JP4808655B2 - Method of stabilizing powdered steel slag - Google Patents
Method of stabilizing powdered steel slag Download PDFInfo
- Publication number
- JP4808655B2 JP4808655B2 JP2007055804A JP2007055804A JP4808655B2 JP 4808655 B2 JP4808655 B2 JP 4808655B2 JP 2007055804 A JP2007055804 A JP 2007055804A JP 2007055804 A JP2007055804 A JP 2007055804A JP 4808655 B2 JP4808655 B2 JP 4808655B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- carbon dioxide
- less
- mass
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims description 222
- 238000000034 method Methods 0.000 title claims description 58
- 229910000831 Steel Inorganic materials 0.000 title claims description 31
- 239000010959 steel Substances 0.000 title claims description 31
- 230000000087 stabilizing effect Effects 0.000 title claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 154
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 77
- 239000001569 carbon dioxide Substances 0.000 claims description 77
- 239000002245 particle Substances 0.000 claims description 63
- 238000009628 steelmaking Methods 0.000 claims description 33
- 238000012545 processing Methods 0.000 claims description 11
- 230000006641 stabilisation Effects 0.000 claims description 10
- 238000011105 stabilization Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 description 61
- 238000006243 chemical reaction Methods 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 238000002474 experimental method Methods 0.000 description 14
- 230000032683 aging Effects 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 238000006703 hydration reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
- C04B5/06—Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00215—Mortar or concrete mixtures defined by their oxide composition
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Furnace Details (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
本発明は、製鉄所の製鋼工程などで発生する普通鋼の溶銑予備処理スラグまたは二次精錬スラグなどにおいて、粉状スラグを多量に含有することから、通常の蒸気エージング処理などが困難で、なおかつ長期間にわたって膨張挙動を示すスラグの低膨張化をはかる安定化処理方法に関する。
Since the present invention contains a large amount of powdered slag in the hot metal pretreatment slag or secondary refining slag of ordinary steel generated in the steelmaking process of steelworks, etc., it is difficult to perform normal steam aging treatment, etc. It relates to the stabilization process how to achieve low expansion of slag showing the expansion behavior over a long period of time.
製鉄所などで、普通鋼の転炉や溶銑予備処理炉あるいは二次精錬炉といった各種精錬炉から発生する製鋼スラグは、その精錬処理中に完全に溶融しきれない成分あるいは精錬後冷却時に晶出する成分を含有する。これらの成分の中で、CaOやMgOなどの水和性成分(以降、遊離CaO、遊離MgOと称する)が水分と接触して水和する際に、体積が約2倍に増加することに起因するスラグの膨張現象を生じさせる。 Steelmaking slag generated from various smelting furnaces such as ordinary steel converters, hot metal pretreatment furnaces, or secondary smelting furnaces at steelworks, etc., is a component that cannot be completely melted during the smelting process, or crystallizes during cooling after smelting. Contains ingredients to Among these components, when a hydratable component such as CaO or MgO (hereinafter referred to as free CaO or free MgO) hydrates in contact with moisture, the volume increases approximately twice. This causes the slag to expand.
これらの製鋼スラグのうち、一般的に粒径が1mm以下の粉状のスラグは、塊状のスラグに比べて遊離CaOや遊離MgOを多く含んでおり、その比表面積も大きいことから、上述の水和反応がより進行しやすく、その結果として、激しい膨張現象を生じ易い。 Among these steelmaking slags, powdery slag having a particle size of 1 mm or less generally contains more free CaO and free MgO than the bulk slag, and has a large specific surface area. The sum reaction is more likely to proceed, and as a result, a severe expansion phenomenon is likely to occur.
このような製鋼スラグの膨張現象を抑えるために、その原因である遊離CaOや遊離MgOを減少させる安定化処理方法として、大気雰囲気下に数ヶ月から数年、暴露させて十分に水和反応を進行させる「大気エージング」処理や、大気圧下または加圧下で強制的に水蒸気と反応させて水和反応を促進させる「蒸気エージング」処理や、「加圧エージング」処理が広く知られている。 In order to suppress the expansion phenomenon of such steelmaking slag, as a stabilization treatment method to reduce the free CaO and free MgO that are the cause, it is exposed to the atmosphere for several months to several years and fully hydrated. An “atmospheric aging” process that proceeds, a “steam aging” process that promotes a hydration reaction by forcibly reacting with water vapor at atmospheric pressure or under pressure, and a “pressurized aging” process are widely known.
しかしながら、「大気エージング」処理は大量に発生する製鋼スラグを処理するために広大な処理場面積を必要とすると同時に、粉状のスラグは粉塵等の問題が発生し処理が難しいこと、さらに遊離CaOに比べると一般的に水和反応の遅い、遊離MgOの水和処理を十分には行えない、といった問題点がある。 However, the “atmospheric aging” process requires a large processing area for processing a large amount of steelmaking slag, and at the same time, powdered slag is difficult to process due to problems such as dust, and free CaO. In general, there is a problem that the hydration reaction is generally slow, and the free MgO cannot be sufficiently hydrated.
「蒸気エージング」処理は、「大気エージング」処理に比べれば、処理の日数が数日間から十数日間と大幅に短縮できるものの、その処理には多量の水蒸気を要し処理コストが高くなる欠点がある。また、粉状スラグはその充填度合いによっては水蒸気が透過しにくくなるために、装置内において均一な処理を施すことが難しく、かつ遊離MgOの水和反応が遅いことともあいまって、塊状スラグに比べ安定な処理を施すことは容易ではない。さらに「加圧エージング」処理は、専用の容器が必要なため処理設備コストが高く、その設備管理も難しく、多量のスラグ、とりわけ粉状スラグの処理には不向きであるという欠点を有する。 Compared with the “atmospheric aging” process, the “steam aging” process can greatly reduce the number of processing days from several days to a few dozen days, but the process requires a large amount of water vapor, which increases the processing cost. is there. In addition, the powdered slag becomes difficult to permeate water vapor depending on the degree of filling, and it is difficult to perform uniform treatment in the apparatus, and the hydration reaction of free MgO is slow, and compared with the bulk slag. It is not easy to perform a stable treatment. Furthermore, the “pressurized aging” treatment requires a dedicated container, so that the cost of the treatment equipment is high, the equipment management is difficult, and it is not suitable for the treatment of a large amount of slag, especially powdery slag.
これらの一般的な処理法の欠点を解消し、製鋼スラグの膨張を抑制させる方法として、例えば、特許文献1に開示された方法や、特許文献2に開示された方法が示されている。 As a method for eliminating the disadvantages of these general treatment methods and suppressing the expansion of steelmaking slag, for example, the method disclosed in Patent Document 1 and the method disclosed in Patent Document 2 are shown.
特許文献1による方法は、粒径5mm以下の粒子が50質量%以上占める粉粒状製鋼スラグと石膏を主原料とする混合物を成形し、80〜120℃の温水又はこれらと二酸化炭素の存在下でオートクレーブ養生して固化させる方法である。この方法は遊離CaOの水和化、炭酸化には非常に有効な方法であるが、固形物を形成させるために、処理後に粉粒状の製鋼スラグを得ることが難しく、また処理が煩雑であり、多量のスラグの処理には適さないという欠点がある。 The method according to Patent Document 1 forms a mixture mainly composed of granular steel slag and gypsum in which particles having a particle size of 5 mm or less occupy 50% by mass or more, and in the presence of hot water at 80 to 120 ° C. or these and carbon dioxide. It is a method of curing by autoclave curing. This method is a very effective method for hydration and carbonation of free CaO. However, it is difficult to obtain a granular steelmaking slag after processing in order to form a solid, and the processing is complicated. There is a disadvantage that it is not suitable for processing a large amount of slag.
特許文献2による方法は、転炉スラグと高炉スラグまたは脱硫スラグとを同一受滓鍋に受滓した溶融状態または半溶融状態のスラグを、ピットまたはヤードに放流し、その直後、該スラグを耕転するものである。該方法は転炉スラグに、溶融状態または半溶融状態の塩基度の低いスラグを混合することで遊離CaOの生成自体を抑える方法であるが、製造後のスラグは塊状となり、粉状のスラグを得ることはできないという欠点がある。 In the method according to Patent Document 2, molten or semi-molten slag in which converter slag and blast furnace slag or desulfurized slag are received in the same receiving pan is discharged into a pit or yard, and immediately after that, the slag is cultivated. To roll. This method is a method of suppressing the formation of free CaO itself by mixing slag with low basicity in the molten state or semi-molten state into the converter slag, but the slag after production becomes a lump and powdery slag is removed. There is a disadvantage that it cannot be obtained.
