JP2008073575A - Waste landfilling structure, slag sand for fine particle layer of waste landfilling structure, and its manufacturing method - Google Patents

Waste landfilling structure, slag sand for fine particle layer of waste landfilling structure, and its manufacturing method Download PDF

Info

Publication number
JP2008073575A
JP2008073575A JP2006252934A JP2006252934A JP2008073575A JP 2008073575 A JP2008073575 A JP 2008073575A JP 2006252934 A JP2006252934 A JP 2006252934A JP 2006252934 A JP2006252934 A JP 2006252934A JP 2008073575 A JP2008073575 A JP 2008073575A
Authority
JP
Japan
Prior art keywords
fine
layer
slag sand
particle size
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006252934A
Other languages
Japanese (ja)
Other versions
JP4730689B2 (en
Inventor
Suehiko Yokota
季彦 横田
Yasushi Sato
泰 佐藤
Atsushi Sakamoto
篤 坂本
Atsushi Mizukami
敦嗣 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Nippon Yakin Kogyo Co Ltd
Original Assignee
JDC Corp
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp, Nippon Yakin Kogyo Co Ltd filed Critical JDC Corp
Priority to JP2006252934A priority Critical patent/JP4730689B2/en
Publication of JP2008073575A publication Critical patent/JP2008073575A/en
Application granted granted Critical
Publication of JP4730689B2 publication Critical patent/JP4730689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide ferronickel slag sand suitable for fine particle layers of multilayered cover soil. <P>SOLUTION: The slag sand for fine particle layers of the multilayered cover soil is manufactured by reduction-refining nickel ore at high temperature together with a reducing agent, pulverizing the obtained clinker, and ferronickel slag sand formed with broken faces on the particle surfaces is used for the fine particle layers of multilayered cover soil. The clinker is pulverized to a particle size of at least 5 mm. The pulverized ferronickel slag sand is charged into a water tank, subjected to floating separation of fine particles, and classified for size control. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に廃棄物埋立地などに浸透する浸透水を側方へ排水させる廃棄物埋立構造および廃棄物埋立構造の細粒層用スラグ砂ならびにその製造方法に関する。   The present invention particularly relates to a waste landfill structure for draining permeated water penetrating a waste landfill to the side, a slag sand for a fine particle layer of the waste landfill structure, and a method for producing the same.

廃棄物の埋立て地内に浸透した水が汚水となり周辺環境を汚染する問題がある。この問題を防止するために多層覆土を利用した廃棄物埋立て構造がある。図5に多層覆土の構成概略を示す。図示のように多層覆土は廃棄物1を粘性土層2で覆った後、レキ層3とこれに引き続いて細粒層4を敷設して構成されるキャピラリーバリア層5を形成し、最後に全体を遮水性の良い粘性土6で覆う構成としている。ここでレキ層3と細粒層4との層境界には勾配をつけている。これは、キャピラリーバリア層5を構成する粒の大きいレキ層3の上層に、小さい粒で構成した保水性の大きい細粒層4を設けることにより、降雨等による浸透水を細粒層4で止まらせるとともに、覆土に導水勾配を付してレキ層3と細粒層4の境界面に沿って側方へ流下させる、キャピラリーバリア効果を利用している。   There is a problem that water permeating into the landfill of waste becomes sewage and pollutes the surrounding environment. In order to prevent this problem, there is a waste landfill structure using multi-layer cover soil. FIG. 5 shows a schematic configuration of the multi-layer cover. As shown in the figure, the multi-layer covering soil forms a capillary barrier layer 5 formed by covering the waste 1 with the viscous soil layer 2 and then laying the reki layer 3 and subsequently the fine grain layer 4, and finally the whole Is covered with the viscous soil 6 having good water shielding properties. Here, the layer boundary between the reki layer 3 and the fine grain layer 4 is given a gradient. This is because the fine particle layer 4 having a large water content and composed of small particles is provided on the upper layer of the large particle layer 3 constituting the capillary barrier layer 5 so that the permeated water due to rainfall or the like is stopped by the fine particle layer 4. In addition, a capillary barrier effect is used, in which a water guide gradient is applied to the covering soil to flow down to the side along the boundary surface between the reki layer 3 and the fine grain layer 4.

これにより多層覆土表面を通過して細粒層に浸透し下方に移動した浸透水は、レキ層との境界面付近で流れの方向を勾配に沿って横向きに変え、細粒層中に保水されながら流下して集水除去される。埋立て廃棄物の雨水浸透水量を低減することができる(例えば特許文献1に示す)。   As a result, the permeated water that has passed through the surface of the multi-layered soil and infiltrated into the fine-grained layer and moved downward is changed in the direction of the flow along the gradient in the vicinity of the boundary with the revitalized layer, and is retained in the fine-grained layer. While flowing down, water is removed. It is possible to reduce the amount of rainwater penetrating water of landfill waste (for example, shown in Patent Document 1).

