TW202012643A - Method for recovering calcium from steelmaking slag - Google Patents

Method for recovering calcium from steelmaking slag Download PDF

Info

Publication number
TW202012643A
TW202012643A TW108133854A TW108133854A TW202012643A TW 202012643 A TW202012643 A TW 202012643A TW 108133854 A TW108133854 A TW 108133854A TW 108133854 A TW108133854 A TW 108133854A TW 202012643 A TW202012643 A TW 202012643A
Authority
TW
Taiwan
Prior art keywords
calcium
aqueous solution
steel
slag
making slag
Prior art date
Application number
TW108133854A
Other languages
Chinese (zh)
Inventor
福居康
川並宏毅
Original Assignee
日商日鐵日新製鋼股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日鐵日新製鋼股份有限公司 filed Critical 日商日鐵日新製鋼股份有限公司
Publication of TW202012643A publication Critical patent/TW202012643A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

An object of the invention is to provide a method for recovering calcium from steelmaking slag which can make calcium eluted from steelmaking slag into a CO2 aqueous solution deposit by a much simpler method. The invention for achieving the above purpose is related to a method for recovering calcium from steelmaking slag. The above method has a process which is to make steelmaking slag contact with a CO2 aqueous solution containing carbon dioxide, and a process which is to spray the CO2 aqueous solution contacted by the steelmaking slag.

Description

從煉鋼爐渣回收鈣的方法Method for recovering calcium from steel-making slag

本發明是有關一種從煉鋼爐渣回收鈣的方法。The invention relates to a method for recovering calcium from steel-making slag.

於煉鋼工序中所產生的煉鋼爐渣(轉爐爐渣、預處理爐渣、二次精煉爐渣以及電爐爐渣等)被用於包括水泥材料、道路用路基材料、土木用材料以及肥料的廣泛用途中(參考非專利文獻1~3)。又,未用於上述用途中的一部分的煉鋼爐渣則被填埋處理。Steelmaking slag (converter slag, pretreatment slag, secondary refining slag, electric furnace slag, etc.) generated in the steelmaking process is used in a wide range of applications including cement materials, roadbed materials, civil engineering materials and fertilizers ( Refer to Non-Patent Documents 1 to 3). In addition, some steel-making slag that is not used in the above-mentioned applications is landfilled.

已知煉鋼爐渣中包含鈣(Ca)、鐵(Fe)、矽(Si)、錳(Mn)、鎂(Mg)、鋁(Al)、磷(P)、鈦(Ti)、鉻(Cr)、硫(S)等的元素。在這些之中,煉鋼爐渣中包含最多的元素是於煉鋼工序中大量使用的鈣,通常,鐵為包含次多的。通常,在煉鋼爐渣的全部質量之中,20質量%~50質量%左右為鈣,1質量%~30質量%左右為鐵。Known steelmaking slag contains calcium (Ca), iron (Fe), silicon (Si), manganese (Mn), magnesium (Mg), aluminum (Al), phosphorus (P), titanium (Ti), chromium (Cr ), sulfur (S) and other elements. Among these, the most contained element in the steelmaking slag is calcium used in large amounts in the steelmaking process, and usually iron is the second most contained. Generally, among all the masses of steel-making slag, about 20% to 50% by mass is calcium, and about 1% to 30% by mass is iron.

煉鋼爐渣中的鈣,以煉鋼工序中所投入的生石灰(CaO)照原樣殘留、或者煉鋼爐渣的凝固中所析出的游離石灰、游離石灰與空氣中的水蒸氣或者二氧化碳反應而生成的氫氧化鈣(Ca(OH)2 )或者碳酸鈣(CaCO3 )、或CaO於凝固中與Si或Al等反應而生成的矽酸鈣(Ca2 SiO4 或者Ca3 SiO5 等)或者氧化鈣鐵鋁(Ca2 (Al1-x Fex )2 O5 )等的狀態存在(以下,也統稱包含鈣的化合物為「鈣化合物」。)。The calcium in the steelmaking slag is generated by reacting the free lime (CaO) input in the steelmaking process as it is, or the free lime precipitated during the solidification of the steelmaking slag, free lime reacts with water vapor or carbon dioxide in the air Calcium hydroxide (Ca(OH) 2 ) or calcium carbonate (CaCO 3 ), or calcium silicate (Ca 2 SiO 4 or Ca 3 SiO 5 etc.) or calcium oxide produced by the reaction of CaO with Si or Al during solidification Iron and aluminum (Ca 2 (Al 1-x Fe x ) 2 O 5 ) and the like exist (hereinafter, compounds containing calcium are also collectively referred to as “calcium compounds.”).

碳酸鈣以及氧化鈣,是製鐵工序中的煉鐵工序以及煉鋼工序中的主要爐渣形成材料,被作為其爐渣的鹼度以及黏性的調整劑、以及來自熔融鋼的脫磷劑等使用。又,加水於氧化鈣所得到的氫氧化鈣,於排水工序中被作為酸等的中和劑使用。因此,若回收上述煉鋼爐渣內所包含的鈣化合物而於製鐵工序中再利用的話,可期待能夠降低製鐵的成本。Calcium carbonate and calcium oxide are the main slag forming materials in the iron making process and steel making process of the iron making process, and are used as an adjuster for the alkalinity and viscosity of the slag, as well as a dephosphorizing agent from molten steel, etc. . In addition, calcium hydroxide obtained by adding water to calcium oxide is used as a neutralizing agent such as an acid in the drainage process. Therefore, if the calcium compound contained in the steel-making slag is recovered and reused in the iron-making process, it can be expected that the cost of iron-making can be reduced.

又,可預想將來用於將煉鋼爐渣作為道路用路基材料、土木用材料或水泥材料等使用的土木工程的數量減少、能夠填埋處理煉鋼爐渣的土地減少。從這個觀點也可期待回收煉鋼爐渣中所包含的鈣化合物,而使再利用或填埋處理的煉鋼爐渣的體積減少。In addition, it is expected that the number of civil engineering projects for using steel-making slag as roadbed materials, civil engineering materials, cement materials, etc. will be reduced in the future, and the land that can be filled with steel-making slag will be reduced. From this point of view, it is also expected that the calcium compound contained in the steel-making slag is recovered to reduce the volume of the steel-making slag for reuse or landfill treatment.

煉鋼爐渣內的鈣,例如能夠使其於鹽酸、硝酸或硫酸等的酸性水溶液中溶出而回收。然而,在這個方法中所生成的、鈣與上述酸的鹽類是難以再利用的。例如使煉鋼爐渣內的鈣於鹽酸中溶出而生成的氯化鈣,雖然若加熱而成氧化物的話是可再利用,但是有上述加熱中所產生的有害氯氣的處理成本高的問題。又,當嘗試使煉鋼爐渣內的鈣於酸性水溶液中溶出而回收時,也有購買酸以及廢棄溶出處理後的酸的成本高的問題。The calcium in the steel-making slag can be eluted and recovered in an acidic aqueous solution such as hydrochloric acid, nitric acid, or sulfuric acid. However, the salts of calcium and the above acids produced in this method are difficult to reuse. For example, calcium chloride produced by dissolving calcium in steelmaking slag in hydrochloric acid is reusable if heated to form oxides, but there is a problem in that the treatment cost of the harmful chlorine gas generated during the above heating is high. In addition, when attempting to elute and recover calcium in the steelmaking slag in an acidic aqueous solution, there is also a problem that the cost of purchasing the acid and discarding the acid after the dissolution treatment is high.

相對於此,若於含有二氧化碳的水溶液(以下,也簡稱為「CO2 水溶液」。)中使鈣從煉鋼爐渣溶出而回收的話,可期待能夠解決由使用酸所致的上述問題(參考專利文獻1~3)。另外,二氧化碳大量包含於廢氣中,將廢氣脫硫以及脫硝之後,除了空氣及水蒸氣以外,還能夠得到幾乎為二氧化碳的氣體。工業上,如非專利文獻4所示,從廢氣取出二氧化碳的技術正被實用化。On the other hand, if calcium is eluted and recovered from the steel-making slag in an aqueous solution containing carbon dioxide (hereinafter, also simply referred to as "CO 2 aqueous solution"), it is expected that the above-mentioned problems caused by the use of acid can be solved (refer to the patent References 1 to 3). In addition, a large amount of carbon dioxide is contained in the exhaust gas. After desulfurization and denitration of the exhaust gas, in addition to air and water vapor, a gas that is almost carbon dioxide can be obtained. Industrially, as shown in Non-Patent Document 4, technology for extracting carbon dioxide from exhaust gas is being put into practical use.

在專利文獻1中記載吹入二氧化碳到已使轉爐爐渣中的鈣溶出的水溶液中,而回收已沉澱的碳酸鈣的方法。此時,為了抑制對水溶解度高的碳酸氫鈣的生成,pH值被維持於下限值為10左右。在專利文獻1中雖然未記載維持pH值於10以上的具體方法,但認為藉由調整二氧化碳的吹入量來維持pH值於10以上。Patent Document 1 describes a method of recovering precipitated calcium carbonate by blowing carbon dioxide into an aqueous solution that has eluted calcium in the converter slag. At this time, in order to suppress the generation of calcium bicarbonate having high solubility in water, the pH value is maintained at a lower limit of about 10. Although Patent Document 1 does not describe a specific method of maintaining the pH at 10 or more, it is considered that the pH is maintained at 10 or more by adjusting the amount of carbon dioxide injected.

在專利文獻2中記載在鐵濃縮相以及磷濃縮相中分離已破碎的煉鋼爐渣,且使磷濃縮相中的鈣化合物溶解於已使二氧化碳溶解的洗滌水中,其後,加熱洗滌水到50~60℃左右,使洗滌水中的碳酸氫鈣作為碳酸鈣沉澱而回收的方法。Patent Document 2 describes that the crushed steel-making slag is separated in the iron-concentrated phase and the phosphorus-concentrated phase, and the calcium compound in the phosphorus-concentrated phase is dissolved in the wash water in which carbon dioxide has been dissolved, and then the wash water is heated to 50 ~60°C, a method of recovering calcium bicarbonate in washing water as calcium carbonate.

在專利文獻3中記載分為多次地使鈣化合物從煉鋼爐渣溶出而回收的方法。在這個方法中記載藉由於已吹入二氧化碳的水中多次浸漬煉鋼爐渣(預處理爐渣),而已固溶於2CaO•SiO2 相以及此相中的磷優先地溶出。Patent Document 3 describes a method in which calcium compounds are eluted and recovered from the steel-making slag multiple times. In this method, it is described that the steelmaking slag (pretreatment slag) is impregnated with carbon dioxide water for many times, and the 2CaO•SiO 2 phase has been solid-dissolved and the phosphorus in this phase is preferentially eluted.

在專利文獻4中記載使CO2 水溶液與煉鋼爐渣接觸而溶出鈣以及磷之後,從其水溶液除去二氧化碳而使鈣化合物以及磷化合物析出、回收鈣的方法。在專利文獻4中記載藉由此方法,相較於專利文獻1~專利文獻3中所記載的方法容易使更大量的鈣溶出而能夠提高鈣的回收效率。在專利文獻4中記載作為從鈣以及磷已溶出的水溶液除去二氧化碳的方法,而於前述水溶液內吹入從由大氣、氮、氧、氫、氬以及氦所組成的群組中選出的、一或二種以上的氣體的方法。Patent Document 4 describes a method of contacting a CO 2 aqueous solution with a steel-making slag to dissolve calcium and phosphorus, then removing carbon dioxide from the aqueous solution to precipitate calcium compounds and phosphorus compounds, and recovering calcium. Patent Document 4 describes that by this method, it is easier to elute a larger amount of calcium than the methods described in Patent Documents 1 to 3, and the calcium recovery efficiency can be improved. Patent Document 4 describes that as a method for removing carbon dioxide from an aqueous solution in which calcium and phosphorus have been dissolved, a selected one selected from the group consisting of the atmosphere, nitrogen, oxygen, hydrogen, argon, and helium is blown into the aqueous solution. Or two or more gas methods.

另一方面,煉鋼爐渣內的Fe作為鐵系氧化物、氧化鈣鐵鋁、以及雖為極少量的金屬鐵而存在。在這些之中,鐵系氧化物除了含有Mn或Mg以外,還含有雖少量的Ca、Al、Si、P、Ti、Cr以及S等的元素。又,氧化鈣鐵鋁也含有雖少量的Si、P、Ti、Cr以及S等的元素。另外,在本說明書中,鐵系氧化物也包含由於空氣中的水蒸氣等而其表面的一部分等變化為氫氧化物等的化合物,且氧化鈣鐵鋁也包含由於空氣中的水蒸氣以及二氧化碳等而其表面的一部分等變化為氫氧化物或碳酸鹽等的化合物。On the other hand, Fe in the steel-making slag exists as iron-based oxides, calcium iron-aluminum oxide, and although a very small amount of metallic iron. Among these, the iron-based oxide contains elements such as Ca, Al, Si, P, Ti, Cr, and S in addition to Mn or Mg in small amounts. In addition, calcium iron iron aluminum also contains a small amount of elements such as Si, P, Ti, Cr, and S. In addition, in the present specification, the iron-based oxide also includes a compound whose part of the surface is changed to hydroxide or the like due to water vapor in the air, and calcium iron aluminum oxide also includes water vapor and carbon dioxide due to air A part of the surface is changed to a compound such as hydroxide or carbonate.

上述鐵系氧化物,其大部分作為方鐵礦系氧化物(FeO)存在,其他也作為赤鐵礦系氧化物(Fe2 O3 )或磁鐵礦系氧化物(Fe3 O4 )存在。Most of the above iron-based oxides exist as wurtzite-based oxides (FeO), and others also exist as hematite-based oxides (Fe 2 O 3 ) or magnetite-based oxides (Fe 3 O 4 ) .

在這些之中,方鐵礦系氧化物以及赤鐵礦系氧化物因為作為強磁性體的磁鐵礦系氧化物(Fe3 O4 )分散於其內部,所以能夠藉由磁選從煉鋼爐渣分離。另外,單獨或與其他鐵系氧化物共存的磁鐵礦系氧化物也能夠藉由磁選從煉鋼爐渣分離。Among these, the skutterite-based oxide and the hematite-based oxide are dispersed in the magnetite-based oxide (Fe 3 O 4 ) as a ferromagnetic body, so they can be removed from the steelmaking slag by magnetic separation Separate. In addition, magnetite-based oxides alone or in combination with other iron-based oxides can also be separated from the steel-making slag by magnetic separation.

又,在專利文獻5~專利文獻7中記載為了藉由磁選分離更大量的鐵系氧化物,所以藉由氧化處理等將方鐵礦系氧化物重組為磁鐵礦系氧化物的方法。In addition, Patent Document 5 to Patent Document 7 describe a method of reorganizing a wurtzite-based oxide into a magnetite-based oxide by oxidation treatment or the like in order to separate a larger amount of iron-based oxide by magnetic separation.

上述氧化鈣鐵鋁因為磁化而成為磁性材料,所以仍然能夠藉由磁選從煉鋼爐渣分離。The above-mentioned calcium iron iron aluminum becomes a magnetic material because of magnetization, so it can still be separated from the steel-making slag by magnetic separation.

鐵系氧化物以及氧化鈣鐵鋁(以下,統整這些也稱為「鐵系化合物」。氧化鈣鐵鋁是鈣化合物,同時也是鐵系化合物。)因其磷的含量為0.1質量%以下的微量,所以若藉由上述的磁選等從煉鋼爐渣分離而回收的話,能夠作為高爐或燒結的原料使用。Iron-based oxides and calcium-iron-aluminum oxides (hereinafter, these are also referred to as "iron-based compounds." Calcium-iron-aluminum oxides are calcium compounds and also iron-based compounds.) Because their phosphorus content is 0.1% by mass or less Since it is a trace amount, it can be used as a raw material for blast furnace or sintering if it is recovered from the steel-making slag by magnetic separation or the like.

金屬鐵是於煉鋼工序中被捲入爐渣中的Fe、或於煉鋼爐渣的凝固中所析出的微小的Fe。金屬鐵之中的大的金屬鐵,於在大氣中破碎或粉碎煉鋼爐渣的乾式的工序中藉由磁選其他方法被除掉。 [先前技術文獻] [專利文獻]The metallic iron is Fe that is caught in the slag in the steel-making process or fine Fe that is precipitated in the solidification of the steel-making slag. The large metallic iron among the metallic iron is removed by other methods of magnetic separation in the dry process of crushing or crushing the steel-making slag in the atmosphere. [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本專利特開昭55-100220號公報 [專利文獻2]日本專利特開2010-270378號公報 [專利文獻3]日本專利特開2013-142046號公報 [專利文獻4]PCT國際公開第2015/114703號 [專利文獻5]日本專利特開昭54-87605號公報 [專利文獻6]日本專利特開昭52-125493號公報 [專利文獻7]日本專利特開昭54-88894號公報 [非專利文獻][Patent Document 1] Japanese Patent Laid-Open No. 55-100220 [Patent Document 2] Japanese Patent Laid-Open No. 2010-270378 [Patent Document 3] Japanese Patent Laid-Open No. 2013-142046 [Patent Document 4] PCT International Publication No. 2015/114703 [Patent Document 5] Japanese Patent Laid-Open No. 54-87605 [Patent Document 6] Japanese Patent Laid-Open No. 52-125493 [Patent Document 7] Japanese Patent Laid-Open No. 54-88894 [Non-patent literature]

[非專利文獻1]中川雅夫,「鋼鐵爐渣的有效利用的狀況」,第205、206次西山紀念技術講座演講文本,一般社團法人日本鋼鐵協會,2011年6月,p.25-26 [非專利文獻2]「環境資材 鋼鐵爐渣」,鋼鐵爐渣協會,2014年1月 [非專利文獻3]二塚貴之等,「從鋼鐵爐渣向人工海水的成分溶出行為」,鐵與鋼,Vol.89,No.4,2014年1月,p.382-387 [非專利文獻4]飯嶋正樹等,「作為地球暖化對策技術的CO2 回收技術」,三菱重工技報,Vol.47,No.1,2010年,p.47-53[Non-Patent Document 1] Yasuo Nakagawa, "The State of Effective Utilization of Steel Slag", 205th and 206th Nishiyama Memorial Technical Lecture Speech Text, General Association Japan Iron and Steel Association, June 2011, p.25-26 [Non Patent Document 2] "Environmental Materials Steel Slag", Iron and Steel Slag Association, January 2014 [Non-Patent Document 3] Takarazuka et al., "Dissolution Behavior of Components from Steel Slag to Artificial Seawater", Iron and Steel, Vol.89, No. 4, January 2014, p. 382-387 [Non-Patent Document 4] Masaki Ishima, etc., "CO 2 recovery technology as a global warming countermeasure technology", Mitsubishi Heavy Industries Technology News, Vol. 47, No. 1 , 2010, p.47-53

[發明欲解決之課題][Problem to be solved by invention]

根據專利文獻4所記載的方法,可期待能夠容易地增加鈣的溶出量,而更提高鈣的回收效率。因此,若能夠使已溶出的鈣更容易析出的話,可期待鈣的回收效率更進一步地提高。According to the method described in Patent Document 4, it is expected that the amount of calcium eluted can be easily increased, and the calcium recovery efficiency can be further improved. Therefore, if the eluted calcium can be more easily precipitated, the recovery efficiency of calcium can be expected to be further improved.

