には、上述した数3の代わりに、以下の数4を用いることが好ましい。   However, when the shape of the wire crimping portion is not changed at all, it is preferable to use the following formula 4 instead of the above formula 3.

端子を成形する際に、同じ金型を用いて板厚のみを薄くすると、得られた端子を用いて電線を圧着したとき、圧着部の上部の黄銅片の電線押し込みがきつくなり、電線を痛める傾向がでる。そのため、成形用の金型が同一の場合、薄肉化は20%までとするのが好ましいのである。   When molding the terminal, if only the plate thickness is reduced using the same mold, when the electric wire is crimped using the obtained terminal, the pushing of the brass piece on the upper part of the crimping part becomes tight and the electric wire is damaged. There is a trend. Therefore, when the molding die is the same, it is preferable to reduce the thickness to 20%.

ここで用いる強化α黄銅材は、結晶粒径を、1μm〜2μmに微細化することにより、機械強度を高めつつ成形加工性を維持している。この結晶粒径が2μmを上回ると、成形加工性を維持したまま機械強度を上げることができない。従って、本件発明の手法を用いた板厚の設計ができなくなってしまう。また、結晶粒径を1μmより小さくしても、成形加工性の向上効果は飽和状態になる。現在の技術水準では、結晶の微細化の下限は0.5μm程度と考えられており、工業化が可能なレベルは0.8μm程度である。従って、小数点以下の四捨五入の考えを入れて下限を1μmとする。   The reinforced α brass material used here maintains the moldability while increasing the mechanical strength by refining the crystal grain size to 1 μm to 2 μm. When the crystal grain size exceeds 2 μm, the mechanical strength cannot be increased while maintaining the moldability. Therefore, it becomes impossible to design the plate thickness using the method of the present invention. Even if the crystal grain size is smaller than 1 μm, the effect of improving the moldability is saturated. At the current technical level, the lower limit of crystal refinement is considered to be about 0.5 μm, and the level at which industrialization is possible is about 0.8 μm. Therefore, the lower limit is set to 1 μm with the idea of rounding off after the decimal point.

本件発明では、上述のように、端子成形において、非強化α黄銅材を強化α黄銅材で代替する際の、材料厚みの選択を容易にすることを課題としている。しかしながら、強化α黄銅材の強度レベルが決定できていない段階であれば、代替対象とする非強化α黄銅材(I)の0.2%耐力をσ0.2−I(MPa)としたときに、強化α黄銅材(F)の0.2%耐力σ0.2−F(MPa)が以下の数5を満足するように作り込むことにより、成形加工性に影響を与えることなく高強度化が可能であることにも本件発明者は想到しており、特許出願済である。 In the present invention, as described above, in the terminal molding, it is an object to facilitate selection of the material thickness when replacing the non-reinforced α brass material with the reinforced α brass material. However, when the strength level of the reinforced α brass material is not determined, the 0.2% proof stress of the non-reinforced α brass material (I) to be substituted is σ 0.2-I (MPa). In addition, by making the 0.2% proof stress σ 0.2-F (MPa) of the reinforced α brass material (F) to satisfy the following formula 5, high strength is obtained without affecting the moldability. The inventor of the present invention has also conceived that it is possible to achieve the above-mentioned and has applied for a patent.

上記数5を利用することにより、どの程度まで機械強度を高めた材料の入手が妥当であるかを試算することができるため、材料及び時間の節約が可能となり、省資源及び省エネルギーに貢献できる。   By using the above formula 5, it is possible to estimate to what extent it is appropriate to obtain a material with increased mechanical strength. Therefore, it is possible to save materials and time, and contribute to resource and energy savings.