ところでキャピラリーバリア層の性能(排水性、浸透水の滞留性)に最も大きな影響を及ぼすのは砂の性質または材質である。キャピラリーバリア層の細粒層に適した砂は、不飽和域での滞留する浸透水が多く、排水性に優れていることが要求される。これにより表層から浸透した多量の水を側方へ排水させることができる。細粒層の毛管力が小さいと細粒層内に浸透してきた水の滞留量が少なくなり、少量の降雨によっても浸透水が廃棄物層まで達し、地下水汚染を助長する可能性がある。したがって細粒層の毛管力は大きい方が望ましい。   By the way, it is the property or material of sand that has the greatest influence on the performance of the capillary barrier layer (drainage, retention of permeated water). Sand suitable for the fine-grained layer of the capillary barrier layer is required to have a large amount of permeated water staying in the unsaturated region and excellent drainage. Thereby, a large amount of water permeating from the surface layer can be drained to the side. If the capillary force of the fine-grained layer is small, the amount of water that has permeated into the fine-grained layer is reduced, and even a small amount of rainfall may cause the infiltrated water to reach the waste layer and promote groundwater contamination. Therefore, it is desirable that the capillary force of the fine particle layer is large.

一方粗粒層は砂に比べて飽和透水性は大きいが、不飽和域での透水性は小さく、水分を吸引する力も弱い。細粒層とレキ層の境界付近は、常に不飽和になるため、粘性土を透過した水は砂の毛管力によって細粒層内に保持されたまま、砂とレキの境界の勾配によって側方へ移動し排除される。このような原理を利用し、近年、廃棄物埋め立て処分場などに多層覆土を適用するケースが増えている。
特開2001−17933号公報
On the other hand, the coarse-grained layer has a higher saturated water permeability than sand, but has a low water permeability in the unsaturated region and a weak force for sucking moisture. Since the vicinity of the boundary between the fine-grained layer and the leech layer is always unsaturated, the water that has passed through the cohesive soil is retained in the fine-grained layer by the capillary force of the sand, and laterally due to the gradient of the boundary between the sand and the leech layer. Moved to and eliminated. In recent years, using such a principle, there are increasing cases of applying multi-layer cover soil to a landfill site for waste.
JP 2001-17933 A

多層覆土を利用した廃棄物埋設構造では、埋設廃棄物保護層の上表面にレキ層とその上に細粒層を積層し、さらにその上の表土層からなる勾配が付されたキャピラリーバリア層が形成される。このキャピラリーバリア層を形成する場合、細粒層に適した砂を見つけることが必要であり、従来細粒層に用いる砂は、まず現場付近の砂をサンプリングして性能試験を行い細粒層に適した保水性および排水性を備えているか否かの判定を行っていた。   In a waste burial structure using multi-layered soil, a capillary barrier layer with a gradient layer consisting of a bleed layer and a fine-grained layer on top of the burial waste protective layer and a topsoil layer above it is formed. It is formed. When forming this capillary barrier layer, it is necessary to find sand suitable for the fine-grained layer. The sand used in the conventional fine-grained layer is first sampled from the sand near the site and subjected to a performance test to form a fine-grained layer. It was determined whether or not it had suitable water retention and drainage.

しかしながら側方排水性を備えたキャピラリーバリア層を満足させるためには、細粒層に対し透水性能が良好で、かつ保水能力が良好という相反する性質を付与させなければならない。良質な現地発生の天然砂は少なく、現状そのような砂を見つけることは困難であるという問題があった。また細粒層を構成する砂の性状によっては経年変化による過圧密により間隙が詰まり、局所的に存在する逆勾配によって、排水性が確保できなくなる危険性があった。   However, in order to satisfy the capillary barrier layer having the lateral drainage, it is necessary to impart the contradictory properties that the fine-grained layer has good water permeability and good water retention capability. There are few local sands of good quality and there is a problem that it is difficult to find such sand at present. In addition, depending on the properties of the sand constituting the fine-grained layer, there was a risk that the gap could be clogged due to overconsolidation due to secular change, and the drainage could not be secured due to the local reverse gradient.

上記従来技術の問題を改善するため、本発明は廃棄物埋立地のキャピラリーバリア層を構成する最適な細粒層を提供することを目的としている。   In order to improve the above-mentioned problems of the prior art, an object of the present invention is to provide an optimum fine-grained layer constituting a capillary barrier layer in a waste landfill.

本発明の廃棄物埋立構造は、埋立廃棄物の上表面に形成した細粒層とレキ層からなるキャピラリーバリア層の前記細粒層に、ニッケル鉱石を還元剤とともに高温中で還元精錬したフェロニッケルスラグのクリンカを粉砕して粒表面に保水性を備えた破断面を形成したフェロニッケルスラグ砂を用いることを特徴としている。   The waste landfill structure of the present invention is a ferronickel obtained by reducing and refining nickel ore at a high temperature together with a reducing agent on the fine particle layer of the capillary barrier layer formed of the fine particle layer and the leech layer formed on the upper surface of the landfill waste. It is characterized by using ferronickel slag sand in which a slag clinker is crushed to form a fracture surface with water retention on the grain surface.

この場合において、前記クリンカは少なくとも粒径を5mmまで粉砕するとよい。また前記フェロニッケルスラグ砂の粒度分布は、通過質量百分率が粒径0.15mmを10−30%,粒径0.3mmを25−60%,粒径0.6mmを60−90%,粒径1.2mmを85−100%で構成するとよい。また前記粉砕したフェロニッケルスラグ砂を水槽に投入して微粉を浮上分離するとよい。   In this case, the clinker is preferably pulverized to at least a particle size of 5 mm. The particle size distribution of the ferronickel slag sand is as follows: the passing mass percentage is 10-30% when the particle size is 0.15 mm, 25-60% when the particle size is 0.3 mm, 60-90% when the particle size is 0.6 mm, It is good to comprise 1.2mm with 85-100%. Further, the pulverized ferronickel slag sand may be put into a water tank to float and separate fine powder.