一方、炭酸ガスを供給して製鋼スラグを安定させる方法として、例えば、特許文献3に開示された方法や、特許文献4に開示された方法のように、炭酸ガスを流すことにより、遊離CaOや遊離MgOをCaCO3やMgCO3に変化させ、安定化する方法が示されている。 On the other hand, as a method of stabilizing the steelmaking slag by supplying carbon dioxide, for example, free CaO or the like by flowing carbon dioxide like the method disclosed in Patent Document 3 or the method disclosed in Patent Document 4 A method of stabilizing by changing free MgO to CaCO 3 or MgCO 3 is shown.
特許文献3に開示された方法は、粒径40mm以下の塊状の製鋼スラグを先ず大気圧下において水蒸気雰囲気下でエージング処理して膨張性を安定化させた後、水蒸気と炭酸ガスの混合雰囲気下で1時間以上保持することで炭酸化させる方法である。 In the method disclosed in Patent Document 3, a massive steelmaking slag having a particle size of 40 mm or less is first aged in a steam atmosphere at atmospheric pressure to stabilize the expansibility, and then in a mixed atmosphere of steam and carbon dioxide gas. And carbonating by holding for 1 hour or longer.
特許文献4に開示された方法は、大気雰囲気下、加圧雰囲気下または水蒸気雰囲気下でエージング処理が施された製鋼スラグに、自由水が存在し始める水分値未満で、かつ、該水分値よりも10質量%少ない値以上の範囲になるように添加する水分量を調整した後に、炭酸ガスを含有する相対湿度が75〜100%のガスを流す方法である。 The method disclosed in Patent Document 4 is less than the moisture value at which free water begins to exist in the steelmaking slag that has been subjected to the aging treatment in an air atmosphere, a pressurized atmosphere, or a water vapor atmosphere. In this method, after adjusting the amount of water added so as to be in a range of 10% by mass or less, a gas containing carbon dioxide gas and having a relative humidity of 75 to 100% is flowed.
これらに記載された方法では、スラグに含有された遊離CaOや遊離MgOは減少するが、遊離CaOに比べて遊離MgOの炭酸化反応には長時間を要することから、この遊離MgOの水和に起因する長期膨張現象を充分に抑えるために、炭酸ガスを用いた処理を行う前に予備的に数日にわたるエージング処理を必要としており、その工程は多段かつ長時間となり、多大な処理コストを要する。 In the methods described in these, free CaO and free MgO contained in the slag are reduced, but since the carbonation reaction of free MgO requires a longer time than free CaO, this free MgO is hydrated. In order to sufficiently suppress the long-term expansion phenomenon caused by it, an aging treatment for several days is required in advance before the treatment with carbon dioxide gas, and the process is multistage and takes a long time and requires a large treatment cost. .
以上に述べた特許文献以外にも、種々の炭酸ガスを用いたスラグの安定化処理方法が開示されているが、いずれもスラグの固結の促進をはかる方法や、スラグから水へのアルカリ成分の溶出によるpH上昇を抑える方法として用いられているだけであり、安定してスラグの膨張抑制化をはかる方法は開示されていない。 In addition to the above-mentioned patent documents, various methods for stabilizing slag using carbon dioxide gas have been disclosed, both of which are methods for promoting the consolidation of slag and alkali components from slag to water. It is only used as a method for suppressing the increase in pH due to elution of slag, and a method for stably suppressing the expansion of slag is not disclosed.
本発明の目的は、従来のエージング処理法では困難であった粉状スラグを多量に含有する普通鋼製鋼スラグ(以降、単に「粉状製鋼スラグ」と記載する場合がある。)について、粉状の製鋼スラグが比較的多くの遊離CaOや遊離MgOを含むこと、また炭酸ガスによる炭酸化物の生成反応は遊離CaOや遊離MgOの低減に有効であることに着目し、安定して低膨張化をはかる処理方法を得ることにある。 The object of the present invention is to make a powdery slag of ordinary steel made of a large amount of powdered slag, which has been difficult with the conventional aging treatment method (hereinafter simply referred to as “powdered steel slag”). Focusing on the fact that the steelmaking slag contains a relatively large amount of free CaO and free MgO, and that the formation reaction of carbonates by carbon dioxide gas is effective in reducing free CaO and free MgO, stable and low expansion is achieved. The purpose is to obtain a measuring method.
本発明者らは、粉状製鋼スラグの低膨張化をはかる炭酸化処理方法に及ぼす各種要因の把握に関して、研究室レベルでの実験や机上検討を経て、工業的に安定処理を行うための現場での実機レベルでの実験を重ね、以下の発明にて上記の課題が解決されるとの知見を得た。 The inventors of the present invention have conducted a laboratory-level experiment and desktop study on grasping various factors affecting the carbonation treatment method for reducing the expansion of powdered steelmaking slag. Through experiments at the actual machine level, the inventors have obtained knowledge that the above-mentioned problems can be solved by the following invention.
第1の発明に係る粉状製鋼スラグの安定化処理方法は、T−Feを2.0質量%以上、かつMgOを4.0質量%以上含み、粒径分布として粒径1mm以下が30質量%以上である粉状製鋼スラグについて、該スラグの含有水分量を8質量%以上20質量%以下に調整し、炭酸ガスの純分量としてスラグ1トン当たりに20Nm3/hr以上100Nm3/hr以下の炭酸ガス含有ガスを供給する粉状製鋼スラグの安定化処理方法であって、該炭酸ガス含有ガスの供給量をスラグ1トン当たり100Nm3/hr以下とし、粒径1mm以下のスラグの含有率に応じて、スラグ1トン当たりに供給する炭酸ガスの純分量を調整することを特徴としている。
The stabilization method of powdered steel slag according to the first invention includes T-Fe 2.0 mass% or more and MgO 4.0 mass% or more, and the particle size distribution is 30 mass with a particle size of 1 mm or less. About% or more in a powdery steel-making slag, the water content of the slag was adjusted to 20 mass% or less 8 mass% or more, 20 Nm 3 / hr or more 100 Nm 3 / hr or less in slag per ton of the net amount of carbon dioxide a stabilization processing method for supplying powdery steel slag the carbon dioxide gas-containing gas, the supply amount of the carbon dioxide-containing gas is less slag per ton of 100 Nm 3 / hr, containing a particle diameter less than 1mm slag It is characterized by adjusting the pure amount of carbon dioxide supplied per ton of slag according to the rate .
第2の発明に係る粉状製鋼スラグの安定化処理方法は、第1の発明において、相対湿度が75%以上100%以下の炭酸ガス含有ガスを供給することを特徴としている。
The method for stabilizing a powdered steel slag according to the second invention is characterized in that, in the first invention, a carbon dioxide-containing gas having a relative humidity of 75% or more and 100% or less is supplied.
本発明の粉状製鋼スラグの安定化処理方法によれば、粉状製鋼スラグの低膨張化が、従来のエージング処理法のように長い期間を必要とせず、常温の状態、かつ短時間の処理で安定して可能になる。また、処理に用いる炭酸ガス含有ガスは工場等から排出されるガス中の炭酸ガスを用いることができるので、工場から排出される温室効果ガスの排出抑制に貢献するといった、地球環境的な副次効果もある。 According to the method for stabilizing pulverized steelmaking slag of the present invention, the low expansion of the pulverized steelmaking slag does not require a long period of time as in the conventional aging treatment method, and the treatment is performed at a room temperature and in a short time. It becomes possible stably. In addition, carbon dioxide contained in gas discharged from factories, etc. can be used as the carbon dioxide-containing gas used for processing, which contributes to the suppression of greenhouse gas emissions from factories. There is also an effect.
この安定化された粉状製鋼スラグは、低膨張であると共に、遊離CaOや遊離MgOが溶出して地下水や河川、海水のpHを上昇させる問題を生じることもなく、粉状の特性を活かして自然砂の代替あるいは砕砂等の土木用資材としての使用が可能になる。また、他の骨材と混合使用することで、各種骨材や路盤材にも使用することが可能になる。 This stabilized powdery steelmaking slag has low expansion and does not cause a problem that free CaO and free MgO are eluted to raise the pH of groundwater, rivers and seawater. It can be used as a substitute for natural sand or as a civil engineering material such as crushed sand. Moreover, it becomes possible to use it also for various aggregates and roadbed materials by mixing and using with other aggregates.