前記非強化α黄銅材の0.2%耐力(σ0.2−I)は200MPa〜540MPaであり、強化α黄銅材の0.2%耐力(σ0.2−F)は300MPa〜700MPaであることが好ましい。前述のように、端子用としてはα黄銅材の1/2H材〜EH材が一般的に使用されているが、その0.2%耐力(σ0.2−I)は200MPa〜540MPaを示す。そして、強化α黄銅材の0.2%耐力(σ0.2−F)を300MPa〜700MPaとしている。強化α黄銅材として下限を下回る部分は、非強化α黄銅材でも成形加工性に問題が生じない範囲であり、強化α黄銅材を用いる必要性がない。そして上限を超えると、如何に結晶粒を微細化してあるとはいえ、曲げ加工性に問題が出て、曲げが実質的にできなくなる等、成形加工性に問題が出てくる。 The non-reinforced α brass material has a 0.2% yield strength (σ 0.2-I ) of 200 MPa to 540 MPa, and the reinforced α brass material has a 0.2% yield strength (σ 0.2-F ) of 300 MPa to 700 MPa. Preferably there is. As described above, α brass materials of 1 / 2H to EH are generally used for terminals, but their 0.2% proof stress (σ 0.2-I ) is 200 MPa to 540 MPa. . And the 0.2% yield strength ((sigma) 0.2-F ) of reinforced alpha brass material is 300 MPa-700 MPa. The portion below the lower limit of the reinforced α brass material is in a range where there is no problem in moldability even with the non-reinforced α brass material, and there is no need to use the reinforced α brass material. When the upper limit is exceeded, although the crystal grains are refined, there is a problem in the bending workability, which causes a problem in the bending workability and the bending becomes substantially impossible.

ここで用いる強化α黄銅材とは、成形加工性を損なわないように、結晶粒径を1μm〜2μmに微細化したものであり、以下の工程を採用することで狙いの機械強度に調製できる。まず圧延に供するインゴットは、後述する組成範囲に調整した溶湯を連続鋳造法にて鋳造する。そして、まず、このインゴットに熱間圧延を施し、定法により面削する。その後、40%〜90%の加工率の冷間圧延加工とその後の焼鈍を、必要に応じて繰り返してビッカース硬度を130〜170に調整した黄銅条とする。更に、当該条を、加工率0%〜25%で冷間圧延加工を施したのち、必要に応じて低温焼鈍して0.2%耐力を最高値の90%に調整して、強化α黄銅条を調製するのである。この製造方法によれば、成形加工性と機械強度とが優れた、強化α黄銅材が得られるのである。   The reinforced α brass material used here is one in which the crystal grain size is refined to 1 μm to 2 μm so as not to impair the moldability, and can be adjusted to the target mechanical strength by employing the following steps. First, the ingot used for rolling casts the molten metal adjusted to the composition range mentioned later by a continuous casting method. First, the ingot is hot-rolled and faced by a regular method. Thereafter, cold rolling with a working rate of 40% to 90% and subsequent annealing are repeated as necessary to obtain a brass strip having a Vickers hardness adjusted to 130 to 170. Furthermore, after subjecting the strip to cold rolling at a processing rate of 0% to 25%, low-temperature annealing is performed as necessary to adjust the 0.2% proof stress to 90% of the maximum value, and reinforced α brass The strip is prepared. According to this manufacturing method, a reinforced α brass material excellent in moldability and mechanical strength can be obtained.

前記強化α黄銅材は、銅62wt%〜71.5wt%と不可避不純物以外の残部が亜鉛からなるものであることが好ましい。本件発明に係るα黄銅材の組成は、JIS規格で定めるところのC2600、C2680及びC2720をカバーする範囲となっている。そこで、本件発明で強化α黄銅材としてこの組成範囲に定めた理由を説明する。銅−亜鉛合金において、銅成分量が71.5wt%を超えると機械強度レベルが低くなってしまい、無理に機械強度を上げようとすれば、加工性が悪化する傾向が顕著になるのである。また、銅成分量を62wt%未満とすれば、β相が出現してしまい、α相の単相組織とすることができなくなってしまう。β相が出現してしまうと、2相が混在する結晶組織となってしまい、電気化学的には相界面が腐食の基点となり、応力腐食割れ性を悪化させる等の不安要因が生ずる。   The reinforced α brass material is preferably 62 wt% to 71.5 wt% of copper and the balance other than unavoidable impurities is made of zinc. The composition of the α brass material according to the present invention is a range that covers C2600, C2680 and C2720 as defined by JIS standards. The reason why the composition range is defined as the reinforced α brass material in the present invention will be described. In a copper-zinc alloy, if the amount of the copper component exceeds 71.5 wt%, the mechanical strength level becomes low, and if the mechanical strength is forcibly increased, the tendency for workability to deteriorate becomes remarkable. Moreover, if the amount of copper component is less than 62 wt%, a β phase appears, and a single phase structure of an α phase cannot be obtained. When the β phase appears, it becomes a crystal structure in which two phases coexist, and electrochemically, the phase interface becomes a starting point of corrosion, which causes anxiety factors such as deterioration of stress corrosion cracking property.

