JP2007022817A - Treating method of steelmaking slag - Google Patents

Treating method of steelmaking slag Download PDF

Info

Publication number
JP2007022817A
JP2007022817A JP2005203275A JP2005203275A JP2007022817A JP 2007022817 A JP2007022817 A JP 2007022817A JP 2005203275 A JP2005203275 A JP 2005203275A JP 2005203275 A JP2005203275 A JP 2005203275A JP 2007022817 A JP2007022817 A JP 2007022817A
Authority
JP
Japan
Prior art keywords
steelmaking slag
slag
treatment
mass
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005203275A
Other languages
Japanese (ja)
Other versions
JP4676829B2 (en
Inventor
Susumu Mukawa
進 務川
Tomoaki Tazaki
智晶 田崎
Yoshiyuki Uejima
良之 上島
Katsumi Amada
克己 天田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005203275A priority Critical patent/JP4676829B2/en
Publication of JP2007022817A publication Critical patent/JP2007022817A/en
Application granted granted Critical
Publication of JP4676829B2 publication Critical patent/JP4676829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method of steelmaking slag enabling a highly productive stabilizing treatment of steelmaking slag at a low treating cost, and capable of reducing the amount of CO<SB>2</SB>emission. <P>SOLUTION: In a treating method of steelmaking slag in which CaO in the steelmaking slag is carbonated by supplying CO<SB>2</SB>gas while mechanically stirring the steelmaking slag, the steelmaking slag is stirred under a condition wherein particles having a diameter of 10-40 mm are contained in the slag, and the space filling rate η to the stirring vessel is set at 0.03-0.15 to achieve high productivity. Further, η, a vessel diameter D, a number of rotation ω, a water content M, a free lime concentration before the treatment, and a target free lime concentration after the treatment are specified. Further, it has become possible to specify the relation between D and ω, from a target value of the treatment productivity Q, a free lime concentration before the treatment, and a target free lime concentration after the treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、製鋼スラグの処理方法に関するものであり、製鋼スラグの再利用、有効利用を促進して、天然砕石、骨材の代替品を提供することにより、自然環境破壊の低減に寄与するとともに、製鉄プロセスにて排出する炭酸ガスの排出削減にも寄与する技術を提供するものである。   The present invention relates to a method for processing steelmaking slag, and promotes the reuse and effective use of steelmaking slag, and contributes to the reduction of natural environment destruction by providing natural crushed stone and aggregate substitutes. The technology that contributes to the reduction of carbon dioxide emissions in the steelmaking process.

製鋼工程においては精錬剤として石灰源を添加し、CaO分とSiO2分の質量濃度比(以下、塩基度と略す)を高めることにより、りん、硫黄などの鋼中不純物をスラグ側に移行し易いスラグを生成し、そのスラグに除去するスラグ精錬が行われている。一般に、スラグの精錬能力は塩基度が高いほど大きいが、塩基度を高めるためにCaO分を大量に添加すると、2500℃という高い融点をもつ物質であるCaOが未溶融状態で、かつSiO2等他のスラグ成分と未反応のまま残留する場合がある。また、塩基度を高めた場合、溶解度以上のCaO濃度に達すれば、未溶融状態にて残留する。また、生産性を高めるために短時間で処理を行う場合には、やはりCaO分の未反応量を増す結果となる。このため、処理終了後のスラグ中には遊離なCaOが残留するが、これは、大気中の水蒸気や、水と反応し、CaO+H2O→Ca(OH)2の反応によって体積が2倍に膨張するため、土木用材料としてリサイクル利用する場合、膨張することや、風化が問題となる。また、Ca(OH)2は強アルカリであるため、雨水と反応すれば強アルカリ水を生成し、生物を死滅させたり、海、湖沼を白濁させ、環境を破壊する結果を招く。 In the steelmaking process, lime source is added as a refining agent, and by increasing the mass concentration ratio of CaO and SiO 2 (hereinafter abbreviated as basicity), impurities in steel such as phosphorus and sulfur are transferred to the slag side. Slag refining is performed to generate easy slag and remove it. In general, the slag refining capacity increases as the basicity increases. However, when a large amount of CaO is added to increase the basicity, CaO, which is a substance having a high melting point of 2500 ° C, is in an unmelted state, and SiO 2 etc. It may remain unreacted with other slag components. Further, when the basicity is increased, if the CaO concentration reaches the solubility or higher, it remains in an unmelted state. Moreover, when processing is performed in a short time in order to increase productivity, it results in increasing the unreacted amount of CaO. Therefore, although in the slag after the treatment completion free of CaO remains, which, and water vapor in the atmosphere, react with water, the volume by the reaction of CaO + H 2 O → Ca ( OH) 2 is 2 Since it expands twice, when it is recycled as a civil engineering material, expansion and weathering become a problem. In addition, since Ca (OH) 2 is a strong alkali, when it reacts with rainwater, it generates strong alkaline water, killing organisms, clouding the sea and lakes, and destroying the environment.

このように、製鋼スラグは求められる機能によって不可避的に遊離CaOを含み、その安定化が課題である。逆に、遊離CaO分をより安定な化合物に改質できれば、例えば、近年採取場所が枯渇しつつある天然砕石の代替として、土木、建築資材として有効に利用が可能となり、その結果、循環型社会形成に寄与する所も大きい。   Thus, steelmaking slag inevitably contains free CaO depending on the required function, and its stabilization is a problem. Conversely, if the free CaO content can be modified to a more stable compound, for example, it can be effectively used as a civil engineering and building material as an alternative to natural crushed stone, where collection sites have been depleted in recent years. The place that contributes to formation is also great.

この遊離CaO分を炭酸化処理して炭酸カルシウム(CaCO3)系の化合物として安定化するという着想は、本来、CaO源が天然にはCaCO3を主成分とする大理石、石灰石として安定に存在する形態に戻す訳であり、極めて自然な考え方である。この方法はまた、製鉄や、産業排ガス中のCO2を固定化し得るので、排出CO2量を減らす上でも望ましい。
従って、本原理を利用したスラグの処理方法については従来より多くの提案がある。
The idea of stabilizing this free CaO content as a calcium carbonate (CaCO 3 ) -based compound by carbonation treatment is inherently stable as a natural source of marble and limestone with CaCO 3 as the main component. This is a very natural way of thinking. This method is also preferable for reducing the amount of CO 2 emitted because it can fix CO 2 in steelmaking and industrial exhaust gas.
Therefore, there have been many proposals for a slag processing method using this principle.

例えば、特許文献1には、転炉滓をコンクリート骨材等に利用をはかるため、転炉滓を乾燥飽和から湿潤に至るまでの間の表面状態にあるものを-10℃から220℃の範囲で、20〜100%の湿度の条件下で炭酸ガスを10%以上含む空気を主体としたガスと接触させ、炭酸化させる方法が示されている。
しかし、後述のように、反応は途中で停止し、フリーライム濃度を1質量%以下に低下することは困難である。
For example, in Patent Document 1, in order to use a converter slag for concrete aggregates or the like, a converter slag in a surface state from dry saturation to wet is in a range of -10 ° C to 220 ° C. Thus, a method is shown in which carbonation is performed by contacting with a gas mainly composed of air containing 10% or more of carbon dioxide under conditions of 20 to 100% humidity.
However, as will be described later, the reaction stops midway, and it is difficult to reduce the free lime concentration to 1% by mass or less.