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。 Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
本発明者は、粉状製鋼スラグの低膨張化をはかる効率的な安定化処理方法を開発するに当たり、炭酸化の反応速度に及ぼす種々要因の影響把握および炭酸化反応量と体積膨張率の関係などを明確にするために、製鉄所の製鋼工程において溶銑予備処理炉から採取したままの粉状製鋼スラグ約5kgを用いて、種々の条件下で炭酸化処理の基礎実験を行うとともに、炭酸化処理後スラグについて体積膨張率の測定も行った。 In developing an efficient stabilization treatment method for reducing the expansion of powdered steel slag, the present inventor grasped the influence of various factors on the reaction rate of carbonation and the relationship between the carbonation reaction amount and the volume expansion coefficient. In order to clarify the above, we conducted basic experiments on carbonation treatment under various conditions using about 5 kg of powdered steelmaking slag collected from the hot metal pretreatment furnace in the steelmaking process of steelworks, and carbonation. The volume expansion coefficient of the slag after treatment was also measured.
ここで、体積膨張率の測定条件については、JIS A5015 附属書2で規定されている「道路用鉄鋼スラグの水浸膨張試験方法」に準じながら、唯一、供試体である炭酸化処理後スラグの養生方法については、遊離MgOに起因する長期間の膨張量をより的確に把握するために、「80℃温水中で6時間保持を10日間繰り返す」という前記のJIS規定の条件では必ずしも充分ではないため、これよりも一段と厳しい、「110℃の水蒸気飽和中に処理後スラグを10日間、連続保持する」という条件を適用し、この厳しい条件での養生処理前後のスラグ体積の比率を、本願発明で規定している体積膨張率と定義する。 Here, the measurement conditions of the volume expansion rate are the same as those in the test sample carbonation-treated slag, according to “Water immersion expansion test method for road steel slag” defined in JIS A5015 Annex 2. As for the curing method, in order to more accurately grasp the long-term expansion due to free MgO, the above-mentioned JIS stipulated condition of “repeating holding for 6 hours in 80 ° C. warm water for 10 days” is not necessarily sufficient. Therefore, it is more severe than this, applying the condition of “continuously holding slag after treatment for 10 days during steam saturation at 110 ° C.”, and the ratio of slag volume before and after curing treatment under this strict condition It is defined as the volume expansion coefficient specified in.
先ず、製鋼スラグの各粒径毎の炭酸化反応挙動を調査した。上記の溶銑予備処理炉から採取し、採取後の成分ならびに粒度分布を測定した製鋼スラグを、JIS Z 8801に規定する網篩いの呼び寸法で、26.5mm、4.75mm、2.36mmおよび1.18mmの各篩い(以下、便宜的に、30mm、5mm、2mmおよび1mmの篩いと記載する)で篩い分けを行い、各粒径毎に炭酸化反応を行わせ、反応の進行に伴う質量変化を測定した。このスラグの平均組成は表1に示す通りであり、また採取直後の粒径1mm以下のスラグ含有率は約40質量%であった。 First, the carbonation reaction behavior for each particle size of steelmaking slag was investigated. The steelmaking slag collected from the hot metal pretreatment furnace and measured for the components and the particle size distribution after the collection is a nominal size of a screen sieve specified in JIS Z8801, 26.5 mm, 4.75 mm, 2.36 mm and 1 .Sieving with 18 mm sieves (hereinafter referred to as 30 mm, 5 mm, 2 mm, and 1 mm sieves for convenience), causing carbonation reaction for each particle size, mass change with progress of reaction Was measured. The average composition of this slag is as shown in Table 1, and the slag content with a particle size of 1 mm or less immediately after collection was about 40% by mass.
ここで炭酸化反応の処理条件としては、各スラグともその含有水分量を約15質量%に調整し、スラグに供給する炭酸ガス含有ガスとしては、研究室レベルの基礎実験であることから市販の純炭酸ガス(純度99容量%以上)を用い、これを事前に水中へバブリングすることで相対湿度を100%に調整した上で、スラグ1トン当たり50Nm3/hrの流量で供給しながら10時間保持した。また、任意時間毎にスラグの質量変化量を測定し、実験開始時のスラグ量で割り戻した値を、炭酸化反応に伴う質量変化率として求めた。 Here, as the carbonation reaction processing conditions, the water content of each slag is adjusted to about 15% by mass, and the carbon dioxide-containing gas supplied to the slag is a laboratory-level basic experiment, so it is commercially available. Using pure carbon dioxide gas (purity 99% by volume or more) and bubbling it into water in advance to adjust the relative humidity to 100%, supplying it at a flow rate of 50 Nm 3 / hr per ton of slag for 10 hours Retained. Moreover, the mass change amount of slag was measured every arbitrary time, and the value divided by the slag amount at the start of the experiment was determined as the mass change rate accompanying the carbonation reaction.
図1に各粒径毎に測定した質量変化率の経時変化を示す。この図1から、粒径が細かいほど質量変化率が大きく、早期に炭酸化反応が終了することが確認された。そこで、この反応後の各粒径毎のスラグについて、前述の110℃の水蒸気飽和中にて10日間、連続保持する方法により体積膨張率を測定したところ、粒径1mm以下は0.1容量%、1mm超2mm以下は1.2容量%、2mm超5mm以下は2.0容量%、5mm超〜30mm以下は3.0容量%であった。なお、炭酸化処理前のスラグについて測定した体積膨張率は、粒径で殆ど差がなく、5〜12容量%の範囲にあった。 FIG. 1 shows the change over time of the mass change rate measured for each particle size. From FIG. 1, it was confirmed that the smaller the particle size, the larger the mass change rate and the earlier the carbonation reaction was completed. Therefore, when the volume expansion coefficient of the slag for each particle size after the reaction was measured by a method of continuously holding for 10 days in the water vapor saturation at 110 ° C., the particle size of 1 mm or less was 0.1% by volume. More than 1 mm and 2 mm or less were 1.2 volume%, more than 2 mm and 5 mm or less were 2.0 volume%, and more than 5 mm to 30 mm or less were 3.0 volume%. In addition, the volume expansion coefficient measured about the slag before a carbonation process had the difference in a particle size, and was in the range of 5-12 volume%.
実験後のスラグ断面のEPMA(Electron Probe Micro−Analysis)による炭酸化状態の調査を行ったところ、粒径1mm以下では粒中心までCaOならびにMgO成分の炭酸化が進んでいるが、粒径が大きくなるに従い、粒の中心部に未だ炭酸化されていない状態のCaOおよびMgOの相が存在することが確認された。このことから、炭酸化の反応は粒の表面から内部に向かって進行し、粒径が大きいほど内部まで充分には炭酸化が進みにくくなっていることが推定された。 When the carbonation state of the slag cross section after the experiment was investigated by EPMA (Electron Probe Micro-Analysis), when the particle size was 1 mm or less, the carbonation of CaO and MgO components progressed to the center of the particle, but the particle size was large. Accordingly, it was confirmed that a phase of CaO and MgO that was not yet carbonated was present in the center of the grain. From this, it was estimated that the carbonation reaction progressed from the surface of the grain toward the inside, and the larger the particle diameter, the more difficult the carbonation progressed to the inside.
すなわち、粒径が1mm以下の粉状製鋼スラグは、上述の水和反応がより進行しやすく、激しい膨張現象を生じ易いものの、炭酸化処理を行った際に炭酸化反応が進み易いという特性を有していることを新たに見出した。 That is, the powdered steel slag having a particle size of 1 mm or less has a characteristic that the above-mentioned hydration reaction is more likely to proceed and a severe expansion phenomenon is likely to occur, but the carbonation reaction is likely to proceed when the carbonation treatment is performed. Newly found that it has.
