JP4435083B2 - Manufacturing method of foam glass material - Google Patents

Manufacturing method of foam glass material Download PDF

Info

Publication number
JP4435083B2
JP4435083B2 JP2005370849A JP2005370849A JP4435083B2 JP 4435083 B2 JP4435083 B2 JP 4435083B2 JP 2005370849 A JP2005370849 A JP 2005370849A JP 2005370849 A JP2005370849 A JP 2005370849A JP 4435083 B2 JP4435083 B2 JP 4435083B2
Authority
JP
Japan
Prior art keywords
glass material
water
foamed glass
foamed
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005370849A
Other languages
Japanese (ja)
Other versions
JP2007169119A (en
Inventor
裕 原
進 安高
Original Assignee
日本建設技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本建設技術株式会社 filed Critical 日本建設技術株式会社
Priority to JP2005370849A priority Critical patent/JP4435083B2/en
Publication of JP2007169119A publication Critical patent/JP2007169119A/en
Application granted granted Critical
Publication of JP4435083B2 publication Critical patent/JP4435083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、廃板ガラスや廃ガラスびんなどの各種ガラス廃材を原料とする発泡ガラス材の製造方法に関する。 The present invention relates to various types of glass waste, such as waste plate glass and waste glass bottles to the production how the foam glass material as a raw material.

多数の空隙を内蔵した多孔質構造を備えた発泡ガラス材は、従来、土木資材あるいは建築用骨材などとして利用されている。このような発泡ガラス材を、廃ガラスびんを主原料としたガラスカレットから製造する技術として、例えば特許文献1に記載の発泡ガラス製造方法が知られている。   BACKGROUND ART Foamed glass materials having a porous structure containing a large number of voids are conventionally used as civil engineering materials or building aggregates. As a technique for manufacturing such a foamed glass material from a glass cullet using a waste glass bottle as a main raw material, for example, a foamed glass manufacturing method described in Patent Document 1 is known.

特許文献1に記載の発泡ガラス製造方法は、ガラスカレットを微粉砕し、発泡剤として、炭酸カルシウム、炭化珪素、ホウ砂などを0.1〜5.0%添加し、これらの混合微粉末をベルトコンベアを内蔵するローラハースキルン内のベルト上に5〜50mm厚に連続的に敷き詰め、当該ローラハースキルン内にて700〜1,000℃に加熱して溶融、発泡、焼成せしめ、キルン内滞留時間を5〜60分として生成された板状発泡ガラスを、常温あるいは冷却された空気に曝しめ、または水掛けによって急冷し、このときに生じた歪により自然崩壊せしめることにより不定形塊状の発泡ガラスを得るものである。   In the method for producing foamed glass described in Patent Document 1, glass cullet is finely pulverized, and calcium carbonate, silicon carbide, borax or the like is added as a foaming agent in an amount of 0.1 to 5.0%. Continuously spread on a belt in a roller hearth kiln with a built-in belt conveyor to a thickness of 5 to 50 mm, heated to 700 to 1,000 ° C. in the roller hearth kiln, melted, foamed and fired, and stayed in the kiln. The plate-like foamed glass produced for 5 to 60 minutes is exposed to room temperature or cooled air, or rapidly cooled by watering, and then spontaneously collapsed by the strain generated at this time, thereby causing foaming of an indefinite lump. Get glass.

なお、発泡ガラスを得るために使用する発泡剤としては、上記の他、例えば特許文献2,3に記載のように、炭酸マグネシウム、炭酸水素ナトリウム、炭酸バリウム、微粉カーボン、石灰石、ドロマイト、タルクなどが挙げられる。   In addition to the above, as a foaming agent used for obtaining foamed glass, for example, as described in Patent Documents 2 and 3, magnesium carbonate, sodium hydrogen carbonate, barium carbonate, fine carbon, limestone, dolomite, talc, etc. Is mentioned.

ところで、排水処理技術の一つとして、非特許文献1,2に記載のような排水中のリン酸イオンを結晶として除去回収するMAP(リン酸マグネシウムアンモニウム)法が知られている。MAP法では、排水にマグネシウムを添加し、MAP顆粒状にしてリンを系外に取り出すことにより排水処理を行う。   By the way, as one of wastewater treatment techniques, a MAP (magnesium ammonium phosphate) method for removing and recovering phosphate ions in wastewater as crystals as described in Non-Patent Documents 1 and 2 is known. In the MAP method, wastewater treatment is performed by adding magnesium to wastewater to form MAP granules and taking out phosphorus out of the system.

特開平10−203838号公報Japanese Patent Laid-Open No. 10-203838 特開2004−34596号公報(段落0006)JP 2004-34596 A (paragraph 0006) 特開2000−317316号公報(段落0012)JP 2000-317316 A (paragraph 0012) “高度処理について”,第8−11行、MAP法,[online],福岡市下水道局,[平成17年9月30日検索],インターネット<URL:http://gesui.city.fukuoka.jp/sewage/koudosyori.htm>"About advanced processing", line 8-11, MAP method, [online], Fukuoka City Sewerage Bureau, [searched on September 30, 2005], Internet <URL: http://gesui.city.fukuoka.jp /sewage/koudosyori.htm> “研究室紹介”,第15頁右欄第5−29行目、MAP晶析法を用いた排水処理技術,早稲田応用化学会,[平成17年9月30日検索],インターネット<URL:http://www.waseda-oukakai.gr.jp/bulletin/bulletin-68/68_06.pdf>"Laboratory Introduction", page 15, right column, lines 5-29, wastewater treatment technology using MAP crystallization method, Waseda Society of Applied Chemistry, [searched September 30, 2005], Internet <URL: http : //www.waseda-oukakai.gr.jp/bulletin/bulletin-68/68_06.pdf>