製鋼スラグは大量に発生するものであり、これに対処し得る、十分に生産性が高く、工業的に意味のある方法とする必要がある。そのために、特許文献1に開示された方法の改善として、800℃〜300℃の高温にて反応を行わせることが提案されている(例えば、特許文献2を参照)。
しかし、後述のように、800℃〜300℃の高温にしても、反応は途中で停止し、フリーライム濃度を1質量%以下に低下することは困難である。
Steelmaking slag is generated in large quantities, and it is necessary to make it a method that can cope with this and is sufficiently productive and industrially meaningful. Therefore, as an improvement of the method disclosed in Patent Document 1, it has been proposed to perform the reaction at a high temperature of 800 ° C. to 300 ° C. (see, for example, Patent Document 2).
However, as will be described later, even if the temperature is high between 800 ° C. and 300 ° C., the reaction stops midway, and it is difficult to reduce the free lime concentration to 1% by mass or less.

また、例えば特許文献3には、CaOないしCa(OH)2を含む固体粒子集合体に付着水膜を存在させ、CO2を含む排ガスによる炭酸化反応を行わせ、CaCO3を生成させる方法が述べられている。更に、これにより排気ガス中の炭酸ガスを固定し、排出炭酸ガスを削減する方法が述べられている。しかし、1m3のスラグ塊を製造する処理に24時間という長時間を要することが示されている。
また、反応速度を大きくするために、実質的には5mm以下、望ましくは1mm以下の小径粒子のみを対象とすること、或いは、事前に破砕処理を行って新生面を生じさせることが述べられている。しかしながら、特許文献3ではフリーライム濃度を低下させるために粒子径を小さくすることを開示するにすぎず、また粒径を制限することは、それ以上の粒子の破砕、粉砕処理を要し、新に破砕、粉砕設備が必要となり、その処理コストも高価になるという問題や、粉分のみでは路盤材のように規格の粒度分布がある場合には使えず、更に所定粒度の砕石等を加える必要があるという問題があった。
また、後述するように、事前に破砕処理を行っても、反応が停滞し、それ以上反応が進まない、という問題もある。
Further, for example, Patent Document 3 discloses a method of generating CaCO 3 by causing a solid water particle assembly containing CaO or Ca (OH) 2 to have an attached water film and performing a carbonation reaction with an exhaust gas containing CO 2. It is stated. Furthermore, a method is described in which the carbon dioxide in the exhaust gas is fixed thereby to reduce the discharged carbon dioxide. However, it has been shown that the process of producing a 1 m 3 slag mass takes a long time of 24 hours.
Moreover, in order to increase the reaction rate, it is stated that the target is essentially only small particles of 5 mm or less, preferably 1 mm or less, or that a new surface is generated by crushing in advance. . However, Patent Document 3 only discloses that the particle size is reduced in order to reduce the free lime concentration, and restricting the particle size requires further crushing and pulverization of the particles. It is necessary to add crushing and crushing equipment, and the processing cost is expensive, and it is not possible to use it when there is a standard particle size distribution like a roadbed material with only the powder content, and it is necessary to add crushed stone of a predetermined particle size etc. There was a problem that there was.
In addition, as will be described later, there is a problem that even if the crushing process is performed in advance, the reaction is stagnant and the reaction does not proceed any further.

例えば特許文献4には、製鋼スラグを大気圧下において水蒸気雰囲気でエージング処理を行い、更に水蒸気とCO2ガスの混合ガス雰囲気下で1時間以上保持する方法が開示されている。しかし、この方法では、蒸気エージングに更にあらたな処理設備を要する。また、一般に蒸気エージングも数日を要し、生産性が低いので、大量発生するスラグには部分的にしか適用出来ない。   For example, Patent Document 4 discloses a method in which steelmaking slag is subjected to an aging treatment in a water vapor atmosphere under atmospheric pressure, and further maintained for 1 hour or longer in a mixed gas atmosphere of water vapor and CO2 gas. However, this method requires a new processing facility for steam aging. In general, steam aging also takes several days, and the productivity is low, so it can be applied only partially to slag generated in large quantities.

例えば特許文献5には、製鋼スラグを加圧下に水蒸気およびCO2と反応させる方法が開示されている。加圧の効果により水和反応(CaO+H2O→Ca(OH)2)が促進され、その膨張によりスラグ粒子の自己崩壊が進行するとともに炭酸化も進行すると述べている。
しかし、この方法では大きな加圧処理設備を必要とし、莫大な設備費用とランニングコストを要する。また設備の健全性を維持するためのメンテナンスも容易ではない。
以上述べてきたように、従来の処理方法では、十分に高い生産性を安価に得る方法を見出すことに成功しておらず、製鋼スラグ全量を生産性高く安定化処理する方法は見出されていない。
特開昭50-41772号公報 特開昭52-129672号公報 特許第3248514号公報 特開平8-269282号公報 特開平6-158124号公報
For example, Patent Document 5 discloses a method of reacting steelmaking slag with water vapor and CO 2 under pressure. It is said that the hydration reaction (CaO + H 2 O → Ca (OH) 2 ) is promoted by the effect of pressurization, and the expansion of the slag particles progresses and the carbonation also proceeds.
However, this method requires a large pressure treatment facility, and enormous facility costs and running costs are required. Also, maintenance for maintaining the soundness of the equipment is not easy.
As described above, the conventional processing method has not succeeded in finding a method for obtaining sufficiently high productivity at low cost, and a method for stabilizing the total amount of steelmaking slag with high productivity has been found. Absent.
JP 50-41772 A JP 52-129672 A Japanese Patent No. 3248514 JP-A-8-269282 JP-A-6-158124

本発明は、大量に発生する製鋼スラグを生産性高く炭酸化処理し、膨張、および溶出pHを低位安定化する方法を提供することを課題とする。また、その副次的作用として、CO2を固定化し、排出CO2量を低減することを課題とする。 It is an object of the present invention to provide a method for carbonizing a steelmaking slag generated in a large amount with high productivity and stabilizing the expansion and elution pH at a low level. Also, as a side effect, the CO 2 is immobilized, it is an object to reduce the emission amount of CO 2.

上記の課題を解決するためになされた本発明の製鋼スラグの処理方法は、製鋼スラグ中に存在するCaO分を炭酸化するに際し、製鋼スラグに機械攪拌を付与しつつ、CO2含有ガスを供給して炭酸化反応を行わせしめる製鋼スラグの処理方法であって、製鋼スラグ中に10〜40mmの粒状物を含む状態で機械攪拌することを特徴とするものである。 Processing method of steelmaking slag of this invention was made in order to solve the aforementioned problem, feed upon carbonating CaO content present in the steelmaking slag, while applying mechanical agitation to the steelmaking slag, a CO 2 containing gas This is a steelmaking slag treatment method in which carbonation reaction is carried out, wherein the steelmaking slag is mechanically stirred in a state of containing 10 to 40 mm of granular materials.