本発明の廃棄物埋立構造の細粒層用スラグ砂は、ニッケル鉱石を還元剤とともに高温中で還元精錬したフェロニッケルスラグのクリンカを粉砕して粒表面に保水性を備えた破断面を形成し、微粉を浮上分離して粒度調整し透水性を備えたことを特徴としている。   The waste landfill slag sand of the present invention is a crushed ferronickel slag clinker made by reducing and refining nickel ore with a reducing agent at a high temperature to form a fracture surface with water retention on the grain surface. The fine powder is floated and separated to adjust the particle size to provide water permeability.

本発明の廃棄物埋立構造の細粒層用スラグ砂の製造方法は、ニッケル鉱石を還元剤とともに高温中で還元精錬を行い、得られたクリンカを粉砕して粒表面に破断面を形成して、破砕したフェロニッケルスラグ砂を水槽に投入して浮上分離手段で微粉を除去して粒度調整したことを特徴としている。   The method for producing slag sand for a fine-grained layer of the waste landfill structure of the present invention comprises refining nickel ore together with a reducing agent at a high temperature, crushing the resulting clinker to form a fracture surface on the grain surface. The ferronickel slag sand that has been crushed is put into a water tank, and fine particles are removed by a floating separation means to adjust the particle size.

酸化ニッケル鉱石と還元剤を還元精錬し粉砕して得られるフェロニッケルのほかに副生成物であるフェロニッケルスラグ砂がある。フェロニッケルスラグ砂はコンクリート用の骨材、中詰材などに利用され、吸水率が低く、比重が比較的重い物性が知られている。そこで発明者はフェロニッケルスラグ砂の物性に着目し、キャピラリーバリア層の効果的な側方排水を行うことができるフェロニッケルスラグ砂を得ている。すなわち本発明のフェロニッケルスラグ砂は、ニッケル鉱石と還元剤の還元精錬後に得られたクリンカを少なくとも粒径5mmまで破砕している。よって粒径5mm以下のフェロニッケルスラグ砂は、表面に凹凸を有し、形状が角張った形状となる。このためフェロニッケルスラグ砂は、表面における水との接触面積が大きくなり、球形の砂に比べて保水性及び吸水性が高くなる。したがって多層覆土の細粒層に用いることにより排水性及び浸透水の滞留性が良くなる。   In addition to ferronickel obtained by reducing and refining nickel oxide ore and a reducing agent, there is ferronickel slag sand as a by-product. Ferronickel slag sand is used for aggregates and filling materials for concrete, and has low water absorption and relatively high specific gravity. Therefore, the inventor pays attention to the physical properties of ferronickel slag sand, and obtains ferronickel slag sand that can perform effective lateral drainage of the capillary barrier layer. That is, the ferronickel slag sand of the present invention crushes the clinker obtained after reductive refining of nickel ore and a reducing agent to at least a particle size of 5 mm. Therefore, ferronickel slag sand having a particle size of 5 mm or less has irregularities on the surface and has an angular shape. For this reason, ferronickel slag sand has a large contact area with water on the surface, and has higher water retention and water absorption than spherical sand. Therefore, drainage and osmotic water retention are improved by using it for the fine-grained layer of the multi-layer covering soil.

またフェロニッケルスラグ砂の粒度分布は、通過質量百分率が粒径0.15mmを10−30%,粒径0.3mmを25−60%,粒径0.6mmを60−90%,粒径1.2mmを85−100%に調整している。このため細粒層は、透水性と保水性を有し、キャピラリーバリア層に必要な排水性と浸透水の滞留性を具備し、浸透水の側方排水を促進させることができる。   The particle size distribution of the ferronickel slag sand is as follows: the passing mass percentage is 10-30% when the particle size is 0.15 mm, 25-60% when the particle size is 0.3 mm, 60-90% when the particle size is 0.6 mm, and 1 particle size. .2mm is adjusted to 85-100%. For this reason, the fine-grained layer has water permeability and water retention, has the drainage required for the capillary barrier layer and the retentivity of the permeated water, and can promote the side drainage of the permeated water.

粉砕したフェロニッケルスラグ砂は、粒径が細かい微粉を含んでいる。微粉を含むスラグ砂を多層覆土の細粒層に用いると浸透水とともに微粉が側方排水されて汚水の原因となる。またスラグ砂に含まれる微粉は細粒層を透水する浸透水の障害となって、排水性が損なわれることがある。そこで水槽内で浮上分離することによって微粉を除去することができる。   The crushed ferronickel slag sand contains fine powder having a fine particle size. When slag sand containing fine powder is used for the fine-grained layer of the multi-layered soil, the fine powder is drained laterally together with the permeated water, causing sewage. Moreover, the fine powder contained in the slag sand becomes an obstacle to the permeated water that permeates the fine-grained layer, and the drainage performance may be impaired. Therefore, fine powder can be removed by floating and separating in a water tank.

またフェロニッケルの製造の際、副生成物として生成するスラグ砂を用いてキャピラリーバリア層の細粒層として有効活用することにより、品質が安定し、コストが安く、更には施工性・排水性に優れたフェロニッケルスラグ砂の適用範囲の拡大を図ることができる。   In the production of ferronickel, slag sand produced as a by-product is used effectively as a fine-grained layer in the capillary barrier layer to stabilize quality, reduce costs, and improve workability and drainage. The application range of excellent ferronickel slag sand can be expanded.