従来のMAP法では、排水にマグネシウムそのものを添加するものであるが、排水中のリンはこの添加されたマグネシウムの表面にしか吸着されないので、排水中のリン酸イオンを充分に除去するためには多くのマグネシウムが必要となる。そのため、排水処理に掛かる費用が嵩み、実際には利用しにくい排水処理技術である。   In the conventional MAP method, magnesium itself is added to the wastewater. However, phosphorus in the wastewater is adsorbed only on the surface of the added magnesium, so that phosphate ions in the wastewater can be sufficiently removed. A lot of magnesium is needed. Therefore, it is a wastewater treatment technology that is expensive to use in wastewater treatment and is difficult to use in practice.

そこで、本発明においては、排水処理に利用可能なマグネシウム系発泡ガラス材を提供することを目的とする。   Accordingly, an object of the present invention is to provide a magnesium-based foam glass material that can be used for wastewater treatment.

本発明の発泡ガラス材の製造方法は、粒径5μm〜100μmのガラス粉粒体と、マグネシウム成分を含む粉粒体と、発泡剤とを混合して得られた混合物を600℃〜1000℃に加熱して溶融、発泡、焼成する焼成工程と、焼成工程で形成された焼成物を急冷する急冷工程とを含むことを特徴とする。   The manufacturing method of the foamed glass material of the present invention is a mixture obtained by mixing glass powder having a particle size of 5 μm to 100 μm, powder containing a magnesium component, and a foaming agent at 600 ° C. to 1000 ° C. It is characterized by including a baking step of heating, melting, foaming, and baking, and a rapid cooling step of rapidly cooling the fired product formed in the baking step.

本発明の発泡ガラス材の製造方法では、粒径5μm〜100μmのガラス粉粒体と、マグネシウム成分を含む粉粒体と、発泡剤とを混合して得られた混合物を600℃〜1000℃に加熱して溶融、発泡、焼成することにより、焼成物として、マグネシウム成分が内蔵され、かつ空隙を有した板状発泡ガラス材が得られる。そして、この焼成物は急冷されることにより、この急冷時に生じた歪みによって自然破砕され、平均粒径5.0〜40.0mm程度(最大粒径50mm程度)の粒状発泡ガラス材が得られる。   In the method for producing a foamed glass material of the present invention, a mixture obtained by mixing glass powder having a particle size of 5 μm to 100 μm, a powder containing a magnesium component, and a foaming agent is set to 600 ° C. to 1000 ° C. By heating, melting, foaming, and firing, a plate-like foamed glass material containing a magnesium component and having voids as a fired product is obtained. Then, the fired product is rapidly cooled to be naturally crushed by the strain generated during the rapid cooling, and a granular foamed glass material having an average particle size of about 5.0 to 40.0 mm (maximum particle size of about 50 mm) is obtained.

なお、急冷工程については、常温の送風空気に曝したり、常温の水を掛けたりすることにより行うこともできるが、常温以下の冷却液体を霧状にして噴射または常温以下の冷却気体を噴射することにより行うことも可能である。なお、冷却液体の温度は5℃〜10℃程度、冷却気体の温度も5℃〜10℃程度が望ましい。また、冷却液体としては水が好適であり、冷却気体としては空気が好適である。また、ガラス粉粒体としては、使用済みガラスびんなどの各種廃ガラス材を破砕したものを用いることができる。   The quenching step can be performed by exposing to normal temperature blown air or by spraying with normal temperature water, but spraying a cooling liquid at room temperature or lower in the form of a mist or spraying a cooling gas at room temperature or lower. It is also possible to do this. The temperature of the cooling liquid is preferably about 5 ° C to 10 ° C, and the temperature of the cooling gas is preferably about 5 ° C to 10 ° C. Moreover, water is suitable as the cooling liquid, and air is suitable as the cooling gas. Moreover, what crushed various waste glass materials, such as a used glass bottle, can be used as a glass granular material.

ここで、混合物中のマグネシウム成分を含む粉粒体の含有率は、1〜20質量%、より好ましくは10〜20質量%とすることが望ましい。1〜20質量%であれば、発泡ガラス材の焼成状態が最も良く、マグネシウム成分を含む粉粒体が発泡ガラス材と一体化され、分離しにくくなる。また、マグネシウム成分によるリンの吸着効果を充分に発揮させるためには、10質量%以上とするのが望ましい。一方、20質量%を超えると、発泡ガラス材の焼成状態が悪くなり、マグネシウム成分を含む粉粒体が分離しやすくなる。   Here, the content of the granular material containing the magnesium component in the mixture is preferably 1 to 20% by mass, more preferably 10 to 20% by mass. If it is 1-20 mass%, the baking state of a foamed glass material will be the best, and the granular material containing a magnesium component will be integrated with a foamed glass material, and will become difficult to isolate | separate. Moreover, in order to fully exhibit the phosphorus adsorption effect by the magnesium component, the content is desirably 10% by mass or more. On the other hand, if it exceeds 20% by mass, the fired state of the foam glass material is deteriorated, and the granular material containing the magnesium component is easily separated.