鑒於上述的問題,本發明的目的為提供從煉鋼爐渣回收鈣的方法,其能夠使已從煉鋼爐渣溶出到CO2 水溶液中的鈣藉由更簡易的方法析出。 [為解決課題之手段]In view of the above problems, an object of the present invention is to provide a method for recovering calcium from steel-making slag, which can precipitate calcium that has been eluted from the steel-making slag into the CO 2 aqueous solution by a simpler method. [Means to solve the problem]

鑒於上述目的,本發明是有關從煉鋼爐渣回收鈣的方法,其具有使煉鋼爐渣與CO2 水溶液接觸的工序,該CO2 水溶液是含有二氧化碳的水溶液;以及霧化該煉鋼爐渣所接觸過的該CO2 水溶液的工序。 [發明效果]In view of the above-described object, the present invention relates to the method of steelmaking slag recovery of calcium, which has a CO 2 steelmaking slag contacted with an aqueous solution of step, the solution is an aqueous solution containing a CO 2 carbon dioxide; and the atomizing steelmaking slag in contact The process of this CO 2 aqueous solution. [Effect of the invention]

根據本發明,能夠使已從煉鋼爐渣溶出到CO2 水溶液中的鈣藉由更簡易的方法析出的、從煉鋼爐渣回收鈣的方法被提供。According to the present invention, a method for recovering calcium from steel-making slag that can be precipitated from the steel-making slag into the CO 2 aqueous solution by a simpler method is provided.

[第1實施型態] 圖1是在本發明的第1實施型態中的從煉鋼爐渣回收鈣的方法的流程圖。在本實施型態中,準備煉鋼爐渣(工序S110)、使已準備好的煉鋼爐渣與含有二氧化碳的水溶液(以下,也簡稱為「CO2 水溶液」。)接觸(工序S120)、霧化煉鋼爐渣所接觸過的上述CO2 水溶液(工序S130),其後,回收包含已析出的鈣的固體成分(S140)。[First Embodiment] FIG. 1 is a flowchart of a method of recovering calcium from steel-making slag in a first embodiment of the present invention. In the present embodiment, steel-making slag is prepared (step S110), and the prepared steel-making slag is brought into contact with an aqueous solution containing carbon dioxide (hereinafter, also simply referred to as "CO 2 aqueous solution") (step S120) and atomized The above-mentioned CO 2 aqueous solution contacted with the steel-making slag (step S130), and thereafter, a solid component containing precipitated calcium is recovered (S140).

(工序S110:煉鋼爐渣的準備) 於本工序中準備煉鋼爐渣。(Step S110: Preparation of steelmaking slag) In this process, steel-making slag is prepared.

上述煉鋼爐渣若是於煉鋼工序中被排出的爐渣的話,即沒有特別限制。在煉鋼爐渣的例子中,包括轉爐爐渣、預處理爐渣、二次精煉爐渣以及電爐爐渣。The steel-making slag is not particularly limited as long as it is discharged in the steel-making process. Examples of steelmaking slag include converter slag, pretreatment slag, secondary refining slag, and electric furnace slag.

煉鋼爐渣中所包含的矽酸鈣、游離石灰以及鐵系化合物等的構造的大小為約1000 μm以下。因此,煉鋼爐渣較佳為於煉鋼工序中被排出之後被破碎或被粉碎(以下,也簡稱為「粉碎等」。),而成為顆粒狀的爐渣顆粒。The size of the structure of calcium silicate, free lime, and iron-based compounds contained in the steel-making slag is about 1000 μm or less. Therefore, the steel-making slag is preferably crushed or pulverized after being discharged in the steel-making process (hereinafter, also simply referred to as "crushing, etc.") to become granular slag particles.

已被破碎或已被粉碎的爐渣顆粒的最大粒徑較佳為與矽酸鈣、游離石灰以及鐵系化合物等的構造相同程度以下的大小,更佳為1000 μm以下。當上述最大粒徑為1000 μm以下時,因為爐渣顆粒的每單位體積的表面積變為更大,所以CO2 水溶液能夠充分地滲透至爐渣顆粒的內部,或因為矽酸鈣以及游離石灰等可作為單獨的顆粒存在,所以於後述的工序中使鈣容易溶出。從同樣的觀點,爐渣顆粒的最大粒徑較佳為500 μm以下,更佳為250 μm以下,又更佳為100 μm以下。爐渣顆粒例如透過藉由包括錘磨機、輥磨機以及球磨機等的粉碎機,來更進一步粉碎已被破碎的爐渣顆粒,其最大粒徑能夠變小到成為上述範圍的程度。The maximum particle size of the crushed or crushed slag particles is preferably a size equal to or less than the structure of calcium silicate, free lime, and iron-based compounds, and more preferably 1000 μm or less. When the above-mentioned maximum particle diameter is 1000 μm or less, because the surface area per unit volume of the slag particles becomes larger, the CO 2 aqueous solution can sufficiently penetrate into the inside of the slag particles, or because calcium silicate and free lime can be used as The individual particles are present, so calcium is easily eluted in the process described later. From the same viewpoint, the maximum particle size of the slag particles is preferably 500 μm or less, more preferably 250 μm or less, and still more preferably 100 μm or less. The slag particles can be further pulverized by a pulverizer including a hammer mill, a roll mill, a ball mill, or the like, and the maximum particle size of the slag particles can be reduced to the above-mentioned range.

又,上述煉鋼爐渣亦可為過濾殘留爐渣,此過濾殘留爐渣是在已有水的容器中放入煉鋼爐渣而進行游離石灰以及氫氧化鈣的浸出、以及鈣化合物的表層的鈣的浸出之後,過濾而得到的過濾殘留爐渣。藉由使用過濾殘留爐渣,因為能夠使用鈣已有一定程度地溶出的爐渣,所以藉由與CO2 水溶液的接觸能夠減輕使鈣溶出時的負荷。此時同時能夠得到的、鈣已浸出的過濾水,是pH值11以上的高鹼性的水溶液(以下,也簡稱為「高鹼浸出水」。)。高鹼浸出水能夠在第2實施型態中,作為用於使CO2 水溶液的pH值更進一步上升的鈣系的鹼性物質使用。In addition, the above-mentioned steel-making slag may also be a filtering residual slag. This filtering residual slag is put in a steel-making slag in a container with existing water to perform leaching of free lime and calcium hydroxide, and leaching of calcium from the surface layer of the calcium compound After that, the resulting filtered residual slag. By using the filtering residual slag, it is possible to use slag in which calcium has been eluted to a certain extent, so the load when eluting calcium can be reduced by contact with the CO 2 aqueous solution. At this time, the calcium leached filtered water that is available at the same time is a highly alkaline aqueous solution with a pH value of 11 or higher (hereinafter, also simply referred to as "high alkali leaching water."). In the second embodiment, the high-alkali leaching water can be used as a calcium-based alkaline substance for further increasing the pH of the CO 2 aqueous solution.

(工序S120:與CO2 水溶液的接觸) 於本工序中使上述煉鋼爐渣與CO2 水溶液接觸,而上述煉鋼爐渣藉由與CO2 水溶液的接觸而溶出鈣。(Step S120: Contact with CO 2 aqueous solution) In this step, the steel-making slag is brought into contact with the CO 2 aqueous solution, and the steel-making slag is brought into contact with the CO 2 aqueous solution to dissolve calcium.

在本工序中,可預先使煉鋼爐渣浸漬在已使二氧化碳溶解好的水中,亦可在浸漬煉鋼爐渣於水中之後,使二氧化碳溶解於水中。但是,鈣溶出到CO2 水溶液中時,因為鈣與二氧化碳反應而水溶性的碳酸氫鈣生成,所以伴隨鈣的溶解而CO2 水溶液中的二氧化碳減少。因此,從提高鈣的溶出效率的觀點,較佳為於煉鋼爐渣正在接觸的CO2 水溶液中導入二氧化碳而使鈣持續溶出。另外,在浸漬煉鋼爐渣於水溶液中的期間,從提高反應性的觀點,較佳為攪拌這些溶液。In this step, the steel-making slag may be immersed in water in which carbon dioxide has been dissolved in advance, or after the steel-making slag is immersed in water, the carbon dioxide may be dissolved in water. However, when calcium is eluted into the CO 2 aqueous solution, since calcium reacts with carbon dioxide and water-soluble calcium bicarbonate is generated, the carbon dioxide in the CO 2 aqueous solution decreases with the dissolution of calcium. Therefore, from the viewpoint of improving the elution efficiency of calcium, it is preferable to introduce carbon dioxide into the CO 2 aqueous solution that the steel-making slag is in contact with to continuously elute the calcium. In addition, while the steel-making slag is immersed in the aqueous solution, it is preferable to stir these solutions from the viewpoint of improving the reactivity.

二氧化碳,例如能夠藉由包含二氧化碳的氣體的起泡作用(吹入)來使其溶解於水中。從提高從煉鋼爐渣之鈣的溶出性的觀點,在水溶液中較佳為溶解有30 ppm以上的未離子化的二氧化碳(游離碳酸)。另外,於一般的自來水中可能含有的游離碳酸的量是3 mg/L以上20 mg/L以下。Carbon dioxide can be dissolved in water by foaming (blowing) of a gas containing carbon dioxide, for example. From the viewpoint of improving the dissolution of calcium from the steel-making slag, it is preferable to dissolve 30 ppm or more of non-ionized carbon dioxide (free carbonic acid) in the aqueous solution. In addition, the amount of free carbon dioxide that may be contained in general tap water is 3 mg/L or more and 20 mg/L or less.

該包含二氧化碳的氣體可為純粹的二氧化碳氣體,亦可為包含二氧化碳以外的成分(例如,氧或氮)的氣體。在該包含二氧化碳的氣體的例子中,包含燃燒後的廢氣、以及二氧化碳、大氣以及水蒸氣的混合氣體。從提高水溶液中的二氧化碳濃度,而提高從煉鋼爐渣到水溶液中的鈣化合物(矽酸鈣等)的溶出性的觀點,該包含二氧化碳的氣體較佳為以高濃度(例如,90%)包含二氧化碳。The gas containing carbon dioxide may be pure carbon dioxide gas, or a gas containing components other than carbon dioxide (for example, oxygen or nitrogen). This example of a gas containing carbon dioxide includes a mixed gas of exhaust gas after combustion and carbon dioxide, atmospheric air, and water vapor. From the viewpoint of increasing the concentration of carbon dioxide in the aqueous solution and increasing the dissolution of the calcium compound (calcium silicate, etc.) from the steel-making slag to the aqueous solution, the gas containing carbon dioxide is preferably contained at a high concentration (for example, 90%) carbon dioxide.

此時,亦可粉碎等正與CO2 水溶液接觸的煉鋼爐渣。藉由粉碎等正與CO2 水溶液接觸的煉鋼爐渣,新的表面被連續地形成,此新的表面是難以溶解於CO2 水溶液中的矽、鋁以及鐵等的氫氧化物、碳酸鹽或水合物尚未殘留或尚未析出的新的表面。藉此,使CO2 水溶液容易從上述被連續地形成的表面滲透至煉鋼爐渣的內部,或者將CO2 水溶液與爐渣顆粒的接觸面積變得更大,而也能夠使鈣變得更容易從煉鋼爐渣溶出。At this time, the steel-making slag that is in contact with the CO 2 aqueous solution may also be crushed. By crushing the steelmaking slag, which is in contact with the CO 2 aqueous solution, a new surface is continuously formed. This new surface is a hydroxide, carbonate, or hydroxide of silicon, aluminum, and iron that is difficult to dissolve in the CO 2 aqueous solution. A new surface where hydrates have not yet remained or have not precipitated. This makes it easier for the CO 2 aqueous solution to penetrate into the steel-making slag from the continuously formed surface, or the contact area of the CO 2 aqueous solution and the slag particles becomes larger, and it is also possible to make calcium easier The steelmaking slag is eluted.

又,此時,亦可在CO2 水溶液中使煉鋼爐渣沉降,而從CO2 水溶液的深部側篩選取出包含粒徑更大且容易沉降的爐渣顆粒的漿料,選擇性地粉碎等已被取出的爐渣顆粒。上述已被取出的漿料因為水的比例變少,應被粉碎等的爐渣顆粒容易更有效率地被粉碎等。藉由再導入如此處理而已被粉碎等的煉鋼爐渣於上述CO2 水溶液中,能夠提高煉鋼爐渣的粉碎等的效率,而容易使更大量的鈣從煉鋼爐渣溶出。Also, at this time, the steel-making slag may be settled in the CO 2 aqueous solution, and the slurry containing the slag particles having a larger particle size and easily settled may be filtered out from the deep side of the CO 2 aqueous solution, selectively crushed, etc. Slag particles taken out. Because the proportion of water that has been taken out is reduced, the slag particles to be crushed and the like are easily crushed more efficiently. By reintroducing the steel-making slag that has been pulverized or the like in this way into the above-mentioned CO 2 aqueous solution, the efficiency of pulverization of the steel-making slag and the like can be improved, and a larger amount of calcium is easily eluted from the steel-making slag.

圖2是顯示在本實施型態中能夠使用的使鈣溶出的裝置(以下,也簡稱為「溶出裝置」。)的結構的模式圖。FIG. 2 is a schematic diagram showing the structure of an apparatus for eluting calcium (hereinafter, also simply referred to as “elution apparatus”) that can be used in the present embodiment.

溶出裝置100具有溶出及沉降槽110、粉碎部120、二氧化碳導入部130以及漿料流路140。溶出及沉降槽110容置包含煉鋼爐渣以及CO2 水溶液的漿料,且使漿料中的煉鋼爐渣(圖中網點陰影區域)沉降;粉碎部120粉碎等從溶出及沉降槽110的底部側被取出的漿料中所包含的煉鋼爐渣;二氧化碳導入部130導入二氧化碳於上述漿料中;漿料流路140導入已從溶出及沉降槽110取出的漿料於粉碎部120中,且再導入包含在粉碎部120中已被粉碎等的煉鋼爐渣的漿料於溶出及沉降槽110中。The elution device 100 has an elution and sedimentation tank 110, a pulverizing section 120, a carbon dioxide introduction section 130, and a slurry flow path 140. The dissolution and settling tank 110 accommodates the slurry containing the steel-making slag and the CO 2 aqueous solution, and settles the steel-making slag (shaded area in the figure) in the slurry; the crushing section 120 crushes etc. from the bottom of the dissolution and settling tank 110 Steel-making slag contained in the slurry taken out from the side; the carbon dioxide introduction part 130 introduces carbon dioxide into the slurry; the slurry flow path 140 introduces the slurry that has been taken out from the dissolution and sedimentation tank 110 into the crushing part 120, and Then, the slurry containing the steel-making slag crushed in the crushing unit 120 and the like is introduced into the elution and settling tank 110.

溶出及沉降槽110是容置漿料的容器。溶出及沉降槽110在底部側具有漿料取出口112,且在相較於漿料取出口112上部側(液面側)具有再導入來自粉碎部120的漿料的漿料再導入口114。為了容易取出堆積的煉鋼爐渣,溶出及沉降槽110的底面是朝向漿料取出口112變深地傾斜的傾斜面。The dissolution and settling tank 110 is a container for containing slurry. The elution and settling tank 110 has a slurry extraction port 112 on the bottom side, and has a slurry reintroduction port 114 on the upper side (liquid surface side) of the slurry extraction port 112 to reintroduce the slurry from the crushing unit 120. In order to easily take out the accumulated steel-making slag, the bottom surface of the elution and settling tank 110 is an inclined surface that inclines deeper toward the slurry extraction port 112.

為了容易取出堆積於底面的煉鋼爐渣,溶出及沉降槽110具有在底面的附近攪拌漿料的葉輪118。為了即使大型化溶出及沉降槽110,由這些的運轉所致的、堆積於底面的煉鋼爐渣的取出也是容易的,葉輪118較佳為藉由通過漿料流路142之中所配置的旋轉棒119,從溶出及沉降槽110的底面側被支撐而旋轉。又,為了不妨礙在更上部側的煉鋼爐渣的沉降,葉輪118較佳為僅配置在溶出及沉降槽110的底面。In order to easily take out the steel-making slag deposited on the bottom surface, the dissolution and settling tank 110 has an impeller 118 that agitates the slurry near the bottom surface. In order to facilitate the removal of the steelmaking slag deposited on the bottom surface due to these operations even if the dissolution and settling tank 110 is enlarged, the impeller 118 is preferably rotated by passing through the slurry flow path 142 The rod 119 is supported and rotated from the bottom surface side of the elution and sedimentation tank 110. In addition, in order not to hinder the settlement of the steel-making slag on the upper side, the impeller 118 is preferably arranged only on the bottom surface of the dissolution and settlement tank 110.

粉碎部120藉由漿料流路142與溶出及沉降槽110的漿料取出口112連通,且藉由漿料流路144與溶出及沉降槽110的漿料再導入口114連通。The pulverizing section 120 communicates with the slurry extraction port 112 of the elution and sedimentation tank 110 through the slurry flow path 142, and communicates with the slurry reintroduction port 114 of the elution and sedimentation tank 110 through the slurry flow path 144.

粉碎部120粉碎等從漿料流路142所導入的漿料中所包含的煉鋼爐渣。例如,粉碎部120藉由使被投入於粉碎容器的、用於球磨機的習知的球以及用於珠磨機的習知的珠子等(以下,也簡稱為「粉碎介質」。)由於攪拌而流動,被流動而旋轉的粉碎介質與爐渣顆粒接觸而滑動爐渣顆粒,來粉碎等爐渣顆粒。粉碎部120可為一邊使漿料流通,一邊粉碎等漿料中所包含的煉鋼爐渣的、連續式的粉碎裝置,亦可為暫時貯存漿料且粉碎等漿料中所包含的煉鋼爐渣的、批量式的粉碎裝置。The pulverizing unit 120 pulverizes the steel-making slag contained in the slurry introduced from the slurry flow path 142 or the like. For example, the pulverizing unit 120 causes a conventional ball used in a ball mill and a conventional ball used in a bead mill, etc. (hereinafter, also simply referred to as "pulverizing medium") to be thrown into the pulverization container by stirring. Flowing, the flowed and rotating crushing medium contacts the slag particles and slides the slag particles to crush the slag particles. The pulverizing unit 120 may be a continuous pulverizing device that pulverizes the steelmaking slag contained in the slurry such as the slurry while circulating the slurry, or may be a steelmaking slag contained in the slurry such as the temporary storage of the slurry and pulverization , Batch type crushing device.

二氧化碳導入部130導入從外部的二氧化碳供給源所供給的二氧化碳於漿料中。二氧化碳導入部130亦可在溶出及沉降槽110、漿料流路142(參考圖2)、粉碎部120以及漿料流路144的任一個中導入二氧化碳於漿料中。二氧化碳導入部130亦可有用於微細化二氧化碳的氣泡之氣泡微細化裝置。The carbon dioxide introduction unit 130 introduces carbon dioxide supplied from an external carbon dioxide supply source into the slurry. The carbon dioxide introduction unit 130 may also introduce carbon dioxide into the slurry in any one of the elution and sedimentation tank 110, the slurry channel 142 (refer to FIG. 2), the crushing unit 120, and the slurry channel 144. The carbon dioxide introduction unit 130 may also have a bubble refining device for refining bubbles of carbon dioxide.

漿料流路140具有漿料流路142、漿料流路144以及幫浦146。漿料流路142從溶出及沉降槽110的漿料取出口112,藉由煉鋼爐渣的沉降來取出煉鋼爐渣的濃度已被提高的漿料,且導入到粉碎部120中;漿料流路144再導入漿料到溶出及沉降槽110中,此漿料包含在粉碎部120中所粉碎等的煉鋼爐渣;幫浦146使漿料流動。The slurry flow path 140 has a slurry flow path 142, a slurry flow path 144, and a pump 146. The slurry flow path 142 takes out the slurry whose concentration of the steel-making slag has been increased by the sedimentation of the steel-making slag from the elution and settling tank 112, and introduces it into the pulverizing section 120; the slurry flow The path 144 then introduces the slurry into the dissolution and settling tank 110. This slurry contains the steel-making slag crushed in the crushing unit 120, etc.; the pump 146 makes the slurry flow.