また、攪拌容器を用いて機械攪拌を行いつつ製鋼スラグの炭酸化処理を行うに際し、攪拌容器の内容積に対し、スラグが占める空間充填率ηを0.03〜0.15とすることが好ましい。   Moreover, when performing carbonation of steelmaking slag while performing mechanical stirring using a stirring vessel, it is preferable that the space filling ratio η occupied by the slag is 0.03 to 0.15 with respect to the internal volume of the stirring vessel.

また、攪拌容器を用いて機械攪拌を行い、[数1]〜[数5]を用いて処理時間を予測するようにすることができる。

Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
(%f-CaO)i:処理前のフリーライム濃度(質量%)
(%f-CaO)f:処理後の目標フリーライム濃度(質量%)
t:処理時間(min)
η:空間充填率(-)
D:容器内径(m)
ω:容器回転数(rpm)
M:水分(質量%) Moreover, mechanical stirring is performed using a stirring vessel, and the processing time can be predicted using [Formula 1] to [Formula 5].
Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
(% f-CaO) i: Free lime concentration before treatment (mass%)
(% f-CaO) f: Target free lime concentration after treatment (mass%)
t: Processing time (min)
η: Space filling rate (-)
D: Container inner diameter (m)
ω: Container rotation speed (rpm)
M: moisture (mass%)

更に、攪拌容器を用いて機械攪拌を行い、目的の生産性Qが得られるように、容器の内径D、長さL、回転数ωを[数1]〜[数3]および[数6]に従って選定するようにすることができる。

Figure 2007022817
Q目標:目標の生産性(t/h)
η:空間充填率(-)
D:容器内径(m)
L:容器長さ(m)
ω:容器回転数(rpm)
M:水分(質量%)
ρ:製鋼スラグの嵩密度(t/m3)
(%f-CaO)i:処理前のフリーライム濃度(質量%)
(%f-CaO)f:処理後の目標フリーライム濃度(質量%) Further, mechanical stirring is performed using a stirring vessel, and the inner diameter D, length L, and rotational speed ω of the vessel are set to [Equation 1] to [Equation 3] and [Equation 6] so that the desired productivity Q can be obtained. It can be made to select according to.
Figure 2007022817
Q Goal: The goal of productivity (t / h)
η: Space filling rate (-)
D: Container inner diameter (m)
L: Container length (m)
ω: Container rotation speed (rpm)
M: moisture (mass%)
ρ: Bulk density of steelmaking slag (t / m 3 )
(% f-CaO) i : Free lime concentration before treatment (mass%)
(% f-CaO) f : Target free lime concentration after treatment (mass%)

以上は、本発明者らが本発明に至る研究の過程で、従来の炭酸化処理方法の限界を決めているものが何かを突き止めたことによるものである。
即ち、製鋼スラグを充填槽に充填し、静止状態下にあるスラグにCO2ガスあるいはアルゴンガスとCO2の混合ガスを通じてスラグ中の遊離CaOの炭酸化を試みた。この場合、800℃〜700℃の高温下、約9気圧の高圧化、70〜80℃の水蒸気飽和条件下、水を並存させた室温下、というように、自由水存在割合、ガス中のH2O分圧、圧力、温度を様々が条件下で実験を行った。
The above is due to the fact that the inventors have determined what limits the limits of conventional carbonation treatment methods in the course of research leading to the present invention.
That is, steelmaking slag was filled in a filling tank, and carbonation of free CaO in the slag was attempted through CO 2 gas or a mixed gas of argon gas and CO 2 in the slag in a stationary state. In this case, the proportion of free water, H in the gas, such as at a high temperature of 800 ° C. to 700 ° C., a high pressure of about 9 atm, a water vapor saturation condition of 70-80 ° C., at a room temperature where water coexists, and so on. Experiments were conducted under various conditions of 2 O partial pressure, pressure, and temperature.

その結果、処理開始初期の反応でフリーライム濃度が低下するものの、いずれの実験条件下においても、フリーライム濃度が1〜2%に低下した段階で実質上反応が停止することを見出した。この現象は、特許文献5のようにCO2分圧を高めたり、特許文献2に示されているように、300℃以上の高温で反応を行わせた場合でも同様である。また、処理後のスラグのミクロ組織観察より、その理由は、スラグ粒子内に存在する遊離CaO粒子の外面が50μm程度の厚みまでCaCO3化した段階で、CaCO3層が強固な膜となり、CO2の粒子内部への拡散を阻害するためであることを見出した。
これは、反応により、CaOがCaCO3に変化すると凡そ2倍のモル体積となることからも想像されるように、スラグ粒子内に存在する気孔を閉塞させるので、それ以上、CO2のスラグ粒子内部への拡散、或いはCO3 2-イオンを溶解した水の浸透が生じなくなる、と理解できる。
As a result, although the free lime concentration decreased in the reaction at the beginning of the treatment, it was found that the reaction substantially stopped when the free lime concentration decreased to 1 to 2% under any experimental conditions. This phenomenon is the same even when the CO 2 partial pressure is increased as in Patent Document 5 or when the reaction is performed at a high temperature of 300 ° C. or higher as disclosed in Patent Document 2. Also, from the observation of the microstructure of the slag after treatment, the reason is that the CaCO 3 layer becomes a strong film when the outer surface of the free CaO particles present in the slag particles is converted to CaCO 3 to a thickness of about 50 μm. It was found that this was to inhibit the diffusion of 2 into the particle.
This is because the reaction, such CaO is imagined from the fact that the molar volume of approximately 2-fold changes in CaCO 3, since the closed pores present in the slag particles, more, of CO 2 slag particles It can be understood that diffusion into the inside or penetration of water in which CO 3 2- ions are dissolved does not occur.

これに対し、本願発明者らは、ある程度強い機械攪拌を付与すれば、CaCO3膜が破壊されたり、或いは亀裂を生成する結果、CO2の内部への拡散が維持されるのではないかと着想し、実験研究を行った。結果として、ある程度強い機械攪拌付与下では、短時間で、反応が停止することなく、フリーライム濃度が海水に浸漬した時に白濁を生じることのない、1%以下の低濃度に到達し得ることが分った。また、このような現象であるため、特に反応の比表面積を増加させるためにスラグを粉砕したり、余分な前処理を行う必要はない。 On the other hand, the inventors of the present application have conceived that if a strong mechanical stirring is applied to some extent, the CaCO 3 film is broken or cracks are generated, so that diffusion of CO 2 is maintained. And conducted experimental research. As a result, under a certain degree of mechanical agitation, the reaction does not stop in a short time, and the free lime concentration can reach a low concentration of 1% or less without causing cloudiness when immersed in seawater. I understand. Moreover, since it is such a phenomenon, it is not necessary to grind slag or perform extra pretreatment in order to increase the specific surface area of the reaction.