また、マグネシウム成分を含む粉粒体としてはマグネサイトを使用することが望ましい。マグネシウム純度の高い高純度マグネサイトは、金属元素の含有量が少なく、塩基性炭酸マグネシウムに比べてMgO含有率が少ない。また、比表面積が小さく、重質で粉体の流動性に優れる。さらに、粒子径が揃った立方体の結晶で、シャープな粒度分布を持ち、結晶水を持たないため、粒径100μm以下のガラス粉粒体と混合した場合に噛み合わせが良く、結合力が強くなるという利点がある。   Moreover, it is desirable to use magnesite as the granular material containing a magnesium component. High-purity magnesite with high magnesium purity has a low content of metal elements and a low MgO content compared to basic magnesium carbonate. Moreover, the specific surface area is small, it is heavy and excellent in the fluidity of the powder. Furthermore, it is a cubic crystal with a uniform particle size, has a sharp particle size distribution, and does not have water of crystallization. Therefore, when mixed with glass powder having a particle size of 100 μm or less, it is well meshed and has a strong bonding force. There is an advantage.

また、発泡剤としては、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、炭酸バリウム、炭化珪素、ホウ砂、微粉カーボン、石灰石、ドロマイト、タルクなど従来公知のものを単体でまたは組み合わせて使用することができるが、この発泡剤の含有率としては0.1〜5.0質量%とするのが望ましい。炭酸カルシウムなどの合計含有率が0.1重量%未満であると発泡不足となり、気泡も小さくなって比重が大となり、5.0重量%を超えると気泡が大きくなって、いわゆる巣が増加するので素材としての価値が無くなるため、前記範囲が適正範囲である。なお、発泡ガラス材の比重はこの発泡剤の含有率を調整することにより、0.3〜1.5の範囲のものを自在に得ることができる。   As the foaming agent, conventionally known ones such as calcium carbonate, magnesium carbonate, sodium hydrogen carbonate, barium carbonate, silicon carbide, borax, fine carbon, limestone, dolomite, and talc can be used alone or in combination. However, the content of the foaming agent is preferably 0.1 to 5.0% by mass. If the total content of calcium carbonate or the like is less than 0.1% by weight, foaming will be insufficient, the bubbles will also become smaller and the specific gravity will increase, and if it exceeds 5.0% by weight, the bubbles will become larger and so-called nests will increase. Therefore, since the value as a material is lost, the range is an appropriate range. In addition, the specific gravity of a foamed glass material can freely obtain the thing of the range of 0.3-1.5 by adjusting the content rate of this foaming agent.

なお、炭酸カルシウムなどの合計含有率が0.1重量%〜2.0重量%であれば全般的に独立間隙構造が形成される傾向が生じ、0.1重量%〜5.0重量%とすれば連続間隙構造が形成される傾向が生じる。また、加熱温度が600℃〜900℃で、焼成時間が10分〜20分であれば独立間隙構造が形成され、非吸水性の素材が焼成されるという傾向が生じ、加熱温度が800℃〜1000℃で、焼成時間が15分〜30分であれば連続間隙構造が形成され、吸水性の素材が焼成されるという傾向が生じる。なお、加熱温度が600℃より低いと素材内部に独立間隙構造が形成されにくくなり、発泡されない状態になり、1000℃より高いと素材内部に連続間隙構造が形成されにくくなり、気泡も非常に弱い状態となる。   In addition, if the total content of calcium carbonate or the like is 0.1 wt% to 2.0 wt%, there is a general tendency that an independent gap structure is formed, and 0.1 wt% to 5.0 wt%. This tends to form a continuous gap structure. In addition, if the heating temperature is 600 ° C. to 900 ° C. and the baking time is 10 minutes to 20 minutes, an independent gap structure is formed, and a non-water-absorbing material tends to be fired. If the baking time is 15 minutes to 30 minutes at 1000 ° C., a continuous gap structure is formed, and the water-absorbing material tends to be fired. If the heating temperature is lower than 600 ° C., it becomes difficult to form an independent gap structure inside the material and it will not be foamed. If it is higher than 1000 ° C., it becomes difficult to form a continuous gap structure inside the material, and the bubbles are also very weak. It becomes a state.

また、上記のように得られた発泡ガラス材は、表面および空隙内壁面にマグネシウム成分を含む粉粒体が露出している。そのため、この発泡ガラス材を被処理水へ添加すれば、被処理水に含まれるリンを発泡ガラス材に吸着させて水処理することができる。また、発泡ガラス材を被処理水域の底泥中または底泥上に散布し、底泥から溶出するリンを発泡ガラス材に吸着させることにより底質改善を行うことができる。また、このリンを吸着した発泡ガラス材は肥料等の土壌改善材として使用することができる。   In addition, the foamed glass material obtained as described above has exposed powder particles containing a magnesium component on the surface and the inner wall surface of the space. Therefore, if this foamed glass material is added to the water to be treated, phosphorus contained in the water to be treated can be adsorbed on the foamed glass material to perform water treatment. Further, the bottom quality can be improved by spraying the foamed glass material on or in the bottom mud of the water to be treated and adsorbing phosphorus eluted from the bottom mud to the foamed glass material. Moreover, the foamed glass material which adsorb | sucked this phosphorus can be used as soil improvement materials, such as a fertilizer.