本件発明に係る電線圧着部を有する端子の形態: 本件発明に係る電線圧着部を有する端子は、上述の電線圧着部板厚の設計方法により選定された板厚の強化α黄銅材(F)を用いたことを特徴としている。前述のように、0.2%耐力が1.2倍になると約9%の薄肉化が可能になり、0.2%耐力が1.5倍になると薄肉化のレベルは約20%になる。従って、上記に述べた本件発明に係る材料の設計方法を用いて製造された当該端子は、材料として0.2%耐力が1.2倍のものを用いれば9%軽量化されたものとなり、0.2%耐力が1.5倍のものを用いれば20%軽量化されることになる。なお、本件発明に係る電線圧着部を有する端子は、電気的接続の信頼性を高めるため、表面にSnめっきを施すことが、旧来端子と同様に好ましい。 Form of a terminal having a wire crimping portion according to the present invention: A terminal having a wire crimping portion according to the present invention is made of a reinforced α brass material (F) having a thickness selected by the above-described method for designing a wire crimping portion plate thickness. It is characterized by the use. As described above, when the 0.2% proof stress becomes 1.2 times, it becomes possible to reduce the thickness by about 9%, and when the 0.2% proof stress becomes 1.5 times, the level of thinning becomes about 20%. . Therefore, the terminal manufactured using the material design method according to the present invention described above is 9% lighter if 0.2% proof stress is 1.2 times as the material. If the 0.2% proof stress is 1.5 times, the weight will be reduced by 20%. In addition, in order to improve the reliability of electrical connection, it is preferable that the terminal having the wire crimping portion according to the present invention is subjected to Sn plating on the surface, like the conventional terminal.

更に、後述する実施例から明らかなように、機械強度の大きな材料を用いることにより、クリンプハイトが電線保持強度に与える影響が小さくなる。そのため、圧着作業時にクリンプハイトを選択できる範囲が広くなり、作業ミスなどによる不良の発生を抑制できる。確かに、大量の端子処理を行う場合には、自動機で接続するため、問題の発生は希であると考えられる。しかし、補修のために圧着作業を実施する場合などでは、作業者の熟練度が浅い場合でも、安定した品質での電線への端子接続が可能となる。   Furthermore, as will be apparent from the examples described later, the influence of the crimp height on the wire holding strength is reduced by using a material having a high mechanical strength. Therefore, the range in which the crimp height can be selected during the crimping operation is widened, and the occurrence of defects due to operational errors can be suppressed. Certainly, when a large amount of terminal processing is performed, since it is connected by an automatic machine, the occurrence of problems is considered rare. However, when a crimping operation is carried out for repairing or the like, it is possible to connect the terminal to the electric wire with stable quality even when the skill level of the operator is low.

以下、実施例を通じて本件発明をより詳細に説明する。本件発明で言っている、実用上支障が無い電線の圧着レベルとは、その電線を圧着端子形状に圧着した際に得られる最高強度に近いレベルであり、一定のバラツキを考慮した範囲の圧着強さである。そして、電線圧着後の抜け易さは、リブを入れるなどの形状設計によっても影響を受けるため、電線の公称太さ2mmスクウェアに適合する、最もシンプルな端子形状を採用して評価した。当該端子の形状を図1に、実物の外観写真を図2に、電線を良好に圧着した状態を図3に、図3のA−B部分の断面を図4に示す。そして、クリンプハイトを高く設定しすぎたために電線の圧着が十分おこなわれず、電線保持強度が不十分な状態の圧着部の断面を図5に示す。また、薄肉化を20%まで実施したが、電線保持強度が低下しなかった場合の圧着部を、図6に示す。   Hereinafter, the present invention will be described in more detail through examples. In the present invention, the crimping level of an electric wire that does not impede practical use is a level close to the maximum strength obtained when the electric wire is crimped to a crimp terminal shape, and the crimping strength within a range that takes into account a certain variation. That's it. The ease of disconnection after wire crimping is also affected by the shape design such as inserting ribs. Therefore, the simplest terminal shape that conforms to 2 mm square thickness of the wire was adopted and evaluated. FIG. 1 shows the shape of the terminal, FIG. 2 shows a photograph of the actual appearance, FIG. 3 shows a state in which the electric wire is properly crimped, and FIG. 4 shows a cross section taken along the line AB in FIG. And since crimp height is set too high, the crimping | compression-bonding of an electric wire is not performed sufficiently, but the cross section of the crimping | compression-bonding part in a state with insufficient electric wire holding strength is shown in FIG. Moreover, although thinning was implemented to 20%, the crimping | compression-bonding part when an electric wire holding strength did not fall is shown in FIG.