一方、先の特許文献3の請求項9には、スラグ粒子を事前に破砕することが述べられているが、これは、新生面を生成し、反応が生じ易くするためと考えられる。しかし、CaO+CO2→CaCO3の反応でCaOは約2倍の体積になるため、いくら事前に新生面を露出させてあっても、上記メカニズム即ち、表面にCaCO3層を生成し、これが緻密である故、CO2の拡散を妨げてしまうことで反応が停止することに変わりはない。従って、必ず数%レベルの遊離CaOが残留してしまうので、溶出pHは高いままである。 On the other hand, claim 9 of the above-mentioned Patent Document 3 describes that the slag particles are crushed in advance, and this is considered to generate a new surface and facilitate reaction. However, CaO + CO 2 → CaCO 3 reaction causes CaO to be about twice the volume, so no matter how much the new surface is exposed in advance, the above mechanism, that is, a CaCO 3 layer is formed on the surface, which is dense. Therefore, the reaction is still stopped by preventing the diffusion of CO 2 . Therefore, the elution pH remains high because several percent of free CaO always remains.

これに対し、本願発明では、CO2化を機械攪拌と同時に行うことにより、常にCaCO3の膜が破壊されたり、あるいはその膜に亀裂が生じるため、より低濃度まで、早く反応が進行するのであり、従来に無い、高い生産性でスラグのフリーライム濃度を低下させることができる。 In contrast, in the present invention, by performing CO 2 conversion simultaneously with mechanical stirring, the CaCO 3 film is always destroyed or cracked in the film, so the reaction proceeds faster to a lower concentration. Yes, it is possible to reduce the free lime concentration of slag with high productivity, which is unprecedented.

即ち、従来の知見のごとく、静止状態のスラグにCO2ガス等を供給してスラグ中のCaOの炭酸化を試みてもCaCO3層の膜が邪魔してCaOの炭酸化反応が不十分となる。本発明は、このような問題を、処理するスラグを静止した状態ではなく、機械的な攪拌を行いつつCO2ガスを供給するものであるが、機械攪拌する際の最適な条件を特定することにより、従来の課題を一挙に解決するようにしたものである。 That is, as the conventional knowledge, slag CO 2 gas or the like is supplied attempt to carbonation of CaO in the slag in the way the film of CaCO 3 layers also CaO carbonation reaction of quiescent insufficient Become. The present invention is to supply such CO 2 gas while mechanically stirring the slag to be treated, not in a state where the slag to be treated is stationary, but to identify the optimum conditions for mechanical stirring. Thus, the conventional problems are solved all at once.

一般に、スラグを処理する際、処理のし易さ等を考慮し、処理するスラグを静止状態で行うものであるが、本発明は、その発想を大きく異にして機械攪拌のごとく、スラグを動的な状態にして処理するに際し、単に機械攪拌するのみでなく、特定の条件下において機械攪拌するという極めて新規な技術思想によりなされたものである。
即ち、後述するように、本願発明者らは生産性を最大化するために、攪拌容器に充填すべき空間充填率に最適値が存在することを見出した。更に、反応速度に及ぼす充填率、攪拌容器の内径、回転数、水分の影響を定量化した。その結果、ある攪拌容器を用いた場合に必要な処理時間を予測することができ、無駄に処理することがない。あるいは、ある処理生産性を得るに必要な容器内径、回転数、長さを選定する、即ち装置設計が可能となるのである。
In general, when processing slag, the slag to be processed is performed in a stationary state in consideration of the ease of processing, etc., but the present invention is greatly different in its concept from moving the slag as mechanical agitation. When processing in a specific state, it is based on a very novel technical idea that not only mechanical stirring but also mechanical stirring under specific conditions.
That is, as will be described later, the present inventors have found that there is an optimum value for the space filling rate to be filled in the stirring vessel in order to maximize productivity. Furthermore, the effects of the filling rate, the inner diameter of the stirring vessel, the rotation speed, and the moisture on the reaction rate were quantified. As a result, the processing time required when using a certain stirring vessel can be predicted, and processing is not wasted. Alternatively, the container inner diameter, rotation speed, and length necessary to obtain a certain processing productivity can be selected, that is, the apparatus can be designed.

また、一般に、製鋼スラグは単一サイズの粒子からなる訳ではないが、道路用路盤材などに利用する場合には、規格の粒度分布が決められており、ある粒度分布を持つ方が望ましい。一方、本法では、特許文献3に示されているような、5mm以下、あるいは1mm以下のもののみを処理する、といった必要は無い。なぜならば、本法では、数ミリの微粉とともに10〜40mmの粒状物を含む状態で機械攪拌するものであり、10mm以上の粒子でもその内部まで炭酸化が進行してフリーライムが少なくなるからである。また10mm以上を多く含むスラグの場合には、これがボールミルのボールの役割、即ち、破砕作用を促すから却って都合が良い。一方、小径の粒子しか含まない場合には、意図的に硬質である程度の質量を持つ、例えば鉄球粒子を含めて処理するのが良い。鉄球の場合には後で磁選分離が可能なので好都合である。鉄球の代わりに、磁選工程で得られる磁選粒鉄を利用すれば、新に購入する必要もなく、安価で都合が良い。   In general, steelmaking slag is not composed of particles of a single size, but when used for road roadbed materials or the like, a standard particle size distribution is determined, and it is desirable to have a certain particle size distribution. On the other hand, according to this method, it is not necessary to process only those of 5 mm or less or 1 mm or less as shown in Patent Document 3. This is because in this method, mechanical stirring is performed in a state of containing 10 to 40 mm of particulate matter together with several millimeters of fine powder, and carbonation proceeds to the inside of particles of 10 mm or more, and free lime is reduced. is there. In the case of a slag containing a large amount of 10 mm or more, this facilitates the role of the ball of the ball mill, that is, the crushing action. On the other hand, when only small-diameter particles are included, it is preferable to intentionally include, for example, iron ball particles that are hard and have a certain mass. In the case of an iron ball, it is advantageous because magnetic separation can be performed later. If magnetically-granulated iron obtained in the magnetic separation process is used instead of the iron ball, it is not necessary to purchase a new one, and it is inexpensive and convenient.

また、特許文献3には、排出炭酸ガスの削減方法として、CaOおよび/またはCa(OH)2を含む固体粒子の集合体にCO2を含む排ガスを接触させて、排ガス中のCO2を固体粒子にCaCO3として固定することにより、排ガス中のCO2濃度を低減させる方法が開示されているが、静止スラグ中をCO2含有ガスと反応させる充填槽タイプの形態であるため、反応速度が小さく、生産性が低いという問題があり、製鉄プラントなどのように、単位時間あたりの排出CO2量が大きい場合には、その削減効果を得るためには膨大な数の炭酸化設備を要し、現実的ではない。それに対し、本願発明では、反応速度が大きいので、少ない設備でも大きな削減効果が得られる。 Further, Patent Document 3, as a method of reducing exhaust carbon dioxide, CaO and / or Ca (OH) 2 is brought into contact with exhaust gas containing CO 2 into aggregates of solid particles comprising the, the CO 2 in the exhaust gas solid Although a method of reducing the CO 2 concentration in the exhaust gas by fixing it as CaCO 3 to the particles is disclosed, it is a filling tank type form in which the stationary slag is reacted with the CO 2 -containing gas, so the reaction rate is There is a problem that it is small and productivity is low, and if the amount of CO 2 emitted per unit time is large, such as in a steel plant, a large number of carbonation facilities are required to obtain the reduction effect. Is not realistic. On the other hand, since the reaction rate is high in the present invention, a large reduction effect can be obtained even with a small number of facilities.