次に、上記の実験により得られた新たな知見に基いて、粒径1mm以下のスラグが、炭酸化反応に大きく寄与していることに着目し、粒径1mm以下のスラグの含有率が、炭酸化反応後のスラグの体積膨張率におよぼす影響について調査した。上記の表1に示したスラグをあらかじめ1mmの篩いで篩うことによって準備した粒径1mm以下のスラグを、篩い前のスラグに必要量、混合することによって、粒径1mm以下のスラグの含有率が異なる粉状の製鋼スラグを準備し、その含有水分量を種々の条件で調整した後、相対湿度を75〜100%に調整した市販の純炭酸ガスを、スラグ1トン当たり50Nm3/Hrの流量で供給しながら10時間保持して炭酸化処理を行った。また、炭酸化処理後スラグの体積膨張率は、前述と同様の110℃の水蒸気飽和中にて10日間、連続保持する従来方法よりも厳しい条件にて測定した。 Next, based on the new knowledge obtained by the above experiment, paying attention to the fact that slag having a particle size of 1 mm or less greatly contributes to the carbonation reaction, the content of slag having a particle size of 1 mm or less is The effect on the volume expansion rate of slag after carbonation was investigated. Content of slag having a particle size of 1 mm or less by mixing a required amount of slag having a particle size of 1 mm or less prepared by sieving the slag shown in Table 1 with a 1 mm sieve beforehand. Prepared powdery steelmaking slag, and after adjusting the water content under various conditions, a commercially pure carbon dioxide gas whose relative humidity was adjusted to 75 to 100% was adjusted to 50 Nm 3 / Hr per ton of slag. While being supplied at a flow rate, the carbonation treatment was performed by holding for 10 hours. Moreover, the volume expansion coefficient of the slag after carbonation treatment was measured under conditions more severe than those of the conventional method of continuously holding for 10 days in water vapor saturation at 110 ° C. as described above.
図2に、粒径1mm以下のスラグ含有率毎に、スラグの含有水分量と体積膨張率の関係を示す。この図2から、今回の実験結果の範囲内であれば粒径1mm以下のスラグの含有率が高いほど体積膨張率が低いこと、および体積膨張率を低位にするには、その含有水分量に適正値が存在することが確認され、土木用資材として用いることができるJIS A5015「道路用鉄鋼スラグ」で規定される水浸膨張率1.5容量%以下だけではなく、それよりも一段と厳しい、110℃の水蒸気飽和中にて10日間、連続保持する条件下でも安定に体積膨張率1.5容量%以下を確保するには、粒径1mm以下のスラグが30質量%以上で、なおかつ、その含有水分量を8質量%以上、20質量%以下にすればよいことが判明した。なお、本発明において、スラグの含有水分量の測定は、JIS A1203「土の含水比試験方法」に準拠して行っている。 FIG. 2 shows the relationship between the moisture content of the slag and the volume expansion coefficient for each slag content having a particle diameter of 1 mm or less. From FIG. 2, if the content of slag having a particle diameter of 1 mm or less is higher within the range of the experimental results of this time, the volume expansion coefficient is lower, and in order to lower the volume expansion coefficient, Not only the water expansion rate of 1.5% by volume or less as defined in JIS A5015 “steel slag for roads”, which can be used as a civil engineering material, is confirmed to have an appropriate value. In order to ensure a volume expansion coefficient of 1.5% by volume or less stably even under a condition of continuously maintaining for 10 days in water vapor saturation at 110 ° C., the slag having a particle size of 1 mm or less is 30% by mass or more, and It has been found that the water content should be 8% by mass or more and 20% by mass or less. In the present invention, the moisture content of the slag is measured in accordance with JIS A1203 “Soil moisture content test method”.
粒径1mm以下のスラグ含有率が30質量%未満では、粒の中心部に未炭酸化のCaOおよびMgO相が存在するスラグの比率が高くなるために、炭酸化反応後の体積膨張率が高くなってしまう。 When the slag content is less than 30% by mass with a particle size of 1 mm or less, the ratio of slag in which uncarbonated CaO and MgO phases are present in the center of the particle is high, so the volume expansion coefficient after the carbonation reaction is high. turn into.
また、水分量に関しては、従来技術にも記載されているように、ある程度の水分量が存在することで円滑な炭酸化反応が進行するが、本発明の範囲である粒径1mm以下のスラグを30質量%以上含有するスラグの場合には、含有水分量を8質量%以上、20質量%以下に制御することが低膨張化をはかる適正な条件である知見を得た。すなわち、水分量が8質量%未満の場合には、炭酸化反応に伴う発熱によってスラグが乾燥傾向となり炭酸化反応が円滑に進行せず、また20質量%超では、逆に水分が過剰となって炭酸ガス含有ガスが均一に供給されにくいと考えられるためである。なお、このスラグの水分量を調整するために添加する水については、当初から炭酸ガスが溶解した、いわゆる炭酸水を用いても一向に構わない。ちなみに、水分の添加方法としては、例えばスプレー等により実施することができる。 As for the moisture content, as described in the prior art, a smooth carbonation reaction proceeds due to the presence of a certain amount of moisture, but slag having a particle size of 1 mm or less, which is within the scope of the present invention, is used. In the case of slag containing 30% by mass or more, it was found that controlling the moisture content to 8% by mass or more and 20% by mass or less is an appropriate condition for reducing the expansion. That is, when the amount of water is less than 8% by mass, the slag tends to dry due to the heat generated by the carbonation reaction, and the carbonation reaction does not proceed smoothly. This is because it is considered that the carbon dioxide-containing gas is difficult to be supplied uniformly. In addition, about the water added in order to adjust the moisture content of this slag, even if it uses so-called carbonated water in which the carbon dioxide gas melt | dissolved from the beginning, it does not care. Incidentally, as a method for adding moisture, for example, spraying or the like can be performed.
また、炭酸化反応時にスラグを適正な湿潤状態に保持するためには相対湿度の高い炭酸ガスを供給することが有効であり、相対湿度が75%以上100%以下のガスを供給することで十分に炭酸化反応が行えることも確認された。ここで相対湿度が75%未満のガスの場合には、ガスからスラグへ十分な水分の補給が行いにくくなるため、75%以上とすることが好ましい。一方、相対湿度は高いほど好ましいため、上限は100%でも良い。 In order to keep the slag in a proper wet state during the carbonation reaction, it is effective to supply carbon dioxide gas having a high relative humidity. It is sufficient to supply a gas having a relative humidity of 75% or more and 100% or less. It was also confirmed that a carbonation reaction can be performed. Here, when the gas has a relative humidity of less than 75%, it is difficult to supply sufficient moisture from the gas to the slag. On the other hand, the higher the relative humidity, the better, so the upper limit may be 100%.
3番目に、スラグ1トン当たりの炭酸ガス純分量の供給量と炭酸化反応後スラグの体積膨張率との関係について調査した。表1に示した成分で、粒径1mm以下のスラグの含有率を40質量%、含有水分量を約15質量%に調整した粉状製鋼スラグを用い、炭酸ガス含有ガスとしては相対湿度を100%に調整した市販の純炭酸ガス(純度99容量%以上)を使用して、スラグ1トン当たりに供給する炭酸ガス純分量を種々に変えて48時間保持した。なお、この実験においては純炭酸ガスを使用したため、スラグ1トン当たりに供給する炭酸ガス純分量は、スラグ1トン当たりへのガス供給量のトータル量と一致する。また、保持時間を48時間としたのは、事前の予備実験において、粒径1mm以下のスラグの含有率が40質量%の場合、スラグ1トン当たりの炭酸ガス純分量の供給量にかかわらず、48時間の炭酸化処理で充分に炭酸化反応が進行して平衡状態に到達することが確認できたためである。ちなみに、従来技術にも記述した、これらのスラグの水和反応を促進させるために実際に行なわれている蒸気エージング処理においては、この48時間という処理時間では膨張抑制が不十分なため、これ以上の処理時間が必要とされている。 Thirdly, the relationship between the supply amount of carbon dioxide pure per ton of slag and the volume expansion coefficient of slag after carbonation reaction was investigated. Using the components shown in Table 1, powdered steel slag having a content of slag having a particle size of 1 mm or less adjusted to 40% by mass and a moisture content of about 15% by mass is used, and the relative humidity is 100% as the carbon dioxide-containing gas. Using commercially available pure carbon dioxide gas (purity 99% by volume or more) adjusted to%, the pure carbon dioxide amount supplied per ton of slag was variously changed and maintained for 48 hours. Since pure carbon dioxide was used in this experiment, the pure amount of carbon dioxide supplied per ton of slag coincides with the total amount of gas supplied per ton of slag. In addition, the holding time was set to 48 hours in the preliminary experiment, when the content of slag having a particle size of 1 mm or less is 40% by mass, regardless of the supply amount of carbon dioxide pure per ton of slag, This is because it was confirmed that the carbonation reaction sufficiently progressed and reached an equilibrium state after 48 hours of carbonation treatment. Incidentally, in the steam aging treatment actually performed to promote the hydration reaction of these slags described in the prior art, the suppression of expansion is insufficient in the treatment time of 48 hours. Processing time is needed.