前記端子を成形するα黄銅材には、耐力が380MPa、490MPa、580MPa、650MPaの材料を用い、その板厚は0.40mm、0.45m、0.50mm、0.55mm、0.60mmの5種類を用いた。そして、使用する圧着治具の設定によっても圧着性が異なることが明らかであるため、最適条件での比較を可能とする目的で、各端子に対してクリンプハイトを変更した実験をおこなって、圧着部分の電線保持強度を求め、最適な圧着強さを示す最小板厚に関するデータを得た。   The α brass material for forming the terminal is made of a material having a proof stress of 380 MPa, 490 MPa, 580 MPa, 650 MPa, and thicknesses of 0.40 mm, 0.45 m, 0.50 mm, 0.55 mm, and 0.60 mm. The type was used. And since it is clear that the crimpability varies depending on the setting of the crimping jig to be used, for the purpose of enabling comparison under the optimum conditions, an experiment was conducted in which the crimp height was changed for each terminal. The electric wire holding strength of the portion was obtained, and data on the minimum plate thickness indicating the optimum crimping strength was obtained.

ここで、実際の試験での圧着状態の良否判断基準に関して述べる。クリンプハイトを、電線抜けが生じる範囲よりも小さく設定すると、材料の機械強度が不足しても圧着性は一見良好で、電線の抜けは観察されず、約300N付近の電線保持強度は示す。しかし、クリンプハイトが低すぎる設定では、圧着時に端子の黄銅片が電線に食い込んで損傷を与えるため、圧着部で電線が容易に破断してしまう現象が観察される。従って、本件発明では、クリンプハイトを最適に調製したときに得られた電線保持強度(N)を、「圧着強さ(N)」と称している。以下に、0.2%耐力が最小の材料を非強化α黄銅材とし、0.2%耐力が最大の材料を強化α黄銅材として、試験結果の対比を行う。   Here, the criteria for determining whether or not the crimped state is good in an actual test will be described. When the crimp height is set to be smaller than the range in which the electric wire disconnection occurs, the crimping property is seemingly good even if the mechanical strength of the material is insufficient, and no electric wire disconnection is observed, and the electric wire holding strength in the vicinity of about 300 N is shown. However, if the crimp height is set too low, the brass piece of the terminal bites into and damages the electric wire at the time of crimping, and thus a phenomenon that the electric wire is easily broken at the crimping portion is observed. Therefore, in the present invention, the electric wire holding strength (N) obtained when the crimp height is optimally prepared is referred to as “crimping strength (N)”. Below, the material with the minimum 0.2% yield strength is the non-reinforced α brass material, and the material with the maximum 0.2% yield strength is the reinforced α brass material, and the test results are compared.

<非強化α黄銅材>
材料の0.2%耐力が380MPaで、銅65.1wt%、残部亜鉛の組成を持ち、結晶粒径が10〜15μmの非強化α黄銅材(I)に対して試験を実施した結果を図7に示す。この図7から明らかなように、板厚0.6mmの端子ではクリンプハイト1.97mm付近で電線保持強度は最大値である322Nを示している。そして、板厚0.55mmの材料では、板厚が薄くなった分だけ、電線保持強度が最大値を示すクリンプハイトは1.82mmと低くなっているが、最大値は326Nを示している。したがって、本例で用いた材料で使用可能な最小厚さは、0.55mmであると評価した。ところで、板厚0.6mmの材料では、クリンプハイトを1.94mmに低くすると、電線保持強度に急激な低下傾向が見られている。そして、0.55mmの材料でも、クリンプハイト1.80mmで電線保持強度が急激に低下しており、ここで用いた材料には、クリンプハイトを最適値から低くすると電線保持強度が低下するという傾向が共通して見られている。そして、以上の結果から、本件発明に係る実施例における、実用上支障の無い圧着強さの最低値を320Nに設定した。
<Non-reinforced α brass material>
Fig. 3 shows the results of a test conducted on an unreinforced α brass material (I) having a 0.2% proof stress of 380 MPa, a composition of 65.1 wt% copper and the balance zinc, and a crystal grain size of 10 to 15 µm. 7 shows. As is apparent from FIG. 7, the terminal having a thickness of 0.6 mm shows a maximum wire holding strength of 322 N near the crimp height of 1.97 mm. In the case of a material having a plate thickness of 0.55 mm, the crimp height indicating the maximum value of the wire holding strength is as low as 1.82 mm as much as the plate thickness is reduced, but the maximum value indicates 326N. Therefore, the minimum thickness that can be used for the material used in this example was evaluated to be 0.55 mm. By the way, in the material with a plate thickness of 0.6 mm, when the crimp height is lowered to 1.94 mm, a sharp decrease in the wire holding strength is observed. And even with a material of 0.55 mm, the wire holding strength sharply decreases at a crimp height of 1.80 mm, and the material used here has a tendency to decrease the wire holding strength when the crimp height is lowered from the optimum value. Are commonly seen. And from the above result, the minimum value of the crimping | compression-bonding intensity | strength which does not have a practical problem in the Example which concerns on this invention was set to 320N.