更に、幅広い粒度分布を持ったスラグを処理対象とすることで、粒度の大きなものは、回転容器内での落下に伴い、他粒子へ付与する落下に伴う衝撃エネルギーが大きく作用し、反応速度を維持する上で好都合であることが分った。更に、本発明では製鋼スラグを構成する粒子に10〜40mmの粒状物を含むことが望ましいことが分った。即ち、10mm未満では、落下に伴う衝撃エネルギーが小さく、効果が顕著ではない。また、40mmより大きいと、処理後スラグが路盤材規格の上限を上回り、不都合となる。従って、粒状物の径は10mm〜40mmの範囲とする。   Furthermore, by treating slag with a wide particle size distribution as the object of processing, those with a large particle size are greatly affected by the impact energy that accompanies the drop applied to other particles as it falls in the rotating container, and the reaction rate is reduced. It has been found convenient to maintain. Furthermore, in the present invention, it has been found that it is desirable to include particles of 10 to 40 mm in the particles constituting the steelmaking slag. That is, if it is less than 10 mm, the impact energy accompanying the drop is small, and the effect is not remarkable. On the other hand, if it is larger than 40 mm, the slag after treatment exceeds the upper limit of the roadbed material standard, which is inconvenient. Therefore, the diameter of the granular material is in the range of 10 mm to 40 mm.

また、本願発明者らは経験則として、反応速度を予測し得る式を導出した。これによれば、初期のフリーライム濃度の経過は、時間に対して対数プロットすると直線になる、所謂、一次反応的な挙動を示すことが分った。これは、フリーライム粒子の他粒子との衝突過程によって反応速度が律速されていることを示唆するが、反応速度の大小は上記対数プロットの傾き、即ち、下記[数7]式のK値で評価できることを明らかにした。

Figure 2007022817
K:フリーライム低下反応速度の容量係数(1/min)
(%f-CaO)i:処理前のフリーライム濃度(質量%)
(%f-CaO)f’:処理後のフリーライム濃度(質量%)
t:処理時間(min) In addition, the inventors of the present application derived an equation that can predict the reaction rate as an empirical rule. According to this, it was found that the course of the initial free lime concentration shows a so-called primary reaction behavior that becomes a straight line when logarithmically plotted against time. This suggests that the reaction rate is limited by the collision process of the free lime particles with the other particles. The magnitude of the reaction rate is the slope of the logarithmic plot, that is, the K value of the following [Equation 7]. Clarified that it can be evaluated.
Figure 2007022817
K: Capacity coefficient of free lime lowering reaction rate (1 / min)
(% f-CaO) i : Free lime concentration before treatment (mass%)
(% f-CaO) f ': Free lime concentration after treatment (mass%)
t: Processing time (min)

さらに、本願発明者らは、様々な大きさの反応容器を用いた実験を行って最終的に、フリーライム低下反応速度の容量係数Kと処理条件の関係式として、[数4]が成り立つことを見出した。
[数4]
K=0.00215(1−η)11.88D0.56ω1.04M0.23
K:フリーライム低下反応速度の容量係数(1/min)
η:空間充填率(-)
D:容器内径(m)
ω:容器回転数(rpm)
M:水分(質量%)
Furthermore, the inventors of the present application conduct experiments using reaction vessels of various sizes, and finally, [Expression 4] is established as a relational expression between the capacity coefficient K of the free lime reduction reaction rate and the processing conditions. I found.
[Equation 4]
K = 0.00215 (1-η) 11.88 D 0.56 ω 1.04 M 0.23
K: Capacity coefficient of free lime lowering reaction rate (1 / min)
η: Space filling rate (-)
D: Container inner diameter (m)
ω: Container rotation speed (rpm)
M: moisture (mass%)

また、[数4]に示したK値は、あるD、ω、Mの条件の元では、ηが0.03〜0.15の範囲で、K値が極大となる。即ち、図2に示した様に、与えられた攪拌装置で最大の生産性が得られるのはη=0.078の時である。実際には、ηの上限は0.15とする。そうすると、生産性の低下は30%以内に収まり、高い生産性が維持できる。一方、ηの下限は、0.03とすれば、最大値に対する生産性低下は30%に収まるが、図2に示したように、この領域ではηが低めに外れると、急に生産性が低下するため、0.04以上に設定するのが妥当である。   Further, the K value shown in [Equation 4] has a maximum K value within a range of η from 0.03 to 0.15 under certain conditions of D, ω, and M. That is, as shown in FIG. 2, the maximum productivity can be obtained with a given stirring device when η = 0.078. Actually, the upper limit of η is 0.15. Then, the decline in productivity is within 30%, and high productivity can be maintained. On the other hand, if the lower limit of η is 0.03, the decrease in productivity with respect to the maximum value will be 30%. However, as shown in FIG. 2, if η deviates slightly in this region, the productivity suddenly decreases. Therefore, it is reasonable to set it to 0.04 or higher.

このように、攪拌時の諸条件と反応速度の関係を求めたので、装置の内径、長さ、回転速度から、スラグのフリーライム濃度を、ある初期値から目的の1%以下に低下させるのに必要な処理時間が推定できる。また、これにより、処理装置の生産性が推定できる。
更に、これを逆に利用すると、下記の[数8]式に示すように、ある必要処理能力に対し、装置の内径、長さ、回転速度などの仕様を決定すること、即ち、設備の設計が可能になる。

Figure 2007022817
Thus, since the relationship between the various conditions during stirring and the reaction rate was obtained, the free lime concentration of slag was reduced from a certain initial value to 1% or less of the target from the inner diameter, length, and rotation speed of the apparatus. Can be estimated. Thereby, the productivity of the processing apparatus can be estimated.
Furthermore, if this is used in reverse, as shown in the following [Equation 8], it is possible to determine the specifications such as the inner diameter, length and rotational speed of the apparatus for a certain required processing capacity, that is, design of the equipment. Is possible.
Figure 2007022817

一方、容器の内容積はπD2L/4であり、充填率ηとかさ密度ρを用いて、Wは[数9]式で表される。

Figure 2007022817
[数4]式から、処理時間tが、下記の[数5]式で求められる。
t=ln[(%f-CaO)i/(%f-CaO)f]/K
[数5]式に[数4]式を代入して整理すると、処理の生産性を表す[数10]の次式を得る。
Figure 2007022817
On the other hand, the internal volume of the container is πD 2 L / 4, and W is expressed by the formula [9] using the filling rate η and the bulk density ρ.
Figure 2007022817
From the formula [4], the processing time t is obtained by the following formula [5].
t = ln [(% f-CaO) i / (% f-CaO) f ] / K
Substituting [Equation 4] into [Equation 5] and rearranging results in the following [Equation 10] representing the productivity of processing.
Figure 2007022817

図2に示すように、[数10]式は、η=0.078で最大となる。また、実生産役備においては、設備投資効果を最大化するため、生産性最大を目指すのは当然のことであるが、図2から、MAX生産性の70%以上を確保するためには、[0027]に述べたように、η=0.03〜0.15とする。   As shown in FIG. 2, the [Equation 10] expression becomes maximum when η = 0.078. In addition, in actual production equipment, it is natural to aim for maximum productivity in order to maximize the effect of capital investment. From Fig. 2, in order to secure 70% or more of MAX productivity, As described in [0027], η = 0.03 to 0.15.