在溶出及沉降槽110中,包含煉鋼爐渣以及CO2 水溶液的漿料被投入,或煉鋼爐渣以及CO2 水溶液被個別投入而成為漿料。上述漿料中的煉鋼爐渣從粒徑更大的爐渣顆粒開始沉降。上述包含已沉降的煉鋼爐渣的漿料,藉由葉輪118被攪拌而流動性被提高,且從漿料取出口112被取出,並藉由幫浦146通過漿料流路142而被導入到粉碎部120中。包含在粉碎部120中所粉碎等的煉鋼爐渣的漿料,從漿料流路144被再導入到溶出及沉降槽110中。此時,在漿料中,二氧化碳從二氧化碳導入部130被持續導入。藉由在溶出及沉降槽110、漿料流路142、粉碎部120以及漿料流路144中使漿料循環,而一邊進行煉鋼爐渣的粉碎等,一邊有效率地使煉鋼爐渣與CO2 水溶液接觸,能夠使鈣從煉鋼爐渣溶出到CO2 水溶液中。In the elution and settling tank 110, the slurry containing the steel-making slag and the CO 2 aqueous solution is thrown in, or the steel-making slag and the CO 2 aqueous solution are thrown in separately to become a slurry. The steel-making slag in the above-mentioned slurry starts to settle from the slag particles with a larger particle size. The slurry containing the settled steel-making slag is stirred by the impeller 118 to improve the fluidity, and is taken out from the slurry take-out port 112 and introduced into the slurry flow path 142 by the pump 146 In the crushing section 120. The slurry including the steel-making slag crushed in the crushing unit 120 and the like is reintroduced into the elution and sedimentation tank 110 from the slurry channel 144. At this time, carbon dioxide is continuously introduced from the carbon dioxide introduction part 130 in the slurry. By circulating the slurry in the elution and sedimentation tank 110, the slurry flow path 142, the pulverizing section 120, and the slurry flow path 144, the steel making slag and CO are efficiently made while pulverizing the steel making slag, etc. 2 The aqueous solution is in contact, and calcium can be eluted from the steelmaking slag into the CO 2 aqueous solution.

其後,過濾漿料,或靜置漿料並回收使煉鋼爐渣沉澱後的上清液,且亦可分離鈣已溶出的CO2 水溶液與煉鋼爐渣。但是,只要對下個工序的霧化沒有顯著的影響,亦可不分離鈣已溶出的CO2 水溶液與煉鋼爐渣。Thereafter, the slurry is filtered, or the slurry is allowed to stand and the supernatant after precipitation of the steel-making slag is recovered, and the CO 2 aqueous solution in which calcium has been dissolved and the steel-making slag can also be separated. However, as long as it does not significantly affect the atomization of the next step, it is not necessary to separate the CO 2 aqueous solution from which calcium has been dissolved from the steel-making slag.

(工序S130:CO2 水溶液的霧化) 於本工序中霧化上述與煉鋼爐渣接觸過的CO2 水溶液。(Step S130: Atomization of CO 2 aqueous solution) In this step, the CO 2 aqueous solution that has been in contact with the steel-making slag is atomized.

藉由上述霧化,從CO2 水溶液除去二氧化碳,且CO2 水溶液的pH值上升。藉此,因為CO2 水溶液中的氫離子(H+ )量減少,在下述的平衡式(式1)中,碳酸氫根離子(HCO3 - )與鈣離子(Ca2+ )結合,平衡往氫離子(H+ )與難溶性的碳酸鈣(CaCO3 )生成的方向移動。於本工序中,可認為如此而析出鈣。 HCO3 - + Ca2+ ⇔ H+ + CaCO3 (式1)By the above atomization, carbon dioxide is removed from the CO 2 aqueous solution, and the pH value of the CO 2 aqueous solution increases. Accordingly, because the reduction of hydrogen ions (H +) CO 2 solution in an amount of, in the following equilibrium formula (Formula 1), bicarbonate ions (HCO 3 -) and calcium ions (Ca 2+) binding, to balance The direction in which hydrogen ions (H + ) and poorly soluble calcium carbonate (CaCO 3 ) are generated moves. In this step, it is considered that calcium precipitates in this way. HCO 3 - + Ca 2+ ⇔ H + + CaCO 3 ( Formula 1)

另外,在本工序中所析出的鈣不限於碳酸鈣,也有析出碳酸鈣水合物、鹼性碳酸鈣、以及氫氧化鈣等。In addition, the calcium precipitated in this step is not limited to calcium carbonate, but also includes precipitated calcium carbonate hydrate, basic calcium carbonate, calcium hydroxide, and the like.

於本工序中,因為藉由霧化能夠將CO2 水溶液與周圍的氛圍氣體的接觸面積變大,所以能夠容易地且於短時間內進行由從CO2 水溶液到周圍的氛圍氣體的二氧化碳的除去所致的鈣的析出。另外,在霧化後的CO2 水溶液中也殘留與周圍的氛圍氣體的二氧化碳的分壓相同程度的二氧化碳。In this step, since the area of contact between the CO 2 aqueous solution and the surrounding atmospheric gas can be increased by atomization, the removal of carbon dioxide from the CO 2 aqueous solution to the surrounding atmospheric gas can be performed easily and in a short time The resulting precipitation of calcium. In addition, carbon dioxide having the same partial pressure as the carbon dioxide partial pressure of the surrounding atmospheric gas remains in the atomized CO 2 aqueous solution.

霧化可以噴淋狀進行,亦可以霧狀進行。無論哪一種,從將CO2 水溶液與周圍的氛圍氣體的接觸面積變更大,而更促進由二氧化碳的除去所致的鈣的析出的觀點,霧化較佳為以被霧化的CO2 水溶液的液滴的直徑成為5000 μm以下進行,更佳為上述直徑成為1000 μm以下進行,又更佳為上述直徑成為500 μm以下進行,特佳為上述直徑成為200 μm以下進行。雖然上述直徑的下限值沒有特別限制,但能夠為0.1 μm。上述液滴的直徑能夠藉由用於霧化CO2 水溶液的吐出口或噴嘴的大小來進行調整。Atomization can be carried out in the form of a spray or in the form of a mist. Either way, from the viewpoint of changing the contact area of the CO 2 aqueous solution with the surrounding atmospheric gas to be larger and promoting the precipitation of calcium due to the removal of carbon dioxide, the atomization is preferably an atomized CO 2 aqueous solution. The droplets have a diameter of 5000 μm or less, more preferably the diameter is 1000 μm or less, still more preferably the diameter is 500 μm or less, and particularly preferably the diameter is 200 μm or less. Although the lower limit of the above diameter is not particularly limited, it can be 0.1 μm. The diameter of the above-mentioned droplets can be adjusted by the size of the discharge port or nozzle for atomizing the CO 2 aqueous solution.

從更促進由二氧化碳的除去所致的鈣的析出的觀點,霧化亦可多次進行。另一方面,若析出足夠的量的鈣的話,霧化亦可僅進行一次。霧化次數能夠根據霧化後的CO2 水溶液的pH值(後述)等來決定。From the viewpoint of further promoting the precipitation of calcium due to the removal of carbon dioxide, atomization can also be performed multiple times. On the other hand, if a sufficient amount of calcium is precipitated, atomization may be performed only once. The number of atomization times can be determined based on the pH value (described later) of the CO 2 aqueous solution after atomization.

從促進由上述二氧化碳的除去所致的鈣的析出的觀點,霧化較佳為對於具有二氧化碳的分壓,相較於上述與煉鋼爐渣接觸過的CO2 水溶液中的二氧化碳的平衡壓力低的氛圍氣體的空間進行。From the viewpoint of promoting the precipitation of calcium due to the removal of the carbon dioxide, the atomization preferably has a partial pressure of carbon dioxide, which is lower than the equilibrium pressure of carbon dioxide in the CO 2 aqueous solution that has been in contact with the steel-making slag. Ambient gas space.

雖然上述氛圍氣體沒有特別限制,但是相較於與水反應而生成離子的氣體(氯氣以及亞硫酸氣體),較佳為與CO2 水溶液的反應性低或不反應的氣體。當氣體與水反應而生成離子時,所生成的離子與CO2 水溶液中的鈣離子反應而形成鹽類、鈣的析出效率下降,或在鹽類的除去為困難時,於使鈣析出後的CO2 水溶液的再利用上有耗費工夫的情況。因此,上述氛圍氣體是與CO2 水溶液的反應性低或不反應的氣體,尤其較佳為與CO2 水溶液的接觸並不生成與鈣離子形成鹽類那樣的離子的氣體。Although the atmosphere gas is not particularly limited, it is preferably a gas having low reactivity with a CO 2 aqueous solution or not reacting with gas (chlorine gas and sulfurous acid gas) that reacts with water to generate ions. When the gas reacts with water to generate ions, the generated ions react with calcium ions in the CO 2 aqueous solution to form salts, and the precipitation efficiency of calcium decreases, or when the removal of salts is difficult, after the precipitation of calcium It takes time to recycle the CO 2 aqueous solution. Accordingly, the above-mentioned gas atmosphere is a low reactivity or non-reactive gas and CO 2 aqueous solution, in particular salts such as ion gas is preferably contacted with an aqueous solution of CO 2 does not generate calcium ions.

上述與CO2 水溶液的反應性低或不反應的氣體可為無機系氣體,亦可為有機系氣體。在這些之中,因為洩漏於外部時的燃燒以及爆炸的可能性少,所以較佳為無機系氣體。在上述無機系氣體的例子中,更佳為包含大氣、氮(N2 )、氧(O2 )、氫(H2 )、氬(Ar)以及氦(He)等的氣體、以及這些的混合氣體。另外,上述大氣若是以約4:1的比例含有氮(N2 )及氧(O2 )的、進行霧化的環境的大氣的話即可。在上述有機系氣體的例子中,包含甲烷(CH4 )、乙烷(C2 H6 )、乙烯(C2 H4 )、乙炔(C2 H2 )、丙烷(C3 H8 )、以及氟碳氣體(Cn Hm F2n+2-m )等。The gas with low or no reactivity with the CO 2 aqueous solution may be an inorganic gas or an organic gas. Among these, since there is little possibility of burning and explosion when leaking to the outside, it is preferably an inorganic gas. Among the above-mentioned examples of the inorganic-based gas, it is more preferable to include a gas including atmosphere, nitrogen (N 2 ), oxygen (O 2 ), hydrogen (H 2 ), argon (Ar), and helium (He), and a mixture of these gas. In addition, the atmosphere may be an atmosphere of an atomized environment containing nitrogen (N 2 ) and oxygen (O 2 ) in a ratio of about 4:1. Examples of the above-mentioned organic gases include methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ), propane (C 3 H 8 ), and Fluorocarbon gas (C n H m F 2n+2-m ), etc.

從於本工序中回收從CO2 水溶液所除去的二氧化碳且容易再利用的觀點,霧化較佳為在密閉容器中進行。已回收的二氧化碳,例如於上述使煉鋼爐渣與CO2 水溶液接觸(工程S120)時,能夠用於導入到CO2 水溶液中。From the viewpoint of recovering carbon dioxide removed from the CO 2 aqueous solution in this step and easily reusing it, atomization is preferably performed in a closed container. The recovered carbon dioxide can be used for introduction into the CO 2 aqueous solution when, for example, the steel-making slag is brought into contact with the CO 2 aqueous solution (process S120).

另外,在密閉容器中進行霧化時,當由於從CO2 水溶液所除去的二氧化碳而密閉容器中的二氧化碳濃度上升時,則從CO2 水溶液之二氧化碳的除去速度下降、或變得沒有被除去,而鈣的析出效率下降。因此,較佳為在密閉容器中導入上述氛圍氣體,且一邊從密閉容器中排出包含二氧化碳的氣體,一邊進行CO2 水溶液的霧化。Further, when atomized in a closed vessel, since when the carbon dioxide is removed from the CO 2 concentration of the aqueous solution of carbon dioxide increases closed vessel, carbon dioxide from the CO 2 removal rate of the aqueous drop or become not removed, The precipitation efficiency of calcium decreases. Therefore, it is preferable to introduce the above-mentioned atmospheric gas into the closed container, and to perform the atomization of the CO 2 aqueous solution while discharging the gas containing carbon dioxide from the closed container.

又,此時,亦可藉由減壓或加熱密閉容器的內部,使對水之二氧化碳的溶解度下降。藉此,能夠提高從CO2 水溶液之二氧化碳的除去效率,也能夠提高鈣的析出效率。又,也由於藉由加熱密閉容器的內部,對水之碳酸鈣等的溶解度下降,而能夠提高鈣的析出效率。此時的密閉容器的內部的壓力較佳為大氣壓(約0.1 MPa)以下,此時的密閉容器的內部的溫度較佳為水的蒸氣壓不超過氛圍壓力的程度,更佳為常溫以上未滿100℃(密閉容器的內部為大氣壓時)。上述減壓以及加熱,可僅進行任一方,亦可進行雙方。In addition, at this time, the solubility of carbon dioxide in water may also be reduced by reducing the pressure or heating the inside of the sealed container. With this, the removal efficiency of carbon dioxide from the CO 2 aqueous solution can be improved, and the precipitation efficiency of calcium can also be improved. In addition, by heating the inside of the sealed container, the solubility of calcium carbonate and the like in water decreases, so that the precipitation efficiency of calcium can be improved. At this time, the internal pressure of the closed container is preferably atmospheric pressure (about 0.1 MPa) or lower. At this time, the internal temperature of the closed container is preferably such that the vapor pressure of water does not exceed the atmospheric pressure, and more preferably is not higher than normal temperature. 100°C (when the inside of the closed container is at atmospheric pressure). The above-mentioned decompression and heating may be carried out either or both.

圖3是顯示在本實施型態中能夠使用的在密閉容器中霧化CO2 水溶液的裝置(以下,也簡稱為「霧化裝置」。)的結構的模式圖。FIG. 3 is a schematic diagram showing the structure of an apparatus for atomizing a CO 2 aqueous solution in a closed container (hereinafter, also simply referred to as “atomizing apparatus”) that can be used in the present embodiment.

霧化裝置200具有CO2 水溶液被霧化的密閉容器210、霧化CO2 水溶液的霧化器220、導入氛圍氣體到密閉容器210的內部的氣體導入部230、從密閉容器210的內部排出包含二氧化碳的氣體的氣體排出部240、減壓密閉容器的內部的幫浦250以及加熱密閉容器的內部的加熱器260。Atomizing device 200 having a CO 2 aqueous solution is atomized hermetic container 210, the atomizing nebulizer aqueous CO 2 220 is introduced into the gas atmosphere inside the hermetic container 210 gas introduction portion 230, from the interior of the sealed container 210 is discharged comprises The gas discharge part 240 of carbon dioxide gas, the pump 250 inside the decompressed airtight container, and the heater 260 heating the inside of the airtight container.

密閉容器210是與煉鋼爐渣接觸過的CO2 水溶液在內部被霧化的容器。密閉容器210在底部側具有取出已被霧化的CO2 水溶液的CO2 水溶液取出口212。為了容易取出被霧化且到達底面的CO2 水溶液,密閉容器210的底面是朝向CO2 水溶液取出口212變深地傾斜的傾斜面。The sealed container 210 is a container in which the CO 2 aqueous solution that has been in contact with the steel-making slag is atomized inside. The sealed container 210 has a CO 2 aqueous solution outlet 212 for taking out the CO 2 aqueous solution that has been atomized on the bottom side. In order to easily take out the CO 2 aqueous solution that has been atomized and reached the bottom surface, the bottom surface of the sealed container 210 is an inclined surface that becomes deeper toward the CO 2 aqueous solution extraction port 212.

霧化器220具有流送於前個工序(工序S120)中與煉鋼爐渣接觸過的CO2 水溶液的CO2 水溶液流路222、以及用於霧化從CO2 水溶液流路222所流送的CO2 水溶液為噴淋狀的噴淋頭224。噴淋頭224被設置於密閉容器210的上部側,從多個開口朝向密閉容器210的底部側,且吐出CO2 水溶液的液滴。另外,雖然於圖3中霧化器220僅具有一個噴淋頭224,但霧化器220亦可具有多個噴淋頭。The atomizer 220 has a CO 2 aqueous solution flow path 222 that flows through the CO 2 aqueous solution that has been in contact with the steel-making slag in the previous step (step S120), and is used to atomize the CO 2 aqueous solution flow path 222 The CO 2 aqueous solution is a shower head 224 in the form of a shower. The shower head 224 is provided on the upper side of the sealed container 210 from a plurality of openings toward the bottom side of the sealed container 210, and discharges droplets of the CO 2 aqueous solution. In addition, although the atomizer 220 in FIG. 3 has only one shower head 224, the atomizer 220 may also have multiple shower heads.

又,於圖3中,雖然在成為傾斜面的密閉容器210的底面側貯存已被霧化的CO2 水溶液,但是亦可不貯存CO2 水溶液,而已被霧化的CO2 水溶液照原樣從CO2 水溶液取出口212被排出。Further, in FIG. 3, CO 2 in an aqueous solution while the sealed container becomes inclined surface of the bottom side of the reservoir 210 has been atomized, but may not be stored CO 2 solution, it is atomized as it is an aqueous solution of CO 2 from the CO 2 The aqueous solution extraction port 212 is discharged.

氣體導入部230導入上述氛圍氣體到密閉容器210的內部。此時,於容器的底部側,從已被霧化的CO2 水溶液除去二氧化碳而CO2 水溶液中的二氧化碳濃度(二氧化碳的平衡壓力)下降,變得難以從CO2 水溶液除去二氧化碳。因此,氣體導入部230較佳為從密閉容器210的底部側導入上述氛圍氣體,將在密閉容器210的底部側的氛圍氣體中的二氧化碳濃度(二氧化碳的分壓)變低。The gas introduction part 230 introduces the above-mentioned atmospheric gas into the sealed container 210. In this case, the bottom side of the container, from an aqueous solution of CO 2 has been removed atomized carbon dioxide concentration of CO (carbon dioxide equilibrium pressure) 2 aqueous solution is lowered, it becomes difficult to remove carbon dioxide from an aqueous solution of CO 2. Therefore, the gas introduction part 230 preferably introduces the above-mentioned atmospheric gas from the bottom side of the sealed container 210 to reduce the carbon dioxide concentration (partial pressure of carbon dioxide) in the atmospheric gas on the bottom side of the sealed container 210.

另外,雖然於圖3中對於密閉容器210僅設置二個氣體導入部230,但是亦可沿著密閉容器210的外圓周於圓周方向以等間隔配置多個氣體導入部230,而於密閉容器210的內部的底部側均等地導入上述氛圍氣體,使底部側的二氧化碳濃度整體均等地下降。In addition, although only two gas introduction parts 230 are provided for the sealed container 210 in FIG. 3, a plurality of gas introduction parts 230 may be arranged at equal intervals in the circumferential direction along the outer circumference of the sealed container 210. The atmosphere gas is introduced into the bottom side of the inside of the inside uniformly, so that the entire carbon dioxide concentration on the bottom side is evenly lowered.

氣體排出部240將氛圍氣體從密閉容器210的內部排出。被排出的氛圍氣體因為包含藉由CO2 水溶液的霧化而從CO2 水溶液被除去的二氧化碳,所以二氧化碳濃度變高。根據本實施型態,此時,能夠使二氧化碳濃度為5體積%以上的氛圍氣體從氣體排出部240排出。藉由連續地供給一定量的CO2 水溶液,被排出的氛圍氣體的二氧化碳濃度以及量從霧化的初期至最終階段能夠保持恆定。從這樣的氛圍氣體,藉由工業上回收且精製二氧化碳,而得到二氧化碳濃度為99體積%以上的、可工業上再利用的二氧化碳是容易的。如此,於本實施型態中,能夠得到二氧化碳濃度高的氛圍氣體,且二氧化碳的再利用是容易的。The gas discharge part 240 discharges the atmosphere gas from the inside of the sealed container 210. Since the atmosphere gas containing carbon dioxide discharged by atomizing an aqueous solution of CO 2 and CO 2 is removed from the aqueous solution, the concentration of carbon dioxide becomes higher. According to the present embodiment, at this time, the atmospheric gas having a carbon dioxide concentration of 5% by volume or more can be discharged from the gas discharge part 240. By continuously supplying a certain amount of CO 2 aqueous solution, the carbon dioxide concentration and amount of the discharged atmospheric gas can be kept constant from the initial stage to the final stage of atomization. It is easy to obtain industrially reusable carbon dioxide with a carbon dioxide concentration of 99% by volume or more by industrially recovering and purifying carbon dioxide from such atmospheric gas. In this way, in the present embodiment, an atmosphere gas with a high carbon dioxide concentration can be obtained, and the reuse of carbon dioxide is easy.