さらに、この実験においては、炭酸化反応終了後の各スラグの質量変化量を100%(以下、総質量変化量と記載する)とした場合に、その80%に到達するまでに要する時間を求めた。ここで総質量変化量の80%に到達するまでの時間とした理由は、質量変化量が総質量変化量の80%以上であれば、粉状製鋼スラグの性状にかかわらず、粒径1mm以下のスラグが30質量%以上、含有水分量が8質量%以上20質量%以下の範囲において、質量変化量が100%の場合の体積膨張率に対して、質量変化量が80%の場合の体積膨張率との差が極めて小さくなることを、本発明者は別途実験により確認しており、質量変化量が80%以上であれば、スラグ全体がほぼ均質に炭酸化処理されていると評価できるためである。 Furthermore, in this experiment, when the mass change amount of each slag after the carbonation reaction is 100% (hereinafter referred to as total mass change amount), the time required to reach 80% is obtained. It was. The reason for setting the time to reach 80% of the total mass change is that if the mass change is 80% or more of the total mass change, the particle size is 1 mm or less regardless of the properties of the powdered steel slag. The volume when the mass change amount is 80% with respect to the volume expansion coefficient when the mass change amount is 100% in the range where the slag is 30 mass% or more and the water content is 8 mass% or more and 20 mass% or less. The present inventor has confirmed by experiments that the difference from the expansion coefficient is extremely small. If the amount of mass change is 80% or more, it can be evaluated that the entire slag is carbonized almost uniformly. Because.
ちなみに、スラグ全体がほぼ均質に炭酸化処理されていると評価するに際しては、質量変化量が80%以上に限定されるものではなく、適宜、実験等により設定すれば良い。但し、この実験では、質量変化量が80%以上で、スラグ全体がほぼ均質に炭酸化処理されていると評価できる場合を例に説明する。 Incidentally, in evaluating that the entire slag is carbonized almost uniformly, the amount of mass change is not limited to 80% or more, and may be set appropriately by experimentation or the like. However, in this experiment, a case where the mass change amount is 80% or more and the entire slag can be evaluated to be carbonized almost uniformly will be described as an example.
図3に、スラグ1トン当たりの炭酸ガス純分量の供給量と、炭酸化処理に伴うスラグの質量変化量が総質量変化量の80%に到達するまでの時間(以降、「炭酸化時間」と記載する場合がある。)の関係を例示する。この図から、スラグ1トンに対して、炭酸ガス純分量の供給量が100Nm3/Hr以下の範囲であれば、所定時間(図3の例では約5時間)以上で質量変化量を総質量変化量の80%以上にできることがわかる。 FIG. 3 shows the supply amount of carbon dioxide pure per ton of slag and the time until the mass change amount of slag accompanying the carbonation treatment reaches 80% of the total mass change amount (hereinafter, “carbonation time”). ) Is exemplified. From this figure, if the supply amount of carbon dioxide pure is within a range of 100 Nm 3 / Hr or less with respect to 1 ton of slag, the total amount of mass change over a predetermined time (about 5 hours in the example of FIG. 3) It can be seen that the change amount can be 80% or more.
また、炭酸ガス純分量の供給量がスラグ1トン当たり100Nm3/Hrを超える場合、すなわち、スラグ1トン当たりへのガス供給量のトータル量が100Nm3/Hrを超える場合には、質量変化量が80%とならないスラグが部分的に発生し、結果的に均一なスラグの炭酸化処理ができないことがわかった。 Further, when the supply amount of the carbon dioxide pure amount exceeds 100 Nm 3 / Hr per ton of slag, that is, when the total amount of gas supply per ton of slag exceeds 100 Nm 3 / Hr, the mass change amount It was found that slag that does not reach 80% was partially generated, and as a result, uniform carbonization of slag could not be performed.
これはガスの供給量が過度になると、スラグ中の通気抵抗が低い部分に選択的にガスが流れてしまう、いわゆる吹き抜け現象が起きてしまい、このような状態では、スラグの炭酸化反応が起こらない部分が生じるためである。 This is because when the gas supply amount becomes excessive, a so-called blow-through phenomenon occurs in which the gas selectively flows in a portion where the ventilation resistance in the slag is low. In such a state, a carbonation reaction of the slag occurs. This is because there is no part.
ここで、スラグ1トン当たりの炭酸ガス純分量の供給量の下限値は特に規定するものではなく、要求される炭酸化時間に応じて、適宜、設定すれば良い。従って、炭酸化処理時間の上限も特に規定するものではない。但し、現実的には、後述の通り、炭酸化時間は24時間以内となる様に設定することが好ましい。 Here, the lower limit value of the supply amount of the pure carbon dioxide amount per ton of slag is not particularly defined, and may be set as appropriate according to the required carbonation time. Therefore, the upper limit of the carbonation time is not particularly specified. However, practically, as described later, it is preferable to set the carbonation time to be within 24 hours.
なお、製鉄所等における実機規模のスラグの処理において、本基礎実験と同様に純炭酸ガスを使用するためには専用の大型容器などが必要となるため、実際には炭酸ガスを含有する排ガスのような各種副生ガスを有効利用することが現実的であると考えられることから、一部では市販の純炭酸ガスとアルゴンガスを混合し、炭酸ガスの体積濃度を種々の割合に調整した炭酸ガス含有ガスを用いて、スラグ1トン当たりの炭酸ガス含有ガス供給量も変化させた実験も、併せて行なった。 In addition, in the treatment of slag on an actual scale at an ironworks, etc., in order to use pure carbon dioxide gas as in this basic experiment, a dedicated large container is required. It is thought that it is realistic to effectively use various by-product gases such as this, and in some cases, carbon dioxide in which commercially pure carbon dioxide gas and argon gas are mixed and the volume concentration of carbon dioxide gas is adjusted to various ratios. An experiment was also performed in which the gas-containing gas was used to change the supply amount of carbon dioxide-containing gas per ton of slag.
この結果、炭酸ガスの体積濃度およびスラグ1トン当たりの炭酸ガス含有ガス供給量から換算した炭酸ガス純分量としてのスラグ1トン当たりの供給量と、炭酸化処理に伴うスラグの質量変化量が総質量変化量の80%に到達するまでの時間の関係は、先に図3に示した関係とほとんど同じであることが判明した。 As a result, the supply amount per ton of slag as the carbon dioxide gas pure amount converted from the volume concentration of carbon dioxide and the supply amount of carbon dioxide-containing gas per ton of slag and the mass change amount of slag accompanying carbonation treatment are the total. It has been found that the time relationship until reaching 80% of the mass change amount is almost the same as the relationship shown in FIG.
また、炭酸ガス供給量についても、炭酸ガスの体積濃度にかかわらず、スラグ1トン当たり100Nm3/Hrを超えると、やはり吹き抜け現象が起きてしまい、スラグの炭酸化反応が起こらない部分が生じることが判明した。 In addition, when the carbon dioxide supply amount exceeds 100 Nm 3 / Hr per ton of slag regardless of the volume concentration of carbon dioxide, a blow-through phenomenon occurs, and there is a portion where the carbonation reaction of slag does not occur. There was found.
従って、スラグ全体をほぼ均質に炭酸化処理するには、炭酸ガス純分量としてのスラグ1トン当たりの供給量を制御することで管理可能であることが判明した。従って、スラグ1トン当たりの炭酸ガス純分量は、炭酸ガスの体積濃度、およびスラグ1トン当たりの炭酸ガス含有ガスの供給量のいずれか一方または両方で調整可能である。但し、スラグ1トン当たりの炭酸ガス含有ガスの供給量について100Nm3/Hr以下の範囲内で実施することが、併せて必要であることがわかった。 Accordingly, it has been found that in order to carbonize the entire slag almost uniformly, it can be managed by controlling the supply amount per ton of slag as the pure carbon dioxide content. Accordingly, the pure carbon dioxide amount per ton of slag can be adjusted by either or both of the volume concentration of carbon dioxide gas and the supply amount of the carbon dioxide-containing gas per ton of slag. However, it has been found that it is necessary to carry out the supply amount of the carbon dioxide-containing gas per ton of slag within a range of 100 Nm 3 / Hr or less.
また、スラグ1トン当たりの炭酸ガス含有ガス供給量の下限値は特に規定するものではなく、スラグ1トン当たりの炭酸ガス純分量の供給量を設定する際に、炭酸ガスの体積濃度を考慮して、適宜、設定すれば良い。 In addition, the lower limit value of the carbon dioxide-containing gas supply amount per ton of slag is not particularly specified, and the volume concentration of carbon dioxide gas is taken into account when setting the supply amount of the pure carbon dioxide amount per ton of slag. It may be set as appropriate.