さらに、この考えを拡張し、連続式反応装置の条件を決定する際には、必要な処理生産性Q目標と処理前後のフリーライム濃度に対し、[数6]式を満たすような、内径D、長さL、回転数ωの組み合わせを求める。また、ηについては、上記理由から、0.03〜0.15とするのが良い。更に、Mに関しては、5〜20質量%確保すれば良い。これは、5質量%未満では、CO2の水を介した反応サイトへの拡散、即ちCO3 2-イオンによる拡散効果が不足するためであり、また、これ以下になると発塵が激しくなるためである。一方、20質量%を超える水分を与えると、質量が大きくなり、攪拌動力が余分に必要となるからである。
また、反応時間が長く、水分がこの範囲以下になる場合は、適宜、加えるか、蒸発を抑制するため、供給するCO2含有ガスに水蒸気を含ませても良い。
なお、攪拌容器としては、同一内径の円筒型に限定されるものではなく、その他円錐体であったり、ファンネル形のものであってもよく、容器内径Dは、内容積と長さから計算される実行径をDとして用いれば良い。

Figure 2007022817
Furthermore, when this idea is expanded and the conditions of the continuous reactor are determined, the inner diameter D that satisfies the equation [6] for the required processing productivity Q target and the free lime concentration before and after the processing is satisfied. The combination of the length L and the rotational speed ω is obtained. Also, η is preferably 0.03 to 0.15 for the above reason. Further, regarding M, 5 to 20% by mass may be secured. It is less than 5 wt%, the diffusion to the reaction site via a water CO 2, i.e. CO 3 are for insufficient diffusion effect by 2-ion, also this becomes the order dust becomes severe or less It is. On the other hand, if moisture exceeding 20% by mass is applied, the mass increases and extra stirring power is required.
Further, when the reaction time is long and the water content falls below this range, water vapor may be included in the supplied CO 2 -containing gas in order to appropriately add or suppress evaporation.
The stirring vessel is not limited to a cylindrical shape having the same inner diameter, and may be a cone or a funnel shape. The vessel inner diameter D is calculated from the internal volume and length. The effective diameter may be used as D.
Figure 2007022817

本発明によれば、少ない処理コストで生産性の高い製鋼スラグの安定化処理、即ち、海水に浸漬しても白濁が生じないスラグに安定化処理することが可能となる。また、CO2排出量を削減することができる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to stabilize the steelmaking slag with high productivity at low processing costs, that is, the slag that does not cause white turbidity even when immersed in seawater. In addition, CO 2 emissions can be reduced.

図1は本発明を実施するに好適な設備例の概念図である。
機械攪拌する容器は、回転するドラム1と内部に攪拌羽2を備えており、スラグ等の原料の投入口、およびガス供給設備3よりなる。原料のスラグをドラム1内に装入し、ドラム1を回転させ、機械攪拌を付与しつつ、CO2含有ガスを供給して処理を行う。所定時間の処理後、排出孔よりスラグを排出する。
また、本発明の処理方法は、例えば、入りロから原料を連続供給しつつ、排出孔より連続的に取り出す、といった連続処理プロセスであっても良い。機械攪拌の効果を有効にするため、攪拌羽2を設置する。攪拌羽2は必要に応じた枚数でよい。
FIG. 1 is a conceptual diagram of an example of equipment suitable for carrying out the present invention.
A container for mechanical stirring includes a rotating drum 1 and a stirring blade 2 inside, and is composed of an inlet for raw materials such as slag and a gas supply facility 3. The raw material slag is charged into the drum 1, the drum 1 is rotated, and processing is performed by supplying a CO 2 -containing gas while applying mechanical stirring. After processing for a predetermined time, slag is discharged from the discharge hole.
Moreover, the processing method of this invention may be a continuous processing process of taking out continuously from a discharge hole, for example, supplying a raw material continuously from an inlet. To make the effect of mechanical stirring effective, a stirring blade 2 is installed. The number of stirring blades 2 may be as required.

また、機械攪拌する容器として、ミキサー車を用いることもできる。
この場合は、製鉄所で発生した製鋼スラグをミキサー車の回転ドラム内に投入し、例えば石灰キルン排ガス等を供給しつつ機械攪拌を行い炭酸化反応を行わせしめる。その後、ミキサー車を現場へ直行させ使用に供すればよい。その他、現場へ直行した後、そこでCO2含有ガスを供給しつつ機械攪拌して炭酸化反応を行わせしめることも可能である。
A mixer truck can also be used as a container for mechanical stirring.
In this case, the steelmaking slag generated at the steel works is put into the rotating drum of the mixer truck, and the carbonation reaction is performed by mechanical stirring while supplying, for example, lime kiln exhaust gas. After that, the mixer truck can be used for direct use at the site. In addition, it is possible to carry out the carbonation reaction by mechanical stirring while supplying the CO 2 -containing gas there after going straight to the site.

転炉型反応容器を用いて溶銃の脱珪脱りん処理を行った。この際のスラグ組成および粒度分布は表1のものである。このスラグ3.2tを円筒型攪拌容器に充填し、9.6質量%の水分とともに、4rpmの回転数にて攪拌を付与しつつ、装入孔より、製鉄所内で発生する石灰焼成釜の排ガスを120Nm3/hの流量で供給した。CO2の含有濃度は14〜26モル%であった。8時間後、フリーライム濃度は1.0質量%を下回り、海水に投入しても白濁が生じなかった。
一方、同一スラグの5mmアンダーのみを用いた場合、ほぼ同じ処理条件で、フリーライム到達値は、2.1質量%となるに留まった(比較例1)。
The desiliconization and phosphorus removal treatment of the gun was performed using a converter reactor. The slag composition and particle size distribution at this time are those in Table 1. This slag 3.2t was filled into a cylindrical stirring vessel, and with 9.6% by mass of water, stirring was applied at a rotation speed of 4 rpm, and the exhaust gas from the lime firing kettle generated in the steel works was 120 Nm 3 from the charging hole. It was supplied at a flow rate of / h. The content concentration of CO 2 was 14 to 26 mol%. After 8 hours, the free lime concentration was less than 1.0% by mass, and no white turbidity occurred even when poured into seawater.
On the other hand, when only 5 mm under of the same slag was used, the free lime reached value was 2.1% by mass under almost the same processing conditions (Comparative Example 1).