幫浦250被配置於氣體排出部240的管線,調整從密閉容器210的內部的氛圍氣體的排出量,而減壓密閉容器210的內部。幫浦250除了藉由上述減壓提高從已被霧化的CO2 水溶液之二氧化碳的除去效率之外,還有藉由從配置於密閉容器210的上部側的氣體排出部240進行減壓,促進從密閉容器210的下部側向上部側的二氧化碳的移動,使密閉容器210的內部的二氧化碳濃度容易下降。The pump 250 is arranged in the pipeline of the gas discharge part 240, adjusts the discharge amount of the atmosphere gas from the inside of the sealed container 210, and decompresses the inside of the sealed container 210. The pump 250 not only improves the removal efficiency of carbon dioxide from the CO 2 aqueous solution that has been atomized by the above decompression, but also reduces the pressure by the gas discharge part 240 disposed on the upper side of the sealed container 210 to promote The movement of carbon dioxide from the lower side of the sealed container 210 to the upper side makes the concentration of carbon dioxide in the sealed container 210 easily lower.

加熱器260若是用於加熱密閉容器210的內部的夾克式加熱器等的習知的加熱器的話即可。藉由由加熱器260所致的密閉容器210的內部的加熱、以及由幫浦250所致的密閉容器210的內部的減壓,能夠提高從CO2 水溶液之二氧化碳的除去效率。又,藉由由加熱器260所致的密閉容器210的內部的加熱,也能夠提高從CO2 水溶液之鈣的析出效率。又,藉由一起使用由加熱器260所致的密閉容器210的內部的加熱、以及由幫浦250所致的密閉容器210的內部的減壓,即使用於提高上述二氧化碳的除去效率以及鈣的析出效率的加熱溫度並不那麼高,也能夠有效率地充分提高鈣的析出效率。The heater 260 may be any conventional heater such as a jacket heater for heating the inside of the sealed container 210. By heating the inside of the sealed container 210 by the heater 260 and depressurizing the inside of the sealed container 210 by the pump 250, the removal efficiency of carbon dioxide from the CO 2 aqueous solution can be improved. In addition, by heating the inside of the sealed container 210 by the heater 260, the precipitation efficiency of calcium from the CO 2 aqueous solution can also be improved. Furthermore, by using both the heating of the inside of the sealed container 210 by the heater 260 and the decompression of the inside of the sealed container 210 by the pump 250, even if it is used to improve the above-described carbon dioxide removal efficiency and calcium The heating temperature of the precipitation efficiency is not so high, and the precipitation efficiency of calcium can be sufficiently improved efficiently.

又,加熱器260亦可加熱從氣體導入部230所導入的氛圍氣體。In addition, the heater 260 may heat the atmospheric gas introduced from the gas introduction part 230.

圖4是顯示在本實施型態中的另一個的霧化裝置200a的結構的模式圖。霧化裝置200a具有霧化裝置220a將CO2 水溶液霧化為霧狀的噴嘴226。即使是這樣的霧化裝置200a,也能夠同樣地從CO2 水溶液有效率地除去二氧化碳,且使鈣有效率地析出。另外,雖然於圖4中霧化裝置220a僅具有一個噴嘴226,但是霧化裝置220a亦可具有多個噴嘴。FIG. 4 is a schematic diagram showing the structure of another atomizing device 200a in the present embodiment. The atomizing device 200a has a nozzle 226 that atomizes the CO 2 aqueous solution into a mist form by the atomizing device 220a. Even such an atomizing device 200a can similarly efficiently remove carbon dioxide from a CO 2 aqueous solution and efficiently precipitate calcium. In addition, although the atomizing device 220a has only one nozzle 226 in FIG. 4, the atomizing device 220a may also have multiple nozzles.

如此而使鈣析出時,CO2 水溶液中所包含的少量的鐵(Fe)、錳(Mn)以及磷(P)等也同時析出。因此,在本實施型態中使鈣析出後的水溶液能夠簡化或不需廢水處理,而能夠抑制廢水處理的成本。When calcium is precipitated in this manner, a small amount of iron (Fe), manganese (Mn), phosphorus (P), and the like contained in the CO 2 aqueous solution are also precipitated at the same time. Therefore, in the present embodiment, the aqueous solution after calcium precipitation can be simplified or without waste water treatment, and the cost of waste water treatment can be suppressed.

又,使鈣析出後的殘留水溶液因為幾乎不包含鈣(Ca)、鐵(Fe)、錳(Mn)、鋁(Al)、以及磷(P)等的元素、以及二氧化碳,所以於工序內的再利用為可能的。因此,本實施型態能夠使由於處理所產生的排水的量減少。In addition, the residual aqueous solution after precipitation of calcium hardly contains elements such as calcium (Ca), iron (Fe), manganese (Mn), aluminum (Al), and phosphorus (P), and carbon dioxide, so it is Reuse is possible. Therefore, the present embodiment can reduce the amount of drainage generated by the treatment.

(工序S140:固體成分的回收) 於本工序中回收包含藉由上述CO2 水溶液的霧化而析出的鈣的固體成分。上述固體成分能夠藉由包括沉降沉澱法、加壓過濾的習知的方法來回收。此固體成分中包含源自煉鋼爐渣的鈣。(Step S140: Recovery of solid content) In this step, a solid content including calcium precipitated by the atomization of the CO 2 aqueous solution is recovered. The above-mentioned solid component can be recovered by a conventional method including a sedimentation method and a pressure filtration. This solid component contains calcium derived from steel-making slag.

(效果) 根據上述的從煉鋼爐渣回收鈣的方法,能夠藉由更容易的方法回收溶出到CO2 水溶液中的鈣。(Effects) According to the method for recovering calcium from the steel-making slag described above, it is possible to recover calcium eluted into the CO 2 aqueous solution by an easier method.

[第2實施型態] 圖5是在本發明的第2實施型態中的從煉鋼爐渣回收鈣的方法的流程圖。於本實施型態中,與第1實施型態同樣地,準備煉鋼爐渣(工序S110)、使已準備好的煉鋼爐渣與CO2 水溶液接觸(工序S120)、霧化煉鋼爐渣所接觸過的上述CO2 水溶液(工序S130)。其後,於本實施型態中,在CO2 水溶液中投入鈣系的鹼性物質(工序S150)、回收包含已析出的鈣的固體成分(工序S140)。另外,工序S110、工序S120、工序S130、以及工序S140因為可與第1實施型態同樣地進行,所以省略重複的說明。[Second Embodiment] FIG. 5 is a flowchart of a method for recovering calcium from steel-making slag in a second embodiment of the present invention. In this embodiment form, as in the first embodiment form, steel-making slag is prepared (step S110), the prepared steel-making slag is brought into contact with a CO 2 aqueous solution (step S120), and the atomized steel-making slag is brought into contact The aforementioned CO 2 aqueous solution (step S130). Thereafter, in the present embodiment, a calcium-based alkaline substance is added to the CO 2 aqueous solution (step S150), and a solid component containing precipitated calcium is recovered (step S140). In addition, step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and therefore repeated descriptions are omitted.

(工序S150:鈣系的鹼性物質的投入) 圖6是顯示在本實施型態中能夠使用於CO2 水溶液的霧化(工序S130)以及鈣系的鹼性物質的向CO2 水溶液的投入(工序S150)的霧化裝置的結構的模式圖。(Step S150: Calcium-based alkaline substance input) FIG. 6 is a diagram showing the atomization of a CO 2 aqueous solution (step S130) and the injection of a calcium-based alkaline substance into a CO 2 aqueous solution in the present embodiment. (Step S150) A schematic diagram of the structure of the atomizing device.

霧化裝置200b具有投入鈣系的鹼性物質到密閉容器210a的內部的CO2 水溶液中的鹼性物質投入口270,且密閉容器210a具有攪拌已被投入鈣系的鹼性物質的CO2 水溶液的攪拌葉片214、以及使攪拌葉片214旋轉的旋轉棒216。另外,霧化裝置200b的其他的結構因為與圖3中所示的霧化裝置200是同樣的,所以省略重複的說明。The atomizing device 200b has an alkaline substance input port 270 for feeding a calcium-based alkaline substance into the CO 2 aqueous solution inside the sealed container 210a, and the sealed container 210a has a CO 2 aqueous solution that agitates the calcium-based alkaline substance that has been charged. Stirring blade 214, and a rotating rod 216 that rotates the stirring blade 214. In addition, the other structure of the atomizing device 200b is the same as that of the atomizing device 200 shown in FIG. 3, and therefore repeated description is omitted.

鹼性物質投入口270投入鈣系的鹼性物質到密閉容器210a的內部且使其與CO2 水溶液接觸。於圖6中,鹼性物質投入口270投入鈣系的鹼性物質到被霧化且積累於密閉容器210a的底部的CO2 水溶液中。The alkaline substance input port 270 inputs the calcium-based alkaline substance into the closed container 210a and makes it contact with the CO 2 aqueous solution. In FIG. 6, the alkaline substance input port 270 inputs the calcium-based alkaline substance into the CO 2 aqueous solution atomized and accumulated at the bottom of the closed container 210 a.

如上述,於CO2 水溶液的霧化(工序S130)中,藉由二氧化碳的除去使CO2 水溶液的pH值上升,而使鈣從CO2 水溶液析出。但是,當CO2 水溶液的pH值超過8.5左右時,因為在CO2 水溶液中二氧化碳已經無法存在,所以由上述的霧化所致的CO2 水溶液的pH值的上升是8.5左右為界限。另一方面,在CO2 水溶液中,即使pH值為8.5以上也存在碳酸氫根離子(HCO3 - ),且與此碳酸氫根離子平衡而鈣離子(Ca2+ )也殘留。相對於此,藉由投入鈣系的鹼性物質到由於霧化而二氧化碳已被(一部分地)除去的CO2 水溶液中,來使CO2 水溶液的pH值更進一步上升,而能夠使上述殘留的鈣離子作為碳酸鈣等析出。As described above, in the atomization of the CO 2 aqueous solution (step S130), the pH of the CO 2 aqueous solution is increased by the removal of carbon dioxide, and calcium is precipitated from the CO 2 aqueous solution. However, when the pH of the aqueous solution of CO 2 exceeds about 8.5, since the carbon dioxide it can not exist in a CO 2 already an aqueous solution, so that an increase in pH of an aqueous solution of CO 2 caused by the atomization of about 8.5 as a boundary. On the other hand, in a CO 2 aqueous solution, a pH of 8.5 or more even if there bicarbonate ion (HCO 3 -), and this balance bicarbonate ions calcium ions (Ca 2+) also remains. In contrast, by adding calcium-based alkaline substances to the CO 2 aqueous solution in which carbon dioxide has been (partly) removed due to atomization, the pH of the CO 2 aqueous solution can be further increased, and the above-mentioned residual Calcium ions are precipitated as calcium carbonate and the like.

更詳細地,圖7是顯示水溶液中的碳酸(H2 CO3 )的濃度[H2 CO3 *]、碳酸氫根離子(HCO3 - )的濃度[HCO3 - ]、以及碳酸根離子(CO3 2- )的濃度[CO3 2- ]的存在比率與pH值的關係的圖。在此,[H2 CO3 *]是已將二氧化碳的濃度[CO2 ]與碳酸的濃度[H2 CO3 ]合計的濃度。另外,水溶液中的[CO2 ]與[H2 CO3 ]的比([CO2 ]/[H2 CO3 ])是650左右,二氧化碳(CO2 )的存在比例相較於碳酸(H2 CO3 )為壓倒性地大。如從圖7明顯所示,當pH值超過8.5左右時,[H2 CO3 *]大致是0,二氧化碳幾乎不存在於水溶液中。另外,圖7被記載於習知的文獻(例如,「腐蝕及防腐蝕手冊」社團法人腐蝕及防腐蝕協會,2000年,p.155)。The concentration of [HCO 3 -], and carbonate ions (- In more detail, FIG. 7 is [H 2 CO 3 *], bicarbonate ion (HCO 3) shows the concentration of the aqueous solution of carbonic acid (H 2 CO 3) of The graph of the relationship between the ratio of the concentration of CO 3 2- ) [CO 3 2- ] and the pH value. Here, [H 2 CO 3 *] is a concentration in which the concentration of carbon dioxide [CO 2 ] and the concentration of carbonic acid [H 2 CO 3 ] have been combined. In addition, the ratio of [CO 2 ] to [H 2 CO 3 ] in the aqueous solution ([CO 2 ]/[H 2 CO 3 ]) is about 650, and the proportion of carbon dioxide (CO 2 ) is higher than that of carbonic acid (H 2 CO 3 ) is overwhelmingly large. As is apparent from FIG. 7, when the pH value exceeds about 8.5, [H 2 CO 3 *] is approximately 0, and carbon dioxide hardly exists in the aqueous solution. In addition, FIG. 7 is described in a conventional document (for example, "Corrosion and Corrosion Prevention Manual" Association of Corrosion and Corrosion Prevention, 2000, p. 155).

在此,於水溶液中的上述各個碳酸種類(CO2 、H2 CO3 、HCO3 - 、以及CO3 2- )的存在狀態,於下述的平衡式(式2)~平衡式(式4)中被表示。具體地,pH值比8.5左右低時,於平衡式(式2)以及平衡式(式3)中所表示的平衡關係成立,而pH值比8.5左右高時,於平衡式(式3)以及平衡式(式4)中所表示的平衡關係成立。 CO2 + H2 O ⇔ H2 CO3 (式2) H2 CO3 ⇔ H+ + HCO3 - (式3) HCO3 - ⇔ H+ + CO3 2- (式4)Here, in the above-described respective kinds carbonate aqueous solution (CO 2, H 2 CO 3 , HCO 3 -, and CO 3 2-) in the present state of equilibrium in the following formula (Formula 2) to balance the formula (Formula 4 ) Is shown. Specifically, when the pH value is lower than about 8.5, the equilibrium relationship expressed in the balance formula (Formula 2) and the balance formula (Formula 3) is established, and when the pH value is higher than about 8.5, the balance formula (Formula 3) and The balance relationship expressed in the balance formula (Equation 4) is established. CO 2 + H 2 O ⇔ H 2 CO 3 ( Formula 2) H 2 CO 3 ⇔ H + + HCO 3 - ( Formula 3) HCO 3 - ⇔ H + + CO 3 2- ( Formula 4)

當使水溶液中的CO2 減少時,至pH值8.5左右為止,為了補償CO2 的減少,(式2)的平衡往左偏移,H2 CO3 減少。當H2 CO3 減少時,為了補償之,(式3)的平衡往左偏移,H+ 減少而水溶液的pH值上升。又,當H+ 減少時,平衡式(式5)的平衡往右偏移,鈣離子(Ca2+ )與碳酸氫根離子(HCO3 - )反應而產生難溶性的碳酸鈣(CaCO3 )並析出鈣。此時,上述由各個平衡的移動所致的H+ 的濃度的變化,同時也產生平衡式(式6)的水的平衡移動。因此,能夠將pH值作為整體的反應的進行的指標使用。 Ca2+ + HCO3 - ⇔ H+ + CaCO3 (式5) H2 O ⇔ H+ + OH- (式6)When the CO 2 in the aqueous solution is reduced to about pH 8.5, in order to compensate for the decrease in CO 2 , the balance of (Equation 2) shifts to the left, and H 2 CO 3 decreases. When H 2 CO 3 decreases, to compensate for it, the balance of (Equation 3) shifts to the left, H + decreases and the pH value of the aqueous solution increases. Also, when the H + reduction, balanced equilibrium (Equation 5) is shifted to the right, a calcium ion (Ca 2+) and bicarbonate ions (HCO 3 -) The reaction to produce insoluble calcium carbonate (CaCO 3) And precipitate calcium. At this time, the above-mentioned change in the concentration of H + due to the movement of each balance also causes the equilibrium movement of the water of the equilibrium equation (Equation 6). Therefore, the pH value can be used as an indicator of the progress of the overall reaction. Ca 2+ + HCO 3 - ⇔ H + + CaCO 3 ( Formula 5) H 2 O ⇔ H + + OH - ( Formula 6)

因為上述的數種的平衡狀態同時地移動,所以從CO2 水溶液除去二氧化碳時,除去剛開始後不久,因為相對於(式5)的往右偏移的反應,(式3)的平衡往左偏移的反應為優勢,所以pH值上升,少量的碳酸鈣析出。其後,因為(式5)的平衡往右偏移的反應成為優勢,所以pH值下降,且碳酸鈣(CaCO3 )大量析出。其後,(式3)的往左偏移的反應相較於(式5)的往右偏移的反應再度成為優勢,pH值上升。此時也藉由(式5)的往右偏移的反應而碳酸鈣持續析出。如此,至CO2 水溶液中的二氧化碳變得不存在的pH值8.5左右為止,進行由(式2)、(式3)、以及(式5)的平衡移動所致的碳酸鈣的析出。Because the above-mentioned several equilibrium states move simultaneously, when removing carbon dioxide from the CO 2 aqueous solution, immediately after the removal, the equilibrium of (Equation 3) moves to the left due to the reaction shifted to the right with respect to (Equation 5) The shifted reaction is dominant, so the pH rises and a small amount of calcium carbonate precipitates. After that, since the reaction of shifting the balance of (Equation 5) to the right becomes an advantage, the pH value drops and a large amount of calcium carbonate (CaCO 3 ) precipitates. After that, the reaction shifted to the left in (Equation 3) becomes superior to the reaction shifted to the right in (Equation 5) again, and the pH value increases. At this time, calcium carbonate is continuously precipitated by the reaction shifted to the right in (Equation 5). In this way, until the carbon dioxide in the CO 2 aqueous solution is absent at a pH value of about 8.5, precipitation of calcium carbonate due to the equilibrium shift of (Formula 2), (Formula 3), and (Formula 5) proceeds.

另一方面,於二氧化碳從水溶液大致消失的pH值8.5左右以上,當藉由pH值的上升而水溶液中的H+ 減少時,(式5)的平衡往右偏移,藉由鈣離子(Ca2+ )與碳酸氫根離子(HCO3 - )的反應來生成難溶性的碳酸鈣(CaCO3 ),而進行鈣的析出。藉由此平衡移動,水溶液中的鈣至pH值10為止大致全部析出。On the other hand, at a pH value of about 8.5 or more where carbon dioxide almost disappears from the aqueous solution, when the pH value increases and the H + in the aqueous solution decreases, the balance of (Equation 5) shifts to the right by calcium ions (Ca 2+) and bicarbonate ions (HCO 3 - reaction) to generate the insoluble calcium carbonate (CaCO 3), for precipitation of calcium. By this equilibrium movement, almost all calcium in the aqueous solution is precipitated up to pH 10.

但是,如上述說明,於從CO2 水溶液之二氧化碳的除去中,只有在水溶液中二氧化碳變得不存在的pH值8.5左右為止,才能夠使水溶液的pH值上升。相對於此,藉由投入鈣系的鹼性物質到有一定程度地除去二氧化碳後的CO2 水溶液中,使CO2 水溶液中的鈣濃度及pH值上升,(式5)的平衡更容易往右側偏移,而能夠促進碳酸鈣的析出。However, as described above, in the removal of carbon dioxide from a CO 2 aqueous solution, the pH value of the aqueous solution can be raised only until the pH value at which carbon dioxide does not exist in the aqueous solution is around 8.5. In contrast, by adding calcium-based alkaline substances to the CO 2 aqueous solution after removing carbon dioxide to a certain extent, the calcium concentration and pH value in the CO 2 aqueous solution are increased, and the balance of (Equation 5) is easier to the right Deviation, and can promote the precipitation of calcium carbonate.