(1)粒径5μm〜100μmのガラス粉粒体と、マグネシウム成分を含む粉粒体と、発泡剤とを混合して得られた混合物を600℃〜1000℃に加熱して溶融、発泡、焼成する焼成工程と、焼成工程で形成された焼成物を急冷する急冷工程とを含むことにより、平均粒径5.0〜40.0mm程度(最大粒径50mm程度)であって、表面および空隙内壁面にマグネシウム成分を含む粉粒体が露出した発泡ガラス材を効率良く製造することができる。 (1) A mixture obtained by mixing glass powder having a particle size of 5 μm to 100 μm, a powder containing a magnesium component, and a foaming agent is heated to 600 ° C. to 1000 ° C. to be melted, foamed, and fired. And a quenching step of quenching the fired product formed in the firing step, thereby having an average particle size of about 5.0 to 40.0 mm (maximum particle size of about 50 mm), and in the surface and voids It is possible to efficiently produce a foamed glass material in which a granular material containing a magnesium component is exposed on the wall surface.

(2)混合物中のマグネシウム成分を含む粉粒体の含有率を1〜20質量%とすることにより、ガラス粉粒体を良く混合でき、焼成時においても分離することなく、発泡ガラス材を効率良く製造することができる。 (2) By making the content rate of the granular material containing the magnesium component in the mixture 1 to 20% by mass, the glass granular material can be well mixed, and the foamed glass material is efficient without being separated even during firing. Can be manufactured well.

(3)マグネシウム成分を含む粉粒体としてマグネサイトを使用することにより、結合力が強く、品質の良い発泡ガラス材を製造することができる。 (3) By using magnesite as a granular material containing a magnesium component, it is possible to produce a foam glass material having high bonding strength and good quality.

(4)発泡剤の含有率を0.1〜5.0質量%とすることにより、適切な大きさの気泡を内蔵する独立間隙構造あるいは連続間隙構造の粒状発泡ガラスを得ることができる。また、発泡剤の含有率を調整することで、浮力または水没性を具備しつつ、使用目的や用途に適した嵩比重の粒状発泡ガラス材を得ることができる。 (4) By setting the content of the foaming agent to 0.1 to 5.0% by mass, it is possible to obtain granular foamed glass having an independent gap structure or a continuous gap structure in which bubbles of an appropriate size are incorporated. Further, by adjusting the content of the foaming agent, it is possible to obtain a granular foamed glass material having a bulk specific gravity suitable for the intended purpose and application while having buoyancy or submergence.

(5)ガラス粉粒体を発泡させて空隙を形成した発泡ガラス材であって、表面および空隙内壁面にマグネシウム成分を含む粉粒体が露出した発泡ガラス材により、同量のマグネシウムと比較してリン酸の強い吸着作用を示す発泡ガラス材が得られるので、少ないマグネシウム量で多くのリンを吸着することができる。 (5) A foamed glass material in which voids are formed by foaming glass powder particles, and compared with the same amount of magnesium by the foamed glass material in which powder particles containing a magnesium component are exposed on the surface and the inner wall surface of the voids. Thus, a foamed glass material exhibiting a strong adsorption action of phosphoric acid is obtained, so that a large amount of phosphorus can be adsorbed with a small amount of magnesium.

(6)上記発泡ガラス材を被処理水へ添加し、被処理水に含まれるリンを発泡ガラス材に吸着させる水処理方法により、ダム等の閉鎖性水域の直接浄化、閉鎖性水域への流入河川や水路等の直接浄化、下水処理水や畜産排水等の高度処理が可能となる。 (6) Direct purification of closed water areas such as dams and inflows into closed water areas by a water treatment method in which the foam glass material is added to the treated water and phosphorus contained in the treated water is adsorbed to the foamed glass material. Direct purification of rivers and waterways, advanced treatment such as sewage treatment water and livestock wastewater becomes possible.

(7)上記発泡ガラス材を被処理水域の底泥中または底泥上に散布し、底泥から溶出するリンを発泡ガラス材に吸着させる底質改善方法により、干潟域、深水域、沿岸域や海域等の底質改善、ダムや湖畔等の底質改善が可能となる。 (7) The above foam glass material is sprayed in or on the bottom mud of the water to be treated, and phosphorus is dissolved out from the bottom mud and adsorbed to the foam glass material. It is possible to improve the sediment quality of water and sea areas, and improve the sediment quality of dams and lakesides.

(8)上記発泡ガラス材にリンを吸着させることにより、肥料等の土壌改善材として再利用することが可能となるため、最終的にも廃棄物とならない。したがって、社会のニーズにマッチした発泡ガラス材となり、循環型社会にも貢献できる。 (8) By adsorbing phosphorus to the foamed glass material, it can be reused as a soil improving material such as fertilizer, so that it does not eventually become waste. Therefore, it becomes a foamed glass material that matches the needs of society and can contribute to a recycling-oriented society.

図1は本発明の第一実施形態である発泡ガラス材の製造方法を示す工程図である。   FIG. 1 is a process diagram showing a method for producing a foam glass material according to a first embodiment of the present invention.