以下本発明の廃棄物埋立構造および廃棄物埋立構造の細粒層用スラグ砂ならびにその製造方法について、添付の図面を参照しながら詳細に説明する。図1は実施形態に係る廃棄物埋立構造の細粒層用スラグ砂の製造方法の説明図である。図2はフェロニッケルスラグ砂の分級工程の説明図である。   The waste landfill structure and the waste land slag sand of the waste landfill structure according to the present invention and the manufacturing method thereof will be described in detail below with reference to the accompanying drawings. Drawing 1 is an explanatory view of the manufacturing method of the slag sand for fine grain layers of the waste landfill structure concerning an embodiment. FIG. 2 is an explanatory view of a classification process of ferronickel slag sand.

まず原料となるフェロニッケルスラグ砂の製造方法について以下説明する。図1に示すようにフェロニッケルの原料として、酸化ニッケル鉱石(S100)と無煙炭・石灰石(S110)を用い、その混合割合は一例として、酸化ニッケル鉱石1トンあたりに無煙炭材を100−150kg、石灰石を30−80kg添加し混合している。   First, the manufacturing method of the ferronickel slag sand used as a raw material is demonstrated below. As shown in FIG. 1, nickel oxide ore (S100) and anthracite / limestone (S110) are used as raw materials for ferronickel, and the mixing ratio is 100-150 kg of anthracite coal per ton of nickel oxide ore as an example. 30-80 kg is added and mixed.

混合した原料をロータリーキルンなど加熱炉内に装入する。ロータリーキルン中では、最高温度1400℃で酸化燃焼気流中で転動させながら還元精錬することにより、鉱石中の酸化ニッケルと酸化鉄分を還元してクリンカとしている(S120)。ロータリーキルンは、円形長尺の加熱炉であって、一定の速度で軸回りに回転している。またロータリーキルンの原料供給口は排出口よりも僅かに高く設置しているため、ロータリーキルンは上方の原料供給口から下方の排出口に向かって傾斜している。ロータリーキルンの排出口には加熱バーナを設けている。加熱バーナはキルン内部を下方の排出口から上方の原料供給口に向かって加熱している。原料供給口に供給された原料は、ロータリーキルン内部で焼成されて排出口に向かって移動する。排出口に設けられた加熱バーナによって内部温度は焼成に最適な約1400℃に設定されている。炉内で加熱された原料は、焼成されてクリンカとなる。   The mixed raw materials are charged into a heating furnace such as a rotary kiln. In the rotary kiln, the nickel oxide and iron oxide content in the ore are reduced to form a clinker by reducing and refining while rolling in an oxidizing combustion stream at a maximum temperature of 1400 ° C. (S120). The rotary kiln is a circular long heating furnace that rotates around an axis at a constant speed. Moreover, since the raw material supply port of the rotary kiln is set slightly higher than the discharge port, the rotary kiln is inclined from the upper raw material supply port toward the lower discharge port. A heating burner is provided at the outlet of the rotary kiln. The heating burner heats the inside of the kiln from the lower discharge port toward the upper raw material supply port. The raw material supplied to the raw material supply port is baked inside the rotary kiln and moves toward the discharge port. The internal temperature is set to about 1400 ° C., which is optimal for firing, by a heating burner provided at the discharge port. The raw material heated in the furnace is fired to become a clinker.

ロータリーキルンから排出されたクリンカは、空冷した後水冷する(S130)。そして冷却後のクリンカをチューブミルによって少なくとも粒径を5mmとなるまで粉砕する(S140)。粉砕後のクリンカは比重選別および磁力選別を行い、粒径の大きいクリンカなどを選別して、粒度を揃える(S150)。さらに分級工程によってクリンカの粒度調整を行う(S160)。図2に示すように選別後のクリンカは、浮上分離装置10に導入される。浮上分離装置10は、水槽12と、気泡発生手段14と、浮上分離手段16とを基本構成としている。   The clinker discharged from the rotary kiln is air cooled and then water cooled (S130). Then, the cooled clinker is pulverized with a tube mill until the particle size becomes at least 5 mm (S140). The clinker after pulverization is subjected to specific gravity selection and magnetic selection, and clinker having a large particle size is selected to make the particle size uniform (S150). Further, the particle size of the clinker is adjusted by a classification process (S160). As shown in FIG. 2, the clinker after sorting is introduced into the floating separation apparatus 10. The levitation separation device 10 has a basic configuration of a water tank 12, a bubble generation means 14, and a levitation separation means 16.