另外,CO2 水溶液的二氧化碳濃度變得越低,從CO2 水溶液之進一步的二氧化碳的除去的效率越下降。因此,當嘗試藉由霧化(二氧化碳的除去)而使CO2 水溶液的pH值更高地上升時,需要指數地延長被霧化的CO2 水溶液所飛行的距離。相對於此,於在CO2 水溶液中殘留有一定程度的二氧化碳的程度而停止由霧化所致的從CO2 水溶液之二氧化碳的除去,其後藉由鈣系的鹼性物質的投入來促進鈣的析出,能夠抑制由霧化裝置的大型化或霧化次數的增加所致的處理的複雜化等。例如,霧化較佳為進行至CO2 水溶液的pH值成為6.5以上8.0以下為止,較佳地CO2 水溶液的pH值成為6.6以上7.5以下為止,其後,投入鈣系的鹼性物質到CO2 水溶液中。In addition, the lower the carbon dioxide concentration of the CO 2 aqueous solution, the lower the efficiency of further removal of carbon dioxide from the CO 2 aqueous solution. Therefore, when attempting to increase the pH value of the CO 2 aqueous solution by atomization (removal of carbon dioxide), it is necessary to exponentially extend the distance traveled by the atomized CO 2 aqueous solution. On the other hand, the removal of carbon dioxide from the CO 2 aqueous solution due to atomization is stopped to the extent that a certain degree of carbon dioxide remains in the CO 2 aqueous solution, and then calcium is promoted by the input of calcium-based alkaline substances The precipitation of can suppress the complexity of processing caused by the enlargement of the atomizing device or the increase in the number of atomizations. For example, atomization is preferably performed until the pH value of the CO 2 aqueous solution becomes 6.5 or more and 8.0 or less, preferably until the pH value of the CO 2 aqueous solution becomes 6.6 or more and 7.5 or less, and thereafter, a calcium-based alkaline substance is added to the CO 2 in aqueous solution.

上述鈣系的鹼性物質雖然若是包含鈣的鹼性的物質的話即可,但是從使pH值容易上升且使析出的鈣的量增加的觀點,較佳為包含氫氧化鈣(Ca(OH)2 )的組成物、或當被投入於水中時即生成氫氧化鈣的組成物(以下,也簡稱為「氫氧化鈣系組成物」。)。上述氫氧化鈣系組成物可為溶解有氫氧化鈣的水溶液,亦可為分散有固體狀的氫氧化鈣的漿料。或者,上述包含氫氧化鈣的物質亦可為固體狀的氫氧化鈣。或,上述鈣系的鹼性物質亦可為當被投入於CO2 水溶液中時即變化為氫氧化鈣的固體狀的氧化鈣(CaO)。Although the calcium-based alkaline substance may be an alkaline substance containing calcium, it is preferable to include calcium hydroxide (Ca(OH) from the viewpoint of easily increasing the pH value and increasing the amount of precipitated calcium. 2 ) The composition, or a composition that generates calcium hydroxide when it is put in water (hereinafter, also simply referred to as "calcium hydroxide-based composition."). The calcium hydroxide-based composition may be an aqueous solution in which calcium hydroxide is dissolved, or a slurry in which solid calcium hydroxide is dispersed. Alternatively, the substance containing calcium hydroxide may be solid calcium hydroxide. Alternatively, the calcium-based alkaline substance may be solid calcium oxide (CaO) that changes into calcium hydroxide when it is put into a CO 2 aqueous solution.

在這些之中,溶解有氫氧化鈣的水溶液,能夠容易地在從煉鋼爐渣回收鈣的處理的各個工序中取得。例如,上述溶解有氫氧化鈣的水溶液可為在準備煉鋼爐渣的工序中於得到過濾殘留爐渣時所取得的高鹼浸出水,亦可為在後述的第3實施型態中於水合處理後所得到的水合處理水,亦可為在後述的第4實施型態中於濕式磁選後所得到的磁選水。另外,在本說明書中,如上述高鹼浸出水、水合處理水以及磁選水,藉由煉鋼爐渣的與水的接觸所得到的液體成分也稱為爐渣浸出水。Among these, an aqueous solution in which calcium hydroxide is dissolved can be easily obtained in each step of the process of recovering calcium from steel-making slag. For example, the above-mentioned aqueous solution in which calcium hydroxide is dissolved may be high-alkali leaching water obtained in the process of preparing the steel-making slag when filtering residual slag is obtained, or it may be after hydration treatment in the third embodiment described later The obtained hydration treated water may also be magnetic separation water obtained after wet magnetic separation in the fourth embodiment described below. In addition, in this specification, the liquid component obtained by the contact of the steel-making slag and water like the above-mentioned high-alkali leaching water, hydration treatment water, and magnetic separation water is also called slag leaching water.

上述爐渣浸出水可為藉由CO2 水溶液的霧化(工序S130)以及鈣系的鹼性物質的投入(工序S150)與使鈣析出的煉鋼爐渣接觸的、於此前的處理工序中所得到的爐渣浸出水,亦可為於與其他的煉鋼爐渣接觸的處理工序中所得到的爐渣浸出水。在本工序中投入爐渣浸出水到CO2 水溶液中,從用於從煉鋼爐渣回收鈣的各個工序中所排出的爐渣浸出水的有效活用的觀點是較佳的。The slag leaching water can be obtained in the previous treatment step by contacting the steel-making slag that precipitates calcium by atomization of a CO 2 aqueous solution (step S130) and the input of a calcium-based alkaline substance (step S150). The slag leaching water may also be the slag leaching water obtained in the treatment process in contact with other steel-making slag. In this step, slag leaching water is added to the CO 2 aqueous solution, and it is preferable from the viewpoint of effective utilization of the slag leaching water discharged in each step for recovering calcium from the steelmaking slag.

或者,上述溶解有氫氧化鈣的水溶液亦可為從煉鋼爐渣回收鈣的處理以外的處理中所得到的廢液。在上述廢液的例子中,包含使碳化鈣(Calcium carbide)與水反應而生成乙炔時所產生的廢水溶液等。上述廢水溶液大致由水以及氫氧化鈣組成。因此,藉由使用上述廢水溶液,而能夠減少對包含析出的鈣的固體成分的不純物的混入量。Alternatively, the aqueous solution in which calcium hydroxide is dissolved may be a waste liquid obtained in a process other than the process of recovering calcium from steel-making slag. Examples of the above waste liquid include waste water solutions generated when calcium carbide (Calcium carbide) and water are reacted to produce acetylene. The above wastewater solution is roughly composed of water and calcium hydroxide. Therefore, by using the above-mentioned waste water solution, it is possible to reduce the mixing amount of impurities into the solid content containing the precipitated calcium.

另外,代替上述鈣系的鹼性物質,亦可投入包含氫氧化鈉等的鈉系物質、以及包含氨等的氨系物質到CO2 水溶液中。但是,在包含投入這些而得到的析出的鈣的固體成分中,包含恐有縮短燒結爐或高爐中所包含的耐火物的壽命的鈉或恐有藉由加熱使有毒的氨氣體產生的氨。因此,較佳為藉由上述鈣系的鹼性物質的投入來促進鈣的析出。In addition, instead of the above-mentioned calcium-based alkaline substance, a sodium-based substance containing sodium hydroxide or the like and an ammonia-based substance containing ammonia or the like may be added to the CO 2 aqueous solution. However, the solid content containing the precipitated calcium obtained by inputting these contains sodium which may shorten the life of the refractory contained in the sintering furnace or blast furnace or ammonia which may generate toxic ammonia gas by heating. Therefore, it is preferable to promote the precipitation of calcium by the input of the calcium-based alkaline substance.

於圖6中,鹼性物質投入口270,在積累於密閉容器210a的底部的CO2 水溶液中直接投入上述鈣系的鹼性物質。但是,上述鈣系的鹼性物質的投入方法不限於此。例如,亦可在於密閉容器210a的下游側另外設置的桶槽中投入上述鈣系的鹼性物質到CO2 水溶液中,亦可在密閉容器210a與上述桶槽連通的流路中,配置用於投入並混合上述鈣系的鹼性物質到CO2 水溶液中的混合機。但是,在CO2 水溶液被霧化的密閉容器210a中投入上述鈣系的鹼性物質等,同時地進行CO2 水溶液的霧化及向已被霧化的CO2 水溶液的鈣系的鹼性物質,因為能夠縮短處理所需的時間,且更簡易地完成設備結構,所以為較佳。In FIG. 6, the alkaline substance input port 270 directly inputs the calcium-based alkaline substance into the CO 2 aqueous solution accumulated at the bottom of the closed container 210 a. However, the method of adding the calcium-based alkaline substance is not limited to this. For example, the above-mentioned calcium-based alkaline substance may be added to the CO 2 aqueous solution in a barrel tank provided on the downstream side of the closed container 210a, or may be arranged in a flow path in which the closed container 210a communicates with the barrel tank. A mixer in which the above-mentioned calcium-based alkaline substance is added and mixed into a CO 2 aqueous solution. However, the above-mentioned calcium-based input like a basic substance in a sealed container 210a CO 2 aqueous solution is atomized while the atomization of the aqueous solution 2 and CO to CO 2 has been atomized aqueous alkaline substance calcia Because it is possible to shorten the time required for processing and to complete the device structure more easily, it is preferable.

於上述投入鈣系的鹼性物質後,較佳為攪拌CO2 水溶液,而使上述鈣系的鹼性物質均勻地分散或均勻地混合。於圖6中,密閉容器210a具有攪拌已被投入鈣系的鹼性物質的CO2 水溶液的攪拌葉片214、以及使攪拌葉片214旋轉的旋轉棒216。After the calcium-based alkaline substance is added, it is preferable to stir the CO 2 aqueous solution to uniformly disperse or uniformly mix the calcium-based alkaline substance. In FIG. 6, the closed container 210 a includes a stirring blade 214 that stirs a CO 2 aqueous solution into which a calcium-based alkaline substance has been added, and a rotating bar 216 that rotates the stirring blade 214.

另外,於圖6中,雖然顯示具有霧化CO2 水溶液為噴淋狀的霧化器的霧化裝置,但是亦可使用具有霧化CO2 水溶液為霧狀的霧化器的霧化裝置,同樣地進行鈣系的鹼性物質的投入。Further, in FIG. 6, although shown as having a spray atomizer CO 2 aq shaped atomizing device atomizer, but also be used as an aqueous solution having a CO 2 spray mist atomizing device atomizer, The calcium-based alkaline substance is input in the same manner.

(效果) 根據上述從煉鋼爐渣回收鈣的方法,能夠藉由更進一步容易的方法來回收已溶出到CO2 水溶液中的鈣。(Effects) According to the method for recovering calcium from the steel-making slag described above, it is possible to recover calcium that has been eluted into the CO 2 aqueous solution by an easier method.

[第3實施型態] 圖8是在本發明的第3實施型態中的從煉鋼爐渣回收鈣的方法的流程圖。在本實施型態中,與第1實施型態同樣地準備煉鋼爐渣(工序S110),其後,施行水合處理於上述煉鋼爐渣(工序S160)。其後,使上述已施行過水合處理的煉鋼爐渣與CO2 水溶液接觸(工序S120)、霧化煉鋼爐渣所接觸過的上述CO2 水溶液(工序S130)、回收包含已析出的鈣的固體成分(工序S140)。另外,工序S110、工序S120、工序S130、以及工序S140因為可與第1實施型態同樣地進行,所以省略重複的說明。[Third Embodiment] Fig. 8 is a flowchart of a method for recovering calcium from steel-making slag in a third embodiment of the present invention. In the present embodiment, the steel-making slag is prepared in the same manner as in the first embodiment (step S110), and thereafter, a hydration treatment is performed on the steel-making slag (step S160). Thereafter, the steelmaking slag that has been subjected to the hydration treatment is brought into contact with an aqueous solution of CO 2 (step S120), the aqueous solution of CO 2 that has been contacted with the atomized steelmaking slag (step S130), and a solid containing precipitated calcium is recovered Ingredients (Step S140). In addition, step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and therefore repeated descriptions are omitted.

上述水合處理若能夠以煉鋼爐渣中所包含的鈣化合物充分地水合的方法或條件進行的話即可。The above-mentioned hydration treatment may be carried out by a method or condition in which the calcium compound contained in the steel-making slag is sufficiently hydrated.

如上述,煉鋼爐渣中的鈣作為游離石灰、氫氧化鈣(Ca(OH)2 )、碳酸鈣(CaCO3 )、矽酸鈣(Ca2 SiO4 、Ca3 SiO5 )以及氧化鈣鐵鋁(Ca2 (Al1-x Fex )2 O5 )等的鈣化合物存在。As mentioned above, the calcium in the steelmaking slag acts as free lime, calcium hydroxide (Ca(OH) 2 ), calcium carbonate (CaCO 3 ), calcium silicate (Ca 2 SiO 4 , Ca 3 SiO 5 ) and calcium iron aluminum Calcium compounds such as (Ca 2 (Al 1-x Fe x ) 2 O 5 ) exist.

當施行水合處理於此煉鋼爐渣時,例如,藉由以下的(式7)中所表示的反應,從矽酸鈣生成矽酸鈣水合物以及氫氧化鈣(Ca(OH)2 ),或藉由以下的(式8)中所表示的反應,從氧化鈣鐵鋁生成氧化鈣系的水合物(以下,也統稱包含藉由水合處理而可生成鈣的化合物為「鈣水合物」。)。 2(2CaO•SiO2 ) + 4H2 O → 3CaO•2SiO2 •3H2 O + Ca(OH)2 (式7) 2CaO•1/2(Al2 O3 •Fe2 O3 ) + 10H2 O → 1/2(4CaO•Al2 O3 •19H2 O) + HFeO2 (式8) ((式8)表示在氧化鈣鐵鋁(Ca2 (Al1-x Fex )2 O5 )中X=1/2的情況的例子。)。When hydration treatment is applied to this steel-making slag, for example, calcium silicate hydrate and calcium hydroxide (Ca(OH) 2 ) are generated from calcium silicate by the reaction represented by the following (Equation 7), or Calcium oxide hydrates are generated from calcium iron iron aluminum oxide by the reaction represented by the following (Formula 8) (hereinafter, the compounds including calcium that can be generated by hydration treatment are also collectively referred to as "calcium hydrates.") . 2(2CaO•SiO 2 ) + 4H 2 O → 3CaO•2SiO 2 • 3H 2 O + Ca(OH) 2 (Equation 7) 2CaO•1/2(Al 2 O 3 • Fe 2 O 3 ) + 10H 2 O → 1/2(4CaO•Al 2 O 3 •19H 2 O) + HFeO 2 (Formula 8) ((Formula 8) is expressed in calcium iron aluminum oxide (Ca 2 (Al 1-x Fe x ) 2 O 5 ) Example of the case of X=1/2.).

藉由上述反應等而生成的鈣水合物容易溶解於CO2 水溶液中。因此,藉由施行水合處理,能夠使源自煉鋼爐渣中所包含的矽酸鈣以及氧化鈣鐵鋁等的鈣更容易溶出。The calcium hydrate produced by the above reaction and the like is easily dissolved in the CO 2 aqueous solution. Therefore, by performing hydration treatment, calcium derived from calcium silicate, calcium oxide, iron, aluminum oxide, and the like contained in the steelmaking slag can be more easily eluted.

另外,游離石灰雖然容易溶解於CO2 水溶液中,但是通常在煉鋼爐渣中只包含未滿10質量%左右。相對於此,矽酸鈣通常在煉鋼爐渣中包含25質量%~70質量%左右,氧化鈣鐵鋁通常在煉鋼爐渣中包含2質量%~30質量%左右。因此,若藉由水合處理而矽酸鈣以及氧化鈣鐵鋁等中所包含的鈣更容易溶出到CO2 水溶液中的話,能夠增加從煉鋼爐渣到CO2 水溶液的鈣的溶出量,且可認為藉由更短時間從煉鋼爐渣回收鈣也成為可能。In addition, although free lime is easily dissolved in an aqueous solution of CO 2 , it usually contains less than about 10% by mass in steel-making slag. In contrast, calcium silicate usually contains about 25% to 70% by mass in the steelmaking slag, and calcium iron iron aluminum usually contains about 2% to 30% by mass in the steelmaking slag. Therefore, if calcium contained in calcium silicate, calcium iron iron aluminum, etc. is more easily eluted into the CO 2 aqueous solution by hydration treatment, the amount of calcium eluted from the steelmaking slag to the CO 2 aqueous solution can be increased, and It is thought that it is possible to recover calcium from the steelmaking slag in a shorter time.

又,藉由水合處理而生成的化合物的體積的總量,通常相較於反應前的化合物的體積的總量變大。更進一步,於水合處理中,煉鋼爐渣中的游離石灰的一部分溶出到處理用的水中。因此,當施行水合處理時,在爐渣顆粒的內部產生裂紋,以此裂紋作為起點而爐渣顆粒容易崩解。如此當爐渣顆粒崩解時,爐渣顆粒的顆粒直徑變小,每單位體積的表面積變大,且因為水或CO2 水溶液能夠充分滲透至煉鋼爐渣的內部,所以於本工序中能夠水合大量的鈣化合物。又,當於其後使煉鋼爐渣與CO2 水溶液接觸時(工程S120),能夠使更大量的鈣溶出。In addition, the total volume of the compound generated by the hydration treatment is usually larger than the total volume of the compound before the reaction. Furthermore, in the hydration treatment, part of the free lime in the steel-making slag is eluted into the water for treatment. Therefore, when the hydration treatment is performed, cracks are generated inside the slag particles, and the slag particles are easily disintegrated using the cracks as a starting point. In this way, when the slag particles are disintegrated, the particle diameter of the slag particles becomes smaller, the surface area per unit volume becomes larger, and because water or CO 2 aqueous solution can sufficiently penetrate into the interior of the steel-making slag, a large amount of hydrate can be hydrated in this step Calcium compound. In addition, when the steelmaking slag is brought into contact with the CO 2 aqueous solution thereafter (process S120), a larger amount of calcium can be eluted.

因此,水合處理較佳為以煉鋼爐渣中所包含的矽酸鈣或氧化鈣鐵鋁可水合的方法以及條件進行。Therefore, the hydration treatment is preferably carried out using a method and conditions in which calcium silicate or calcium iron oxide aluminum contained in the steelmaking slag can be hydrated.

在水合處理的具體例子中,包括靜置浸漬於水中而沉降的煉鋼爐渣的處理(以下,也簡稱為「浸漬靜置」。)、攪拌或粉碎等已浸漬於水中的煉鋼爐渣的處理(以下,也簡稱為「浸漬攪拌」。)、靜置包含水以及爐渣顆粒的糊漿的處理(以下,也簡稱為「糊漿化靜置」。)、以及在具有足夠量的水蒸氣的容器之中靜置煉鋼爐渣的處理(以下,也簡稱為「濕潤靜置」。)等。根據這些的方法,使煉鋼爐渣與水能夠充分地接觸。水合處理可僅施行上述浸漬靜置、浸漬攪拌、糊漿化靜置以及濕潤靜置等之中的一種,亦可以任意的順序進行這些之中的二種以上。從更充分地水合處理至爐渣顆粒的內部而使鈣更容易溶出的觀點,較佳為由浸漬攪拌所進行的水合處理。Specific examples of the hydration treatment include the treatment of steel-making slag that settles down after being immersed in water (hereinafter, also simply referred to as "immersion standing"), the treatment of steel-making slag that has been immersed in water, such as stirring or crushing (Hereinafter, also simply referred to as "dipping and stirring".), the treatment of standing the paste containing water and slag particles (hereinafter, also simply referred to as "slurrying and standing"), and the treatment with a sufficient amount of steam Disposal of steel-making slag standing in the container (hereinafter, also referred to as "wet standing"), etc. According to these methods, the steel-making slag and water can be sufficiently contacted. The hydration treatment may be performed by only one of the above-mentioned immersion standing, immersion stirring, slurrying standing, wet standing, and the like, or two or more of these may be carried out in any order. From the viewpoint of more sufficient hydration treatment to the inside of the slag particles to make calcium easier to elute, the hydration treatment by immersion stirring is preferred.