図1に示すように、回収された使用済み廃ガラスびんや廃板ガラスなどの廃ガラス1は、分離装置3において金属成分やラベルが分離、除去され、粗粉砕装置4で粗粉砕されカレット状にされた後、微粉砕装置5でさらに細かく微粉砕されて粒径5μm〜100μmのガラス粉粒体にされた後、混合装置6に投入される。また、混合装置6には別ルートを経て供給される、炭酸カルシウム、ドロマイト、炭化珪素、ホウ砂等の発泡剤およびマグネサイトの粉粒体を含む添加剤2が投入され、混合装置6内において前記ガラス粉粒体と添加剤2とが十分に混合され、混合物7が形成される。この場合、混合物7における、発泡剤の含有率を0.1〜5.0質量%、マグネサイトの粉粒体の含有率を1〜20質量%とする。   As shown in FIG. 1, the collected waste glass 1 such as used waste glass bottles and waste plate glass is separated and removed by a separation device 3 and is roughly pulverized by a coarse pulverization device 4 into a cullet shape. After being finely pulverized by the fine pulverization apparatus 5 to form glass powder particles having a particle diameter of 5 μm to 100 μm, they are put into the mixing apparatus 6. Further, the mixing device 6 is supplied with an additive 2 containing a foaming agent such as calcium carbonate, dolomite, silicon carbide, borax and magnesite powder supplied via another route. The glass powder and additive 2 are sufficiently mixed to form a mixture 7. In this case, the content of the foaming agent in the mixture 7 is 0.1 to 5.0 mass%, and the content of the magnesite powder is 1 to 20 mass%.

なお、マグネサイトの粉粒体は、粒径10μm〜30μm程度のものを使用するが、これより大きい場合には粉砕装置により粉砕して使用する。また、ガラス粉粒体は、特に粒径40μm〜60μmのものを80%含有するものであることが望ましい。平均粒径40μm〜60μmのガラス粉粒体を80%含有していた場合、発泡剤と最も良く混合できる。そのため、発泡状態が良くなり、連続間隙構造に近い内部構造を持ち、吸水率が40〜120%の発泡ガラス材が得られる。   The magnesite powder having a particle size of about 10 μm to 30 μm is used. Moreover, it is desirable for the glass powder to contain 80% particles having a particle size of 40 to 60 μm. When 80% of glass particles having an average particle diameter of 40 μm to 60 μm are contained, the glass powder can be best mixed with the foaming agent. Therefore, the foamed state is improved, and a foamed glass material having an internal structure close to a continuous gap structure and having a water absorption rate of 40 to 120% is obtained.

混合装置6内においてガラス粉粒体と添加剤2とを混合して形成された混合物7は、長さ30m程度のベルトコンベア8の始端部上に一定厚さの層状に敷き詰められ、ベルトコンベア8の回転によって焼成炉9内に装入され、その中を移動していきながら600℃〜1000℃に加熱される。これによって混合物7中のガラス成分は焼成炉9内において溶融、発泡、焼成され、焼成炉9の終端部から出た時点で、温度が400℃〜800℃程度の板状の焼成物10が形成される。   The mixture 7 formed by mixing the glass particles and the additive 2 in the mixing device 6 is spread in a layer of a certain thickness on the start end of the belt conveyor 8 having a length of about 30 m. Is rotated into the firing furnace 9 and heated to 600 ° C. to 1000 ° C. while moving through the furnace. As a result, the glass component in the mixture 7 is melted, foamed, and fired in the firing furnace 9, and when it comes out from the end of the firing furnace 9, a plate-like fired product 10 having a temperature of about 400 ° C. to 800 ° C. is formed. Is done.

焼成炉9内を通過して形成された焼成物10はベルトコンベア8の回転により焼成炉9の終端部から出た後もそのまま水平移動していくが、焼成炉9の後段のベルトコンベア8の上方に配置されたジェット噴水装置12から5℃〜10℃程度の冷却のジェット水13が焼成物10に向かって霧状にして噴射され、焼成物10は急冷される。15はジェット噴水装置12へ高圧水を供給する送水ポンプである。   The fired product 10 formed by passing through the inside of the firing furnace 9 moves horizontally as it exits from the end of the firing furnace 9 by the rotation of the belt conveyor 8. From the jet fountain device 12 disposed above, jet water 13 cooled to about 5 ° C. to 10 ° C. is sprayed in the form of a mist toward the fired product 10, and the fired product 10 is rapidly cooled. A water pump 15 supplies high-pressure water to the jet fountain device 12.