得られた粉砕物を水槽12に投入し、浮上分離処理を行う。浮上分離に用いる水槽12は、ロート状の水槽12であり、所定量の水を貯水している。水槽12は上側の水面を開放してあり、水槽12の下部中心に排出用の開閉口18を設けてある。浮上分離装置10の上部から粉砕したクリンカを投入する。クリンカは水槽内のロート状の側面を底部に向かって下降する。水槽内の斜面には複数の気泡発生手段14を取り付けてある。気泡発生手段14は、分配器を介してコンプレッサーに接続し、気泡の発生量を任意に調整できる。気泡発生手段14よって槽内に気泡が発生し、槽内を下降するクリンカと気泡とが混合される。このとき、クリンカ中の微粉が、スラグ砂から分離して気泡とともに水面上に浮上する。水面には整流板を備えた浮上分離手段16を配置してあり、浮上物(スカム)を水面上の排出口22へ押し出し、外部へオーバーフローさせている。微粉と分離したスラグ砂は、槽内底部の開閉口18から一定量ごと引き出されて、分級機30に送られる。   The obtained pulverized product is put into the water tank 12 and subjected to a floating separation process. The water tank 12 used for floating separation is a funnel-shaped water tank 12 that stores a predetermined amount of water. The water tank 12 has an upper water surface open, and a discharge opening 18 is provided at the center of the lower part of the water tank 12. The clinker crushed from the upper part of the floating separator 10 is put in. The clinker descends the funnel-shaped side surface in the water tank toward the bottom. A plurality of bubble generating means 14 are attached to the slope in the water tank. The bubble generating means 14 is connected to a compressor via a distributor, and can arbitrarily adjust the amount of bubbles generated. Bubbles are generated in the tank by the bubble generating means 14, and the clinker descending in the tank and the bubbles are mixed. At this time, the fine powder in the clinker separates from the slag sand and floats on the water surface together with the bubbles. Floating separation means 16 having a baffle plate is arranged on the water surface, and the floating material (scum) is pushed out to the discharge port 22 on the water surface to overflow to the outside. The slag sand separated from the fine powder is drawn out from the opening / closing port 18 at the bottom of the tank by a certain amount and sent to the classifier 30.

本実施形態に係る分級機30は、一例としてエーキンス分級機を用いて説明する。分級機30は、沈殿槽32とスクリュー34を基本構成としている。浮上分離装置10から引き出されたスラグ砂は、分級機30の沈殿槽32に導入される。沈殿槽32内にはスクリュー34の下端部が装入されており、予め設定した任意の回転数で回転するスクリュー34によって槽内に沈殿した所定粒径のスラグ砂を上方に引き上げている。   The classifier 30 according to the present embodiment will be described by using an Akins classifier as an example. The classifier 30 is basically composed of a settling tank 32 and a screw 34. The slag sand drawn out from the floating separation device 10 is introduced into the settling tank 32 of the classifier 30. A lower end portion of a screw 34 is inserted in the settling tank 32, and slag sand having a predetermined particle size precipitated in the tank is pulled upward by a screw 34 that rotates at a predetermined rotation speed.

上記製造方法により得られたフェロニッケルスラグ砂の物性について、図3を用いて説明する。同図(1)は不飽和域の透水性試験であり、縦軸は不飽和透水係数k(cm/sec)、横軸は負の圧力水頭Ψ(cm)をそれぞれ示している。また(2)は保水性試験であり、縦軸は体積含水率θ−最小体積含水率θr(−)、横軸は負の圧力水頭Ψ(cm)をそれぞれ示している。なお白丸は本発明のフェロニッケルスラグ砂、黒丸は天然砂をそれぞれ示している。ここで実施形態に係る天然砂は、これまでキャピラリーバリア層の施工実績・研究成果においてキャプラリーバリア層の細粒層として高い性能(保水性および透水性)を示した千葉県産の粒度調整した山砂を用いている。   The physical property of the ferronickel slag sand obtained by the said manufacturing method is demonstrated using FIG. FIG. 1 (1) shows the permeability test in the unsaturated region, where the vertical axis indicates the unsaturated hydraulic conductivity k (cm / sec) and the horizontal axis indicates the negative pressure head Ψ (cm). Further, (2) is a water retention test, where the vertical axis represents volume water content θ−minimum volume water content θr (−), and the horizontal axis represents negative pressure head Ψ (cm). White circles indicate ferronickel slag sand of the present invention, and black circles indicate natural sand. Here, the natural sand according to the embodiment has been adjusted in particle size produced in Chiba Prefecture, which has shown high performance (water retention and water permeability) as a fine-grained layer of the Caprary barrier layer so far in the construction results and research results of the capillary barrier layer. Mountain sand is used.

不飽和域の透水性試験は、キャピラリーバリア層の細粒層の側方排水性を示す指標であり、不飽和透水試験の値が大きいほど側方排水性に優れていることになる。また保水性試験は、細粒層に浸透した水の滞留量を示す指標であり(体積含水率θ―最小体積含水率θr)が大きいほど浸透水の滞留量が多いことになる。   The water permeability test in the unsaturated region is an index indicating the lateral drainage of the fine-grained layer of the capillary barrier layer. The larger the value of the unsaturated water permeability test, the better the lateral drainage. The water retention test is an index indicating the amount of water that has permeated into the fine-grained layer (volume water content θ−minimum volume water content θr).

実施例の不飽和域の透水性試験は、圧力水頭が20cmのときフェロニッケルスラグ砂は天然砂の7.5倍、圧力水頭が40cmのときフェロニッケルスラグ砂は天然砂の80倍となり、圧力水頭によらず常に天然砂を上回った。   The permeability test of the unsaturated region in the examples shows that when the pressure head is 20 cm, ferronickel slag sand is 7.5 times natural sand, and when the pressure head is 40 cm, ferronickel slag sand is 80 times natural sand. It always exceeded natural sand regardless of the water head.