浸漬攪拌可在具有攪拌葉輪的容器的內部,攪拌已浸漬於水中的煉鋼爐渣,亦可藉由球磨機一邊攪拌煉鋼爐渣一邊粉碎等。從更充分地水合處理至爐渣顆粒的內部而使鈣更容易溶出的觀點,浸漬攪拌較佳為一邊攪拌煉鋼爐渣一邊粉碎等。The immersion stirring may stir the steel-making slag immersed in water in a container with a stirring impeller, or may be crushed while stirring the steel-making slag by a ball mill. From the viewpoint of more fully hydrating the inside of the slag particles to make calcium easier to elute, the immersion stirring is preferably pulverized while stirring the steel-making slag.

上述的由水合處理所進行的反應,在煉鋼爐渣的表面附近或內部藉由鈣化合物與水接觸而產生。在此,雖然對煉鋼爐渣的內部也滲透有一定程度的水,但是表面附近與水的接觸量較多。因此,鈣水合物更容易生成在煉鋼爐渣的表面附近。又,當煉鋼爐渣所包含的成分溶解在於水合處理中所使用的水中時,與上述的對CO2 水溶液的溶解時同樣地,矽、鋁、鐵以及錳或這些的氫氧化物、碳酸鹽以及水合物等殘留或析出於煉鋼爐渣的表面。當這些的已殘留或已析出的物質阻礙對煉鋼爐渣的內部的水的滲透時,鈣水合物在煉鋼爐渣的內部變得難以生成。The above-mentioned reaction by the hydration treatment is caused by the contact of the calcium compound with water near or inside the surface of the steel-making slag. Here, although a certain amount of water penetrates into the steel-making slag, the amount of contact with water near the surface is large. Therefore, calcium hydrate is more likely to be generated near the surface of the steel-making slag. In addition, when the components contained in the steel-making slag are dissolved in the water used in the hydration treatment, in the same manner as the above-described dissolution in the CO 2 aqueous solution, silicon, aluminum, iron, and manganese, or hydroxides and carbonates of these And hydrates, etc. remain or precipitate on the surface of steel-making slag. When these remaining or precipitated substances hinder the penetration of water inside the steel-making slag, calcium hydrate becomes difficult to form inside the steel-making slag.

相對於此,在水合處理中,藉由粉碎等已浸漬於水中的煉鋼爐渣,來增加爐渣顆粒的表面積,而能夠更增加水與爐渣顆粒的接觸面積。又,藉由粉碎等已浸漬於水中的煉鋼爐渣,上述物質尚未殘留或尚未析出的新的表面連續地被形成,而因為水從此連續地被形成的表面滲透至煉鋼爐渣的內部,所以即使在煉鋼爐渣的內部也能夠更容易生成鈣水合物。又,藉由磨碎煉鋼爐渣的表面,上述已殘留或已析出的物質被除去,水與爐渣顆粒的接觸面積變更大,且能夠更容易滲透水到煉鋼爐渣的內部。On the other hand, in the hydration process, the surface area of the slag particles is increased by crushing steel-making slag that has been immersed in water, and the contact area between the water and the slag particles can be further increased. In addition, by crushing steel-making slag, which has been immersed in water, a new surface on which the above-mentioned substances have not remained or have not been precipitated is continuously formed, and since the surface from which the water is continuously formed penetrates into the steel-making slag, so Calcium hydrate can be formed more easily even inside the steel-making slag. Further, by grinding the surface of the steel-making slag, the above-mentioned remaining or precipitated substances are removed, the contact area between water and slag particles is changed to a large extent, and water can penetrate into the steel-making slag more easily.

於水合處理中所使用的水,較佳為包含未離子化的游離碳酸以及已離子化的碳酸氫根離子(HCO3 - )等的二氧化碳的含量未滿300 mg/L。當上述二氧化碳的含量為未滿300 mg/L時,因為游離石灰、氫氧化鈣以外的鈣化合物難以溶出到水合處理中所使用的水中,所以能夠在與CO2 水溶液的接觸(工序S120)時,使煉鋼爐渣中所包含的鈣的大部分溶出到CO2 水溶液中,而鈣的回收難以變得複雜。又,當水中二氧化碳含量多時,雖然從游離石灰或氫氧化鈣等所溶出的鈣與二氧化碳反應而生成以及析出的碳酸鈣,覆蓋爐渣顆粒的表面,而水合反應變得難以進行,但是當二氧化碳的含量為未滿300 mg/L時,則上述由碳酸鈣的析出所致的水合反應的阻礙難以產生。另外,工業用水中的上述二氧化碳的含量,通常是未滿300 mg/L。因此,上述由浸漬靜置或浸漬攪拌所進行的水合處理中所使用的水,較佳為有意地不添加或不含有二氧化碳的工業用水。Hydration process water used, preferably comprises a non-ionized free ionized carbonate and bicarbonate ions (HCO 3 -) and the like of carbon dioxide levels less than 300 mg / L. When the content of the above carbon dioxide is less than 300 mg/L, since calcium compounds other than free lime and calcium hydroxide are difficult to dissolve into the water used in the hydration process, it can be in contact with the CO 2 aqueous solution (step S120) , So that most of the calcium contained in the steelmaking slag is eluted into the CO 2 aqueous solution, and the recovery of calcium is difficult to become complicated. In addition, when there is a large amount of carbon dioxide in water, although calcium dissolved from free lime, calcium hydroxide, etc. reacts with carbon dioxide to form and precipitate calcium carbonate, covering the surface of the slag particles, and the hydration reaction becomes difficult to proceed, but when carbon dioxide When the content is less than 300 mg/L, the above hindrance of the hydration reaction caused by the precipitation of calcium carbonate is difficult to occur. In addition, the content of carbon dioxide in industrial water is usually less than 300 mg/L. Therefore, the water used in the hydration treatment by immersion standing or immersion stirring is preferably industrial water that does not intentionally add or contains carbon dioxide.

於水合處理中所使用的水的溫度,若是水不劇烈蒸發的溫度的話即可。例如,大致以大氣壓的條件施行水合處理於煉鋼爐渣時,水的溫度較佳為100℃以下。但是,使用高壓釜等於更高的壓力進行水合處理時,在進行水合處理時的壓力中之水的沸點以下的範圍內,上述水的溫度即使是100℃以上也無妨。具體地,藉由浸漬靜置或浸漬攪拌來施行水合處理時的水的溫度,較佳為0℃以上80℃以下。使用高壓釜等於更高的壓力進行水合處理時,雖然溫度的上限沒有特別限制,但是從裝置的耐壓性以及經濟層面,較佳為300℃以下。又,藉由糊化靜置來施行水合處理時的溫度,較佳為0℃以上70℃以下。The temperature of water used in the hydration treatment may be a temperature at which water does not evaporate violently. For example, when hydration treatment is performed on steelmaking slag at approximately atmospheric pressure, the temperature of water is preferably 100° C. or lower. However, when the hydration treatment is performed using an autoclave at a higher pressure, the temperature of the water may be 100° C. or higher in the range below the boiling point of the water at the pressure during the hydration treatment. Specifically, the temperature of the water when the hydration treatment is performed by immersion standing or immersion stirring is preferably 0°C or higher and 80°C or lower. When an autoclave is used to perform hydration treatment at a higher pressure, although the upper limit of temperature is not particularly limited, it is preferably 300° C. or less from the pressure resistance and economic aspects of the device. In addition, the temperature when the hydration treatment is performed by gelatinization and standing is preferably 0°C or higher and 70°C or lower.

進行水合處理的持續時間,藉由爐渣的平均顆粒直徑以及進行水合處理的溫度(包含水或水蒸氣的空氣的溫度)等而能夠任意地設定。進行水合處理的持續時間,爐渣的平均顆粒直徑越小則越短時間即可,又,進行水合處理的溫度越高則越短時間即可。The duration of the hydration treatment can be arbitrarily set by the average particle diameter of the slag and the temperature of the hydration treatment (temperature of air including water or steam). For the duration of the hydration treatment, the smaller the average particle diameter of the slag, the shorter the time, and the higher the temperature for the hydration treatment, the shorter the time.

例如,於常溫施行由浸漬靜置或浸漬攪拌所進行的水合處理於爐渣顆粒的最大粒徑為1000 μm以下的煉鋼爐渣時,水合處理的持續時間能夠是連續8小時左右,較佳為3小時以上30小時以下。藉由與40℃以上70℃以下的水的浸漬來施行上述水合處理時,水合處理的持續時間較佳為連續0.6小時以上8小時以下。For example, when the hydration treatment by immersion standing or immersion stirring is performed at room temperature on steel-making slag with a maximum particle size of slag particles of 1000 μm or less, the duration of the hydration treatment can be about 8 hours in a row, preferably 3 More than 30 hours. When the above-mentioned hydration treatment is performed by immersion in water of 40°C or more and 70°C or less, the duration of the hydration treatment is preferably 0.6 hours or more and 8 hours or less continuously.

又,於常溫施行由同時進行粉碎等的浸漬攪拌所進行的水合處理於煉鋼爐渣且此煉鋼爐渣是爐渣顆粒的最大粒徑為1000 μm以下的煉鋼爐渣時,水合處理的持續時間較佳為連續0.1小時以上5小時以下,更佳為0.2小時以上3小時以下。或者,於常溫施行由同時進行粉碎等的浸漬攪拌所進行的水合處理時,水合處理的持續時間較佳為進行至爐渣顆粒的最大粒徑成為1000 μm以下,較佳成為500 μm以下,更佳成為250 μm,又更佳成為100 μm以下。In addition, when the hydration treatment by immersion and stirring carried out at the same time by crushing and the like is performed on the steel-making slag, and the steel-making slag is a steel-making slag having a maximum particle size of 1000 μm or less, the duration of the hydration treatment is It is preferably 0.1 hours or more and 5 hours or less, and more preferably 0.2 hours or more and 3 hours or less. Alternatively, when the hydration treatment by immersion and agitation performed at the same time at normal temperature is performed, the duration of the hydration treatment is preferably performed until the maximum particle size of the slag particles becomes 1000 μm or less, preferably 500 μm or less, more preferably It becomes 250 μm, and more preferably becomes 100 μm or less.

又,水合處理較佳為進行到矽酸鈣充分地變成水合物以及氫氧化鈣的程度、或/及氧化鈣鐵鋁充分地變成氧化鈣系的水合物的程度。例如,水合處理較佳為施行至煉鋼爐渣中所含的矽酸鈣的量成為50質量%以下,或氧化鈣鐵鋁的量成為20質量%以下。In addition, the hydration treatment is preferably performed to the extent that calcium silicate sufficiently becomes a hydrate and calcium hydroxide, and/or the calcium iron iron aluminum oxide sufficiently becomes a calcium oxide-based hydrate. For example, the hydration treatment is preferably applied until the amount of calcium silicate contained in the steel-making slag is 50% by mass or less, or the amount of calcium iron aluminum oxide is 20% by mass or less.

水合處理後的煉鋼爐渣雖然亦可照原樣用於與CO2 水溶液的接觸(工序S120),但是煉鋼爐渣為漿料狀時,較佳為進行固液分離而將煉鋼爐渣與液體成分分離。固液分離能夠藉由包括減壓過濾以及加壓過濾的習知的方法進行。藉由上述固液分離所得到的液體成分(在本說明書中,也簡稱為「水合處理水」),因為包含除了已用於水合處理的水之外,還有已從煉鋼爐渣所溶出的鈣,所以成為鹼性。因此,能夠使用上述水合處理水,作為在第2實施型態中用於使CO2 水溶液的pH值更進一步上升的鈣系的鹼性物質。Although the steel-making slag after the hydration treatment can be used as it is for contact with an aqueous solution of CO 2 (step S120), when the steel-making slag is in the form of a slurry, it is preferable to perform solid-liquid separation to separate the steel-making slag and liquid components Separate. The solid-liquid separation can be performed by a conventional method including reduced pressure filtration and pressure filtration. The liquid component obtained by the above solid-liquid separation (also referred to as "hydration treated water" in this specification), because it contains not only water that has been used for hydration treatment but also eluted from the steel-making slag Calcium, so it becomes alkaline. Therefore, the above hydration treated water can be used as the calcium-based alkaline substance for further increasing the pH of the CO 2 aqueous solution in the second embodiment.

另外,在本實施型態中也與第2實施型態同樣地,於霧化煉鋼爐渣所接觸過的CO2 水溶液後,亦可投入鈣系的鹼性物質到上述CO2 水溶液中(工序S150),而於其後回收包含已析出的鈣的固體成分(工序S140)。In addition, in this embodiment mode, similar to the second embodiment mode, after atomizing the CO 2 aqueous solution contacted with the steel-making slag, a calcium-based alkaline substance may be added to the CO 2 aqueous solution (process S150), and thereafter, the solid content containing the precipitated calcium is recovered (step S140).

(效果) 根據上述的從煉鋼爐渣回收鈣的方法,鈣更容易從煉鋼爐渣溶出到CO2 水溶液中,且能夠更提高從煉鋼爐渣之鈣的回收效率。(Effects) According to the above method for recovering calcium from steel-making slag, calcium is more easily eluted from the steel-making slag into the CO 2 aqueous solution, and the recovery efficiency of calcium from the steel-making slag can be further improved.

[第4實施型態] 圖9是在本發明的第4實施型態中的從煉鋼爐渣回收鈣的方法的流程圖。於本實施型態中,與第1實施型態同樣地準備煉鋼爐渣(工序S110),其後,施行磁選於上述煉鋼爐渣(工序S170)。其後,使上述已施行過磁選的煉鋼爐渣與CO2 水溶液接觸(工序S120)、霧化煉鋼爐渣所接觸過的上述CO2 水溶液(工序S130)、回收包含已析出的鈣的固體成分(工序S140)。另外,工序S110、工序S120、工序S130、以及工序S140因為可與第1實施型態同樣地進行,所以省略重複的說明。[Fourth Embodiment] FIG. 9 is a flowchart of a method of recovering calcium from steel-making slag in a fourth embodiment of the present invention. In this embodiment mode, the steel-making slag is prepared in the same manner as the first embodiment mode (step S110), and thereafter, magnetic separation is performed on the steel-making slag (step S170). After that, the steelmaking slag that has been subjected to magnetic separation is brought into contact with an aqueous solution of CO 2 (step S120), the aqueous solution of CO 2 that has been contacted with the atomized steelmaking slag (step S130), and a solid component containing precipitated calcium is recovered (Step S140). In addition, step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and therefore repeated descriptions are omitted.

藉由施行磁選於煉鋼爐渣,來抑制由包含已殘留或已析出在煉鋼爐渣的表面的鐵的化合物所致的、與煉鋼爐渣的表面的CO2 水溶液的接觸的阻礙,或由包含硬度比較高的鐵的化合物所致的、與CO2 水溶液的接觸中的粉碎或磨碎的阻礙等,可認為能夠使煉鋼爐渣中的鈣化合物更容易溶出到CO2 水溶液中。By performing magnetic separation on the steelmaking slag, the inhibition of contact with the CO 2 aqueous solution on the surface of the steelmaking slag caused by the compound containing iron remaining or precipitated on the surface of the steelmaking slag, or the inclusion of It is considered that the crushing or grinding in contact with the CO 2 aqueous solution caused by the iron compound having relatively high hardness can prevent the calcium compound in the steel-making slag from being eluted into the CO 2 aqueous solution more easily.

另外,煉鋼爐渣中所包含的氧化鈣鐵鋁,藉由與CO2 水溶液的接觸而Ca溶出後變得難以磁化,且藉由磁選的回收為不容易的。相對於此,藉由於與CO2 水溶液的接觸前施行磁選,也能夠回收煉鋼爐渣中的氧化鈣鐵鋁,可認為源自氧化鈣鐵鋁的鐵也變得可更容易再利用。In addition, the calcium-iron-aluminum oxide contained in the steel-making slag is difficult to be magnetized after Ca is eluted by contact with the CO 2 aqueous solution, and recovery by magnetic separation is not easy. In contrast, by performing magnetic separation before contact with the CO 2 aqueous solution, calcium iron aluminum in the steelmaking slag can also be recovered, and it is considered that iron derived from calcium iron aluminum can also be more easily reused.

上述磁選能夠使用習知的磁選機來施行。磁選機可為乾式亦可為濕式,能夠依據煉鋼爐渣的狀態(已乾燥的狀態或漿料狀)進行選擇。又,磁選機雖然能夠從鼓式、帶式以及固定磁鐵間流動式等進行適當選擇,但是特別因為漿料中所包含的煉鋼爐渣的篩選是容易的,且將磁力提高而容易增加磁選量,所以較佳為鼓式。又,磁選機所使用的磁鐵可為永久磁鐵,亦可為電磁鐵。The above magnetic separation can be performed using a conventional magnetic separator. The magnetic separator can be dry or wet, and can be selected according to the state of the steelmaking slag (dried state or slurry state). In addition, although the magnetic separator can be appropriately selected from the drum type, the belt type, and the flow type between fixed magnets, etc., particularly because the screening of the steelmaking slag contained in the slurry is easy, and the magnetic force is increased, it is easy to increase the amount of magnetic separation , So the drum type is preferred. In addition, the magnet used in the magnetic separator may be a permanent magnet or an electromagnet.

由磁鐵所致的磁通密度,若是能夠從煉鋼爐渣中所包含的其他的化合物選擇性地捕捉鐵系化合物以及金屬鐵的程度的話即可,例如,能夠為0.003 T以上0.5 T以下,較佳為0.005 T以上0.3 T以下,更佳為0.01 T以上0.15 T以下。The magnetic flux density caused by the magnet is sufficient if it can selectively capture iron-based compounds and metallic iron from other compounds contained in the steel-making slag, for example, it can be 0.003 T or more and 0.5 T or less. It is preferably 0.005 T or more and 0.3 T or less, and more preferably 0.01 T or more and 0.15 T or less.

又,磁選不需要施行至除掉煉鋼爐渣中所包含的鐵系化合物以及金屬鐵的全部。即使藉由磁選從煉鋼爐渣被除掉的鐵系化合物的量是少量的,也達到所謂相較於以往鈣變得容易被溶出到CO2 水溶液中的本實施型態的效果。因此,磁選的時間以及次數等,亦可因應磁選對製造成本造成的影響等進行適當選擇。Moreover, magnetic separation does not need to be performed to remove all the iron-based compounds and metallic iron contained in the steel-making slag. Even if the amount of the iron-based compound removed from the steel-making slag by magnetic separation is a small amount, the effect of the present embodiment in which calcium becomes easier to be eluted into the CO 2 aqueous solution compared to conventional ones can be achieved. Therefore, the time and frequency of magnetic separation can be appropriately selected according to the influence of magnetic separation on the manufacturing cost.

另外,煉鋼爐渣較佳為於施行磁選前被加熱處理。當將煉鋼爐渣加熱處理時,則鐵系化合物以及金屬鐵的磁化提高,能夠藉由磁選來除掉更大量的鐵系化合物。上述加熱處理較佳為於300℃以上1000℃以下進行0.01分鐘以上60分鐘以下。In addition, the steel-making slag is preferably heat-treated before performing magnetic separation. When the steel-making slag is heat-treated, the magnetization of iron-based compounds and metallic iron is increased, and a larger amount of iron-based compounds can be removed by magnetic separation. The above heat treatment is preferably performed at 300°C or more and 1000°C or less for 0.01 minutes or more and 60 minutes or less.