ベルトコンベア8とともに水平移動しながら冷たい霧状のジェット水13を浴びた焼成物10は、400℃〜800℃程度の高温から室温まで一挙に急冷されるため、冷却時に生じる歪みによって焼成物10は細かく砕けていき、ベルトコンベア8の終端部では粒径5.0mm〜30.0mm程度の粒状発泡ガラス材14を得ることができる。本実施形態の場合、焼成物10に対してジェット水13を霧状にして吹き付けて冷却するので、粒状発泡ガラス材14は濡れるが、急冷時の破砕で発生するガラス微粉体などが空気中に飛散したり、浮遊したりするのを防止することができる。また、ジェット水13を霧状にして噴射することにより粒状発泡ガラス材14は水で洗浄されることとなるため、焼成されただけの粒状発泡ガラス材がpH8〜9程度のアルカリ性を示すのに対し、粒状発泡ガラス材14はpH7程度の中性となる。   The fired product 10 bathed in the cold mist-like jet water 13 while moving horizontally together with the belt conveyor 8 is rapidly cooled from a high temperature of about 400 ° C. to 800 ° C. to room temperature. The granular foamed glass material 14 having a particle size of about 5.0 mm to 30.0 mm can be obtained at the end of the belt conveyor 8 by crushing finely. In the case of this embodiment, jet water 13 is sprayed and cooled on the fired product 10 so that the granular foamed glass material 14 gets wet, but glass fine powder generated by crushing during rapid cooling is in the air. It is possible to prevent scattering and floating. Moreover, since the granular foamed glass material 14 will be wash | cleaned with water by jetting the jet water 13 in the shape of a mist, even if the granular foamed glass material only baked shows alkalinity of about pH 8-9. On the other hand, the granular foamed glass material 14 is neutral at about pH 7.

このように、図1で示した工程を経ることにより、廃ガラス1を原料とするガラス粉粒体から粒径が5.0mm〜30.0mm程度の粒径の細かい粒状発泡ガラス材14を効率的に製造することができる。また、常温の送風空気に曝したり、常温水を掛けたりしただけでも焼成物は急冷され、この冷却時に生じる歪みによって焼成物10は細かく砕けていくので、平均粒径5.0〜40.0mm程度(最大粒径50mm程度)の粒状発泡ガラス材が得られる。したがって、このような発泡ガラス材の製造方法では、焼成物を再クラッシャして細粒化する工程が不要であるため、製造工程が簡略化され、コスト削減を図ることができる。   Thus, by passing through the process shown in FIG. 1, the granular foamed glass material 14 having a particle size of about 5.0 mm to 30.0 mm is efficiently produced from the glass particles using the waste glass 1 as a raw material. Can be manufactured automatically. In addition, the fired product is rapidly cooled even if it is exposed to normal temperature blown air or is sprayed with normal temperature water, and the fired product 10 is finely crushed by the strain generated during this cooling, so the average particle size is 5.0 to 40.0 mm. A granular foamed glass material of the order (maximum particle size of about 50 mm) is obtained. Therefore, in such a method for producing a foamed glass material, the step of re-crushing the fired product to make it finer is unnecessary, so that the production process is simplified and the cost can be reduced.

なお、粒状発泡ガラス材14の嵩比重は、添加剤2の添加量、ガラス粉粒体の粒径、ベルトコンベア8上に敷き詰められる混合物7の厚さ、加熱温度あるいは加熱時間などによって調整することができる。また、ガラス粉粒体の原料は廃ガラスびんや廃板ガラスなどの廃ガラス1に限定するものではなく、様々な種類の廃ガラス材を使用することができる。   The bulk specific gravity of the granular foamed glass material 14 is adjusted by the amount of additive 2 added, the particle size of the glass particles, the thickness of the mixture 7 spread on the belt conveyor 8, the heating temperature or the heating time, etc. Can do. Moreover, the raw material of a glass granular material is not limited to the waste glass 1 such as a waste glass bottle or waste plate glass, and various types of waste glass materials can be used.

次に図2を参照して本発明の第二実施形態である発泡ガラス材製造方法について説明する。なお、図2において、図1で示した発泡ガラス材製造方法の場合と同様の機能、効果を発揮する部分は図1と同じ符号を付して説明を省略する。   Next, with reference to FIG. 2, the foamed glass material manufacturing method which is 2nd embodiment of this invention is demonstrated. In FIG. 2, portions that exhibit the same functions and effects as those in the method of manufacturing a foam glass material shown in FIG. 1 are denoted by the same reference numerals as those in FIG.

図2に示す本実施形態の発泡ガラス材の製造方法では、図1の場合と同じ工程を経て400℃〜800℃程度の焼成物10を形成した後、ベルトコンベア8とともに水平移動していく焼成物10に対し、送風ファン20から強制的に送風されエア噴射装置21から噴出する5℃〜10℃程度の高圧エア22を吹き付ける。このような冷たい高圧エア22を浴びた焼成物10は400℃〜800℃程度の高温から室温まで一挙に急冷されるため、冷却時に生じる歪みによって焼成物10は細かく砕け、ベルトコンベア8の終端部では粒径5.0mm〜30.0mm程度の粒状発泡ガラス材24が得られる。   In the manufacturing method of the foam glass material of the present embodiment shown in FIG. 2, after the same process as in FIG. 1 is performed, the fired product 10 of about 400 ° C. to 800 ° C. is formed, and then the firing that moves horizontally with the belt conveyor 8. A high-pressure air 22 of about 5 ° C. to 10 ° C. that is forcibly blown from the blower fan 20 and ejected from the air injection device 21 is blown against the object 10. The fired product 10 bathed in such cold high-pressure air 22 is rapidly cooled from a high temperature of about 400 ° C. to 800 ° C. to room temperature. Then, a granular foamed glass material 24 having a particle size of about 5.0 mm to 30.0 mm is obtained.