実施例の保水性試験は、圧力水頭が20cmのときにフェロニッケルスラグ砂は天然砂の1.5倍、圧力水頭が40cmのときフェロニッケルスラグ砂は天然砂の3.7倍となり、圧力水頭によらず常に天然砂を上回った。この性質は粒度分布と砂材料の粒の形状と表面の粗さの影響が考えられる。   In the water retention test of the examples, when the pressure head is 20 cm, the ferronickel slag sand is 1.5 times the natural sand, and when the pressure head is 40 cm, the ferronickel slag sand is 3.7 times the natural sand. Regardless of always surpassed natural sand. This property can be influenced by the particle size distribution, the shape of the sand material grains, and the surface roughness.

得られた本発明のフェロニッケルスラグ砂の粒度分布は、図4に示すように通過質量百分率が粒径0.15mmを10−30%,粒径0.3mmを25−60%,粒径0.6mmを60−90%,粒径1.2mmを85−100%で構成してあり、粒径0.075mmは20%以下となる。これにより排水性と浸透水の滞留性を兼備することができる。フェロニッケルスラグ砂は吸水率が低く、多層覆土の砂層用材料として優れた排水性を有している。また転圧施工性が向上し、天然砂と比較すると転圧回数にして60〜30%低減することができる。   As shown in FIG. 4, the particle size distribution of the obtained ferronickel slag sand of the present invention is such that the passing mass percentage is 10-30% when the particle size is 0.15 mm, 25-60% when the particle size is 0.3 mm, and 0% when the particle size is 0. .6 mm is composed of 60-90%, and the particle diameter of 1.2 mm is composed of 85-100%, and the particle diameter of 0.075 mm is 20% or less. Thereby, drainage and stagnation water retention can be combined. Ferro-nickel slag sand has a low water absorption rate and has excellent drainage as a sand layer material for multi-layered soil. Moreover, the rolling workability is improved, and the rolling frequency can be reduced by 60 to 30% as compared with natural sand.

多層覆土に用いる砂層はモース硬度が5以上であることが好ましい。本発明のフェロニッケルスラグ砂は、モース硬度が4.5〜6.5である。これにより転圧時に粒が破壊され細粒化して砂層の空隙が閉塞され排水性が劣化することを防止できる。   It is preferable that the sand layer used for the multi-layer covering has a Mohs hardness of 5 or more. The ferronickel slag sand of the present invention has a Mohs hardness of 4.5 to 6.5. As a result, it is possible to prevent the grains from being broken and finely divided at the time of rolling and closing the voids in the sand layer to deteriorate the drainage.

本発明のフェロニッケルスラグ砂の化学成分は、SiO;50−60%、MgO;40−20%、CaO;10−2%、FeO;12−5%である。SiO、MgO、FeOはニッケル鉱石起因の成分であり、鉱物組成の大部分はEnstatite(MgO・SiO)の緻密な集合体で、他にForsterite(2MgO・SiO)および少量のSiOからなり、いずれも極めて安定な結晶構造で天然の鉱物と同等である。CaOはフェロニッケル精錬工程で挿入物の軟化点温度を下げるために添加している。 Chemical components of ferronickel slag sand of the present invention, SiO 2; 50-60%, MgO ; 40-20%, CaO; 10-2%, FeO; a 12-5%. SiO 2 , MgO, and FeO are components derived from nickel ore, and most of the mineral composition is a dense aggregate of Enstatite (MgO · SiO 2 ), in addition to Forsterite (2MgO · SiO 2 ) and a small amount of SiO 2. Both are extremely stable crystal structures and are equivalent to natural minerals. CaO is added to lower the softening point temperature of the insert in the ferronickel refining process.

このように本発明に係るフェロニッケルスラグ砂によれば、天然砂に比べて、吸水率が低く、密度が大きく、コストが安い、天然砂の代替として、かつフェロニッケルスラグの再利用として有効活用することができる。キャプラリーバリア層の細粒層に用いるフェロニッケルスラグ砂は、分級工程を制御した粒度分布により細粒層に適した透水性を備えることができる。また転圧時に粒が破壊され細粒層が閉塞するおそれがあるが、フェロニッケルスラグ砂の組成と加熱工程を制御して砂粒の硬度を確保することによりこのような不具合は解消することができる。天然砂に比べて毛管力の大きい上記材料は、粒度分布を適正とし、角張った形状で表面の粗い粒とすることで得られる。これらは破砕・分級工程の制御により可能である。さらに排水の濁りの少ない上記材料は、分級工程を制御することにより得られる。細粒層を側方へと通過する排水が持ち出す可能性のある微粉を分級工程で除去していることおよび、精錬後に材料中に残留する未燃炭などが混入する可能性がある。これらの比重が軽く細かい異物をエアレーションによる浮上分離により除去している。   Thus, according to the ferronickel slag sand according to the present invention, the water absorption rate is low, the density is large, the cost is low, and the ferronickel slag sand is effectively used as a substitute for natural sand and as a reuse of ferronickel slag. can do. The ferronickel slag sand used for the fine particle layer of the Caprary barrier layer can have water permeability suitable for the fine particle layer by the particle size distribution in which the classification process is controlled. In addition, the grains may be destroyed during crushing and the fine-grained layer may be clogged, but such problems can be eliminated by controlling the composition of the ferronickel slag sand and the heating process to ensure the hardness of the sand grains. . The above-mentioned material having a larger capillary force than natural sand can be obtained by making the particle size distribution appropriate, and making the surface rough particles with an angular shape. These are possible by controlling the crushing / classifying process. Furthermore, the above-mentioned material with less turbidity of waste water can be obtained by controlling the classification process. There is a possibility that fine powder that may be taken out by the waste water passing through the fine-grained layer is removed in the classification process, and unburned coal remaining in the material after refining may be mixed. These foreign substances having a light specific gravity are removed by floating separation by aeration.