<強化α黄銅材>
そして、材料の0.2%耐力が650MPaで、銅65.2wt%、残部亜鉛の組成を持ち、結晶粒径が1.4μmの強化α黄銅材(F)に対して試験を実施した結果を図8に示す。この図8から明らかなように、電線保持強度の最大値は、板厚0.4mmから0.6mmの範囲全般で320N以上が得られており、板厚0.4mmであっても十分実用に耐えるものであった。したがって、使用可能な最小厚さは0.4mmであるとした。しかし、非強化α黄銅材(I)で見られた様な、同じ厚さの材料を用いてクリンプハイトを最適値から高い側や低い側に変化させたときに、電線保持強度が急激に変化するという現象は見られていない。
<Reinforced α brass material>
And the result of having implemented the test with respect to the reinforced alpha brass material (F) whose material 0.2% proof stress is 650MPa, has a composition of copper 65.2wt% and the balance zinc, and the crystal grain size is 1.4μm. As shown in FIG. As is clear from FIG. 8, the maximum value of the wire holding strength is 320 N or more in the whole range of the plate thickness from 0.4 mm to 0.6 mm, and even if the plate thickness is 0.4 mm, it is sufficiently practical. It was something to endure. Therefore, the minimum usable thickness is 0.4 mm. However, when the crimp height is changed from the optimum value to the high side or the low side using the same thickness material as seen in the non-reinforced α brass material (I), the wire holding strength changes rapidly. The phenomenon of doing is not seen.

以上の2つの例から、前述の非強化α黄銅材(I)のように、機械強度が弱い材料を用いた場合には、クリンプハイトが高いと圧着が弱くなって電線保持強度不足となり、圧着を強くしようとしてクリンプハイトを過度に低くして加工すると、折り込まれた黄銅片が電線に損傷を与えてしまう。この場合、電線の破断に至るまでの耐久性が低下するため、安定した電線保持強度を得るためにはクリンプハイトの設定が重要である。しかしながら、より機械強度の大きい強化α黄銅材を用いた場合には、クリンプハイトの高低変化に対応した、急激な電線保持強度の低下現象は見られていない。従って、機械強度が強く、加工性が良好な強化α黄銅材を使用することの優位性は、材料を薄く、軽量化できるだけではないことも明らかである。即ち、最適に薄くした材料を使用しても圧着作業の失敗が少なくなり、作業者の、電線圧着作業に対する熟練度が浅い場合でも不良の発生を抑制でき、クリンプハイトの設定を広くできることで、作業効率が向上するのである。   From the above two examples, when using a material with low mechanical strength, such as the above-mentioned non-reinforced α brass material (I), if the crimp height is high, the crimping becomes weak and the wire holding strength becomes insufficient. If the crimp height is made too low in order to increase the strength, the folded brass piece will damage the electric wire. In this case, since the durability until the wire breaks is reduced, the setting of the crimp height is important in order to obtain a stable wire holding strength. However, when a reinforced α-brass material with higher mechanical strength is used, there is no abrupt decrease in wire holding strength corresponding to changes in the crimp height. Therefore, it is clear that the advantage of using a reinforced α brass material having high mechanical strength and good workability is not only to make the material thin and lightweight. In other words, even if the optimally thin material is used, the failure of the crimping operation is reduced, the occurrence of defects can be suppressed even if the skill of the operator for the wire crimping operation is shallow, and the setting of the crimp height can be widened. Work efficiency is improved.