本実施形態の場合、高圧エア22を用いて焼成物10を冷却する、いわゆる空冷方式であるため、冷却水供給用の配管や排水設備などが不要であり、粒状発泡ガラス材24が水濡れすることもないので、乾燥状態の粒状発泡ガラス材24を得ることができる。その他の部分の機能、効果などについては、図1で示した発泡ガラス材製造方法と同様である。   In the case of the present embodiment, since it is a so-called air cooling system that cools the fired product 10 using the high-pressure air 22, a cooling water supply pipe or drainage equipment is unnecessary, and the granular foamed glass material 24 gets wet. Since there is nothing, the granular foamed glass material 24 in a dry state can be obtained. About the function of another part, an effect, etc., it is the same as that of the foam glass material manufacturing method shown in FIG.

また、上記本実施形態における発泡ガラス材の製造方法により得られた発泡ガラス材は、表面および空隙内壁面にマグネシウム成分を含む粉粒体が露出している。そのため、この発泡ガラス材は、同量のマグネシウムと比較して多くのマグネシウム成分が露出しているので、リン酸の強い吸着作用を示し、被処理水へ添加すれば、被処理水に含まれるリンを発泡ガラス材に吸着させて水処理することができる。この発泡ガラス材の適用範囲としては、例えば、ダム等の閉鎖性水域の直接浄化、閉鎖性水域への流入河川や水路等の直接浄化、下水処理水や畜産排水等の高度処理が挙げられる。   Moreover, as for the foamed glass material obtained by the manufacturing method of the foamed glass material in the said embodiment, the granular material containing a magnesium component is exposed to the surface and the space | gap inner wall surface. Therefore, since this foamed glass material has many magnesium components exposed compared to the same amount of magnesium, it exhibits a strong adsorption action of phosphoric acid, and if added to the treated water, it is contained in the treated water. Phosphorus can be adsorbed on the foamed glass material and treated with water. Examples of the scope of application of the foam glass material include direct purification of closed water areas such as dams, direct purification of rivers and waterways flowing into the closed water areas, and advanced treatment such as sewage treated water and livestock wastewater.

また、この発泡ガラス材は、被処理水域の底泥中または底泥上に散布し、底泥から溶出するリンを発泡ガラス材に吸着させることにより底質改善を行うことができる。また、これにより、底泥を高pHにすることができるので、硫酸還元菌の活性を下げ、硫化水素の発生を防ぐことができる。例えば、干潟域、沿岸域や海域等の底質改善、ダムや湖畔等の底質改善が可能である。   Moreover, this foamed glass material can be applied to the bottom mud in the water to be treated, and the bottom quality can be improved by adsorbing phosphorus eluted from the bottom mud to the foamed glass material. Moreover, since this can make bottom mud high pH, the activity of a sulfate reducing bacterium can be lowered | hung and generation | occurrence | production of hydrogen sulfide can be prevented. For example, it is possible to improve sediment quality in tidal flats, coastal areas and sea areas, and improve sediment quality in dams and lakesides.

また、このリンを吸着した発泡ガラス材は肥料等の土壌改善材として使用することもできる。   Moreover, the foamed glass material which adsorb | sucked this phosphorus can also be used as soil improvement materials, such as a fertilizer.

上記実施形態において得られた発泡ガラスのリンの吸着性を確認するために実験を行った。図3は被処理水のオルトリン酸態リン(PO4−P)濃度と経過時間との関係を示す図である。図3に示すように、被処理水中のPO4−P濃度は、マグネシウムを含まない発泡ガラス材と比較して、マグネシウムを7%含むものでは6時間経過時点で1/3、マグネシウムを14%含むものでは1/6に減少した。 An experiment was conducted to confirm the phosphorus adsorptivity of the foamed glass obtained in the above embodiment. FIG. 3 is a diagram showing the relationship between the orthophosphoric acid phosphorus (PO 4 -P) concentration of the water to be treated and the elapsed time. As shown in FIG. 3, the PO 4 -P concentration in the water to be treated is 1/3 at 6 hours when magnesium is 7% and 14% when magnesium is 7%, compared to the foamed glass material not containing magnesium. Including, it decreased to 1/6.

本発明の発泡ガラス材は、水処理、底質改善および土壌改善材に有用である。   The foamed glass material of the present invention is useful for water treatment, bottom sediment improvement, and soil improvement material.

本発明の第一実施形態である発泡ガラス材の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the foam glass material which is 1st embodiment of this invention. 本発明の第二実施形態である発泡ガラス材の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the foam glass material which is 2nd embodiment of this invention. 被処理水のPO4−P濃度と経過時間との関係を示す図である。It is a figure which shows the relationship between PO4-P density | concentration of to-be-processed water, and elapsed time.

符号の説明Explanation of symbols

1 廃ガラス
2 添加剤
3 分離装置
4 粗粉砕装置
5 微粉砕装置
6 混合装置
7 混合物
8 ベルトコンベア
9 焼成炉
10 焼成物
12 ジェット噴水装置
13 ジェット水
14,24,34 粒状発泡ガラス材
15 送水ポンプ
20 送風ファン
21 エア噴射装置
22 高圧エア
DESCRIPTION OF SYMBOLS 1 Waste glass 2 Additive 3 Separation apparatus 4 Coarse crushing apparatus 5 Fine crushing apparatus 6 Mixing apparatus 7 Mixture 8 Belt conveyor 9 Firing furnace 10 Firing product 12 Jet fountain apparatus 13 Jet water 14, 24, 34 Granular foam glass material 15 Water feed pump 20 Blower Fan 21 Air Injector 22 High Pressure Air