キャピラリーバリア層の性能試験を実施した結果、比較例に用いた天然砂よりも多量の浸透水を側方排水できキャピラリーバリア層の細粒層用材料として優れていることが確認できた。また堅牢で施工性にも優れている。   As a result of conducting a performance test of the capillary barrier layer, it was confirmed that a larger amount of permeated water could be drained laterally than the natural sand used in the comparative example, and it was excellent as a material for the fine layer of the capillary barrier layer. It is also robust and has excellent workability.

実施形態に係る廃棄物埋立構造の細粒層用スラグ砂の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the slag sand for fine particle layers of the waste landfill structure which concerns on embodiment. フェロニッケルスラグ砂の分級工程の説明図である。It is explanatory drawing of the classification process of ferronickel slag sand. 本発明の多層覆土の細粒層のスラグ砂の物性を示す説明図である。It is explanatory drawing which shows the physical property of the slag sand of the fine grain layer of the multilayer covering soil of this invention. 実施形態に係るフェロニッケルスラグ砂の粒径加積曲線を示す図である。It is a figure which shows the particle size accumulation curve of the ferronickel slag sand which concerns on embodiment. 多層覆土の構成概略を示す図である。It is a figure which shows the structure outline of a multilayer covering soil.

符号の説明Explanation of symbols

1………廃棄物、2………粘性土層、3………レキ層、4………細粒層、5………キャピラリーバリア層、6………粘性土、10………浮上分離装置、12………水槽、14………気泡発生手段、16………浮上分離手段、18………開閉口、22………排出口、30………分級機、32………沈殿槽、34………スクリュー。 1 ……… Waste 2 ……… Viscous soil layer 3 ……… Reki layer 4 ……… Fine grain layer 5 ……… Capillary barrier layer 6 ……… Viscous soil 10 ……… Left Separation device, 12 ......... Water tank, 14 ......... Bubble generating means, 16 ......... Floating separation means, 18 ......... Opening and closing port, 22 ......... Discharge port, 30 ......... Classifier, 32 ......... Precipitation tank, 34 ... Screw.

Claims (6)

埋立廃棄物の上表面に形成した細粒層とレキ層からなるキャピラリーバリア層の前記細粒層に、ニッケル鉱石を還元剤とともに高温中で還元精錬したフェロニッケルスラグのクリンカを粉砕して粒表面に保水性を備えた破断面を形成したフェロニッケルスラグ砂を用いることを特徴とする廃棄物埋立構造。   The fine particle layer of the capillary barrier layer consisting of the fine particle layer and the leki layer formed on the upper surface of the landfill waste is crushed with ferronickel slag clinker obtained by reducing and refining nickel ore with a reducing agent at high temperature. Waste landfill structure characterized by using ferronickel slag sand having a fracture surface with water retention. 前記クリンカは少なくとも粒径を5mmまで粉砕することを特徴とする請求項1記載の廃棄物埋立構造。   2. The waste landfill structure according to claim 1, wherein the clinker is pulverized to at least a particle size of 5 mm. 前記フェロニッケルスラグ砂の粒度分布は、通過質量百分率が粒径0.15mmを10−30%,粒径0.3mmを25−60%,粒径0.6mmを60−90%,粒径1.2mmを85−100%で構成したことを特徴とする請求項1または2記載の廃棄物埋立構造。   The particle size distribution of the ferronickel slag sand is such that the passing mass percentage is 10-30% when the particle size is 0.15 mm, 25-60% when the particle size is 0.3 mm, 60-90% when the particle size is 0.6 mm, and 1 particle size. The waste landfill structure according to claim 1 or 2, wherein 2 mm is constituted by 85 to 100%. 粉砕した前記フェロニッケルスラグ砂を水槽に投入して微粉を浮上分離したことを特徴とする請求項1乃至3のいずれか1に記載の廃棄物埋立構造。   The waste landfill structure according to any one of claims 1 to 3, wherein the pulverized ferronickel slag sand is put into a water tank to float and separate fine powder. ニッケル鉱石を還元剤とともに高温中で還元精錬したフェロニッケルスラグのクリンカを粉砕して粒表面に保水性を備えた破断面を形成し、微粉を浮上分離して粒度調整し透水性を備えたことを特徴とする廃棄物埋立構造の細粒層用スラグ砂。   The ferronickel slag clinker made by reducing and refining nickel ore with a reducing agent at high temperature was crushed to form a fracture surface with water retention on the particle surface, fine powder was floated and separated to adjust the particle size and have water permeability Slag sand for fine-grained layers with a waste landfill structure. ニッケル鉱石を還元剤とともに高温中で還元精錬を行い、
得られたクリンカを粉砕して粒表面に破断面を形成して、
破砕したフェロニッケルスラグ砂を水槽に投入して浮上分離手段で微粉を除去して粒度調整したことを特徴とする廃棄物埋立構造の細粒層用スラグ砂の製造方法。
Reducing and refining nickel ore with reducing agent at high temperature,
Crush the resulting clinker to form a fracture surface on the grain surface,
A method for producing slag sand for a fine-grained layer of a waste landfill structure, characterized in that crushed ferronickel slag sand is put into a water tank and fine particles are removed by floating separation means to adjust the particle size.
JP2006252934A 2006-09-19 2006-09-19 Waste landfill structure, slag sand for fine-grained layer of waste landfill structure, and production method thereof Active JP4730689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252934A JP4730689B2 (en) 2006-09-19 2006-09-19 Waste landfill structure, slag sand for fine-grained layer of waste landfill structure, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252934A JP4730689B2 (en) 2006-09-19 2006-09-19 Waste landfill structure, slag sand for fine-grained layer of waste landfill structure, and production method thereof