於磁選時,煉鋼爐渣雖然亦可為已乾燥的狀態,但是較佳為已分散於水中的漿料狀。漿料狀的煉鋼爐渣因為藉由水分子的極性或水流等爐渣顆粒容易分散,所以藉由磁力容易選擇性地捕捉鐵系化合物以及金屬鐵。特別是爐渣顆粒的粒徑為1000 μm以下時,於空氣等的氣體中,雖然藉由由大氣中的水蒸氣的凝結所致的液體交聯力、爐渣顆粒間的凡得瓦爾力、爐渣顆粒間的靜電力等,爐渣顆粒容易聚集,但是能夠藉由成為漿料狀來使爐渣顆粒充分地分散。又,雖然煉鋼爐渣中的金屬鐵因為是微小的,所以當煉鋼爐渣乾燥時則難以捕捉,但是當煉鋼爐渣成為漿料狀時,則藉由磁選已分散於水中的金屬鐵也變得容易捕捉。In the magnetic separation, the steel-making slag may be in a dried state, but it is preferably in the form of slurry dispersed in water. Slurry-like steel-making slag is easily dispersed by the polarity of water molecules, water flow, or other slag particles, so it is easy to selectively capture iron-based compounds and metallic iron by magnetic force. In particular, when the particle size of the slag particles is 1000 μm or less, in a gas such as air, the liquid crosslinking force caused by the condensation of water vapor in the atmosphere, the van der Waals force between the slag particles, and the slag particles The slag particles are easily aggregated due to electrostatic forces, etc., but they can be sufficiently dispersed by becoming a slurry. In addition, although the metal iron in the steel-making slag is tiny, it is difficult to capture when the steel-making slag is dried, but when the steel-making slag becomes a slurry, the metal iron dispersed in water by magnetic separation also becomes Must be easy to capture.

藉由磁選而除掉鐵系化合物以及金屬鐵後的漿料,雖然亦可照原樣用於與CO2 水溶液的接觸(工序S120),但是煉鋼爐渣為漿料狀時,較佳為進行固液分離而將煉鋼爐渣與液體成分分離。固液分離能夠藉由包括減壓過濾以及加壓過濾的習知的方法進行。藉由上述固液分離所得到的液體成分(在本說明書中,也簡稱為「磁選水」),因為包含除了已用於漿料化的水之外,還有已從煉鋼爐渣所溶出的鈣,所以成為鹼性。因此,能夠使用上述磁選水,作為在第2實施型態中用於使CO2 水溶液的pH值更進一步上升的鈣系的鹼性物質。The slurry after removing iron-based compounds and metallic iron by magnetic separation can be used as it is for contact with an aqueous solution of CO 2 (step S120), but when the steel-making slag is in the form of slurry, it is preferably solidified Liquid separation separates the steelmaking slag from the liquid components. The solid-liquid separation can be performed by a conventional method including reduced pressure filtration and pressure filtration. The liquid component obtained by the above solid-liquid separation (also referred to as "magnetic separation water" in this specification), because it contains not only the water used for slurrying but also the eluted from the steelmaking slag Calcium, so it becomes alkaline. Therefore, the above-mentioned magnetic separation water can be used as a calcium-based alkaline substance for further increasing the pH of the CO 2 aqueous solution in the second embodiment.

又,藉由磁選而已從煉鋼爐渣被除掉的磁選除去爐渣,因為如上述包含大量包含鐵系化合物以及金屬鐵等的Fe的化合物,所以能夠作為高爐或燒結的原料再利用。In addition, the magnetic separation to remove the slag from the steelmaking slag by magnetic separation contains a large amount of Fe compounds including iron-based compounds and metallic iron as described above, so it can be reused as a raw material for blast furnace or sintering.

煉鋼爐渣較佳為於施行磁選前被加熱處理。當將煉鋼爐渣加熱處理時,則鐵系化合物的磁化提高,能夠藉由磁選來除掉更大量的鐵系化合物。上述加熱處理較佳為於300℃以上1000℃以下進行0.01分鐘以上180分鐘以下。The steelmaking slag is preferably heat-treated before performing magnetic separation. When the steel-making slag is heat-treated, the magnetization of the iron-based compound is increased, and a larger amount of the iron-based compound can be removed by magnetic separation. The above heat treatment is preferably performed at 300°C or more and 1000°C or less for 0.01 minutes or more and 180 minutes or less.

另外,在本實施型態中也與第2實施型態同樣地,於霧化煉鋼爐渣所接觸過的CO2 水溶液後,亦可投入鈣系的鹼性物質到上述CO2 水溶液中(工序S150),而於其後回收包含已析出的鈣的固體成分(工序S140)。In addition, in this embodiment mode, similar to the second embodiment mode, after atomizing the CO 2 aqueous solution contacted with the steel-making slag, a calcium-based alkaline substance may be added to the CO 2 aqueous solution (process S150), and thereafter, the solid content containing the precipitated calcium is recovered (step S140).

另外,在本實施型態中也與第3實施型態同樣地,亦可施行水合處理(工序S160)於與CO2 水溶液接觸前的煉鋼爐渣。在本實施型態中更進一步施行水合處理於煉鋼爐渣時,可先進行水合處理以及磁選的任一方,亦可進行由濕式所進行的磁選、或使施行由濕式所進行的磁選的漿料循環,而同時進行兩方。在這些的先進行任一方的情況下,當先進行水合處理(特別是由浸漬攪拌所進行的水合處理)而於其後進行磁選時,特別是已將裝置大型化時,除了鈣的回收率更提高以外,還有能夠藉由更短時間進行整體的處理。 [實施例]In addition, in this embodiment mode, as in the third embodiment mode, the steel-making slag before the hydration treatment (step S160) before contact with the CO 2 aqueous solution may be performed. In the present embodiment, when the hydration treatment is further performed on the steel-making slag, either hydration treatment or magnetic separation may be performed first, or the magnetic separation by the wet method or the magnetic separation by the wet method may be performed. The slurry circulates while performing both parties. In the case where any of these is carried out first, when the hydration treatment (especially the hydration treatment by immersion stirring) is performed first and then the magnetic separation is performed, especially when the apparatus has been enlarged, in addition to the recovery rate of calcium In addition to improvement, there is also the ability to perform overall processing in a shorter time. [Example]

以下,針對本發明參考實施例而進行更具體地說明。另外,這些的實施例並非限制本發明的範圍於以下所記載的具體的方法中。Hereinafter, the present invention will be described more specifically with reference to examples. In addition, these examples do not limit the scope of the present invention to the specific methods described below.

[實驗1] 準備具有表1中所記載的成分比例的煉鋼爐渣。另外,煉鋼爐渣的成分藉由化學分析法測量。[Experiment 1] Steel-making slag having the composition ratio described in Table 1 was prepared. In addition, the composition of steel-making slag is measured by chemical analysis.

[表1] 表1:煉鋼爐渣的成分

Figure 108133854-A0304-0001
[Table 1] Table 1: Composition of Steelmaking Slag
Figure 108133854-A0304-0001

將表1中所示的煉鋼爐渣粉碎成直徑為8 mm以下後,於750℃加熱20分鐘。加熱後,將煉鋼爐渣空氣冷卻至成為常溫。其後更進一步粉碎煉鋼爐渣後,而於其後的處理中使用已通過孔徑106 μm的篩子的部分。After pulverizing the steel-making slag shown in Table 1 to a diameter of 8 mm or less, it was heated at 750°C for 20 minutes. After heating, the steelmaking slag air is cooled to normal temperature. After further crushing the steel-making slag, the part that has passed through the sieve with a pore size of 106 μm was used in the subsequent treatment.

另外,在以下的各個實驗中,各個水溶液的鈣濃度,於過濾漿料且分離爐渣後,藉由化學分析法測量。In the following experiments, the calcium concentration of each aqueous solution was measured by chemical analysis after filtering the slurry and separating the slag.

又,在以下的各個實驗中,各個水溶液以及漿料的pH值藉由玻璃電極法測量。In addition, in the following experiments, the pH values of the respective aqueous solutions and slurries were measured by the glass electrode method.

[實驗1] (水合處理:由球磨機所進行的水合) 準備內徑500 mm的球磨機,在此球磨機投入1 kg的未進行磁選的煉鋼爐渣,且投入1 L的水而使煉鋼爐渣成為漿料狀。更進一步在球磨機內投入6 kg的氧化鋁球(粉碎介質),球的直徑是10 mm。其後,使球磨機以50 rpm旋轉,使旋轉的球與煉鋼爐渣接觸而粉碎等煉鋼爐渣。藉由此同時進行粉碎的水合,爐渣的顆粒直徑(d90)成為20 μm。未進行對漿料狀的煉鋼爐渣中的二氧化碳的導入。[Experiment 1] (Hydration treatment: hydration by ball mill) A ball mill with an inner diameter of 500 mm was prepared. In this ball mill, 1 kg of steelmaking slag without magnetic separation was put in, and 1 L of water was put in to make the steelmaking slag into a slurry. Furthermore, a 6 kg alumina ball (pulverizing medium) was put into the ball mill, and the diameter of the ball was 10 mm. Thereafter, the ball mill was rotated at 50 rpm, and the rotating ball was brought into contact with the steel-making slag to pulverize the steel-making slag. By the simultaneous hydration of the crushing, the particle diameter (d90) of the slag becomes 20 μm. No carbon dioxide was introduced into the slurry-form steel-making slag.

(磁選) 加水於上述已水合處理過的漿料狀的煉鋼爐渣,使漿料體積成為40 L。投入此漿料到鼓式的磁選機中,以鼓表面的最大磁通密度0.07 T、鼓圓周速度40 m/min的條件進行磁選。被磁選後的煉鋼爐渣中的鐵濃度進行由化學分析方法所進行的測量以及重量測量,最初的煉鋼爐渣中所包含的鐵元素之中,41%質量被除去。磁選結束後,過濾殘留漿料且分離殘留爐渣。為了後續的工序而保留磁選水,此磁選水是分離殘留爐渣後所殘留的鈣已浸出的水溶液,且此磁選水的鈣濃度是480 mg/L。另外,於事前的預備實驗中,確認0.15 kg的乾重的爐渣藉由磁選被分離。(magnetic separation) Water is added to the slurry-formed steel-making slag that has been hydrated to make the slurry volume 40 L. The slurry was put into a drum-type magnetic separator, and magnetic separation was performed under the conditions of a maximum magnetic flux density of 0.07 T on the drum surface and a drum peripheral speed of 40 m/min. The iron concentration in the steelmaking slag after magnetic separation was measured by a chemical analysis method and a weight measurement. Among the iron elements contained in the original steelmaking slag, 41% of the mass was removed. After the magnetic separation, the residual slurry is filtered and the residual slag is separated. For the subsequent process, the magnetic separation water is retained. This magnetic separation water is an aqueous solution in which the calcium remaining after separating the residual slag has been leached, and the calcium concentration of this magnetic separation water is 480 mg/L. In addition, in the preliminary experiment beforehand, it was confirmed that the slag with a dry weight of 0.15 kg was separated by magnetic separation.

(與CO2 水溶液的接觸:同時進行粉碎等的與CO2 水溶液的接觸) 使用具有圖2中所示的結構的裝置。溶出及沉降槽是內徑480 mm的圓筒狀的容器,為了使已沉降而堆積的煉鋼爐渣移動到吸入口而設置沿底面旋轉的葉輪。使葉輪以40 rpm旋轉。使藉由前述的磁選工序後的過濾所採集的殘留爐渣不經乾燥而投入於此溶出及沉降槽中,且加水使漿料量成為100 L。此時,水與爐渣的比是約120:1。從底部所採集的煉鋼爐渣藉由幫浦運送至粉碎部,使用球磨機且藉由連續式的粉碎裝置粉碎等。此粉碎部是內徑200 mm的橫向圓筒狀,且於內部放入Φ10 mm的球至總容積的70%。與這些同時地,導入20 L/min的二氧化碳到溶出及沉降槽與粉碎部之間的配管部。與CO2 水溶液的接觸進行30分鐘。 (2 into contact with CO.'S solution simultaneously: contacting CO.'S 2 and pulverization of an aqueous solution) in the device structure shown in Figure 2 having. The dissolution and sedimentation tank is a cylindrical container with an inner diameter of 480 mm, and an impeller rotating along the bottom surface is provided in order to move the steel-making slag accumulated and settled to the suction port. Rotate the impeller at 40 rpm. The residual slag collected by filtration after the aforementioned magnetic separation step was put into this dissolution and settling tank without drying, and water was added to make the slurry amount 100 L. At this time, the ratio of water to slag is about 120:1. The steel-making slag collected from the bottom is transported by the pump to the crushing section, and is crushed by a continuous crushing device using a ball mill. The crushing part is a horizontal cylinder with an inner diameter of 200 mm, and a Φ10 mm ball is placed inside to 70% of the total volume. Simultaneously with this, 20 L/min of carbon dioxide was introduced into the piping section between the dissolution and sedimentation tank and the crushing section. The contact with the CO 2 aqueous solution was performed for 30 minutes.

將進行如上而得到的、鈣已溶出的漿料過濾且與爐渣分離,而得到鈣已溶出的CO2 水溶液。此時的CO2 水溶液的pH值是6.6,鈣濃度是1230 mg/L。The slurry obtained by dissolving calcium obtained as above was filtered and separated from the slag to obtain a CO 2 aqueous solution in which calcium was dissolved. At this time, the pH value of the CO 2 aqueous solution was 6.6, and the calcium concentration was 1230 mg/L.

(噴霧) 藉由圖3中所示的噴淋霧化式方法使鈣析出。藉由開有多個直徑0.5 mm的孔的噴淋頭,從4.5 m的高度在內徑960 mm的密閉容器內朝向下,以5 L/min的流量霧化上述CO2 水溶液。從密閉容器的底部側,以總計40 L/min的流量從相對的二處吹入空氣。已到達於密閉容器的底部側的CO2 水溶液,從密閉容器的底部取出,且導入到與密閉容器連接的桶槽中。於一次霧化後,從桶槽回收鈣化合物(碳酸鈣)已析出的CO2 水溶液的液體成分,並再進行一次霧化(總計二次霧化)。(Spray) Calcium is precipitated by the spray atomization method shown in FIG. 3. By spraying a plurality of holes with a diameter of 0.5 mm, the CO 2 aqueous solution was atomized at a flow rate of 5 L/min from a height of 4.5 m downward in a closed container with an inner diameter of 960 mm. From the bottom side of the closed container, blow air at a flow rate of 40 L/min from two opposite places. The CO 2 aqueous solution that has reached the bottom side of the closed container is taken out from the bottom of the closed container and introduced into the barrel tank connected to the closed container. After the primary atomization, the liquid component of the CO 2 aqueous solution in which the calcium compound (calcium carbonate) has precipitated is recovered from the barrel tank, and atomization is performed again (total secondary atomization).

二次霧化後的CO2 水溶液的pH值是8.0,鈣濃度是61 mg/L。The pH value of the CO 2 aqueous solution after the second atomization is 8.0, and the calcium concentration is 61 mg/L.

(固體成分的回收) 從已導入已被霧化的CO2 水溶液的桶槽,能夠容易地回收包含鈣的固體成分。(Recovery of solid content) From the tank into which the CO 2 aqueous solution has been atomized, the solid content containing calcium can be easily recovered.

從此結果可知,藉由霧化而CO2 水溶液的pH值上升,鈣化合物(碳酸鈣)從CO2 水溶液析出。於二次霧化後,此時的鈣析出率((100(%)-霧化後的鈣濃度(%))/霧化前的鈣濃度(%))為約95.0%。From this result, it is known that the pH value of the CO 2 aqueous solution increases by atomization, and calcium compounds (calcium carbonate) are precipitated from the CO 2 aqueous solution. After the second atomization, the calcium precipitation rate at this time ((100 (%)-calcium concentration after atomization (%))/calcium concentration before atomization (%)) was about 95.0%.

[實驗2] 藉由與實驗1同樣的步驟,進行水合處理、磁選、鈣的溶出、以及由過濾所進行的爐渣與CO2 水溶液的分離。其後,藉由與實驗1同樣的步驟進行鈣的回收。此時,霧化僅一次並以8 L/min的流量進行。[Experiment 2] By the same procedure as in Experiment 1, hydration treatment, magnetic separation, calcium elution, and separation of slag and CO 2 aqueous solution by filtration were performed. Thereafter, calcium was recovered by the same procedure as in Experiment 1. At this time, the atomization was performed only once and at a flow rate of 8 L/min.

另外,藉由紅外線方式測量於實驗中已從密閉容器被排出的氣體的二氧化碳濃度,其為約10%。此氣體的二氧化碳濃度相較於從一般的天然氣火力發電廠之廢氣中的二氧化碳濃度(約9%)高,是回收以及精製能夠容易地進行的程度。In addition, the carbon dioxide concentration of the gas that has been discharged from the closed container in the experiment was measured by infrared, and it was about 10%. The carbon dioxide concentration of this gas is higher than the carbon dioxide concentration (approximately 9%) in the exhaust gas from general natural gas-fired power plants, and it is easy to recover and refine.

(鈣系的鹼性物質的投入) 其後,在桶槽中所累積的CO2 水溶液(pH值:7.0,鈣濃度:190 mg/L,鈣析出率:84.5%)中,一邊投入氫氧化鈣系組成物-1(於上述磁選工序中所得到的磁選水)、氫氧化鈣系組成物-2(使氫氧化鈣溶解於水中且已準備好的水溶液)、以及氫氧化鈣系組成物-3(使固體狀的氫氧化鈣分散於氫氧化鈣水中且已準備好的漿料)的任一個,一邊攪拌CO2 溶液。為了使投入後的CO2 水溶液的pH值成為8.0、8.5、9.0以及9.5的任一個,而分別調整投入量。(Introduction of calcium-based alkaline substances) Subsequently, in the CO 2 aqueous solution (pH value: 7.0, calcium concentration: 190 mg/L, calcium precipitation rate: 84.5%) accumulated in the barrel tank, hydrogen hydroxide was added Calcium-based composition-1 (magnetic separation water obtained in the above-mentioned magnetic separation step), calcium hydroxide-based composition-2 (aqueous solution prepared by dissolving calcium hydroxide in water), and calcium hydroxide-based composition -3 (a slurry prepared by dispersing solid calcium hydroxide in calcium hydroxide water) while stirring the CO 2 solution. In order to make the pH value of the CO 2 aqueous solution after input into any one of 8.0, 8.5, 9.0, and 9.5, the input amount was adjusted separately.

在表2中表示上述已投入的氫氧化鈣系組成物-1~氫氧化鈣系組成物-3的pH值以及鈣濃度。另外,作為漿料的氫氧化鈣系組成物-3的鈣濃度,是也已包含固體部分的平均濃度。Table 2 shows the pH value and calcium concentration of the calcium hydroxide-based composition-1 to the calcium hydroxide-based composition-3 that have been added. In addition, the calcium concentration of the calcium hydroxide-based composition-3 as the slurry is an average concentration that also contains solid parts.

[表2] 表2:氫氧化鈣系組成物1~氫氧化鈣系組成物3

Figure 108133854-A0304-0002
[Table 2] Table 2: Calcium hydroxide-based composition 1~Calcium hydroxide-based composition 3
Figure 108133854-A0304-0002

在表3中表示投入上述各個氫氧化鈣系組成物後的CO2 水溶液的pH值以及鈣濃度、以及鈣析出率(霧化以及氫氧化鈣系組成物的投入後的鈣濃度/霧化前的鈣濃度)。Table 3 shows the pH value, calcium concentration, and calcium precipitation rate of the CO 2 aqueous solution after each calcium hydroxide-based composition is added (atomization and calcium concentration after the calcium hydroxide-based composition is added/before atomization) Calcium concentration).