Claims (2)

粒径5μm〜100μmのガラス粉粒体と、マグネサイトの粉粒体と、発泡剤とを混合して得られた前記マグネサイトの粉粒体の含有率が10〜20質量%である混合物を600℃〜1000℃に加熱して溶融、発泡、焼成する焼成工程と、
前記焼成工程で形成された焼成物を急冷する急冷工程と
を含む発泡ガラス材の製造方法。
A mixture in which the content of the magnesite powder obtained by mixing a glass powder having a particle size of 5 μm to 100 μm, a magnesite powder, and a foaming agent is 10 to 20% by mass. A firing step of heating to 600 ° C. to 1000 ° C. to melt, foam, and fire;
A method for producing a foam glass material, comprising: a quenching step of quenching a fired product formed in the firing step.
前記発泡剤の含有率を0.1〜5.0質量%とする請求項記載の発泡ガラス材の製造方法。 Method for producing foam glass material according to claim 1, wherein 0.1 to 5.0 mass% content of the blowing agent.
JP2005370849A 2005-12-22 2005-12-22 Manufacturing method of foam glass material Active JP4435083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370849A JP4435083B2 (en) 2005-12-22 2005-12-22 Manufacturing method of foam glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370849A JP4435083B2 (en) 2005-12-22 2005-12-22 Manufacturing method of foam glass material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009238591A Division JP4498461B2 (en) 2009-10-15 2009-10-15 Foamed glass material, water treatment method using the same, bottom quality improving method and soil improving material

Publications (2)

Publication Number Publication Date
JP2007169119A JP2007169119A (en) 2007-07-05
JP4435083B2 true JP4435083B2 (en) 2010-03-17

Family

ID=38296181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370849A Active JP4435083B2 (en) 2005-12-22 2005-12-22 Manufacturing method of foam glass material

Country Status (1)

Country Link
JP (1) JP4435083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104262005A (en) * 2014-09-28 2015-01-07 陕西科技大学 Method for preparing light porous particle controlled release fertilizer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920007B2 (en) * 2008-05-16 2012-04-18 地方独立行政法人 東京都立産業技術研究センター Method for producing glass foam, glass foam and method for regenerating glass foam
KR101282988B1 (en) * 2011-05-11 2013-07-17 한승우 Manufacuring method of foamed glass have nano structure
RU2627788C1 (en) * 2016-05-26 2017-08-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Charge for obtaining foam glass
CN114381270B (en) * 2022-01-27 2023-03-14 清华大学 Preparation method of soil remediation agent prepared based on industrial solid waste, soil remediation agent and application of soil remediation agent
CN116161856A (en) * 2022-12-08 2023-05-26 中交四航局第七工程有限公司 Foam glass with high phosphate adsorption performance and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104262005A (en) * 2014-09-28 2015-01-07 陕西科技大学 Method for preparing light porous particle controlled release fertilizer
CN104262005B (en) * 2014-09-28 2016-08-24 陕西科技大学 A kind of preparation method of light porous particle slow release fertilizer

Also Published As

Publication number Publication date
JP2007169119A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4435083B2 (en) Manufacturing method of foam glass material
Wang et al. Preparation of Ca–Si–Al–Mg porous ceramics by Co-operation of Ca&Mg-contained soda residue and altered rock gold tailings
JP2018515337A (en) Manufacturing method of foamable artificial filter medium for water treatment by recycling waste LCD glass and waste bottle glass generated from waste electrical and electronic products
JP4328215B2 (en) Steelmaking slag treatment method
JP2007022817A (en) Treating method of steelmaking slag
JP4549429B2 (en) Foamed glass material containing porcelain powder and water treatment method, bottom quality improving method and soil improving material using the same
JP2010120782A (en) Method for producing low alkali elution property slag
JP2006341226A (en) Method for removing phosphorus from water
KR20070089021A (en) Manufacturing method of solidification agent for organic or inorganic waste resources
Wei et al. Reduction of sintering energy by application of calcium fluoride as flux in lightweight aggregate sintering
JP4467530B2 (en) Method for producing foamed glass material containing porcelain powder
JP4162704B2 (en) Foamed glass and manufacturing method thereof
JP4498461B2 (en) Foamed glass material, water treatment method using the same, bottom quality improving method and soil improving material
JP4136520B2 (en) Foam glass manufacturing method
KR101656665B1 (en) Phosphorus removal and withdrawal system using multifuntional granular seed crystal and phosphorus removal or withdrawal method using the same
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
Fan et al. The positive contributions of steel slag in reducing carbon dioxide emissions in the steel industry: Waste heat recovery, carbon sequestration, and resource utilization
JP2005047789A (en) Stabilization treatment method of steel slag and stabilized steel slag
JP3898116B2 (en) Inorganic foam and method for producing inorganic foam
KR20110031683A (en) Method for manufacturing multi-cellular body with low expansion and high strenght by using waste liquid crystal display glass and multi-cellular body made by the method
JP4434555B2 (en) Processing method of granulated blast furnace slag
JP2007284268A (en) Method for granulating powdery slag, and granulated slag
JP4391392B2 (en) Method for producing granules for nitrate nitrogen treatment
JP2004123425A (en) Inorganic foam, its composition and manufacturing process
JP2001048603A (en) Production of blast-furnace slag fine aggregate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4435083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4