Publications (2)

Publication Number Publication Date
JP2008073575A true JP2008073575A (en) 2008-04-03
JP4730689B2 JP4730689B2 (en) 2011-07-20

Family

ID=39346191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252934A Active JP4730689B2 (en) 2006-09-19 2006-09-19 Waste landfill structure, slag sand for fine-grained layer of waste landfill structure, and production method thereof

Country Status (1)

Country Link
JP (1) JP4730689B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
JP5578261B1 (en) * 2013-08-23 2014-08-27 家庭化学工業株式会社 Mortar composition for anti-slip material and anti-slip material
JP2014193798A (en) * 2013-02-27 2014-10-09 Taiheiyo Cement Corp Method and apparatus for converting garbage incineration ash into cement raw material
JP2021021040A (en) * 2019-07-30 2021-02-18 日本冶金工業株式会社 Construction material and method for manufacturing the same, reinforced ground structure, and method for laying reinforced ground

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061975A (en) * 1992-06-22 1994-01-11 Daido Gakuen Hydraulic composition for improving soil property
JPH07228869A (en) * 1994-02-16 1995-08-29 Nippon Yakin Kogyo Co Ltd Additive for improving strength of soft soil and method for improving strength of soft soil
JPH09249441A (en) * 1996-03-14 1997-09-22 Maeda Corp Cellular mortar composition
JP2004322017A (en) * 2003-04-28 2004-11-18 Jdc Corp Drainage system for multi-layer earth cover
JP2005246383A (en) * 2005-05-30 2005-09-15 Radioactive Waste Management Funding & Research Center Structure for burying waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061975A (en) * 1992-06-22 1994-01-11 Daido Gakuen Hydraulic composition for improving soil property
JPH07228869A (en) * 1994-02-16 1995-08-29 Nippon Yakin Kogyo Co Ltd Additive for improving strength of soft soil and method for improving strength of soft soil
JPH09249441A (en) * 1996-03-14 1997-09-22 Maeda Corp Cellular mortar composition
JP2004322017A (en) * 2003-04-28 2004-11-18 Jdc Corp Drainage system for multi-layer earth cover
JP2005246383A (en) * 2005-05-30 2005-09-15 Radioactive Waste Management Funding & Research Center Structure for burying waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
JP2014193798A (en) * 2013-02-27 2014-10-09 Taiheiyo Cement Corp Method and apparatus for converting garbage incineration ash into cement raw material
JP5578261B1 (en) * 2013-08-23 2014-08-27 家庭化学工業株式会社 Mortar composition for anti-slip material and anti-slip material
JP2021021040A (en) * 2019-07-30 2021-02-18 日本冶金工業株式会社 Construction material and method for manufacturing the same, reinforced ground structure, and method for laying reinforced ground

Also Published As

Publication number Publication date
JP4730689B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
Zhang et al. Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review
Ranjbar et al. Cenospheres: A review
TWI397511B (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
JP2008538347A (en) Synthetic aggregates containing sewage sludge and other waste and methods for producing such aggregates
JP2008538347A5 (en)
JP4730689B2 (en) Waste landfill structure, slag sand for fine-grained layer of waste landfill structure, and production method thereof
Cao et al. Removal of unburned carbon from fly ash using a cyclonic-static microbubble flotation column
JP5905191B2 (en) Flotation processing system
JP5077848B2 (en) High-strength glassy lightweight filler material
Wei et al. Reduction of sintering energy by application of calcium fluoride as flux in lightweight aggregate sintering
Xu et al. A comparison of removal of unburned carbon from coal fly ash using a traditional flotation cell and a new flotation column
WO2007000113A1 (en) A mineral element separating method and an apparatus therefor
JP4435083B2 (en) Manufacturing method of foam glass material
Lee et al. Beneficiation of coal pond ash by physical separation techniques
KR101061018B1 (en) Method for recovering recycled fine aggregates from construction waste
JP4813512B2 (en) Method for separating and recovering unburned coal in briquette ash by floating sorting
Behera et al. Challenges in recovery of valuable and hazardous elements from bulk fly ash and options for increasing fly ash utilization
JP2006082004A (en) Treating method and apparatus of granular slag containing version
Klaffenbach et al. Sustainable and comprehensive utilization of copper slag: A review and critical analysis
FI129654B (en) Method for making a mineral sealing structure, and mineral sealing structure
Sharapov et al. The use of metallurgical wastes in road construction
JP5145498B2 (en) Manufacturing method of high strength, high sphericity shirasu balloon
KR101750492B1 (en) Solidification material making method for utilizing waste gypsum as public waters reclamation soil
KR102535430B1 (en) Pretreatment Method for Utilization of Coal Ash Landfilled in Ash Ponds
CN114455893B (en) Method for treating pollution of electrolytic manganese slag tailing pond by cementing controlled release

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250