[表3] 表3:氫氧化鈣系組成物的投入後的pH值、鈣濃度、鈣析出率

Figure 108133854-A0304-0003
[Table 3] Table 3: pH value, calcium concentration, calcium precipitation rate after the calcium hydroxide-based composition was put in
Figure 108133854-A0304-0003

如從表3明顯可知,藉由投入氫氧化鈣系組成物到霧化後的CO2 水溶液中,鈣濃度相較於一次霧化後的鈣濃度(190 mg/L)下降,且藉由氫氧化鈣系組成物的投入而鈣更進一步地析出。此時的鈣析出率,與投入的氫氧化鈣系組成物的種類無關,與投入後的pH值大致相關。As is obvious from Table 3, by adding calcium hydroxide-based composition to the atomized CO 2 aqueous solution, the calcium concentration decreased compared to the calcium concentration (190 mg/L) after one atomization, and by hydrogen The calcium oxide-based composition is input and calcium is further precipitated. The calcium precipitation rate at this time is not related to the kind of calcium hydroxide-based composition to be charged, but is roughly related to the pH value after being charged.

又,當氫氧化鈣的投入後的CO2 水溶液的pH值為8.0以上時,則鈣析出率是90%以上,當氫氧化鈣的投入後的CO2 水溶液的pH值為8.5以上時,則鈣析出率是94%以上,當氫氧化鈣的投入後的CO2 水溶液的pH值為9.0以上時,則鈣析出率是95%以上。In addition, when the pH value of the CO 2 aqueous solution after the calcium hydroxide injection is 8.0 or more, the calcium precipitation rate is 90% or more, and when the pH value of the CO 2 aqueous solution after the calcium hydroxide input is 8.5 or more, then The calcium precipitation rate is 94% or more. When the pH of the CO 2 aqueous solution after the calcium hydroxide is added is 9.0 or more, the calcium precipitation rate is 95% or more.

[實驗3] (水合處理-1:由使用球磨機的浸漬攪拌所進行的水合) 準備內徑500 mm的球磨機,在此球磨機投入1 kg的未進行磁選的煉鋼爐渣,且投入1 L的水而使煉鋼爐渣成為漿料狀。更進一步在球磨機內投入6 kg的氧化鋁球(粉碎介質),球的直徑是10 mm。其後,使球磨機以50 rpm旋轉,使旋轉的球與煉鋼爐渣接觸而粉碎等煉鋼爐渣。藉由此同時進行粉碎的水合,爐渣的顆粒直徑(d90)成為20 μm。未進行對漿料狀的煉鋼爐渣中的二氧化碳的導入。[Experiment 3] (Hydration treatment-1: hydration by dipping and stirring using a ball mill) A ball mill with an inner diameter of 500 mm was prepared. In this ball mill, 1 kg of steelmaking slag without magnetic separation was put in, and 1 L of water was put in to make the steelmaking slag into a slurry. Furthermore, a 6 kg alumina ball (pulverizing medium) was put into the ball mill, and the diameter of the ball was 10 mm. Thereafter, the ball mill was rotated at 50 rpm, and the rotating ball was brought into contact with the steel-making slag to pulverize the steel-making slag. By the simultaneous hydration of the crushing, the particle diameter (d90) of the slag becomes 20 μm. No carbon dioxide was introduced into the slurry-form steel-making slag.

(水合處理-2:由浸漬攪拌所進行的水合) 加水於上述已被水合的漿料狀的爐渣中而使漿料量為40 L,並攪拌15分鐘。其後,過濾漿料,且分離爐渣與水合處理水(水溶液)。水合處理水的pH值是12.5,鈣濃度是470 mg/L。(Hydration treatment-2: hydration by immersion and stirring) Water was added to the slurry-like slag that had been hydrated to make the amount of slurry 40 L, and stirred for 15 minutes. Thereafter, the slurry is filtered, and the slag and the hydration treated water (aqueous solution) are separated. The pH of the hydrated water is 12.5, and the calcium concentration is 470 mg/L.

(與CO2 水溶液的接觸:同時進行粉碎等的與CO2 水溶液的接觸) 使藉由上述水合處理-2後的過濾而已被分離的爐渣不經乾燥而投入到與實驗1同樣的裝置的溶出及沉降槽中,且加水使漿料量成為100 L。此時,水與爐渣的比是約100:1。其他的條件與實驗1同樣,而進行鈣的溶出。(CO 2 into contact with an aqueous solution of: contacting pulverization simultaneously with the aqueous CO 2) reacting by the above-described filtered-2 hydration treatment only separated slag without drying into the same dissolution test apparatus 1 And settling tank, and add water to make the amount of slurry 100 L. At this time, the ratio of water to slag is about 100:1. The other conditions were the same as in Experiment 1, and calcium was eluted.

將進行如上而得到的、鈣已溶出的漿料過濾且與爐渣分離,而得到鈣已溶出的CO2 水溶液。此時的CO2 水溶液的pH值是6.7,鈣濃度是1390 mg/L。The slurry obtained by dissolving calcium obtained as above was filtered and separated from the slag to obtain a CO 2 aqueous solution in which calcium was dissolved. At this time, the pH value of the CO 2 aqueous solution is 6.7, and the calcium concentration is 1390 mg/L.

(霧化) 與實驗12同樣地,藉由噴淋霧化式方法霧化上述已得到的CO2 水溶液而使鈣析出。霧化進行僅一次。(Atomization) As in Experiment 12, the CO 2 aqueous solution obtained above was atomized by a spray atomization method to precipitate calcium. The atomization is performed only once.

一次霧化後的CO2 水溶液的pH值是6.9,鈣濃度是230 mg/L。此時的鈣析出率是83.5%。The pH value of the CO 2 aqueous solution after one atomization is 6.9, and the calcium concentration is 230 mg/L. The calcium precipitation rate at this time was 83.5%.

(鈣系的鹼性物質的投入) 其後,在桶槽中所累積的CO2 水溶液中,一邊投入氫氧化鈣系組成物-4(於水合處理-2中所得到的水合處理水),一邊攪拌CO2 溶液。為了使投入後的CO2 水溶液的pH值成為8.0、8.5以及9.0的任一個,而調整氫氧化鈣系組成物-4的投入量。(Introduction of calcium-based alkaline substance) Thereafter, calcium hydroxide-based composition-4 (hydration-treated water obtained in hydration treatment-2) was added to the CO 2 aqueous solution accumulated in the tank, While stirring the CO 2 solution. In order to adjust the pH of the CO 2 aqueous solution after the injection to any one of 8.0, 8.5, and 9.0, the input amount of the calcium hydroxide-based composition-4 was adjusted.

在表4中表示上述已投入的氫氧化鈣系組成物-4的pH值以及鈣濃度。Table 4 shows the pH value and calcium concentration of the calcium hydroxide-based composition-4 that has been added.

[表4] 表4:氫氧化鈣系組成物-4

Figure 108133854-A0304-0004
[Table 4] Table 4: Calcium hydroxide-based composition-4
Figure 108133854-A0304-0004

在表5中表示投入氫氧化鈣系組成物-4後的CO2 水溶液的pH值以及鈣濃度、以及鈣析出率(霧化以及氫氧化鈣系組成物的投入後的鈣濃度/霧化前的鈣濃度)。Table 5 shows the pH value, calcium concentration, and calcium precipitation rate of the CO 2 aqueous solution after the calcium hydroxide-based composition-4 was added (atomization and calcium concentration after the calcium hydroxide-based composition was added/before atomization) Calcium concentration).

[表5] 表5:氫氧化鈣系組成物的投入後的pH值、鈣濃度、鈣析出率

Figure 108133854-A0304-0005
[Table 5] Table 5: pH value, calcium concentration, calcium precipitation rate after the calcium hydroxide-based composition was introduced
Figure 108133854-A0304-0005

如從表5明顯可知,投入水合處理水到霧化後的CO2 水溶液中時,鈣濃度也相較於一次霧化後的鈣濃度(190 mg/L)下降,而鈣更進一步地析出。As is apparent from Table 5, when the hydrated water is added to the CO 2 aqueous solution after atomization, the calcium concentration also decreases compared with the calcium concentration (190 mg/L) after one atomization, and calcium is further precipitated.

(固體成分的回收) 從已導入已被霧化的CO2 水溶液的桶槽,能夠容易地回收包含鈣的固體成分。(Recovery of solid content) From the tank into which the CO 2 aqueous solution has been atomized, the solid content containing calcium can be easily recovered.

本申請是主張基於2018年9月20日申請的日本申請案號2018-175965號的優先權之申請案,該申請案的申請專利範圍、說明書以及圖式中所記載的內容被援用於本申請中。 [產業上的利用可能性]This application is an application claiming priority based on Japanese application No. 2018-175965 filed on September 20, 2018, and the contents described in the patent scope, specification and drawings of this application are applied to this application in. [Industry use possibility]

本發明因為能夠使已從煉鋼爐渣溶出到CO2 水溶液中的鈣藉由更簡易的方法析出,所以作為製鐵中的鈣資源的回收方法是有用的。The present invention can precipitate calcium that has been eluted from the steel-making slag into the CO 2 aqueous solution by a simpler method, so it is useful as a method for recovering calcium resources in iron production.

100:溶出裝置 110:溶出及沉降槽 112:漿料取出口 114:漿料再導入口 118:葉輪 119:旋轉棒 120:粉碎部 130:二氧化碳導入部 140:漿料流路 142:漿料流路 144:漿料流路 146:幫浦 200、200a、200b:霧化裝置 210、210a:密閉容器 212:CO2水溶液取出口 214:攪拌葉片 216:旋轉棒 220、220a:霧化裝置 222:CO2水溶液流路 224:噴淋頭 226:噴嘴 230:氣體導入部 240:氣體排出部 250:幫浦 260:加熱器 270:鹼性物質投入口 S110-S170:工序100: Dissolution device 110: Dissolution and settling tank 112: Slurry extraction port 114: Slurry reintroduction port 118: Impeller 119: Rotating rod 120: Crushing section 130: Carbon dioxide introduction section 140: Slurry flow path 142: Slurry flow Path 144: Slurry flow path 146: Pump 200, 200a, 200b: atomizing device 210, 210a: closed container 212: CO 2 aqueous solution outlet 214: stirring blade 216: rotating rod 220, 220a: atomizing device 222: CO 2 aqueous solution flow path 224: shower head 226: nozzle 230: gas introduction part 240: gas discharge part 250: pump 260: heater 270: alkaline substance input port S110-S170: process

圖1是在本發明的第1實施型態中的從煉鋼爐渣回收鈣的方法的流程圖; 圖2是顯示在本發明的第1實施型態中能夠使用的使鈣溶出的裝置的結構的模式圖; 圖3是顯示在本發明的第1實施型態中能夠使用的在密閉容器中霧化CO2 水溶液的裝置的結構的模式圖; 圖4是顯示在本發明的第1實施型態中能夠使用的在密閉容器中霧化CO2 水溶液的裝置的另一個的結構的模式圖; 圖5是在本發明的第2實施型態中的從煉鋼爐渣回收鈣的方法的流程圖; 圖6是顯示在本發明的第2實施型態中能夠使用的、在密閉容器中能夠使用於CO2 水溶液的霧化以及對鈣系的鹼性物質的投入的裝置的結構的模式圖; 圖7是顯示水溶液中的二氧化碳(CO2 )以及碳酸(H2 CO3 )的濃度[H2 CO3 *]、碳酸氫根離子(HCO3 - )的濃度[HCO3 - ]、以及碳酸根離子(CO3 2- )的濃度[CO3 2- ]的存在比率與pH值的關係的圖; 圖8是在本發明的第3實施型態中的從煉鋼爐渣回收鈣的方法的流程圖;以及 圖9是在本發明的第4實施型態中的從煉鋼爐渣回收鈣的方法的流程圖。1 is a flowchart of a method for recovering calcium from steel-making slag in a first embodiment of the present invention; FIG. 2 is a diagram showing a structure of an apparatus for dissolving calcium that can be used in the first embodiment of the present invention FIG. 3 is a schematic diagram showing the structure of an apparatus for atomizing a CO 2 aqueous solution in a closed container that can be used in the first embodiment of the present invention; FIG. 4 is a first embodiment of the present invention. showing the configuration of states can be used in a closed vessel to another CO.'s 2 aqueous atomizing device; FIG. 5 is a flowchart illustrating the method of steelmaking slag of calcium recovered in the second embodiment of the present invention patterns FIG. 6 is a schematic diagram showing the structure of an apparatus that can be used in the second embodiment of the present invention and that can be used for the atomization of a CO 2 aqueous solution and the input of a calcium-based alkaline substance in a closed container; FIG 7 is a graph showing concentration of carbon dioxide in the aqueous solution (CO 2) and carbonic acid (H 2 CO 3) is [H 2 CO 3 *], bicarbonate ions (HCO 3 -) concentration of [HCO 3 -], and carbonate FIG. 8 is a flow chart of a method for recovering calcium from steel-making slag in the third embodiment of the present invention. FIG. 8 is a graph of the relationship between the existence ratio of ion (CO 3 2- ) concentration [CO 3 2- ] and pH value. FIG. 9 is a flowchart of a method of recovering calcium from steel-making slag in a fourth embodiment of the present invention.

S110-S140:工序 S110-S140: Process

Claims (8)

一種從煉鋼爐渣回收鈣的方法,具有: 使煉鋼爐渣與CO2 水溶液接觸的工序,該CO2 水溶液是含有二氧化碳的水溶液;以及 霧化該煉鋼爐渣所接觸過的CO2 水溶液的工序。And a step of atomizing the solution CO 2 is contacted steelmaking slag; a step to make contact with the steelmaking slag aqueous CO 2, the CO 2 aqueous solution is an aqueous solution containing carbon dioxide: steelmaking slag to a process for recovering calcium, having . 如請求項1中所述的從煉鋼爐渣回收鈣的方法,其中在霧化該CO2 水溶液的工序之前,具有從該煉鋼爐渣所接觸過的CO2 水溶液除去煉鋼爐渣的工序。The method for recovering calcium from steel-making slag as described in claim 1, wherein before the step of atomizing the CO 2 aqueous solution, there is a step of removing the steel-making slag from the CO 2 aqueous solution to which the steel-making slag has been in contact. 如請求項1或2中所述的從煉鋼爐渣回收鈣的方法,其中在二氧化碳的分壓低於該CO2 水溶液的空間中霧化該CO2 水溶液。Space 2 as an aqueous solution or an entry request from a method of recovering calcium steelmaking slag, wherein the carbon dioxide partial pressure of the CO 2 for CO.'S 2 in the atomized solution. 如請求項1~3中任一項所述的從煉鋼爐渣回收鈣的方法,其中在包括從由大氣、氮(N2 )、氧(O2 )、氫(H2 )、氬(Ar)以及氦(He)所組成的群組中選出的無機系氣體的空間中霧化該CO2 水溶液。The method for recovering calcium from steel-making slag according to any one of claims 1 to 3, which includes from the atmosphere, nitrogen (N 2 ), oxygen (O 2 ), hydrogen (H 2 ), argon (Ar ) And the inorganic gas selected from the group consisting of helium (He) atomizes the CO 2 aqueous solution in the space. 如請求項1~4中任一項所述的從煉鋼爐渣回收鈣的方法,其中包括在已被霧化的該CO2 水溶液中投入鈣系的鹼性物質的工序。The method for recovering calcium from steel-making slag according to any one of claims 1 to 4 includes the step of adding a calcium-based alkaline substance to the CO 2 aqueous solution that has been atomized. 如請求項5中所述的從煉鋼爐渣回收鈣的方法,其中該鈣系的鹼性物質的投入是從由溶解有氫氧化鈣的水溶液、分散有固體狀的氫氧化鈣的漿料、固體狀的氫氧化鈣、以及固體狀的氧化鈣所組成的群組中選出的氫氧化鈣系組成物的投入。The method for recovering calcium from steel-making slag as described in claim 5, wherein the calcium-based alkaline substance is input from an aqueous solution in which calcium hydroxide is dissolved, a slurry in which solid calcium hydroxide is dispersed, The calcium hydroxide-based composition selected from the group consisting of solid calcium hydroxide and solid calcium oxide. 如請求項5或6中所述的從煉鋼爐渣回收鈣的方法,其中該被投入的氫氧化鈣系組成物是藉由煉鋼爐渣的與水的接觸所得到的爐渣浸出水。The method for recovering calcium from steel-making slag as described in claim 5 or 6, wherein the calcium hydroxide-based composition to be input is slag leaching water obtained by contacting the steel-making slag with water. 如請求項5~7中任一項所述的從煉鋼爐渣回收鈣的方法,其中該鈣系的鹼性物質的投入與該CO2 水溶液的霧化同時進行。The method for recovering calcium from steel-making slag according to any one of claims 5 to 7, wherein the input of the calcium-based alkaline substance is performed simultaneously with the atomization of the CO 2 aqueous solution.
TW108133854A 2018-09-20 2019-09-19 Method for recovering calcium from steelmaking slag TW202012643A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175965A JP2020045260A (en) 2018-09-20 2018-09-20 Method of recovering calcium from steelmaking slag
JP2018-175965 2018-09-20

Publications (1)

Publication Number Publication Date
TW202012643A true TW202012643A (en) 2020-04-01

Family

ID=69888719

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133854A TW202012643A (en) 2018-09-20 2019-09-19 Method for recovering calcium from steelmaking slag

Country Status (3)

Country Link
JP (1) JP2020045260A (en)
TW (1) TW202012643A (en)
WO (1) WO2020059455A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775369B (en) * 2021-03-26 2022-08-21 賴世宗 Metal recovery method and recovery system of metal smelting slag
TWI766691B (en) * 2021-05-20 2022-06-01 中國鋼鐵股份有限公司 Method of electric furnace steelmaking
CN115672950B (en) * 2022-09-20 2023-05-12 原初科技(北京)有限公司 Steel slag carbon fixing device and use method thereof
CN115889399A (en) * 2022-11-26 2023-04-04 安徽华塑股份有限公司 Carbide slag recycling equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621832A (en) * 1985-02-07 1987-01-07 Sumitomo Metal Ind Ltd Method for recovering alkaline metal from slag formed at molten pig iron treatment
JP6794842B2 (en) * 2017-01-18 2020-12-02 日本製鉄株式会社 How to elute calcium from steelmaking slag and how to recover calcium from steelmaking slag

Also Published As

Publication number Publication date
WO2020059455A1 (en) 2020-03-26
JP2020045260A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
TW202012643A (en) Method for recovering calcium from steelmaking slag
JP6927033B2 (en) How to recover calcium from steelmaking slag
JP6794842B2 (en) How to elute calcium from steelmaking slag and how to recover calcium from steelmaking slag
TWI679282B (en) Method for recovering calcium-containing solid content from steelmaking slag
WO2015114703A1 (en) Phosphorus and calcium collection method, and mixture produced by said collection method
KR101303051B1 (en) Apparatus and Method for Treating Slag
JP2008149234A (en) Method for reforming coal ash
JP5191861B2 (en) Manufacturing method of slag for cement raw material
WO2019107116A1 (en) Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
TWI664294B (en) Dephosphorization method of molten iron
JP2013151725A (en) Desulfurization treatment method for molten iron
WO2019107115A1 (en) Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
JP2004238234A (en) Air-granulated slag, method for producing the same, method for treating the same, and fine aggregate for concrete
JP2022072175A (en) Water for producing concrete, method for producing water for producing concrete, and ready mixed concrete
CN102268505A (en) Method for pre-desulfuration of molten iron in foundry ladle
JP5522133B2 (en) Regeneration method of slag
JP2019162610A (en) Method and apparatus for removing selenium from slag, method for reutilizing slag and method for producing regenerated slag
JP5748925B1 (en) Method for recovering phosphorus and calcium and mixture obtained by said recovery method
Liu et al. Mechanism of ultrasonic enhanced acetic acid efficient leaching of steel slag and synthesis of calcium carbonate whiskers
KR20030018825A (en) Apparatus for Removing Hydrogen Sulfide From Slag Granulation Stack