更に、強化α黄銅材の調製レベルの異なる2種として、組成が0.2%耐力650MPaの材料と同じで、結晶粒径がそれぞれ1.4μmと1.5μmであり、0.2%耐力を490MPaと580MPaとした材料についても同様に試験を実施した。その結果、0.2%耐力が490MPaの材料を用いた場合、実用上支障の無い圧着強さが得られる最小板厚は0.50mmであり、0.2%耐力が580MPaの材料を用いた場合、実用上支障の無い圧着強さが得られる最小板厚は0.45mmであった。以上から得られた、実用上支障の無い圧着強さが得られる、材料の0.2%耐力と最小板厚との関係、そして計算上得られる板厚との誤差を表1に示す。   Furthermore, as two types of reinforced α brass materials having different preparation levels, the composition is the same as the material having a 0.2% proof stress of 650 MPa, the crystal grain sizes are 1.4 μm and 1.5 μm, respectively, and the 0.2% proof stress is Tests were similarly performed on materials set to 490 MPa and 580 MPa. As a result, when a material having a 0.2% proof stress of 490 MPa was used, the minimum plate thickness for obtaining a practically unobstructed crimp strength was 0.50 mm, and a material having a 0.2% proof stress of 580 MPa was used. In this case, the minimum plate thickness at which the pressure-bonding strength without any practical problem was obtained was 0.45 mm. Table 1 shows the relationship between the 0.2% proof stress of the material and the minimum plate thickness, and the error from the plate thickness obtained in the calculation.

表1に示したように、板厚によらず得られる圧着強さは、326N〜337Nであって、電線が徐々に破断していく状態で、十分な電線保持強度であった。表1に示す、材料の0.2%耐力と最小厚さの関係を図8に示す。この図8に示されている0.2%耐力σ0.2(MPa)と板厚t(mm)の関係の相関式として、定数が15である以下の数6が得られる。 As shown in Table 1, the crimping strength obtained regardless of the plate thickness was 326N to 337N, and the wire holding strength was sufficient with the wire gradually breaking. The relationship between the 0.2% proof stress and the minimum thickness of the material shown in Table 1 is shown in FIG. As a correlation equation of the relationship between the 0.2% proof stress σ 0.2 (MPa) and the plate thickness t (mm) shown in FIG. 8, the following equation 6 having a constant of 15 is obtained.

この式では、圧着部の形状に応じて定数が定まると考えることができる。従って、非強化α黄銅材(I)を強化α黄銅材(F)に代替する場合には、非強化α黄銅材(I)の0.2%耐力σ0.2−I(MPa)と板厚t(mm)、強化α黄銅材(F)の0.2%耐力σ0.2−F(MPa)と板厚t(mm)を用いて、個別の圧着部での材料代替を考える場合には、定数を同じと置くことにより、誤差を±10%見込んだ以下の数7が導き出されるのである。 In this equation, it can be considered that the constant is determined according to the shape of the crimping portion. Therefore, when replacing the non-reinforced α brass material (I) with the reinforced α brass material (F), the 0.2% proof stress σ 0.2-I (MPa) of the non-reinforced α brass material (I) and the plate By using the thickness t I (mm), the 0.2% proof stress σ 0.2-F (MPa) of the reinforced α brass material (F) and the plate thickness t F (mm), material replacement at individual crimping parts In the case of thinking, by setting the constant to be the same, the following equation 7 with an error of ± 10% is derived.

上記数7を用いて計算した板厚と、実施例で得られた最小板厚を表1に対比している。本件発明による計算によれば、圧着部の板厚を変えた試験を行わなくても、適正な板厚を割り出せることが明らかである。また、当該強化α黄銅材を用いた端子の圧着部は、薄肉化しているにもかかわらず、非強化α黄銅材を用いた圧着部に対して、同等以上の、十分な電線保持強度を持っている。   Table 1 compares the plate thickness calculated using Equation 7 and the minimum plate thickness obtained in the example. According to the calculation according to the present invention, it is clear that an appropriate plate thickness can be determined without performing a test in which the plate thickness of the crimping portion is changed. In addition, the crimping part of the terminal using the reinforced α brass material has sufficient wire holding strength equivalent to or better than that of the crimping part using the non-reinforced α brass material, even though it is thin. ing.