さらに、スラグ1トン当たりの炭酸ガス含有ガス供給量が一定の場合は、炭酸ガス含有ガス中の炭酸ガス体積濃度の下限としては、ガス供給系の配管等の設備構成を考えると10容量%以上であることが好ましく、20容量%以上であることがより好ましく、炭酸化処理時間を短くするためにも、その濃度は高いほうが好ましいことは言うまでもない。 Furthermore, when the supply amount of carbon dioxide containing gas per ton of slag is constant, the lower limit of the volume concentration of carbon dioxide in the carbon dioxide containing gas is 10% by volume or more considering the equipment configuration such as piping of the gas supply system. Needless to say, the concentration is preferably 20% by volume or more, and the concentration is preferably higher in order to shorten the carbonation treatment time.
以上、粒径1mm以下のスラグの含有率を40質量%、含有水分量を約15質量%に調整された粉状製鋼スラグを用いた場合について説明したが、スラグ1トン当たりの炭酸ガス純分量の供給量と、炭酸化時間との関係については、粒径1mm以下のスラグの含有率が30質量%以上、スラグの含有水分量が8質量%以上20質量%以下の範囲内で、同様の傾向を示すことも、確認できている。 As described above, the case of using powdered steel slag having a content of slag having a particle size of 1 mm or less adjusted to 40% by mass and a moisture content of about 15% by mass has been explained. As for the relationship between the supply amount and the carbonation time, the content of slag having a particle diameter of 1 mm or less is 30% by mass or more, and the content of slag is 8% by mass or more and 20% by mass or less. It has also been confirmed that it shows a trend.
また、粒径1mm以下のスラグの含有率が30質量%以上のものは、前述の通り、炭酸化反応速度が大きいことから、粒径1mm以下のスラグの含有率が30質量未満のものと比較すると、炭酸ガス純分量の供給量に対応する炭酸化時間を顕著に短くすることができる。この理由は、粒径1mm以下のスラグの含有率を30質量%以上とすることで、単位体積当たりのスラグの表面積が増加した結果、炭酸化の反応速度を大きくできたため、スラグの粒の中心部まで効率良く炭酸化反応を促進できたことによるものと考えられる。 Moreover, since the content rate of slag with a particle size of 1 mm or less is 30 mass% or more has a high carbonation reaction rate as described above, the content rate of slag with a particle size of 1 mm or less is less than 30 mass percent. Then, the carbonation time corresponding to the supply amount of the carbon dioxide gas pure amount can be remarkably shortened. This is because the content rate of slag having a particle size of 1 mm or less is 30% by mass or more, and as a result of increasing the surface area of slag per unit volume, the carbonation reaction rate can be increased. This is considered to be because the carbonation reaction was efficiently promoted up to the part.
4番目に、本発明の安定化処理を施す対象となるスラグの組成、すなわち長期膨張を引き起こし易い粉状製鋼スラグの組成について検討を行った。一般的に粒径が1mm以下の粉状のスラグは、塊状のスラグよりも遊離CaOや遊離MgOを多く含み、その比表面積も大きいことから、水和反応が容易に進行しやすく、激しい膨張現象を生じ易いことを前述した。しかしながら、中でも遊離MgOの水和反応は、遊離CaOの水和反応に比べてさらに遅く、一般的にこの水和反応は長期間にゆっくり進行すると言われていることから、遊離MgOを多く含む粉状製鋼スラグの組成を的確に把握することが重要と考えた。 Fourthly, the composition of the slag to be subjected to the stabilization treatment of the present invention, that is, the composition of the powdered steel slag that easily causes long-term expansion was examined. In general, powdered slag having a particle size of 1 mm or less contains more free CaO and free MgO than massive slag, and its specific surface area is large. It was mentioned above that it is easy to produce. However, among them, the hydration reaction of free MgO is slower than the hydration reaction of free CaO, and it is generally said that this hydration reaction proceeds slowly over a long period of time. It was important to accurately grasp the composition of steel slag.
本発明の対象となる製鋼スラグは、普通鋼の転炉や溶銑予備処理炉あるいは二次精錬炉といった各種精錬炉等から発生するものであり、これらスラグ中のCaOとSiO2の質量比率CaO/SiO2(以降、塩基度と称する)は、1.5から3.0の範囲が一般的である。そこで、この塩基度の範囲でMgOが他の成分と鉱物相を形成せずに析出して、水和反応の原因となる遊離MgOとなる限界の濃度を、市販の熱力学のソフトウェア(例えば、統合型熱力学計算システム「サーモカルク−ソフトウェア&データベース」(Thermo−Calc Software AB社製)などを用いて計算したところ、約2質量%以上との結果を得た。 Steelmaking slag that is an object of the present invention is generated from various refining furnaces such as a converter of normal steel, a hot metal pretreatment furnace, or a secondary refining furnace, and the mass ratio CaO / SiO 2 in these slags is CaO / SiO 2 (hereinafter referred to as basicity) is generally in the range of 1.5 to 3.0. Therefore, in this basicity range, MgO precipitates without forming a mineral phase with other components, and the limit concentration at which it becomes free MgO causing hydration reaction can be determined using commercially available thermodynamic software (for example, When calculated using an integrated thermodynamic calculation system “Thermocalc-Software & Database” (manufactured by Thermo-Calc Software AB), a result of about 2% by mass or more was obtained.
一方で、これら普通鋼の製鋼スラグ中には同時に、主にFeOやFe2O3といった金属酸化物が一般的には約10質量%以上、同時に存在するが、遊離MgOはこれら金属酸化物に固溶することが知られている。そこで対象となる普通鋼の製鋼スラグの成分を広く詳細に調査した結果、FeOやFe2O3といった鉄酸化物成分を鉄分換算で総括した、全鉄分濃度(本発明では、T−Feと記載する場合がある)で最低でも2.0質量%以上、存在することが判明し、この条件であれば、上述の遊離MgOが析出する限界の濃度は約4.0質量%にまで高められていることがわかった。 On the other hand, metal oxides such as FeO and Fe 2 O 3 are generally present at the same time in the steelmaking slag of these ordinary steels at the same time. Generally, free MgO is present in these metal oxides. It is known to dissolve. Therefore target ordinary steel steelmaking slag results components were widely detailed investigation made, the iron oxide component such as FeO and Fe 2 O 3 were summarized in iron terms, the total iron concentration (the present invention, wherein the T-Fe In this condition, the concentration at which the free MgO precipitates is increased to about 4.0% by mass. I found out.
以上の検討から、前記(1)に係る発明は、粉状製鋼スラグの有効な安定化処理方法において、T−Feを2.0質量%以上、かつMgOを4.0質量%以上含み、粒径分布として粒径1mm以下が30質量%以上である粉状製鋼スラグについて、該スラグの含有水分量を8質量%以上20質量%以下に調整し、炭酸ガスの純分量としてスラグ1トン当たりに100Nm3/hr以下の炭酸ガス含有ガスを供給する粉状製鋼スラグの安定化処理方法であって、該炭酸ガス含有ガスの供給量をスラグ1トン当たり100Nm3/hr以下とすることと規定した。 From the above examination, the invention according to (1) described above is an effective stabilization method for powdered steelmaking slag, including 2.0% by mass or more of T-Fe and 4.0% by mass or more of MgO, For powdered steelmaking slag with a particle size of 1 mm or less as a particle size distribution of 30% by mass or more, the water content of the slag is adjusted to 8% by mass or more and 20% by mass or less, and the pure carbon dioxide gas amount per ton of slag 100 Nm 3 / hr of the following carbon dioxide gas-containing gas to a stabilization treatment method for supplying powdery steel slag, and the supply amount of the carbon dioxide gas-containing gas is defined as that less slag per ton of 100 Nm 3 / hr .
ここで、粒径1mm以下のスラグ含有率の上限については、図1に実験結果を示したように100質量%でも処理が可能であり、特段の制限はないが、実際の処理においては、炭酸ガス含有ガスの均一な供給の観点から、空隙を確保するためにも60質量%未満が好ましい。また、スラグの成分であるT−FeやMgOの含有率の上限についても、特段の制限はないが、そもそも製鋼スラグはCaOやSiO2が主たる成分であるため、T−Feとして40質量%以下が、またMgOについては耐火物保護の観点から積極的に添加される場合においても20質量%以下が一般的である。 Here, the upper limit of the slag content with a particle size of 1 mm or less can be processed even at 100% by mass as shown in the experimental results in FIG. 1, and there is no particular limitation. From the viewpoint of uniform supply of the gas-containing gas, the amount is preferably less than 60% by mass in order to ensure voids. As for the upper limit of the T-Fe and MgO content of a component of the slag, but no particular limitation, the first place because steel slag is CaO or SiO 2 is the main component, 40 mass% or less as a T-Fe However, MgO is generally 20% by mass or less even when actively added from the viewpoint of refractory protection.