Figure 2007022817
Figure 2007022817

溶銑の脱珪脱りんスラグをコンクリートミキサー車に装入し、処理した。充填率は0.095とし、4時間の処理後、初期8.1質量%のフリーライム濃度が0.88質量%と1.0質量%以下に低下した。
一方、充填率が0.3と過剰な条件では、他条件は同一であったが6.22質量%までしか低下しなかった(比較例2)。
Hot metal desiliconization dephosphorization slag was charged into a concrete mixer truck and processed. The filling rate was 0.095, and after 4 hours of treatment, the initial free lime concentration of 8.1% by mass decreased to 0.88% by mass and below 1.0% by mass.
On the other hand, when the filling rate was 0.3 and excessive, the other conditions were the same, but decreased only to 6.22% by mass (Comparative Example 2).

Figure 2007022817
Figure 2007022817

表3に示す条件で脱珪脱りんスラグを処理した。この場合、フリーライム濃度4.08質量%のスラグ2.3tを処理した。製鉄所内で発生する石灰焼成釜の排ガスを120Nm3/hの流量で供給した。CO2の含有濃度は17〜20モル%であった。処理後のフリーライム濃度が0.95質量%まで低下した。 The desiliconized and dephosphorized slag was processed under the conditions shown in Table 3. In this case, 2.3 t of slag having a free lime concentration of 4.08% by mass was treated. The exhaust gas from the calcining lime generated in the steel works was supplied at a flow rate of 120 Nm 3 / h. The content concentration of CO 2 was 17 to 20 mol%. The free lime concentration after the treatment decreased to 0.95% by mass.

Figure 2007022817
Figure 2007022817

表4に示す条件にて連続処理を実施した。内径3.1m、長さ36mの円筒型の反応装置を用い、21t/hの速度で試料を通過させた。反応器内には、燃焼排ガスを4000Nm3/h流した。ガス中のCO2濃度は18〜27モル%であった。入り口で4.18質量%あったフリーライム濃度が0.97質量%に低下した。
一方、比較例4では、内径2.1mとし、その他の条件は実施例4と同様の条件で処理を行ったが、フリーライム濃度は1.50質量%に低下するに留まり、目標の1.0質量%以下には到達しなかった。
Continuous treatment was carried out under the conditions shown in Table 4. Using a cylindrical reactor having an inner diameter of 3.1 m and a length of 36 m, the sample was passed at a speed of 21 t / h. The combustion exhaust gas flowed 4000 Nm 3 / h into the reactor. The CO 2 concentration in the gas was 18-27 mol%. The free lime concentration, which was 4.18% by mass at the entrance, decreased to 0.97% by mass.
On the other hand, in Comparative Example 4, the inner diameter was 2.1 m, and the other conditions were the same as in Example 4. However, the free lime concentration was reduced to 1.50% by mass, and the target was 1.0% by mass or less. Did not reach.

Figure 2007022817
Figure 2007022817

本願発明を実施するのに好適な装置を示す概観図である。It is a general-view figure which shows a suitable apparatus for implementing this invention. 処理生産性と充填率の関係を示すグラフである。It is a graph which shows the relationship between processing productivity and a filling rate. スラグの累積粒度分布を示すグラフである。It is a graph which shows the cumulative particle size distribution of slag.

符号の説明Explanation of symbols

1 回転ドラム
2 攪拌羽
3 ガス導入パイプ
1 Rotating drum 2 Stirring blade 3 Gas introduction pipe

Claims (4)

製鋼スラグ中に存在するCaO分を炭酸化するに際し、製鋼スラグに機械攪拌を付与しつつ、CO2含有ガスを供給して炭酸化反応を行わせしめる製鋼スラグの処理方法であって、製鋼スラグ中に10〜40mmの粒状物を含む状態で機械攪拌することを特徴とする製鋼スラグの処理方法。 A method for treating steelmaking slag in which carbonation is carried out by supplying a CO 2 -containing gas while giving mechanical stirring to the steelmaking slag when carbonating the CaO content present in the steelmaking slag. A method for treating steelmaking slag characterized by mechanically stirring in a state containing 10 to 40 mm of granular material. 攪拌容器を用いて機械攪拌を行いつつ製鋼スラグの炭酸化処理を行うに際し、攪拌容器の内容積に対し、スラグが占める空間充填率ηを0.03〜0.15とすることを特徴とする請求項1記載の製鋼スラグの処理方法。   The space filling factor η occupied by the slag is 0.03 to 0.15 with respect to the inner volume of the stirring vessel when performing carbonation treatment of the steelmaking slag while performing mechanical stirring using the stirring vessel. Of steelmaking slag. 攪拌容器を用いて機械攪拌を行い、[数1]〜[数5]を用いて処理時間を予測するようにした請求項1または2に記載の製鋼スラグの処理方法。
Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
(%f-CaO)i:処理前のフリーライム濃度(質量%)
(%f-CaO)f:処理後の目標フリーライム濃度(質量%)
t:処理時間(min)
η:空間充填率(-)
D:容器内径(m)
ω:容器回転数(rpm)
M:水分(質量%)
The processing method of the steelmaking slag of Claim 1 or 2 which performed mechanical stirring using the stirring container and predicted processing time using [Equation 1]-[Equation 5].
Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
Figure 2007022817
(% f-CaO) i: Free lime concentration before treatment (mass%)
(% f-CaO) f: Target free lime concentration after treatment (mass%)
t: Processing time (min)
η: Space filling rate (-)
D: Container inner diameter (m)
ω: Container rotation speed (rpm)
M: moisture (mass%)
攪拌容器を用いて機械攪拌を行い、目的の生産性Qが得られるように、容器の内径D、長さL、回転数ωを[数1]〜[数3]および[数6]に従って選定するようにした請求項1または2または3に記載の製鋼スラグの処理方法。
Figure 2007022817
Q目標:目標の生産性(t/h)
η:空間充填率(-)
D:容器内径(m)
L:容器長さ(m)
ω:容器回転数(rpm)
M:水分(質量%)
ρ:製鋼スラグの嵩密度(t/m3)
(%f-CaO)i:処理前のフリーライム濃度(質量%)
(%f-CaO)f:処理後の目標フリーライム濃度(質量%)
The inner diameter D, length L, and rotation speed ω of the container are selected according to [Equation 1] to [Equation 3] and [Equation 6] so that the desired productivity Q can be obtained by performing mechanical stirring using the stirring vessel. The method for processing steelmaking slag according to claim 1, 2, or 3.
Figure 2007022817
Q Goal: The goal of productivity (t / h)
η: Space filling rate (-)
D: Container inner diameter (m)
L: Container length (m)
ω: Container rotation speed (rpm)
M: moisture (mass%)
ρ: Bulk density of steelmaking slag (t / m 3 )
(% f-CaO) i : Free lime concentration before treatment (mass%)
(% f-CaO) f : Target free lime concentration after treatment (mass%)
JP2005203275A 2005-07-12 2005-07-12 Steelmaking slag treatment method Active JP4676829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203275A JP4676829B2 (en) 2005-07-12 2005-07-12 Steelmaking slag treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203275A JP4676829B2 (en) 2005-07-12 2005-07-12 Steelmaking slag treatment method

Publications (2)

Publication Number Publication Date
JP2007022817A true JP2007022817A (en) 2007-02-01
JP4676829B2 JP4676829B2 (en) 2011-04-27

Family

ID=37784078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203275A Active JP4676829B2 (en) 2005-07-12 2005-07-12 Steelmaking slag treatment method

Country Status (1)

Country Link
JP (1) JP4676829B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214149A (en) * 2007-03-06 2008-09-18 Nippon Steel Corp Method for stabilizing treatment of powdered steelmaking slag and stabilized steelmaking slag
WO2009144382A2 (en) 2008-05-30 2009-12-03 Helsinki University Of Technology Method of producing calcium carbonate from waste and byproducts
WO2009090226A3 (en) * 2008-01-15 2010-05-14 Recoval Belgium Process for preparing a foaming slag former, product and use thereof
NL2007190C2 (en) * 2011-07-28 2013-01-29 Etna B V METHOD AND APPARATUS FOR TREATMENT OF A MELTING SLIP
JP2014162716A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Concrete composition and method for producing the same
JP2014162714A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Aggregate and method for producing the same
JP2015205794A (en) * 2014-04-21 2015-11-19 新日鐵住金株式会社 Carbonation treatment method of steelmaking slag
CN113275360A (en) * 2021-05-06 2021-08-20 浙江特力再生资源股份有限公司 Method for recycling waste acid sludge resources generated in stainless steel industry
JPWO2022264797A1 (en) * 2021-06-14 2022-12-22
WO2024038386A1 (en) * 2022-08-17 2024-02-22 Carbon Upcycling Technologies Inc. A mechanochemically carbonated slag, methods of its production and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146745A (en) * 1984-12-18 1986-07-04 新日本製鐵株式会社 Manufacture of steel slag road bed material
JPS61256950A (en) * 1985-05-02 1986-11-14 大同特殊鋼株式会社 Treatment of slag
JPS62158145A (en) * 1985-12-27 1987-07-14 川崎重工業株式会社 Treatment for converter slag
JPH0416533A (en) * 1990-05-08 1992-01-21 Taihei Kogyo Co Ltd Production of nonswellable slag with steel making slag
JPH0692696A (en) * 1992-09-07 1994-04-05 Kawasaki Steel Corp Method for modifying slag of steel manufacture
JPH11292659A (en) * 1998-04-03 1999-10-26 Nippon Steel Corp Surface treatment of steelmaking slag
JP2005200234A (en) * 2004-01-13 2005-07-28 Nippon Steel Corp Method for treating steelmaking slag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146745A (en) * 1984-12-18 1986-07-04 新日本製鐵株式会社 Manufacture of steel slag road bed material
JPS61256950A (en) * 1985-05-02 1986-11-14 大同特殊鋼株式会社 Treatment of slag
JPS62158145A (en) * 1985-12-27 1987-07-14 川崎重工業株式会社 Treatment for converter slag
JPH0416533A (en) * 1990-05-08 1992-01-21 Taihei Kogyo Co Ltd Production of nonswellable slag with steel making slag
JPH0692696A (en) * 1992-09-07 1994-04-05 Kawasaki Steel Corp Method for modifying slag of steel manufacture
JPH11292659A (en) * 1998-04-03 1999-10-26 Nippon Steel Corp Surface treatment of steelmaking slag
JP2005200234A (en) * 2004-01-13 2005-07-28 Nippon Steel Corp Method for treating steelmaking slag

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214149A (en) * 2007-03-06 2008-09-18 Nippon Steel Corp Method for stabilizing treatment of powdered steelmaking slag and stabilized steelmaking slag
WO2009090226A3 (en) * 2008-01-15 2010-05-14 Recoval Belgium Process for preparing a foaming slag former, product and use thereof
US8470067B2 (en) 2008-01-15 2013-06-25 Recoval Belgium Process for preparing a foaming slag former, product and use thereof
WO2009144382A2 (en) 2008-05-30 2009-12-03 Helsinki University Of Technology Method of producing calcium carbonate from waste and byproducts
NL2007190C2 (en) * 2011-07-28 2013-01-29 Etna B V METHOD AND APPARATUS FOR TREATMENT OF A MELTING SLIP
WO2013015690A1 (en) * 2011-07-28 2013-01-31 Etna B.V. Method and device for treating a molten slag
JP2014162716A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Concrete composition and method for producing the same
JP2014162714A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Aggregate and method for producing the same
JP2015205794A (en) * 2014-04-21 2015-11-19 新日鐵住金株式会社 Carbonation treatment method of steelmaking slag
CN113275360A (en) * 2021-05-06 2021-08-20 浙江特力再生资源股份有限公司 Method for recycling waste acid sludge resources generated in stainless steel industry
JPWO2022264797A1 (en) * 2021-06-14 2022-12-22
WO2022264797A1 (en) * 2021-06-14 2022-12-22 Jfeスチール株式会社 Method for estimating carbonation rate of steelmaking slag and method for carbonation treatment of steelmaking slag
JP7494922B2 (en) 2021-06-14 2024-06-04 Jfeスチール株式会社 Method for estimating carbonation rate of steelmaking slag and method for carbonation treatment of steelmaking slag
WO2024038386A1 (en) * 2022-08-17 2024-02-22 Carbon Upcycling Technologies Inc. A mechanochemically carbonated slag, methods of its production and uses thereof

Also Published As

Publication number Publication date
JP4676829B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4676829B2 (en) Steelmaking slag treatment method
JP4328215B2 (en) Steelmaking slag treatment method
JP3828897B2 (en) Method for stabilizing steelmaking slag and stabilized steelmaking slag
JP6299375B2 (en) Carbonation treatment method for steelmaking slag
JP5432809B2 (en) Carbonation treatment method and apparatus for steel slag powder
JP4608382B2 (en) Slag granulation method and granulated slag
TW202012643A (en) Method for recovering calcium from steelmaking slag
Huang et al. Accelerated carbonation of steel slag: A review of methods, mechanisms and influencing factors
JP3828895B2 (en) Method for stabilizing steelmaking slag and stabilized steelmaking slag
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP2015160920A (en) Acid soil conditioner
JP4362494B2 (en) Granulation method of powdered slag
JP4808655B2 (en) Method of stabilizing powdered steel slag
JP6260115B2 (en) Carbonation treatment method for steelmaking slag
JP6413451B2 (en) Carbonation treatment method for steelmaking slag
JP4994891B2 (en) Method for stabilizing powdered steel slag and stabilized steel slag
He et al. Wet grinding carbonation technique: Achieving rapid carbon mineralization of concrete slurry waste under low CO2 flow rate
JP2008163391A (en) Method for treating reducing slag
JP2000350977A (en) Method for solidifying granular steel-making slag
JP6758107B2 (en) How to handle slag
JP2000350976A (en) Method for solidifying granular steel-making slag
JP4645195B2 (en) Method for producing carbonated solid
JP2009030103A (en) Slag-making material for deoxidation and producing method therefor
JP2011051818A (en) Method for modifying material
JP2023096668A (en) Method for manufacturing carbon dioxide gas fixation concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4676829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350