本件発明に係る電線圧着部を有する端子の設計方法は、原材料として強化α黄銅材を用いることを特徴としている。強化α黄銅材を端子材として用いることにより、α黄銅材を使用した従来の端子と比べ、材料の厚さをどの程度まで薄くできるかの材料設計が容易になる。その結果、薄くできる適正な板厚を容易に推定できるために、軽量化など要求レベルに応じ、試行錯誤を繰り返すことなく、電線保持強度が保証された圧着部を有する端子を得ることが可能となる。従来、この試行錯誤が面倒で見当がつかないため、強化黄銅の採用が見送られてきたことも事実であり、この点でも本件発明の意義は大きい。   The method for designing a terminal having a wire crimping portion according to the present invention is characterized by using a reinforced α brass material as a raw material. By using the reinforced α brass material as a terminal material, it becomes easy to design the material to what extent the thickness of the material can be reduced as compared with the conventional terminal using the α brass material. As a result, it is possible to easily estimate the appropriate plate thickness that can be thinned, so that it is possible to obtain a terminal having a crimped portion with guaranteed electric wire holding strength without repeating trial and error according to the required level such as weight reduction. Become. Conventionally, since this trial and error is cumbersome and unrecognizable, it is also true that the use of reinforced brass has been postponed, and the significance of the present invention is also great in this respect.

そして、薄肉化の程度にもよるが、10%程度の薄肉化であれば、成形加工に使用する金型の変更も必要ない。このような薄肉化は、部品の軽量化が図れると同時に、材料の節約になることも明らかであり、経済的な効果も大きい。   Depending on the degree of thinning, if the thickness is about 10%, there is no need to change the mold used for the molding process. Such thinning can obviously reduce the weight of parts, and at the same time, saves material, and has a great economic effect.

実施例で製作した電線圧着部を有する端子の製作図である。It is a manufacture figure of the terminal which has the electric wire crimping part manufactured in the Example. 実施例で製作した電線圧着部を有する端子である。。It is a terminal which has the electric wire crimping | crimped part manufactured in the Example. . 実施例で製作した電線圧着部を有する端子に電線を良好に圧着した図であるIt is the figure which crimped | bonded the electric wire favorably to the terminal which has the electric wire crimping part manufactured in the Example. 図3における圧着部の矢視(A−B)における断面を示す図である。It is a figure which shows the cross section in the arrow view (AB) of the crimping | compression-bonding part in FIG. 実施例において非強化α黄銅材(I)を用い、クリンプハイト過大で電線を圧着した場合の圧着部断面である。It is a crimping | compression-bonding cross section at the time of crimping | bonding an electric wire by crimp height excess using unreinforced alpha brass material (I) in an Example. 実施例で作成した、板厚0.5mm用の金型を用い、板厚0.4mmの強化α黄銅材で適正な圧着強さを得た端子の、圧着部断面である。It is the crimping | compression-bonding part cross section of the terminal which obtained appropriate crimping strength with the reinforcement | strengthening (alpha) brass material with a board thickness of 0.4 mm using the metal mold | die for board thickness of 0.5 mm created in the Example. 0.2%耐力が380MPaの材料で製作した電線圧着部を有する端子を用いて電線保持強度を評価した結果を示す図である。It is a figure which shows the result of having evaluated the electric wire holding strength using the terminal which has the electric wire crimping part manufactured with the material whose 0.2% yield strength is 380 Mpa. 0.2%耐力が650MPaの材料で製作した電線圧着部を有する端子を用いて電線保持強度を評価した結果を示す図である。It is a figure which shows the result of having evaluated the electric wire holding strength using the terminal which has the electric wire crimping part manufactured with the material whose 0.2% yield strength is 650 MPa. 圧着強さを確保できる、材料の0.2%耐力と最小板厚との関係を示す図である。It is a figure which shows the relationship between the 0.2% yield strength of material and minimum board thickness which can ensure crimping | compression-bonding strength.

Claims (4)

結晶粒径を1μm〜2μmに微細化した強化α黄銅材で電線圧着部を有する端子を製造する際の電線圧着部板厚の設計方法であって、
該強化α黄銅材(F)の0.2%耐力をσ0.2−F(MPa)とし、非強化α黄銅材(I)の0.2%耐力をσ0.2−I(MPa)としたとき、用いる強化α黄銅材(F)の厚さt(mm)が非強化α黄銅材(I)の厚さt(mm)に対して以下の数1を満足するように調製することを特徴とする電線圧着部板厚の設計方法。
A method for designing a wire crimping portion plate thickness when manufacturing a terminal having a wire crimping portion with a reinforced α brass material whose crystal grain size is refined to 1 μm to 2 μm,
The 0.2% proof stress of the reinforced α brass material (F) is σ 0.2-F (MPa), and the 0.2% proof stress of the non-reinforced α brass material (I) is σ 0.2-I (MPa). The thickness t F (mm) of the reinforced α brass material (F) used is adjusted so as to satisfy the following formula 1 with respect to the thickness t I (mm) of the non-reinforced α brass material (I). A method for designing a thickness of a wire crimping portion, characterized by:
前記非強化α黄銅材の0.2%耐力(σ0.2−I)は200MPa〜540MPaであり、強化α黄銅材の0.2%耐力(σ0.2−F)は300MPa〜700MPaである請求項1に記載の電線圧着部板厚の設計方法。 The non-reinforced α brass material has a 0.2% yield strength (σ 0.2-I ) of 200 MPa to 540 MPa, and the reinforced α brass material has a 0.2% yield strength (σ 0.2-F ) of 300 MPa to 700 MPa. The method for designing the thickness of the wire crimping portion according to claim 1. 前記強化α黄銅材は銅62wt%〜71.5wt%と不可避不純物以外の残部が亜鉛からなるものである請求項1又は請求項2に記載の電線圧着部板厚の設計方法。 3. The method for designing the thickness of a wire crimping portion according to claim 1, wherein the reinforced α brass material is composed of 62 wt% to 71.5 wt% of copper and the remainder other than inevitable impurities is made of zinc. 請求項1〜請求項3のいずれかに記載の電線圧着部板厚の設計方法により選定された板厚の強化α黄銅材を用いたことを特徴とする電線圧着部を有する端子。 The terminal which has an electric wire crimping part using the reinforcement | strengthening (alpha) brass material of the plate thickness selected by the design method of the electric wire crimping | compression-bonding board thickness in any one of Claims 1-3.
JP2006258033A 2006-09-22 2006-09-22 Design method of plate thickness of electric wire crimping part and terminal having electric wire crimping part Pending JP2008078052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258033A JP2008078052A (en) 2006-09-22 2006-09-22 Design method of plate thickness of electric wire crimping part and terminal having electric wire crimping part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258033A JP2008078052A (en) 2006-09-22 2006-09-22 Design method of plate thickness of electric wire crimping part and terminal having electric wire crimping part

Publications (1)

Publication Number Publication Date
JP2008078052A true JP2008078052A (en) 2008-04-03

Family

ID=39349890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258033A Pending JP2008078052A (en) 2006-09-22 2006-09-22 Design method of plate thickness of electric wire crimping part and terminal having electric wire crimping part

Country Status (1)

Country Link
JP (1) JP2008078052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167146A (en) * 2015-05-25 2015-09-24 日本碍子株式会社 Crimped body and method for manufacturing crimped body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167146A (en) * 2015-05-25 2015-09-24 日本碍子株式会社 Crimped body and method for manufacturing crimped body

Similar Documents

Publication Publication Date Title
JP5109073B2 (en) Copper alloy sheet and manufacturing method thereof
JP5191725B2 (en) Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP5260992B2 (en) Copper alloy sheet and manufacturing method thereof
JP2009079270A (en) Cu-sn-p-based copper alloy sheet material and its production method, and connector
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP5243744B2 (en) Connector terminal
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP2010138461A (en) Ni-Si-Co BASE COPPER ALLOY, AND METHOD FOR PRODUCING THE SAME
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP5507635B2 (en) Copper alloy sheet and manufacturing method thereof
JP5897084B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP4699252B2 (en) Titanium copper
JP5897083B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP4714943B2 (en) Method for producing precipitation hardening type copper alloy strip
JP2010100890A (en) Copper alloy strip for connector
JP5150908B2 (en) Copper alloy for connector and its manufacturing method
KR100774225B1 (en) Cu-Ni-Si-Zn BASED ALLOY TIN PLATING BATH
JP2018076588A (en) Copper alloy sheet material and manufacturing method therefor
JPH10226835A (en) Copper base alloy for terminal and terminal using the same
JP2008078052A (en) Design method of plate thickness of electric wire crimping part and terminal having electric wire crimping part
JP2018070944A (en) Copper alloy sheet material and manufacturing method therefor
JP2007084921A (en) Cu-Zn-Sn BASED ALLOY TIN PLATED STRIP
JP2007051370A (en) Cu-zn-sn alloy strip excellent in heat-peeling resistance of sn plating and sn-plated strip made of the same
KR101537151B1 (en) Cu-Zn-Sn-Ca ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICE
CN113260726B (en) Copper alloy for terminal and connector having excellent bending workability and method for producing the same