また、先に示した図3において、図中で左側から二つ目のプロット(スラグ1トン当たりの炭酸ガス純分量の供給量が5Nm3/Hr)未満の場合には、単純に炭酸ガス純分量の供給量が少なく炭酸化処理時間が24時間以上と顕著に長くなるために、実際の処理条件としてはあまり好ましくなく、本発明の対象となる粉状製鋼スラグを多く含有し長期膨張しやすいスラグの炭酸化処理の場合は、炭酸ガス純分としてスラグ1トン当たりの供給量をより多く供給することが有効であり、炭酸ガスの純分量としてスラグ1トン当たり5Nm3/Hr以上とすることが好ましい。(前記(2)に係る発明) In addition, in FIG. 3 shown above, when the second plot from the left side in the figure (the supply amount of carbon dioxide pure per ton of slag is less than 5 Nm 3 / Hr), the carbon dioxide pure is simply Since the carbonation treatment time is remarkably long as 24 hours or more due to the small amount of supply, the actual treatment conditions are not so preferable, and it contains a large amount of powdered steel slag that is the subject of the present invention and is likely to expand for a long time. In the case of carbonation of slag, it is effective to supply a larger amount of carbon dioxide gas per ton of slag, and the amount of carbon dioxide gas to be 5 Nm 3 / Hr or more per ton of slag. Is preferred. (Invention pertaining to (2))
また、炭酸化処理時間をより短くする要求がある場合は、スラグ1トン当たりの炭酸ガス純分量の供給量が10Nm3/Hr(図3の左側から四つ目のプロット)以上とすると約半日とすることができるためより好ましく、20Nm3/Hr(図3の左側から五つ目のプロット)以上とすると約8時間とすることができるためさらにより好ましい。 If there is a need to shorten the carbonation time, the supply amount of carbon dioxide per ton of slag is 10 Nm 3 / Hr (fourth plot from the left side of FIG. 3) or more, and about half a day And more preferably 20 Nm 3 / Hr (the fifth plot from the left side of FIG. 3) or more, since it can be about 8 hours.
さらに、同じく先に示した図2からは、粒径1mm以下のスラグの含有率が高いほど炭酸化反応速度が大きいことが類推され、図3からは、粒径1mm以下のスラグの含有率が一定の場合には、炭酸ガスの純分量の供給量により、総質量変化量の80%に到達するまでの時間(すなわち、炭酸化反応がほぼ終了していると考えられるまでの時間)が変化することがわかる。これらの関係から、粒径1mm以下スラグの含有率が多い場合には、その量に見合うようにスラグ1トン当たりに供給する炭酸ガスの純分量の供給量を増加させることによって、処理時間を短くすることができ、より効率のよい安定化処理方法が得られる。(前記(3)に係る発明) Furthermore, from FIG. 2 shown earlier, it can be inferred that the higher the content of slag with a particle size of 1 mm or less, the higher the carbonation reaction rate. From FIG. 3, the content of slag with a particle size of 1 mm or less is shown. In certain cases, the amount of time required to reach 80% of the total mass change (that is, the time until the carbonation reaction is considered to be almost complete) varies depending on the supply amount of pure carbon dioxide. I understand that From these relationships, when the content of slag with a particle size of 1 mm or less is large, the treatment time is shortened by increasing the supply amount of the carbon dioxide gas supplied per ton of slag to match the amount of slag. And a more efficient stabilization method can be obtained. (Invention pertaining to (3) above)
なお、粒径1mm以下のスラグの含有率に対応する、スラグ1トン当たりに供給する炭酸ガスの純分量の供給量の調整は、図2および図3の関係について、炭酸化処理の実施を予定している粉状製鋼スラグの性状ごとに予め求めておいて実施することでも良いが、種々の性状の粉状製鋼スラグの図2および図3の関係に関して、あまり差がない場合は、平均値あるいは代表値を用いて実施することもできる。 In addition, adjustment of the supply amount of the pure amount of carbon dioxide gas to be supplied per ton of slag corresponding to the content rate of slag having a particle diameter of 1 mm or less is scheduled to be performed with respect to the relationship of FIG. 2 and FIG. Although it may be carried out in advance for each property of the powdered steel slag, the average value when there is not much difference with respect to the relationship of FIG. 2 and FIG. 3 of the powdered steel slag of various properties Or it can also implement using a representative value.
このようにして、本発明の処理にて得られた安定化製鋼スラグは、炭酸化処理前後で粒径1mm以下のスラグ含有率はほとんど変化することはなく、T−Feを2.0質量%以上、かつMgOを4.0質量%以上含み、粒径分布として粒径1mm以下が30質量%以上であり、またその体積膨張率が1.5容量%以下であることから、粉状の性状のまま、土木用資材として有効に活用できる。(前記(4)に係る発明) Thus, the stabilized steelmaking slag obtained by the treatment of the present invention has almost no change in the slag content with a particle size of 1 mm or less before and after the carbonation treatment, and the content of T-Fe is 2.0% by mass. From the above, since MgO is contained in an amount of 4.0% by mass or more, the particle size distribution is a particle size of 1 mm or less of 30% by mass or more, and the volume expansion coefficient is 1.5% by volume or less. It can be effectively used as a civil engineering material. (Invention pertaining to (4) above)
なお、前記、図1から図3に示した実験結果は、製鋼スラグ量が約5kgの小規模の実験装置での結果であったが、これらの関係に基き、実際の製造現場にて実施した数トンから数百トンの実機レベルでの炭酸化処理でも、同等の結果を得ることができた。 The experimental results shown in FIG. 1 to FIG. 3 were the results of a small-scale experimental apparatus with a steelmaking slag amount of about 5 kg, but based on these relationships, the actual experimental site was used. Similar results could be obtained even with carbonation treatment at the actual machine level of several tons to hundreds of tons.
製鉄所において、製鋼工程の溶銑予備処理炉で発生した普通鋼の製鋼スラグ約50トンを熱滓状態で回収し、大気中にて自然冷却後、30mmの篩いにて篩い分けを行い、篩い下スラグの処理前の成分、粒度分布を測定した。このスラグの平均組成は先に表1に示した通りであり、また粒径1mm以下のスラグの含有率は約40質量%であった。 At a steelworks, about 50 tons of steelmaking slag of ordinary steel generated in the hot metal pretreatment furnace in the steelmaking process is recovered in a hot metal state, naturally cooled in the atmosphere, and then sieved with a 30 mm sieve. Components and particle size distribution before slag treatment were measured. The average composition of this slag was as shown in Table 1 above, and the content of slag having a particle size of 1 mm or less was about 40% by mass.
該スラグを約2トンずつ小分けにし、かつ当該スラグをあらかじめ1mmの篩いで篩うことによって準備した粒径1mm以下のスラグを、篩い前のスラグに必要量、混合することによって、表2に示すような条件に粒径1mm以下スラグの含有率を調整し、またスプレーで水を添加して含有水分量を調整した。また、比較のためにT−FeやMgOの含有量が低いスラグも準備した。これらのスラグを、底部にガス供給管を設置し、金網を敷いた縦2m、横2m、高さ1.5mのバケット内に入れ、上部をシートで覆った後、相対湿度を100%に調整し、純炭酸ガスに一部アルゴンガスを添加することで炭酸ガスの体積濃度を変化させた炭酸ガス含有ガスを、同じく表2に示す条件にて供給した。 The slag is subdivided by about 2 tons, and the slag having a particle diameter of 1 mm or less prepared by sieving the slag with a 1 mm sieve in advance is mixed with the slag before sieving in a necessary amount and shown in Table 2. Under such conditions, the content of slag having a particle diameter of 1 mm or less was adjusted, and water content was adjusted by adding water by spraying. Moreover, the slag with low content of T-Fe and MgO was also prepared for the comparison. These slags are installed in a 2m long, 2m wide, 1.5m high bucket with a gas supply pipe at the bottom, covered with a sheet, and the relative humidity is adjusted to 100%. Then, a carbon dioxide-containing gas in which the volume concentration of carbon dioxide was changed by adding a part of argon gas to pure carbon dioxide was also supplied under the conditions shown in Table 2.
このように種々の条件で処理を行なった処理後スラグについて、粒度分布や含有水分量ならびに体積膨張率の測定を行なった。体積膨張率については、JIS A5015 附属書2で規定されている「道路用鉄鋼スラグの水浸膨張試験方法」に準じながら、供試体の養生についてのみ、110℃の水蒸気飽和条件下にて10日間、連続保持という厳しい条件を用いた。 Thus, about the post-process slag which processed on various conditions, the particle size distribution, the moisture content, and the volume expansion coefficient were measured. Regarding the volume expansion rate, in accordance with “Water immersion expansion test method for steel slag for roads” prescribed in JIS A5015 Annex 2, only for the curing of the specimen, it is 10 days under 110 ° C. steam saturation condition. Strict conditions of continuous retention were used.
これらの測定結果を表3に示す。本発明の実施例の1〜8、参考例1では安定してスラグの体積膨張率で1.5容量%以下にあり、土木用資材として使用可能な低膨張化を達成した。ちなみに処理前スラグの体積膨張率は8〜10容量%の範囲にあった。一方、粒径1mm以下のスラグ含有率が本発明の条件を外れる比較例1〜3、炭酸ガスの供給量が本発明の条件を外れる比較例4では、いずれも処理後スラグの体積膨張率が1.5容量%を超え、土木用資材としての使用は困難であった。
These measurement results are shown in Table 3. In Examples 1 to 8 of the present invention and Reference Example 1 , the volume expansion rate of the slag was stably 1.5% by volume or less, and a low expansion that can be used as a civil engineering material was achieved. Incidentally, the volume expansion coefficient of the slag before treatment was in the range of 8 to 10% by volume. On the other hand, in Comparative Examples 1 to 3 in which the slag content rate with a particle size of 1 mm or less falls outside the conditions of the present invention, and in Comparative Example 4 in which the supply amount of carbon dioxide deviates from the conditions of the present invention, the volume expansion coefficient of the slag after treatment is all It exceeded 1.5 volume% and was difficult to use as a civil engineering material.
また、処理後スラグについて、粒径1mm以下のスラグ含有率の測定を行ったが、本発明の実施例の1〜8、参考例1においては、処理前に比べて粒径1mm以下のスラグ含有率が若干、減少する程度であり、細かなスラグ粒同士の顕著な固結現象も起こらず、自然砂の代替あるいは砕砂等の土木用資材として使用可能な粉状のスラグとして回収することができた。
Moreover, about the slag after a process, although the measurement of the slag content rate of a particle size of 1 mm or less was performed, in 1-8 of the Example of this invention , and the reference example 1 , compared with the slag of a particle size of 1 mm or less compared with before a process. The rate is slightly reduced and there is no noticeable caking phenomenon between fine slag particles, and it can be recovered as powdery slag that can be used as a substitute for natural sand or as a civil engineering material such as crushed sand. It was.
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
前述したように、本発明法によれば、粉状の製鋼スラグを、温度調整することなく、従来よりもはるかに短時間で、安価にかつ大量に安定化処理することが可能になる。こうして安定化された粉状の製鋼スラグは、低膨張であると共に、遊離CaOや遊離MgOが溶出して地下水や河川、海水のpHを上昇させる問題を生じることもなく、粉状の特性を活かして自然砂の代替あるいは砕砂等の土木用資材としての使用が可能になる。また、他の骨材と混合使用することで、各種骨材や路盤材にも使用することが可能になる。さらに、本発明法では、工場から排出される炭酸ガスを用いることができるので、炭酸ガスの大気への放散を抑制できるという地球環境的な副次効果も得られる。 As described above, according to the method of the present invention, powdered steelmaking slag can be stabilized at a low cost and in a large amount in a much shorter time than before without adjusting the temperature. The powdered steelmaking slag stabilized in this way has low expansion and does not cause the problem that the free CaO or free MgO elutes and raises the pH of groundwater, rivers and seawater, and makes use of the powdery characteristics. Therefore, it can be used as a substitute for natural sand or as a civil engineering material such as crushed sand. Moreover, it becomes possible to use it also for various aggregates and roadbed materials by mixing and using with other aggregates. Furthermore, since the carbon dioxide gas discharged from the factory can be used in the method of the present invention, a secondary environmental effect that the emission of carbon dioxide to the atmosphere can be suppressed is also obtained.
Claims (2)
The method for stabilizing a powdered steelmaking slag according to claim 1, wherein a carbon dioxide-containing gas having a relative humidity of 75% or more and 100% or less is supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007055804A JP4808655B2 (en) | 2007-03-06 | 2007-03-06 | Method of stabilizing powdered steel slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007055804A JP4808655B2 (en) | 2007-03-06 | 2007-03-06 | Method of stabilizing powdered steel slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008214149A JP2008214149A (en) | 2008-09-18 |
JP4808655B2 true JP4808655B2 (en) | 2011-11-02 |
Family
ID=39834641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007055804A Active JP4808655B2 (en) | 2007-03-06 | 2007-03-06 | Method of stabilizing powdered steel slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4808655B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4856661B2 (en) * | 2008-02-22 | 2012-01-18 | 新日本製鐵株式会社 | Method for stabilizing steelmaking slag |
JP5195501B2 (en) * | 2009-02-18 | 2013-05-08 | Jfeスチール株式会社 | How to select materials that are not suitable for roadbed materials |
JP5195502B2 (en) * | 2009-02-19 | 2013-05-08 | Jfeスチール株式会社 | Roadbed material |
JP2022143905A (en) * | 2021-03-18 | 2022-10-03 | Jfeスチール株式会社 | Manufacturing method of slag roadbed material and its slag roadbed material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3968898B2 (en) * | 1998-11-08 | 2007-08-29 | Jfeスチール株式会社 | Artificial stone mainly composed of slag and method for producing the same |
JP3828897B2 (en) * | 2003-06-09 | 2006-10-04 | 新日本製鐵株式会社 | Method for stabilizing steelmaking slag and stabilized steelmaking slag |
JP4328215B2 (en) * | 2004-01-13 | 2009-09-09 | 新日本製鐵株式会社 | Steelmaking slag treatment method |
JP4676829B2 (en) * | 2005-07-12 | 2011-04-27 | 新日本製鐵株式会社 | Steelmaking slag treatment method |
JP4608382B2 (en) * | 2005-07-28 | 2011-01-12 | 新日本製鐵株式会社 | Slag granulation method and granulated slag |
JP4994891B2 (en) * | 2007-03-06 | 2012-08-08 | 新日鐵住金ステンレス株式会社 | Method for stabilizing powdered steel slag and stabilized steel slag |
-
2007
- 2007-03-06 JP JP2007055804A patent/JP4808655B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008214149A (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4856661B2 (en) | Method for stabilizing steelmaking slag | |
JP3828897B2 (en) | Method for stabilizing steelmaking slag and stabilized steelmaking slag | |
JP5573403B2 (en) | Method for recycling steelmaking slag and raw material for phosphate fertilizer | |
JP6299375B2 (en) | Carbonation treatment method for steelmaking slag | |
JP4808655B2 (en) | Method of stabilizing powdered steel slag | |
JP5191861B2 (en) | Manufacturing method of slag for cement raw material | |
JP2927150B2 (en) | Method of manufacturing slag roadbed material | |
Umadevi et al. | Influence of magnesia on iron ore sinter properties and productivity | |
JP3828895B2 (en) | Method for stabilizing steelmaking slag and stabilized steelmaking slag | |
JP4865976B2 (en) | Method for oxidizing steel slag and LD slag obtained thereby | |
JP3091177B2 (en) | Steelmaking reduction slag reforming method | |
JP4994891B2 (en) | Method for stabilizing powdered steel slag and stabilized steel slag | |
Pal et al. | Development of fluxed iron oxide pellets strengthened by CO2 treatment for use in basic oxygen steel making | |
JP6758107B2 (en) | How to handle slag | |
JP5136980B2 (en) | Method for producing hot metal dephosphorization slag | |
JP3714229B2 (en) | Method for producing a molded body using sulfur-containing slag as a raw material | |
JP5381383B2 (en) | Method for producing non-inflatable roadbed material | |
JP7405263B2 (en) | Method for carbonating CaO-containing substances and method for producing carbonated substances | |
JP4639943B2 (en) | Hot metal desulfurization method | |
JP5801752B2 (en) | Sintered ore | |
JP2018020943A (en) | Dusting slag, cement admixture using the same and manufacturing method therefor | |
JP2009167466A (en) | Method for producing sintered ore | |
JP2018024897A (en) | Recycle slag | |
JP5488972B2 (en) | Hot metal removal Si removal P treatment method | |
JP6041006B2 (en) | Reduction material for civil engineering materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110809 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110817 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4808655 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |