WO2020059455A1 - Method for recovering calcium from steelmaking slag - Google Patents
Method for recovering calcium from steelmaking slag Download PDFInfo
- Publication number
- WO2020059455A1 WO2020059455A1 PCT/JP2019/033881 JP2019033881W WO2020059455A1 WO 2020059455 A1 WO2020059455 A1 WO 2020059455A1 JP 2019033881 W JP2019033881 W JP 2019033881W WO 2020059455 A1 WO2020059455 A1 WO 2020059455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calcium
- aqueous solution
- steelmaking slag
- slag
- carbon dioxide
- Prior art date
Links
- 239000002893 slag Substances 0.000 title claims abstract description 314
- 239000011575 calcium Substances 0.000 title claims abstract description 231
- 238000009628 steelmaking Methods 0.000 title claims abstract description 226
- 229910052791 calcium Inorganic materials 0.000 title claims abstract description 215
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 title claims abstract description 214
- 238000000034 method Methods 0.000 title claims abstract description 78
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 246
- 239000007864 aqueous solution Substances 0.000 claims abstract description 223
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 123
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 119
- 238000005507 spraying Methods 0.000 claims abstract description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 99
- 239000002002 slurry Substances 0.000 claims description 87
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 52
- 239000000920 calcium hydroxide Substances 0.000 claims description 49
- 239000000126 substance Substances 0.000 claims description 48
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 44
- 239000007787 solid Substances 0.000 claims description 24
- 229910000831 Steel Inorganic materials 0.000 claims description 18
- 239000010959 steel Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 14
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 12
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 12
- 239000000292 calcium oxide Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910001872 inorganic gas Inorganic materials 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 102
- 238000006703 hydration reaction Methods 0.000 description 67
- 239000007789 gas Substances 0.000 description 65
- 230000036571 hydration Effects 0.000 description 65
- 238000011282 treatment Methods 0.000 description 54
- 239000002245 particle Substances 0.000 description 51
- 235000011116 calcium hydroxide Nutrition 0.000 description 45
- 229910052742 iron Inorganic materials 0.000 description 43
- 238000007885 magnetic separation Methods 0.000 description 42
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 39
- 239000000243 solution Substances 0.000 description 33
- 238000003756 stirring Methods 0.000 description 30
- 238000010298 pulverizing process Methods 0.000 description 25
- 238000010828 elution Methods 0.000 description 24
- 239000007921 spray Substances 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 22
- 238000001556 precipitation Methods 0.000 description 21
- 235000010216 calcium carbonate Nutrition 0.000 description 19
- 238000007654 immersion Methods 0.000 description 19
- 238000004062 sedimentation Methods 0.000 description 19
- 229910000019 calcium carbonate Inorganic materials 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 18
- 229940043430 calcium compound Drugs 0.000 description 17
- 150000001674 calcium compounds Chemical class 0.000 description 17
- 239000007788 liquid Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 239000000378 calcium silicate Substances 0.000 description 14
- 229910052918 calcium silicate Inorganic materials 0.000 description 14
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 14
- HDYBUJBCJPAOLV-UHFFFAOYSA-N [O-2].[Fe+2].[Ca+2].[Al+3] Chemical compound [O-2].[Fe+2].[Ca+2].[Al+3] HDYBUJBCJPAOLV-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 12
- 235000011941 Tilia x europaea Nutrition 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 239000004571 lime Substances 0.000 description 12
- 230000008021 deposition Effects 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- 238000001914 filtration Methods 0.000 description 10
- 238000004090 dissolution Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011574 phosphorus Substances 0.000 description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- -1 phosphorus compound Chemical class 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 7
- 229910001424 calcium ion Inorganic materials 0.000 description 7
- 229940087373 calcium oxide Drugs 0.000 description 7
- 230000005291 magnetic effect Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 238000002386 leaching Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000006148 magnetic separator Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 3
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 3
- 238000009614 chemical analysis method Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000000887 hydrating effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000009751 slip forming Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000005997 Calcium carbide Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 229910052595 hematite Inorganic materials 0.000 description 2
- 239000011019 hematite Substances 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- VMLAJPONBZSGBD-UHFFFAOYSA-L calcium;hydrogen carbonate;hydroxide Chemical compound [OH-].[Ca+2].OC([O-])=O VMLAJPONBZSGBD-UHFFFAOYSA-L 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for recovering calcium from steelmaking slag.
- Steelmaking slag (such as converter slag, pretreatment slag, secondary refining slag, and electric furnace slag) generated in the steelmaking process is used in a wide range of applications including cement materials, roadbed materials, civil engineering materials, and fertilizers (non-patented). References 1-3). In addition, some steelmaking slag not used for the above applications is landfilled.
- Steelmaking slag includes calcium (Ca), iron (Fe), silicon (Si), manganese (Mn), magnesium (Mg), aluminum (Al), phosphorus (P), titanium (Ti), chromium (Cr), It is known that elements such as sulfur (S) are contained.
- the element most contained in the steelmaking slag is calcium used in a large amount in the steelmaking process, and usually contains Fe second most.
- about 20% to 50% by mass of the total mass of the steelmaking slag is calcium, and about 1% to 30% by mass is Fe.
- Calcium in the steelmaking slag is formed by free lime (CaO) supplied in the steelmaking process remaining as it is, or free lime precipitated during the solidification of the steelmaking slag, and free lime reacting with water vapor or carbon dioxide in the air to form hydroxide.
- Calcium carbonate and calcium oxide are the main slag forming materials in the iron making process and the steel making process during the iron making process, and are used as modifiers for the basicity and viscosity of the slag, as dephosphorizers from molten steel, and the like. I have. Further, calcium hydroxide obtained by adding water to calcium oxide is used as a neutralizing agent such as an acid in a drainage process. Therefore, it is expected that if the calcium compound contained in the steelmaking slag is recovered and reused in the ironmaking process, the cost of ironmaking can be reduced.
- Calcium in steelmaking slag can be recovered by eluting it in an acidic aqueous solution such as hydrochloric acid, nitric acid or sulfuric acid.
- an acidic aqueous solution such as hydrochloric acid, nitric acid or sulfuric acid.
- the salt of calcium and the above-mentioned acid produced in this method is difficult to reuse.
- calcium chloride generated by eluting calcium in steelmaking slag with hydrochloric acid can be reused by heating to form an oxide, but there is a problem that the processing cost of harmful chlorine gas generated during the heating is high.
- calcium in the steelmaking slag is eluted and recovered in an acidic aqueous solution, there is a problem that the cost of purchasing the acid and disposing of the acid after the elution treatment is high.
- Patent Document 1 describes a method in which carbon dioxide is blown into an aqueous solution in which calcium in a converter slag is eluted to recover precipitated calcium carbonate. At this time, the lower limit of the pH is maintained at about 10 in order to suppress the generation of calcium hydrogen carbonate having high solubility in water. Patent Literature 1 does not describe a specific method for maintaining the pH at 10 or more, but it is thought that the pH is maintained at 10 or more by adjusting the amount of carbon dioxide blown.
- Patent Document 2 discloses that a crushed steelmaking slag is separated into an iron-enriched phase and a phosphorus-enriched phase, and a calcium compound in the phosphorus-enriched phase is dissolved in washing water in which carbon dioxide is dissolved. A method is described in which calcium bicarbonate in washing water is precipitated as calcium carbonate by heating to about ° C. and recovered.
- Patent Document 3 describes a method for eluting and recovering a calcium compound from steelmaking slag in a plurality of times.
- this method it is described that by immersing steelmaking slag (pretreatment slag) in water into which carbon dioxide has been blown a plurality of times, a 2CaO.SiO2 phase and phosphorus dissolved in this phase are preferentially eluted. .
- Patent Literature 4 discloses a method of contacting steelmaking slag with an aqueous solution of CO 2 to elute calcium and phosphorus, and then removing carbon dioxide from the aqueous solution to precipitate a calcium compound and a phosphorus compound, thereby recovering calcium.
- Patent Literature 4 describes that the method can elute a larger amount of calcium more easily than the methods described in Patent Literatures 1 to 3 and increase calcium recovery efficiency.
- Patent Document 4 discloses a method for removing carbon dioxide from an aqueous solution in which calcium and phosphorus are eluted, by adding one or more gases selected from the group consisting of air, nitrogen, oxygen, hydrogen, argon, and helium into the aqueous solution. Is described.
- Fe in the steelmaking slag exists as iron-based oxides, calcium iron aluminum oxide, and, to a lesser extent, metallic iron.
- the iron-based oxide contains Mn or Mg and also contains a small amount of elements such as Ca, Al, Si, P, Ti, Cr and S.
- Calcium iron aluminum oxide also contains a small amount of elements such as Si, P, Ti, Cr and S.
- iron-based oxides also include compounds in which a part of the surface has been changed to hydroxides or the like by water vapor in the air, and calcium iron aluminum oxide also includes water vapor in the air and carbon dioxide. And a compound in which a part of the surface has been changed to a hydroxide or a carbonate.
- iron-based oxides exist as wustite-based oxides (FeO), and also exist as hematite-based oxides (Fe 2 O 3 ) and magnetite-based oxides (Fe 3 O 4 ).
- the wustite-based oxide and the hematite-based oxide can be separated from the steelmaking slag by magnetic separation because the magnetite-based oxide (Fe 3 O 4 ), which is a ferromagnetic material, is dispersed therein.
- a magnetite-based oxide alone or coexisting with another iron-based oxide can also be separated from steelmaking slag by magnetic separation.
- Patent Documents 5 to 7 disclose a method of modifying a wustite-based oxide into a magnetite-based oxide by an oxidation treatment or the like in order to separate more iron-based oxides by magnetic separation.
- the calcium iron aluminum oxide is magnetized to become a magnetic material, it can be separated from steelmaking slag by magnetic separation.
- Iron-based oxides and calcium iron aluminum oxide (hereinafter collectively referred to as “iron-based compounds.
- Calcium iron aluminum oxide is both a calcium compound and an iron-based compound.) Since it is as small as 0.1% by mass or less, it can be used as a raw material for a blast furnace or sintering if it is separated and recovered from steelmaking slag by the above-described magnetic separation or the like.
- Metallic iron is Fe that has been caught in the slag in the steelmaking process and minute Fe that precipitates during the solidification of the steelmaking slag. Larger pieces of metallic iron are removed by magnetic separation or other methods during a dry process of crushing or grinding steelmaking slag in the atmosphere.
- the present invention can be precipitated calcium eluted into CO 2 solution from steelmaking slag in a more simple method, to provide a method for recovering calcium from steel slag, and an object .
- the present invention includes a step of contacting the CO 2 steelmaking in an aqueous solution slag is an aqueous solution containing carbon dioxide, and a step of spraying the CO 2 aqueous solution the steelmaking slag in contact, steelmaking slag For recovering calcium from lime.
- FIG. 1 is a flowchart of a method for recovering calcium from steelmaking slag according to the first embodiment of the present invention.
- FIG. 2 is a schematic diagram showing a configuration of an apparatus for eluting calcium that can be used in the first embodiment of the present invention.
- FIG. 3 is a schematic diagram illustrating a configuration of an apparatus that sprays a CO 2 aqueous solution in a closed container that can be used in the first embodiment of the present invention.
- FIG. 4 is a schematic diagram showing another configuration of a device for spraying a CO 2 aqueous solution in a closed container that can be used in the first embodiment of the present invention.
- FIG. 5 is a flowchart of a method for recovering calcium from steelmaking slag in the second embodiment of the present invention.
- FIG. 1 is a flowchart of a method for recovering calcium from steelmaking slag according to the first embodiment of the present invention.
- FIG. 2 is a schematic diagram showing a configuration of an apparatus for eluting calcium that
- FIG. 6 is a schematic diagram showing a configuration of an apparatus which can be used in the second embodiment of the present invention and which can be used for spraying an aqueous solution of CO 2 in a closed container and charging it into a calcium-based alkaline substance.
- FIG. 7 shows the concentration [H 2 CO 3 * ] of carbon dioxide (CO 2 ) and carbonic acid (H 2 CO 3 ), the concentration [HCO 3 ⁇ ] of hydrogen carbonate ion (HCO 3 ⁇ ), and the carbonate ion in the aqueous solution.
- 5 is a graph showing the relationship between the concentration of (CO 3 2- ) [CO 3 2- ] and the pH.
- FIG. 8 is a flowchart of a method for recovering calcium from steelmaking slag in the third embodiment of the present invention.
- FIG. 9 is a flowchart of a method for recovering calcium from steelmaking slag according to a fourth embodiment of the present invention.
- FIG. 1 is a flowchart of a method for recovering calcium from steelmaking slag according to the first embodiment of the present invention.
- steelmaking slag is prepared (step S110), and the prepared steelmaking slag is brought into contact with an aqueous solution containing carbon dioxide (hereinafter, also simply referred to as “CO 2 aqueous solution”) (step S120).
- CO 2 aqueous solution an aqueous solution containing carbon dioxide
- step S130 There was sprayed with the CO 2 solution in contact (step S130), then, recovering the solid component comprising calcium deposited (step S140).
- Step S110 Preparation of steelmaking slag
- steelmaking slag is prepared.
- the steelmaking slag is not particularly limited as long as it is slag discharged in the steelmaking process.
- steelmaking slag include converter slag, pretreatment slag, secondary refining slag, and electric furnace slag.
- the size of the structure such as calcium silicate, free lime and iron-based compounds contained in the steelmaking slag is about 1000 ⁇ m or less. Therefore, it is preferable that the steelmaking slag is crushed or pulverized (hereinafter, also simply referred to as “pulverization or the like”) after being discharged in the steelmaking process to be formed into particulate slag particles.
- the maximum particle size of the crushed or pulverized slag particles is preferably about the same as or less than the structure of calcium silicate, free lime, iron-based compounds, and the like, and more preferably 1000 ⁇ m or less.
- the maximum particle size is 1000 ⁇ m or less, the surface area per volume of the slag particles becomes larger, so that the CO 2 aqueous solution can sufficiently penetrate into the inside of the slag particles, or calcium silicate and free lime are used alone. Since calcium can be present as particles, calcium is easily eluted in the steps described below.
- the maximum particle size of the slag particles is preferably 500 ⁇ m or less, more preferably 250 ⁇ m or less, and even more preferably 100 ⁇ m or less.
- the slag particles can be reduced to such an extent that the maximum particle size falls within the above range, for example, by further crushing the crushed slag particles with a crusher including a hammer mill, a roller mill, a ball mill and the like.
- the steelmaking slag is obtained by putting steelmaking slag in a container filled with water, leaching free lime and calcium hydroxide, and leaching calcium in the surface layer of a calcium compound, and then filtering the slag. It may be slag. Since the slag from which calcium has been eluted to some extent can be used by using the filtration residual slag, the load when eluting calcium by contact with the CO 2 aqueous solution can be reduced. At this time, the filtered water from which calcium is leached is a highly alkaline aqueous solution having a pH of 11 or more (hereinafter, also simply referred to as “highly alkaline leached water”). The highly alkaline leachate can be used as a calcium-based alkaline substance for further increasing the pH of the aqueous CO 2 solution in the second embodiment.
- Step S120 Contact with CO 2 aqueous solution
- the steelmaking slag is brought into contact with a CO 2 aqueous solution.
- the steel slag elutes calcium by contact with CO 2 solution.
- the steelmaking slag may be immersed in water in which carbon dioxide is dissolved in advance, or the carbon dioxide may be dissolved in water after immersing the steelmaking slag in water.
- the carbon dioxide may be dissolved in water after immersing the steelmaking slag in water.
- calcium elutes into the CO 2 aqueous solution calcium and carbon dioxide react with each other to produce water-soluble calcium bicarbonate. Therefore, the amount of carbon dioxide in the CO 2 aqueous solution decreases with the dissolution of calcium. Therefore, from the viewpoint of improving the calcium elution efficiency, it is preferable to introduce carbon dioxide into the CO 2 aqueous solution in contact with the steelmaking slag to continuously elute calcium. Note that, while the steelmaking slag is immersed in the aqueous solution, it is preferable to stir the slag from the viewpoint of increasing the reactivity.
- Carbon dioxide can be dissolved in water, for example, by bubbling (blowing) a gas containing carbon dioxide. From the viewpoint of improving the dissolution of calcium from steelmaking slag, it is preferable that 30 ppm or more of non-ionized carbon dioxide (free carbonic acid) is dissolved in the aqueous solution. In addition, the amount of free carbonic acid that can be contained in general tap water is 3 mg / L or more and 20 mg / L or less.
- the gas containing carbon dioxide may be pure carbon dioxide gas or a gas containing components other than carbon dioxide (for example, oxygen or nitrogen).
- the gas containing carbon dioxide include exhaust gas after combustion, and a mixed gas of carbon dioxide, air, and water vapor. From the viewpoint of increasing the concentration of carbon dioxide in the aqueous solution to enhance the dissolution of calcium compounds (such as calcium silicate) from the steelmaking slag into the aqueous solution, the gas containing carbon dioxide has a high concentration of carbon dioxide (for example, 90%).
- the steelmaking slag that is in contact with the CO 2 aqueous solution may be pulverized.
- the steelmaking slag in contact with the CO 2 aqueous solution by grinding or the like a new silicon hardly dissolved in CO 2 aqueous solution, a hydroxide such as aluminum and iron, carbonates or hydrates yet to remain or deposit Surface is continuously formed.
- a hydroxide such as aluminum and iron, carbonates or hydrates yet to remain or deposit Surface
- the retrieved slag particles You may selectively grind etc. Since the extracted slurry has a small proportion of water, the slag particles to be pulverized or the like are more easily pulverized or the like.
- the efficiency of the pulverization of the steelmaking slag and the like can be increased, and a larger amount of calcium can be easily eluted from the steelmaking slag.
- FIG. 2 is a schematic diagram showing a configuration of an apparatus for eluting calcium (hereinafter, also simply referred to as “elution apparatus”) that can be used in the present embodiment.
- the dissolution apparatus 100 contains a slurry containing a steelmaking slag and an aqueous solution of CO 2, and dissolves the steelmaking slag (hatched area in the figure) in the slurry, and removes the steelmaking slag from the bottom side of the dissolution and sedimentation tank 110.
- a crushing unit 120 for crushing steelmaking slag contained in the obtained slurry a carbon dioxide introduction unit 130 for introducing carbon dioxide into the slurry, and a slurry taken out from the elution / sedimentation tank 110 to the crushing unit 120, and And a slurry flow path 140 for re-introducing the slurry containing the steelmaking slag pulverized in the pulverizing section 120 into the elution / sedimentation tank 110.
- the elution / sedimentation tank 110 is a container for storing the slurry.
- the elution / sedimentation tank 110 has a slurry outlet 112 on the bottom side, and a slurry re-introduction port 114 for re-introducing the slurry from the pulverizing section 120 on the upper side (liquid level side) of the slurry outlet 112.
- the bottom surface of the elution / settling tank 110 is an inclined surface that is inclined so as to become deeper toward the slurry outlet 112 in order to easily take out the deposited steelmaking slag.
- the elution / sedimentation tank 110 has an impeller 118 that stirs the slurry near the bottom surface in order to easily take out the steelmaking slag deposited on the bottom surface.
- the impeller 118 is rotated by a rotating rod 119 disposed through the slurry flow path 142 so that even when the dissolution / settling tank 110 is enlarged, the steelmaking slag deposited on the bottom surface can be easily removed by these operations.
- the sedimentation tank 110 be rotated while being supported from the bottom side.
- the impeller 118 is disposed only on the bottom surface of the elution / settling tank 110 so as not to prevent the steelmaking slag from settling on the upper side.
- the pulverizing section 120 is connected to the slurry outlet 112 of the elution / settling tank 110 by a slurry flow path 142, and is connected to the slurry re-introduction port 114 of the elution / settling tank 110 by a slurry flow path 144.
- the crushing unit 120 crushes steelmaking slag contained in the slurry introduced from the slurry flow path 142.
- the pulverizing section 120 causes a known ball used in a ball mill and a known bead used in a bead mill (hereinafter, also simply referred to as a “pulverizing medium”), which are put into a pulverizing container, to flow by stirring, and to flow and rotate.
- the slag particles are smashed by the slag particles sliding on the slag particles when the crushing medium comes into contact with the slag particles.
- the crushing unit 120 may be a continuous crushing device that crushes steelmaking slag included in the slurry while flowing the slurry, or may temporarily store the slurry and crush the steelmaking slag included in the slurry. Or a batch-type pulverizer.
- the carbon dioxide introduction unit 130 introduces carbon dioxide supplied from an external carbon dioxide supply source into the slurry.
- the carbon dioxide introduction unit 130 may introduce carbon dioxide into the slurry in any of the elution / sedimentation tank 110, the slurry channel 142 (see FIG. 2), the pulverizing unit 120, and the slurry channel 144.
- the carbon dioxide introduction unit 130 may have a bubble miniaturization device for miniaturizing carbon dioxide bubbles.
- the slurry flow path 140 takes out the slurry in which the concentration of the steelmaking slag is increased by the sedimentation of the steelmaking slag from the slurry outlet 112 of the elution / sedimentation tank 110, and introduces the slurry into the pulverizing section 120. It has a slurry flow path 144 for re-introducing a slurry containing steelmaking slag pulverized at 120 into the elution / sedimentation tank 110 and a pump 146 for flowing the slurry.
- Elution-sedimentation tank 110 or a slurry containing steelmaking slag and CO 2 solution is introduced, or steel slag and CO 2 aqueous solution is separately introduced to a slurry.
- the steelmaking slag in the slurry settles from slag particles having a larger particle size.
- the slurry containing the settled steelmaking slag is stirred by the impeller 118 to increase the fluidity, taken out from the slurry outlet 112, and introduced into the pulverizing unit 120 through the slurry flow path 142 by the pump 146.
- the slurry containing the steelmaking slag pulverized in the pulverizing section 120 is re-introduced into the elution / sedimentation tank 110 from the slurry channel 144.
- carbon dioxide is continuously introduced into the slurry from the carbon dioxide introduction unit 130.
- Step S130 Spray of CO 2 aqueous solution
- the CO 2 aqueous solution that has come into contact with the steelmaking slag is sprayed.
- the calcium precipitated in this step is not limited to calcium carbonate, and calcium carbonate hydrate, basic calcium carbonate, calcium hydroxide, and the like may be precipitated.
- Spraying may be performed in the form of a shower or in the form of a mist.
- the spray is performed by spraying the droplets of the CO 2 aqueous solution. Is preferably performed so that the diameter is 5000 ⁇ m or less, more preferably performed so that the diameter is 1000 ⁇ m or less, further preferably performed so that the diameter is 500 ⁇ m or less, and the diameter is 200 ⁇ m or less. It is particularly preferred that the process be performed as follows.
- the lower limit of the diameter is not particularly limited, but may be 0.1 ⁇ m.
- the diameter of the droplet can be adjusted according to the size of a discharge port or a nozzle for spraying the CO 2 aqueous solution.
- Spraying may be performed multiple times from the viewpoint of further promoting the precipitation of calcium by removing carbon dioxide. On the other hand, if a sufficient amount of calcium is deposited, spraying may be performed only once. The number of times of spraying can be determined based on the pH of the CO 2 aqueous solution after spraying (described later) and the like.
- spraying is performed in a space having an atmosphere gas having a partial pressure of carbon dioxide lower than the equilibrium pressure of carbon dioxide in the aqueous CO 2 solution in contact with the steelmaking slag. It is preferable to perform it.
- the atmosphere gas is not particularly limited, but is preferably a gas that has lower reactivity with or does not react with a CO 2 aqueous solution than gases (chlorine gas and sulfur dioxide gas) that react with water to generate ions.
- gases chlorine gas and sulfur dioxide gas
- the generated ions react with calcium ions in the CO 2 aqueous solution to form a salt, and when the precipitation efficiency of calcium decreases or when it is difficult to remove the salt, Reuse of the aqueous solution of CO 2 after the precipitation of calcium may be troublesome.
- the atmosphere gas is a gas that has low reactivity or does not react with the CO 2 aqueous solution, and in particular, is a gas that does not generate ions that form salts with calcium ions by contact with the CO 2 aqueous solution. Is preferred.
- the gas having low or no reactivity with the CO 2 aqueous solution may be an inorganic gas or an organic gas.
- inorganic gases are preferred because they are less likely to burn and explode when leaked to the outside.
- the inorganic gas include air, a gas containing nitrogen (N 2 ), oxygen (O 2 ), hydrogen (H 2 ), argon (Ar), helium (He), and the like, and a mixed gas thereof. Is more preferable.
- the atmosphere may be an atmosphere containing nitrogen (N 2 ) and oxygen (O 2 ) at a ratio of about 4: 1 and in an environment where spraying is performed.
- organic gas examples include methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ), propane (C 3 H 8 ), and fluorocarbon gas. (C n H m F 2n + 2-m ) and the like.
- the spraying is preferably performed in a closed container from the viewpoint of recovering the carbon dioxide removed from the aqueous CO 2 solution in this step and making it easier to reuse.
- the recovered carbon dioxide for example, can be used to introduce the CO 2 aqueous solution (step S120) when contacting the steel slag in CO 2 solution.
- the carbon dioxide concentration in the sealed container with carbon dioxide removed from the CO 2 aqueous solution increases, or the rate of removal of carbon dioxide from the CO 2 aqueous solution is reduced, or removed And the calcium deposition efficiency may decrease. Therefore, it is preferable to spray the CO 2 aqueous solution while introducing the above atmospheric gas into the closed container and discharging the gas containing carbon dioxide from the closed container.
- the solubility of carbon dioxide in water may be reduced by reducing or heating the inside of the sealed container.
- the removal efficiency of carbon dioxide from the CO 2 aqueous solution can be increased, and the precipitation efficiency of calcium can also be increased.
- the solubility of calcium carbonate or the like in water is reduced, so that the calcium deposition efficiency can be increased.
- the pressure inside the sealed container is preferably equal to or lower than the atmospheric pressure (about 0.1 MPa), and the temperature inside the sealed container at this time is such that the vapor pressure of water does not exceed the atmospheric pressure.
- the temperature is more preferably room temperature or higher and lower than 100 ° C. (when the inside of the closed container is at atmospheric pressure). Either one of the pressure reduction and the heating may be performed, or both may be performed.
- FIG. 3 is a schematic diagram illustrating a configuration of a device (hereinafter, also simply referred to as “spray device”) for spraying a CO 2 aqueous solution in a closed container that can be used in the present embodiment.
- a device hereinafter, also simply referred to as “spray device” for spraying a CO 2 aqueous solution in a closed container that can be used in the present embodiment.
- Spraying device 200 includes a sealed container 210 that CO 2 aqueous solution is sprayed, the spray device 220 to spray the CO 2 aqueous solution, a gas inlet 230 for introducing the atmospheric gas inside the sealed container 210, from the interior of the sealed container 210 It has a gas discharge part 240 for discharging gas containing carbon dioxide, a pump 250 for reducing the pressure inside the sealed container, and a heater 260 for heating the inside of the sealed container.
- the closed container 210 is a container into which the CO 2 aqueous solution that has come into contact with the steelmaking slag is sprayed.
- the closed container 210 has a CO 2 aqueous solution outlet 212 for taking out the sprayed CO 2 aqueous solution on the bottom side.
- the bottom surface of the sealed container 210 is an inclined surface that is inclined so as to become deeper toward the CO 2 aqueous solution outlet 212 in order to easily take out the CO 2 aqueous solution that has reached the bottom surface after being sprayed.
- Nebulizer 220 before the CO 2 solution passage 222 CO 2 aqueous solution in contact with the steelmaking slag in step (step S120) is Nagareoku, the CO 2 aqueous solution is Nagareoku from CO 2 aqueous solution passage 222 like a shower shower head 224 for spraying.
- the shower head 224 is installed on the upper side of the closed container 210, and discharges a droplet of the CO 2 aqueous solution from a plurality of openings toward the bottom side of the closed container 210.
- the sprayer 220 has only one shower head 224, but the sprayer 220 may have a plurality of shower heads.
- the sprayed CO 2 aqueous solution is stored on the bottom surface side of the closed container 210 having an inclined surface, but the CO 2 aqueous solution is not stored, and the sprayed CO 2 aqueous solution is used as it is.
- the second aqueous solution outlet 212 may be discharged.
- the gas introduction unit 230 introduces the above atmospheric gas into the closed container 210.
- the bottom side of the container is removed carbon dioxide from the atomized CO 2 aqueous solution have reduced concentration of carbon dioxide in the CO 2 aqueous solution (the equilibrium pressure of carbon dioxide), carbon dioxide from the CO 2 aq It is difficult to remove. Therefore, it is preferable that the gas introduction unit 230 introduces the above-mentioned atmosphere gas from the bottom side of the closed vessel 210 to lower the concentration of carbon dioxide (partial pressure of carbon dioxide) in the atmosphere gas on the bottom side of the closed vessel 210. .
- FIG. 3 only two gas introduction units 230 are provided for the closed container 210, but a plurality of gas introduction units 230 are arranged at equal intervals in the circumferential direction along the outer periphery of the closed container 210.
- the above-mentioned atmospheric gas may be uniformly introduced to the bottom side inside the closed vessel 210, and the carbon dioxide concentration on the bottom side may be uniformly reduced as a whole.
- the gas discharge unit 240 discharges the atmospheric gas from the inside of the closed container 210. Atmosphere gas discharged is because it contains carbon dioxide removed from the CO 2 aqueous solution by spraying the CO 2 aqueous solution, carbon dioxide concentration is high. According to the present embodiment, at this time, the atmospheric gas having a carbon dioxide concentration of 5% by volume or more can be discharged from the gas discharge unit 240. By continuously supplying a constant amount of the CO 2 aqueous solution, the concentration and the amount of carbon dioxide in the discharged atmospheric gas can be kept constant from the beginning to the end of spraying. From such an atmospheric gas, it is easy to obtain industrially reusable carbon dioxide having a carbon dioxide concentration of 99% by volume or more by industrially recovering and purifying carbon dioxide. is there. Thus, in the present embodiment, an atmosphere gas having a high carbon dioxide concentration can be obtained, and the carbon dioxide can be easily reused.
- the pump 250 is disposed in the pipe of the gas discharge unit 240, and adjusts the discharge amount of the atmospheric gas from the inside of the closed container 210 to reduce the pressure inside the closed container 210.
- the pump 250 increases the efficiency of removing carbon dioxide from the CO 2 aqueous solution sprayed by the above-described depressurization, and also reduces the pressure from the gas discharge unit 240 disposed on the upper side of the closed vessel 210 to thereby reduce the lower side of the closed vessel 210. And promotes the movement of carbon dioxide from above to the upper side, so that the concentration of carbon dioxide inside the closed container 210 is easily reduced.
- the heater 260 may be a known heater such as a jacket heater for heating the inside of the closed container 210.
- a known heater such as a jacket heater for heating the inside of the closed container 210.
- the efficiency of removing carbon dioxide from the CO 2 aqueous solution can be increased.
- the efficiency of calcium precipitation from the CO 2 aqueous solution can be increased.
- the heating temperature for increasing the carbon dioxide removal efficiency and the calcium deposition efficiency is reduced. Even if not so high, the calcium deposition efficiency can be efficiently and sufficiently increased.
- the heater 260 may heat the atmospheric gas introduced from the gas introduction unit 230.
- FIG. 4 is a schematic diagram illustrating a configuration of another spraying device 200a according to the present embodiment.
- Spray device 200a has a nozzle 226 spraying device 220a is sprayed CO 2 aqueous solution is atomized. Also in such a spraying device 200a, similarly, carbon dioxide can be efficiently removed from the CO 2 aqueous solution, and calcium can be efficiently precipitated.
- the spray device 220a has only one nozzle 226, but the spray device 220a may have a plurality of nozzles.
- the aqueous solution after the precipitation of calcium can simplify or eliminate wastewater treatment, and can suppress the cost of wastewater treatment.
- the present embodiment can reduce the amount of wastewater generated by the treatment.
- Step S140 Recover solid component
- a solid component containing calcium precipitated by spraying the CO 2 aqueous solution is recovered.
- the solid component can be recovered by a known method including a sedimentation precipitation method and pressure filtration.
- This solid component includes calcium derived from steelmaking slag.
- FIG. 5 is a flowchart of a method for recovering calcium from steelmaking slag in the second embodiment of the present invention.
- step S110 to prepare the steelmaking slag (step S110), contacting the steel slag prepared for CO 2 aqueous solution (step S120), the CO 2 aqueous solution steelmaking slag in contact Is sprayed (step S130). Thereafter, in the present embodiment, a calcium-based alkaline substance is introduced into the CO 2 aqueous solution (Step S150), and a solid component containing precipitated calcium is recovered (Step S140).
- Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
- FIG. 6 is a schematic diagram showing the structure of a spray apparatus that can be used for spraying of CO 2 solution in this embodiment (step S130) and turned into calcium-based CO 2 aqueous solution of an alkaline material (step S150).
- Spray apparatus 200b has an alkaline substance inlet 270 to introduce an alkaline substance calcium system in the interior of the CO 2 aqueous solution of the sealed container 210a, the sealed container 210a is a CO 2 aqueous solution is charged with alkaline substance calcium-based It has a stirring blade 214 for stirring and a rotating rod 216 for rotating the stirring blade 214.
- the other configuration of the spraying device 200b is the same as that of the spraying device 200 shown in FIG.
- the alkaline substance introduction port 270 introduces a calcium-based alkaline substance into the inside of the closed container 210a and makes the calcium-based alkaline substance come into contact with the CO 2 aqueous solution.
- the alkaline substance inlet 270 injects a calcium-based alkaline substance into the CO 2 aqueous solution that has been sprayed and collected at the bottom of the closed container 210a.
- step S130 in the spraying of the CO 2 aqueous solution (step S130), the pH of the CO 2 aqueous solution is increased by removing carbon dioxide, and calcium is precipitated from the CO 2 aqueous solution.
- the pH of the CO 2 aqueous solution exceeds about 8.5, carbon dioxide can no longer exist in the CO 2 aqueous solution, and therefore, the rise of the pH of the CO 2 aqueous solution by the above spraying is limited to about 8.5. It is.
- hydrogen carbonate ions HCO 3 ⁇
- Ca 2+ calcium ions
- FIG. 7 shows the concentration of carbonic acid (H 2 CO 3 ) [H 2 CO 3 * ], the concentration of hydrogen carbonate ion (HCO 3 ⁇ ) [HCO 3 ⁇ ], and the concentration of carbonate ion (CO 2 ) in the aqueous solution.
- H 2 CO 3 * is the combined concentration of the concentration of carbon dioxide [CO 2 ] and the concentration of carbon dioxide [H 2 CO 3 ].
- the presence state of each of the above carbonic acid species (CO 2 , H 2 CO 3 , HCO 3 ⁇ , and CO 3 2 ⁇ ) in the aqueous solution is determined by the following equilibrium formula (formula 2) to equilibrium formula (formula 4) It is represented by Specifically, when the pH is lower than about 8.5, the equilibrium relationship represented by the equilibrium equation (Equation 2) and the equilibrium equation (Equation 3) holds, and when the pH is higher than about 8.5. Satisfies the equilibrium relationship represented by the equilibrium equation (Equation 3) and the equilibrium equation (Equation 4).
- the pH of the aqueous solution can be increased only to about pH 8.5 at which carbon dioxide does not exist in the aqueous solution.
- a calcium-based alkaline substance into the CO 2 aqueous solution after removing carbon dioxide to some extent, the calcium concentration and the pH in the CO 2 aqueous solution are increased, and the equilibrium of the equation (5) is shifted to the right. It can facilitate the precipitation of calcium carbonate.
- the lower the carbon dioxide concentration of the aqueous CO 2 solution the lower the efficiency of further removing carbon dioxide from the aqueous CO 2 solution. Therefore, in order to raise the pH of the CO 2 aqueous solution by spraying (removal of carbon dioxide), it is necessary to exponentially increase the flight distance of the sprayed CO 2 aqueous solution.
- the removal of carbon dioxide from the CO 2 aqueous solution by spraying is stopped when a certain amount of carbon dioxide remains in the CO 2 aqueous solution, and thereafter the precipitation of calcium is promoted by introducing a calcium-based alkaline substance. By doing so, it is possible to suppress the processing from becoming complicated due to an increase in the size of the spray device and an increase in the number of times of spraying.
- pH of CO 2 aqueous solution is 6.5 to 8.0, preferably continued until the pH of the CO 2 aqueous solution is 6.6 to 7.5, after which the alkaline substance calcium-based CO 2 It is preferable to put in an aqueous solution.
- the calcium-based alkaline substance may be an alkaline substance containing calcium (Ca). From the viewpoint of increasing the pH and increasing the amount of precipitated calcium, calcium hydroxide (Ca ( OH) 2 ) or a composition that generates calcium hydroxide when introduced into water (hereinafter, also simply referred to as “calcium hydroxide-based composition”).
- the calcium hydroxide-based composition may be an aqueous solution in which calcium hydroxide is dissolved or a slurry in which solid calcium hydroxide is dispersed.
- the substance containing calcium hydroxide may be solid calcium hydroxide.
- the calcium-based alkaline substance may be solid calcium oxide (CaO), which changes into calcium hydroxide when injected into a CO 2 aqueous solution.
- the aqueous solution in which calcium hydroxide is dissolved can be easily obtained in each step of the process of recovering calcium from steelmaking slag.
- the aqueous solution in which the calcium hydroxide is dissolved may be high alkali leaching water obtained when obtaining filtration residual slag in the step of preparing steelmaking slag, or may be hydrated in a third embodiment described later.
- the water may be hydration-treated water obtained after the treatment, or may be magnetic separation water obtained after wet magnetic separation in a fourth embodiment described later.
- a liquid component obtained by contacting steelmaking slag with water such as the above-mentioned highly alkaline leaching water, hydration-treated water, and magnetic separation water, is also referred to as slag leaching water.
- the slag leaching water was obtained in a previous processing step on steelmaking slag in which calcium is precipitated by spraying a CO 2 aqueous solution (step S130) and charging a calcium-based alkaline substance (step S150). May be obtained during the process of processing other steelmaking slag. It is preferable to add the slag leachate to the CO 2 aqueous solution in this step from the viewpoint of effective utilization of the slag leachate discharged in each step for recovering calcium from the steelmaking slag.
- the aqueous solution in which the calcium hydroxide is dissolved may be a waste liquid obtained by a process other than the process of recovering calcium from steelmaking slag.
- the waste liquid include a waste aqueous solution generated when acetylene is produced by reacting calcium carbide (calcium carbide) with water.
- the waste aqueous solution is substantially composed of water and calcium hydroxide. Therefore, the use of the waste aqueous solution can reduce the amount of impurities mixed into the solid component containing precipitated calcium.
- a sodium-based substance containing sodium hydroxide or the like and an ammonia-based substance containing ammonia or the like may be added to the CO 2 aqueous solution.
- the solid components containing precipitated calcium obtained by introducing these components generate sodium and toxic ammonia gas which may shorten the life of the refractory contained in the sintering furnace and the blast furnace. May contain ammonia. Therefore, it is preferable to promote the precipitation of calcium by adding the calcium-based alkaline substance.
- the alkaline substance inlet 270 directly injects the calcium-based alkaline substance into the CO 2 aqueous solution collected at the bottom of the sealed container 210a.
- the method of adding the calcium-based alkaline substance is not limited to this.
- a separately provided tank downstream of the sealed container 210a may be charged with an alkaline substance of the calcium-based on CO 2 aqueous solution, in the flow path for communicating the sealed container 210a and the tank, CO 2 aq
- a mixer for charging and mixing the above-mentioned calcium-based alkaline substance may be arranged.
- the closed vessel 210a has a stirring blade 214 for stirring a CO 2 aqueous solution into which a calcium-based alkaline substance is charged, and a rotating rod 216 for rotating the stirring blade 214.
- FIG. 6 shows a spraying device having a sprayer for spraying a CO 2 aqueous solution in a shower form
- a calcium-based alkaline substance is charged by using a spraying device having a sprayer for spraying a CO 2 aqueous solution in a mist state. May be similarly performed.
- FIG. 8 is a flowchart of a method for recovering calcium from steelmaking slag in the third embodiment of the present invention.
- a steelmaking slag is prepared (step S110), and then the steelmaking slag is subjected to a hydration treatment (step S160). Thereafter, the hydration process alms steel slag is brought into contact with CO 2 aqueous solution (step S120), steelmaking slag is sprayed the CO 2 solution in contact (step S130), recovering a solid component comprising a precipitated calcium (Step S140).
- Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
- the hydration treatment may be performed by a method and under conditions in which the calcium compound contained in the steelmaking slag is sufficiently hydrated.
- calcium in steelmaking slag includes free lime, calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), calcium silicate (Ca 2 SiO 4 , Ca 3 SiO 5 ) and calcium oxide. It exists as a calcium compound such as iron aluminum (Ca 2 (Al 1-x Fe x ) 2 O 5 ).
- calcium silicate hydrate and calcium hydroxide (Ca (OH) 2 ) are generated from calcium silicate by a reaction represented by the following (Formula 7),
- a calcium oxide-based hydrate is formed from calcium iron aluminum oxide by a reaction represented by the following (formula 8) (hereinafter, calcium-containing compounds that can be formed by hydration treatment are collectively referred to as “calcium hydrate” Also called “things").
- Calcium hydrate generated by the above reaction or the like is easily dissolved in a CO 2 aqueous solution. Therefore, by performing the hydration treatment, calcium derived from calcium silicate and calcium iron aluminum contained in the steelmaking slag can be more easily eluted.
- steelmaking slag usually contains only less than about 10% by mass.
- calcium silicate is usually contained in steelmaking slag at about 25% by mass to 70% by mass
- calcium iron aluminum is usually contained in steelmaking slag at about 2% by mass to 30% by mass. Therefore, if calcium contained in calcium silicate and calcium iron aluminum is easily eluted with the CO 2 aqueous solution by the hydration treatment, the amount of calcium eluted from the steelmaking slag to the CO 2 aqueous solution can be increased, It is considered that calcium can be recovered from the slag in a shorter time.
- the total volume of the compound generated by the hydration treatment is usually larger than the total volume of the compound before the reaction. Furthermore, during the hydration process, some of the free lime in the steelmaking slag elutes into the water for treatment. Therefore, when the hydration treatment is performed, cracks are generated inside the slag particles, and the slag particles are likely to collapse starting from the cracks. When the slag particles collapse in this way, the particle diameter of the slag particles decreases, the surface area per volume increases, and water or a CO 2 aqueous solution can sufficiently penetrate into the steelmaking slag. Many calcium compounds can be hydrated, and when the steelmaking slag is subsequently brought into contact with a CO 2 aqueous solution (step S120), a larger amount of calcium can be eluted.
- the hydration treatment is preferably performed by a method and under conditions that allow calcium silicate or calcium iron aluminum oxide contained in the steelmaking slag to be hydrated.
- hydration treatment examples include a treatment in which the steelmaking slag immersed in water and settled is settled (hereinafter, also simply referred to as “immersion stationary”), and the steelmaking slag immersed in water is stirred or crushed.
- Treatment hereinafter, also simply referred to as “immersion stirring”
- treatment of leaving a paste containing water and slag particles hereinafter, also simply referred to as “pasting and standing”
- pasting and standing treatment of leaving a paste containing water and slag particles
- wet standing A process of leaving the steelmaking slag in the container. According to these methods, the steelmaking slag and the water can be brought into sufficient contact.
- hydration treatment only one of the above immersion stationary, immersion stirring, pasting stationary and wet stationary may be performed, or two or more of these may be performed in an arbitrary order.
- the hydration treatment by immersion and stirring is preferred from the viewpoint of more sufficiently hydrating the interior of the slag particles to facilitate the elution of calcium.
- Immersion stirring may be performed by stirring a steelmaking slag immersed in water inside a container having a stirring impeller, or by pulverizing the steelmaking slag while stirring it with a ball mill. From the viewpoint of hydrating more sufficiently to the inside of the slag particles to make calcium more easily eluted, it is preferable that the immersion stirring is performed by pulverizing the steelmaking slag while stirring.
- the above-described reaction due to the hydration treatment occurs when the calcium compound contacts water near or inside the surface of the steelmaking slag.
- the amount of contact with water is greater near the surface. Therefore, calcium hydrate is more easily generated near the surface of the steelmaking slag.
- the components contained in the steelmaking slag is dissolved in water used for hydration, as in the case of dissolving the CO 2 solution described above, silicon, aluminum, iron and manganese or their hydroxides, carbonates and Hydrates may remain or precipitate on the surface of the steelmaking slag. When these remaining or precipitated substances inhibit the penetration of water into the steelmaking slag, calcium hydrate is less likely to be generated inside the steelmaking slag.
- the surface area of the slag particles can be increased, and the contact area between the water and the slag particles can be further increased.
- a new surface on which the above-mentioned substance still does not remain or precipitate is continuously formed, and water is continuously transferred from the surface formed continuously to the inside of the steelmaking slag.
- Calcium hydrate can be more easily generated inside the steelmaking slag.
- the surface of the steelmaking slag the remaining or precipitated substance is removed, the contact area between water and slag particles becomes larger, and water is more easily permeated into the steelmaking slag. can do.
- the water used for the hydration treatment preferably has a carbon dioxide content of less than 300 mg / L, including free non-ionized carbonic acid and ionized hydrogen carbonate ion (HCO 3 ⁇ ). If the content of the carbon dioxide is less than 300 mg / L, calcium compounds other than free lime and calcium hydroxide are hardly eluted in water used for the hydration treatment, so that most of the calcium contained in the steelmaking slag is CO 2 It can be eluted into the aqueous CO 2 solution at the time of contact with the aqueous solution (step S120), and the recovery of calcium does not easily become complicated.
- the water has a high carbon dioxide content
- calcium eluted from free lime or calcium hydroxide reacts with carbon dioxide, and the generated and precipitated calcium carbonate covers the surface of the slag particles, and the hydration reaction proceeds
- the content of carbon dioxide is less than 300 mg / L, inhibition of the hydration reaction due to the precipitation of calcium carbonate is unlikely to occur.
- the content of the carbon dioxide in the industrial water is usually less than 300 mg / L. Therefore, it is preferable that the water used for the hydration treatment by immersion standing or immersion stirring is industrial water to which carbon dioxide is not intentionally added or contained.
- the temperature of the water used for the hydration treatment may be a temperature at which the water does not evaporate violently.
- the temperature of water when hydrating steelmaking slag under conditions of approximately atmospheric pressure, the temperature of water is preferably 100 ° C or lower.
- the temperature of the water when performing hydration at a higher pressure using an autoclave or the like, the temperature of the water may be 100 ° C or higher as long as the temperature is not higher than the boiling point of water at the pressure at which the hydration is performed.
- the temperature of water when performing hydration treatment by immersion standing or immersion stirring is preferably 0 ° C or more and 80 ° C or less.
- the temperature is preferably 300 ° C. or less from the viewpoint of the pressure resistance of the apparatus and economical aspects.
- the temperature at which the hydration treatment is performed by pasting and standing is preferably 0 ° C. or more and 70 ° C. or less.
- the duration of the hydration treatment can be arbitrarily set depending on the average particle diameter of the slag, the temperature at which the hydration treatment is performed (temperature of water or air containing water vapor), and the like.
- the duration of the hydration treatment may be shorter as the average particle diameter of the slag is smaller, and may be shorter as the temperature of the hydration treatment is higher.
- the duration of the hydration treatment may be about 8 hours continuously. It is preferable that the heating time be 3 hours or more and 30 hours or less.
- the duration of the hydration treatment is continuously 0.6 hours or more and 8 hours or less.
- the duration of the hydration treatment is continuously 0.1 hours or more.
- the time is preferably not more than 0.2 hours, more preferably not less than 0.2 hours and not more than 3 hours.
- the duration of the hydration treatment is such that the maximum particle size of the slag particles is 1000 ⁇ m or less, preferably 500 ⁇ m or less, more preferably 250 ⁇ m, and still more preferably It is preferable to perform the process until the thickness becomes 100 ⁇ m or less.
- the hydration treatment is preferably carried out to such an extent that calcium silicate is sufficiently converted into a hydrate and calcium hydroxide, or calcium iron aluminum oxide is sufficiently converted into a calcium oxide-based hydrate.
- the hydration treatment is preferably performed until the amount of calcium silicate contained in the steelmaking slag becomes 50% by mass or less, or until the amount of calcium iron aluminum oxide becomes 20% by mass or less.
- the steelmaking slag after the hydration treatment may be used as it is for contact with a CO 2 aqueous solution (step S120).
- the steelmaking slag when the steelmaking slag is in a slurry state, the steelmaking slag and the liquid component are separated by solid-liquid separation.
- the solid-liquid separation can be performed by a known method including filtration under reduced pressure and filtration under pressure.
- the liquid component obtained by the solid-liquid separation (hereinafter simply referred to as “hydration-treated water”) contains calcium eluted from steelmaking slag in addition to the water used for the hydration treatment. It has become. Therefore, in the second embodiment, the hydration-treated water can be used as a calcium-based alkaline substance for further increasing the pH of the CO 2 aqueous solution.
- a calcium-based alkaline substance is introduced into the CO 2 aqueous solution (step S150), and thereafter, The solid component containing calcium precipitated on the surface may be recovered (Step S140).
- FIG. 9 is a flowchart of a method for recovering calcium from steelmaking slag according to a fourth embodiment of the present invention.
- a steelmaking slag is prepared (step S110), and then the steelmaking slag is subjected to magnetic separation (step S170). Then, contacting the steel slag subjected to the magnetic separator to CO 2 aqueous solution (step S120), steelmaking slag is sprayed the CO 2 solution in contact (step S130), recovering a solid component comprising a precipitated calcium (step S140).
- Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
- the calcium iron aluminum oxide contained in the steelmaking slag is hardly magnetized after Ca is eluted by contact with a CO 2 aqueous solution, and is not easily recovered by magnetic separation.
- By performing magnetic separation before contact with the CO 2 aqueous solution calcium iron aluminum oxide in the steelmaking slag can also be recovered, and iron derived from calcium iron aluminum can be more easily reused.
- the magnetic separation can be performed using a known magnetic separator.
- the magnetic separator may be either a dry type or a wet type, and can be selected according to the state of the steelmaking slag (dry state or slurry state).
- the magnetic separator can be appropriately selected from a drum type, a belt type, a flow type between fixed magnets, and the like.In particular, it is easy to sort steelmaking slag contained in the slurry, and the magnetic force is increased to increase the magnetic separation amount.
- a drum type is preferable because it is easy.
- the magnet used by the magnetic force sorter may be a permanent magnet or an electromagnet.
- the magnetic flux density by the magnet may be such that the ferrous compound and metallic iron can be selectively captured from other compounds contained in the steelmaking slag.
- the magnetic flux density can be set to 0.003T or more and 0.5T or less. It is preferably between 0.005T and 0.3T, and more preferably between 0.01T and 0.15T.
- the time and the number of times of the magnetic separation may be appropriately selected according to the influence of the magnetic separation on the manufacturing cost.
- the steelmaking slag is preferably subjected to a heat treatment before magnetic separation.
- a heat treatment is preferably performed at 300 ° C. or more and 1000 ° C. or less for 0.01 minutes or more and 60 minutes or less.
- the steelmaking slag may be in a dry state at the time of magnetic separation, but is preferably in the form of a slurry dispersed in water.
- Slurry-like steelmaking slag is apt to disperse slag particles due to the polarity of water molecules, water flow, and the like, so that it is easy to selectively capture iron-based compounds and metallic iron by magnetic force.
- the particle diameter of the slag particles is 1000 ⁇ m or less
- the slag particles are formed by a liquid bridging force due to condensation of water vapor in the atmosphere, a van der Waals force between the slag particles, an electrostatic force between the slag particles, and the like.
- the slag particles can be sufficiently dispersed by forming the slurry.
- the metallic iron in the steelmaking slag is minute, it is difficult to catch the ironmaking slag when the steelmaking slag is dry.
- the metallic iron dispersed in water is also easily captured by magnetic separation.
- the slurry from which the iron-based compound and metallic iron have been removed by magnetic separation may be used as it is for contact with a CO 2 aqueous solution (step S120), but when the steelmaking slag is in a slurry state, it is subjected to solid-liquid separation to produce steel.
- the slag and the liquid component are separated.
- the solid-liquid separation can be performed by a known method including filtration under reduced pressure and filtration under pressure.
- the liquid component obtained by the solid-liquid separation (herein, also simply referred to as “magnetically separated water”) contains calcium eluted from the steelmaking slag in addition to the water used for slurrying, and thus becomes alkaline. I have. Therefore, the magnetic separation water can be used as a calcium-based alkaline substance for further increasing the pH of the CO 2 aqueous solution in the second embodiment.
- the magnetically separated slag removed from the steelmaking slag by the magnetic separation contains a large amount of a compound containing Fe such as an iron compound and metallic iron as described above, it can be reused as a raw material for a blast furnace or sintering.
- the steelmaking slag is preferably subjected to a heat treatment before the magnetic separation.
- a heat treatment is preferably performed at a temperature of 300 ° C. or more and 1000 ° C. or less for 0.01 minute or more and 180 minutes or less.
- a calcium-based alkaline substance is introduced into the CO 2 aqueous solution (step S150), and thereafter, The solid component containing calcium precipitated on the surface may be recovered (Step S140).
- the hydration treatment may be performed on the steelmaking slag before being brought into contact with the CO 2 aqueous solution.
- any of the hydration treatment and the magnetic separation may be performed first, or the wet magnetic separation is performed, or the slurry subjected to the wet magnetic separation is circulated. , May be performed simultaneously. If any of these is performed first, the hydration treatment (particularly hydration treatment by immersion and stirring) is performed first, and then magnetic separation increases the calcium recovery rate, especially when the apparatus is upsized. In addition, the entire process can be performed in a shorter time.
- Example 1 A steelmaking slag having the component ratio shown in Table 1 was prepared. The components of the steelmaking slag were measured by a chemical analysis method.
- the steelmaking slag shown in Table 1 was pulverized to a diameter of 8 mm or less, and then heated at 750 ° C for 20 minutes. After heating, the steelmaking slag was air-cooled to room temperature. Thereafter, the steelmaking slag was further pulverized and then passed through a sieve having an opening of 106 ⁇ m, and used for the subsequent treatment.
- Example 1 (Hydration treatment: hydration by ball mill) A ball mill having an inner diameter of 500 mm was prepared. 1 kg of steelmaking slag not subjected to magnetic separation was charged into the ball mill, and 1 L of water was charged to turn the steelmaking slag into a slurry. Further, 6 kg of alumina balls (crushing medium) were charged into the ball mill. The diameter of the ball was 10 mm. Thereafter, the ball mill was rotated at 50 rpm, and the rotating balls were brought into contact with the steelmaking slag to pulverize the steelmaking slag and the like. By this hydration while pulverizing, the particle diameter (d90) of the slag became 20 ⁇ m. Carbon dioxide was not introduced into the slurry steelmaking slag.
- Magnetic selection Water was added to the hydrated slurry steelmaking slag so that the slurry volume became 40 L. This slurry was put into a drum type magnetic separator, and magnetically selected under the conditions of a maximum magnetic flux density of 0.07 T on the drum surface and a drum peripheral speed of 40 m / min. When the iron concentration in the steelmaking slag after the magnetic separation was measured by a chemical analysis method and the weight was measured, 41% by mass of the iron element contained in the first steelmaking slag was removed. After the magnetic separation, the remaining slurry was filtered to separate the remaining slag.
- the magnetically separated water which is an aqueous solution from which the residual calcium was leached after the residual slag was separated, was set aside for the subsequent process.
- the calcium concentration of the magnetic separation water was 480 mg / L. In a preliminary experiment, it was confirmed that slag having a dry weight of 0.15 kg was separated by magnetic separation.
- the elution / sedimentation tank was a cylindrical container having an inner diameter of 480 mm, and was provided with an impeller that rotated along the bottom surface so that the steelmaking slag that had settled and accumulated moved to the suction port. The impeller was rotated at 40 rpm. The remaining slag collected by the filtration after the magnetic separation step was put into the elution / sedimentation tank without drying, and water was added so that the slurry amount became 100 L. At this time, the ratio of water to slag was approximately 120: 1.
- the steelmaking slag collected from the bottom was sent to a pulverizing unit by a pump, and was pulverized by a continuous pulverizer using a ball mill.
- the pulverizing part was a horizontal cylindrical shape having an inner diameter of 200 mm, and a ball of ⁇ 10 mm was placed therein at 70% of the total volume.
- 20 L / min of carbon dioxide was introduced into the pipe section between the elution / settling tank and the pulverizing section. The contact with the CO 2 aqueous solution was performed for 30 minutes.
- the calcium-eluted slurry obtained as described above was filtered and separated from the slag to obtain a calcium-eluted CO 2 aqueous solution.
- the pH of the aqueous CO 2 solution was 6.6, and the calcium concentration was 1,230 mg / L.
- the pH of the aqueous CO 2 solution after spraying twice was 8.0, and the calcium concentration was 61 mg / L.
- the carbon dioxide concentration of the gas discharged from the closed container during the experiment was measured by an infrared method, and was about 10%.
- the concentration of carbon dioxide in this gas was higher than the concentration of carbon dioxide in exhaust gas from a general natural gas-fired power plant (about 9%), and was such that recovery and purification could be easily performed.
- the calcium hydroxide-based composition-1 (the magnetic separation obtained in the above magnetic separation step) was added to the aqueous CO 2 solution (pH: 7.0, calcium concentration: 190 mg / L, calcium deposition rate: 84.5%) stored in the tank.
- Water calcium hydroxide composition-2 (aqueous solution prepared by dissolving calcium hydroxide in water), and calcium hydroxide composition-3 (solid calcium hydroxide is dispersed in calcium hydroxide water) Slurry prepared in advance) was added while stirring the CO 2 solution.
- the amount of each CO 2 aqueous solution was adjusted so that the pH of the CO 2 aqueous solution became 8.0, 8.5, 9.0, or 9.5.
- Table 2 shows the pH and calcium concentration of the calcium hydroxide composition-1 to calcium hydroxide composition-3 charged above.
- the calcium concentration of the calcium hydroxide-based composition-3 which is a slurry, is an average concentration including the solid content.
- the calcium precipitation rate is 90% or more, and when the pH of the aqueous CO 2 solution after the addition of calcium hydroxide is 8.5 or more.
- the calcium deposition rate was 94% or more, and the calcium deposition rate was 95% or more when the pH of the CO 2 aqueous solution after the addition of calcium hydroxide was 9.0 or more.
- the calcium-eluted slurry obtained as described above was filtered and separated from the slag to obtain a calcium-eluted CO 2 aqueous solution.
- the pH of the CO 2 aqueous solution was 6.7, and the calcium concentration was 1390 mg / L.
- the pH of the aqueous CO 2 solution was 6.9, and the calcium concentration was 230 mg / L. At this time, the calcium deposition rate was 83.5%.
- PHTable 4 shows the pH and calcium concentration of the calcium hydroxide composition-4 charged above.
- the present invention is useful as a method for recovering calcium resources in iron making, since calcium eluted in a CO 2 aqueous solution from steelmaking slag can be precipitated by a simpler method.
- dissolution apparatus 110 dissolution / sedimentation tank 112 slurry outlet 114 slurry re-introduction port 118 impeller 119 rotary rod 120 pulverizing unit 130 carbon dioxide introduction unit 140 slurry flow path 142 slurry flow path 144 slurry flow path 146 pump 200, 200a, 200b spray device 210,210a closed container 212 CO 2 solution outlet port 214 stirring blade 216 rotational rod 220,220a spray device 222 CO 2 solution passage 224 showerhead 226 nozzles 230 gas inlet 240 gas outlet 250 pump 260 heater 270 alkaline material input mouth
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Structural Engineering (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Furnace Details (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
The purpose of the present invention is to provide a method for recovering calcium from steelmaking slag in which it is possible, by a simpler method, to precipitate calcium eluted from steelmaking slag into a CO2 aqueous solution. To achieve the above purpose, the present invention pertains to a method for recovering calcium from steelmaking slag. The method has: a step for bringing steelmaking slag into contact with a CO2 aqueous solution, which is an aqueous solution containing carbon dioxide; and a step for spraying the CO2 aqueous solution with which the steelmaking slag has been brought into contact.
Description
本発明は、製鋼スラグからカルシウムを回収する方法に関する。
The present invention relates to a method for recovering calcium from steelmaking slag.
製鋼工程で生じる製鋼スラグ(転炉スラグ、予備処理スラグ、二次精錬スラグおよび電気炉スラグなど)は、セメント材料、道路用路盤材、土木用材料および肥料を含む広い用途に用いられる(非特許文献1~3参照)。また、上記用途に用いられない一部の製鋼スラグは、埋め立て処分されている。
Steelmaking slag (such as converter slag, pretreatment slag, secondary refining slag, and electric furnace slag) generated in the steelmaking process is used in a wide range of applications including cement materials, roadbed materials, civil engineering materials, and fertilizers (non-patented). References 1-3). In addition, some steelmaking slag not used for the above applications is landfilled.
製鋼スラグには、カルシウム(Ca)、鉄(Fe)、ケイ素(Si)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、リン(P)、チタン(Ti)、クロム(Cr)、硫黄(S)などの元素が含まれていることが知られている。これらのうち、製鋼スラグに最も多く含まれる元素は、製鋼工程で多量に用いられるカルシウムであり、通常、Feが次に多く含まれる。通常、製鋼スラグの全質量のうち、20質量%~50質量%程度がカルシウムであり、1質量%~30質量%程度がFeである。
Steelmaking slag includes calcium (Ca), iron (Fe), silicon (Si), manganese (Mn), magnesium (Mg), aluminum (Al), phosphorus (P), titanium (Ti), chromium (Cr), It is known that elements such as sulfur (S) are contained. Among these, the element most contained in the steelmaking slag is calcium used in a large amount in the steelmaking process, and usually contains Fe second most. Usually, about 20% to 50% by mass of the total mass of the steelmaking slag is calcium, and about 1% to 30% by mass is Fe.
製鋼スラグ中のカルシウムは、製鋼工程で投入される生石灰(CaO)がそのまま残存もしくは製鋼スラグの凝固中に析出した遊離石灰、遊離石灰が空気中の水蒸気もしくは二酸化炭素と反応して生成する水酸化カルシウム(Ca(OH)2)もしくは炭酸カルシウム(CaCO3)、またはCaOが凝固中にSiやAlなどと反応して生成するケイ酸カルシウム(Ca2SiO4もしくはCa3SiO5など)もしくは酸化カルシウム鉄アルミニウム(Ca2(Al1-XFeX)2O5)などの形態で存在している(以下、カルシウムを含む化合物を総称して、「カルシウム化合物」ともいう。)。
Calcium in the steelmaking slag is formed by free lime (CaO) supplied in the steelmaking process remaining as it is, or free lime precipitated during the solidification of the steelmaking slag, and free lime reacting with water vapor or carbon dioxide in the air to form hydroxide. Calcium (Ca (OH) 2 ) or calcium carbonate (CaCO 3 ), or calcium silicate (Ca 2 SiO 4 or Ca 3 SiO 5 etc.) or calcium oxide generated by reacting CaO with Si or Al during solidification It exists in a form such as iron aluminum (Ca 2 (Al 1-x Fe x ) 2 O 5 ) (hereinafter, compounds containing calcium are also collectively referred to as “calcium compounds”).
炭酸カルシウムおよび酸化カルシウムは、製鉄工程中の製銑工程および製鋼工程での主要なスラグ形成材であり、そのスラグの塩基度および粘性の調整剤、ならびに溶鋼からの脱リン剤などとして使用されている。また、酸化カルシウムに加水して得られる水酸化カルシウムは、排水工程で酸などの中和剤として使用されている。したがって、上記製鋼スラグ内に含まれるカルシウム化合物を回収して製鉄工程に再利用すれば、製鉄のコストを削減できると期待されている。
Calcium carbonate and calcium oxide are the main slag forming materials in the iron making process and the steel making process during the iron making process, and are used as modifiers for the basicity and viscosity of the slag, as dephosphorizers from molten steel, and the like. I have. Further, calcium hydroxide obtained by adding water to calcium oxide is used as a neutralizing agent such as an acid in a drainage process. Therefore, it is expected that if the calcium compound contained in the steelmaking slag is recovered and reused in the ironmaking process, the cost of ironmaking can be reduced.
また、今後、製鋼スラグを道路用路盤材、土木用材料またはセメント材料などとして使用するための土木工事の数が減少したり、製鋼スラグを埋め立て処分できる土地が減少したりすることが予想される。この観点からも、製鋼スラグに含まれるカルシウム化合物を回収して、再利用または埋め立て処分される製鋼スラグの体積を減少させることが期待されている。
In the future, it is expected that the number of civil engineering works to use steelmaking slag as roadbed material, civil engineering material, cement material, etc. will decrease, and the land where steelmaking slag can be landfilled will be reduced. . From this viewpoint, it is expected that the calcium compound contained in the steelmaking slag is recovered to reduce the volume of the steelmaking slag to be reused or landfilled.
製鋼スラグ内のカルシウムは、たとえば、塩酸、硝酸または硫酸などの酸性水溶液に溶出させて、回収することができる。しかし、この方法において生成する、カルシウムと上記酸との塩は、再利用が困難である。たとえば、製鋼スラグ内のカルシウムを塩酸に溶出させて生成する塩化カルシウムは、加熱して酸化物にすれば再利用可能だが、上記加熱中に生じる有害な塩素ガスの処理コストが高いという問題がある。また、製鋼スラグ内のカルシウムを酸性水溶液に溶出させて回収しようとすると、酸の購入および溶出処理後の酸の廃棄のコストが高いという問題もある。
カ ル シ ウ ム Calcium in steelmaking slag can be recovered by eluting it in an acidic aqueous solution such as hydrochloric acid, nitric acid or sulfuric acid. However, the salt of calcium and the above-mentioned acid produced in this method is difficult to reuse. For example, calcium chloride generated by eluting calcium in steelmaking slag with hydrochloric acid can be reused by heating to form an oxide, but there is a problem that the processing cost of harmful chlorine gas generated during the heating is high. . Further, if calcium in the steelmaking slag is eluted and recovered in an acidic aqueous solution, there is a problem that the cost of purchasing the acid and disposing of the acid after the elution treatment is high.
これに対し、二酸化炭素を含有する水溶液(以下、単に「CO2水溶液」ともいう。)に製鋼スラグからカルシウムを溶出させて回収すれば、酸の使用による上記問題を解決できると期待されている(特許文献1~3参照)。なお、二酸化炭素は、排ガス中に多く含まれ、排ガスを脱硫および脱硝した後は、空気と水蒸気以外は、ほとんど二酸化炭素となった気体が得られる。工業的には非特許文献4に示すように排ガスから二酸化炭素を取り出す技術が実用化されている。
On the other hand, if calcium is eluted and recovered from steelmaking slag in an aqueous solution containing carbon dioxide (hereinafter, also simply referred to as “CO 2 aqueous solution”), it is expected that the above problem caused by the use of acid can be solved. (See Patent Documents 1 to 3). It should be noted that carbon dioxide is contained in a large amount in the exhaust gas, and after desulfurization and denitration of the exhaust gas, almost carbon dioxide gas is obtained except for air and water vapor. Industrially, as shown in Non-Patent Document 4, a technique for extracting carbon dioxide from exhaust gas has been put to practical use.
特許文献1には、転炉スラグ中のカルシウムを溶出させた水溶液に二酸化炭素を吹き込んで、沈殿した炭酸カルシウムを回収する方法が記載されている。このとき、水への溶解性が高い炭酸水素カルシウムの生成を抑制するため、pHは下限値が10程度に維持される。特許文献1には、pHを10以上に維持する具体的な方法は記載されていないものの、二酸化炭素の吹込み量を調整することでpHを10以上に維持するものと思われる。
Patent Document 1 describes a method in which carbon dioxide is blown into an aqueous solution in which calcium in a converter slag is eluted to recover precipitated calcium carbonate. At this time, the lower limit of the pH is maintained at about 10 in order to suppress the generation of calcium hydrogen carbonate having high solubility in water. Patent Literature 1 does not describe a specific method for maintaining the pH at 10 or more, but it is thought that the pH is maintained at 10 or more by adjusting the amount of carbon dioxide blown.
特許文献2には、破砕した製鋼スラグを鉄濃縮相およびリン濃縮相に分離し、リン濃縮相中のカルシウム化合物を二酸化炭素を溶解させた洗浄水に溶解させ、その後、洗浄水を50~60℃程度に加熱して、洗浄水中の炭酸水素カルシウムを炭酸カルシウムとして沈殿させ、回収する方法が記載されている。
Patent Document 2 discloses that a crushed steelmaking slag is separated into an iron-enriched phase and a phosphorus-enriched phase, and a calcium compound in the phosphorus-enriched phase is dissolved in washing water in which carbon dioxide is dissolved. A method is described in which calcium bicarbonate in washing water is precipitated as calcium carbonate by heating to about ° C. and recovered.
特許文献3には、製鋼スラグからカルシウム化合物を複数回に分けて溶出させて、回収する方法が記載されている。この方法では、二酸化炭素を吹き込んだ水に製鋼スラグ(予備処理スラグ)を複数回浸漬することで、2CaO・SiO2相およびこの相に固溶したリンが優先的に溶出することが記載されている。
Patent Document 3 describes a method for eluting and recovering a calcium compound from steelmaking slag in a plurality of times. In this method, it is described that by immersing steelmaking slag (pretreatment slag) in water into which carbon dioxide has been blown a plurality of times, a 2CaO.SiO2 phase and phosphorus dissolved in this phase are preferentially eluted. .
特許文献4には、製鋼スラグとCO2水溶液を接触させてカルシウム、およびリンを溶出した後、その水溶液から二酸化炭素を除去してカルシウム化合物、およびリン化合物を析出させ、カルシウムを回収する方法が記載されている。特許文献4には、当該方法によって、特許文献1~特許文献3に記載の方法よりも容易により多量のカルシウムを溶出させて、カルシウムの回収効率を高めることができると記載されている。特許文献4には、カルシウムおよびリンが溶出した水溶液から二酸化炭素を除去する方法として、大気、窒素、酸素、水素、アルゴンおよびヘリウムからなる群から選択される1または2以上のガスを前記水溶液内に吹込む方法が記載されている。
Patent Literature 4 discloses a method of contacting steelmaking slag with an aqueous solution of CO 2 to elute calcium and phosphorus, and then removing carbon dioxide from the aqueous solution to precipitate a calcium compound and a phosphorus compound, thereby recovering calcium. Are listed. Patent Literature 4 describes that the method can elute a larger amount of calcium more easily than the methods described in Patent Literatures 1 to 3 and increase calcium recovery efficiency. Patent Document 4 discloses a method for removing carbon dioxide from an aqueous solution in which calcium and phosphorus are eluted, by adding one or more gases selected from the group consisting of air, nitrogen, oxygen, hydrogen, argon, and helium into the aqueous solution. Is described.
一方で、製鋼スラグ内のFeは、鉄系酸化物、酸化カルシウム鉄アルミニウム、および極少量ではあるが金属鉄として存在している。これらのうち、鉄系酸化物は、MnまたはMgを含有するほか、Ca、Al、Si、P、Ti、CrおよびSなどの元素を少量ながら含有する。また、酸化カルシウム鉄アルミニウムも、Si、P、Ti、CrおよびSなどの元素を少量ながら含有する。なお、本明細書においては、鉄系酸化物は空気中の水蒸気などによってその表面の一部などが水酸化物などに変化した化合物も含み、酸化カルシウム鉄アルミニウムも空気中の水蒸気および二酸化炭素などによりその表面の一部などが水酸化物または炭酸化物などに変化した化合物も含む。
On the other hand, Fe in the steelmaking slag exists as iron-based oxides, calcium iron aluminum oxide, and, to a lesser extent, metallic iron. Among them, the iron-based oxide contains Mn or Mg and also contains a small amount of elements such as Ca, Al, Si, P, Ti, Cr and S. Calcium iron aluminum oxide also contains a small amount of elements such as Si, P, Ti, Cr and S. In the present specification, iron-based oxides also include compounds in which a part of the surface has been changed to hydroxides or the like by water vapor in the air, and calcium iron aluminum oxide also includes water vapor in the air and carbon dioxide. And a compound in which a part of the surface has been changed to a hydroxide or a carbonate.
上記鉄系酸化物は、その多くがウスタイト系酸化物(FeO)として存在し、その他にヘマタイト系酸化物(Fe2O3)やマグネタイト系酸化物(Fe3O4)としても存在する。
Most of the iron-based oxides exist as wustite-based oxides (FeO), and also exist as hematite-based oxides (Fe 2 O 3 ) and magnetite-based oxides (Fe 3 O 4 ).
これらのうち、ウスタイト系酸化物およびヘマタイト系酸化物は、強磁性体であるマグネタイト系酸化物(Fe3O4)がその内部に分散しているため、磁選によって製鋼スラグから分離できる。なお、単独または他の鉄系酸化物と共存するマグネタイト系酸化物も、磁選によって製鋼スラグから分離できる。
Among these, the wustite-based oxide and the hematite-based oxide can be separated from the steelmaking slag by magnetic separation because the magnetite-based oxide (Fe 3 O 4 ), which is a ferromagnetic material, is dispersed therein. In addition, a magnetite-based oxide alone or coexisting with another iron-based oxide can also be separated from steelmaking slag by magnetic separation.
また、特許文献5~特許文献7には、より多くの鉄系酸化物を磁選によって分離するため、酸化処理などによってウスタイト系酸化物をマグネタイト系酸化物に改質する方法が記載されている。
特許 Further, Patent Documents 5 to 7 disclose a method of modifying a wustite-based oxide into a magnetite-based oxide by an oxidation treatment or the like in order to separate more iron-based oxides by magnetic separation.
上記酸化カルシウム鉄アルミニウムは、磁化して磁性体となるため、やはり磁選によって製鋼スラグから分離できる。
カ ル シ ウ ム Since the calcium iron aluminum oxide is magnetized to become a magnetic material, it can be separated from steelmaking slag by magnetic separation.
鉄系酸化物および酸化カルシウム鉄アルミニウム(以下、これらをまとめて「鉄系化合物」ともいう。酸化カルシウム鉄アルミニウムは、カルシウム化合物であると同時に鉄系化合物でもある。)は、リンの含有量が0.1質量%以下とわずかであるため、上述した磁選などによって製鋼スラグから分離して回収すれば、高炉や焼結の原料として用いることができる。
Iron-based oxides and calcium iron aluminum oxide (hereinafter collectively referred to as “iron-based compounds. Calcium iron aluminum oxide is both a calcium compound and an iron-based compound.) Since it is as small as 0.1% by mass or less, it can be used as a raw material for a blast furnace or sintering if it is separated and recovered from steelmaking slag by the above-described magnetic separation or the like.
金属鉄は、製鋼工程でスラグ中に巻き込まれたFeや、製鋼スラグの凝固中に析出する微小なFeである。金属鉄のうち大きいものは、大気中で製鋼スラグを破砕もしくは粉砕する乾式の工程中で、磁選その他の方法で取り除かれている。
(4) Metallic iron is Fe that has been caught in the slag in the steelmaking process and minute Fe that precipitates during the solidification of the steelmaking slag. Larger pieces of metallic iron are removed by magnetic separation or other methods during a dry process of crushing or grinding steelmaking slag in the atmosphere.
特許文献4に記載の方法によれば、カルシウムの溶出量を容易に増やして、カルシウムの回収効率をより高めることができると期待される。そこで、溶出したカルシウムをより容易に析出させることができれば、カルシウムの回収効率はさらに高まると期待される。
According to the method described in Patent Document 4, it is expected that the amount of eluted calcium can be easily increased, and the efficiency of calcium recovery can be further improved. Therefore, if the eluted calcium can be more easily precipitated, the recovery efficiency of calcium is expected to be further enhanced.
上記の問題に鑑み、本発明は、製鋼スラグからCO2水溶液に溶出したカルシウムをより簡易な方法で析出させることができる、製鋼スラグからカルシウムを回収する方法を提供することを、その目的とする。
In view of the above problems, the present invention can be precipitated calcium eluted into CO 2 solution from steelmaking slag in a more simple method, to provide a method for recovering calcium from steel slag, and an object .
上記目的に鑑み、本発明は、二酸化炭素を含有する水溶液であるCO2水溶液に製鋼スラグを接触させる工程と、前記製鋼スラグが接触した前記CO2水溶液を噴霧する工程と、を有する、製鋼スラグからカルシウムを回収する方法に関する。
In view of the above object, the present invention includes a step of contacting the CO 2 steelmaking in an aqueous solution slag is an aqueous solution containing carbon dioxide, and a step of spraying the CO 2 aqueous solution the steelmaking slag in contact, steelmaking slag For recovering calcium from lime.
本発明によれば、製鋼スラグからCO2水溶液に溶出したカルシウムをより簡易な方法で析出させることができる、製鋼スラグからカルシウムを回収する方法が提供される。
According to the present invention, it is possible to precipitate calcium eluted into CO 2 solution from steelmaking slag with a simpler method, a method of recovering is provided calcium from steelmaking slag.
[第1の実施形態]
図1は、本発明の第1の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、製鋼スラグを用意し(工程S110)、二酸化炭素を含有する水溶液(以下、単に「CO2水溶液」ともいう。)に用意された製鋼スラグを接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧し(工程S130)、その後、析出したカルシウムを含む固体成分を回収する(工程S140)。 [First Embodiment]
FIG. 1 is a flowchart of a method for recovering calcium from steelmaking slag according to the first embodiment of the present invention. In the present embodiment, steelmaking slag is prepared (step S110), and the prepared steelmaking slag is brought into contact with an aqueous solution containing carbon dioxide (hereinafter, also simply referred to as “CO 2 aqueous solution”) (step S120). There was sprayed with the CO 2 solution in contact (step S130), then, recovering the solid component comprising calcium deposited (step S140).
図1は、本発明の第1の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、製鋼スラグを用意し(工程S110)、二酸化炭素を含有する水溶液(以下、単に「CO2水溶液」ともいう。)に用意された製鋼スラグを接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧し(工程S130)、その後、析出したカルシウムを含む固体成分を回収する(工程S140)。 [First Embodiment]
FIG. 1 is a flowchart of a method for recovering calcium from steelmaking slag according to the first embodiment of the present invention. In the present embodiment, steelmaking slag is prepared (step S110), and the prepared steelmaking slag is brought into contact with an aqueous solution containing carbon dioxide (hereinafter, also simply referred to as “CO 2 aqueous solution”) (step S120). There was sprayed with the CO 2 solution in contact (step S130), then, recovering the solid component comprising calcium deposited (step S140).
(工程S110:製鋼スラグの用意)
本工程では、製鋼スラグを用意する。 (Step S110: Preparation of steelmaking slag)
In this step, steelmaking slag is prepared.
本工程では、製鋼スラグを用意する。 (Step S110: Preparation of steelmaking slag)
In this step, steelmaking slag is prepared.
上記製鋼スラグは、製鋼工程で排出されるスラグであれば特に限定されない。製鋼スラグの例には、転炉スラグ、予備処理スラグ、二次精錬スラグおよび電気炉スラグが含まれる。
The steelmaking slag is not particularly limited as long as it is slag discharged in the steelmaking process. Examples of steelmaking slag include converter slag, pretreatment slag, secondary refining slag, and electric furnace slag.
製鋼スラグに含まれるケイ酸カルシウム、遊離石灰および鉄系化合物などの組織の大きさは、およそ1000μm以下である。そのため、製鋼スラグは、製鋼工程で排出された後に破砕または粉砕(以下、単に「粉砕等」ともいう。)されて、粒子状のスラグ粒子にされることが好ましい。
組織 The size of the structure such as calcium silicate, free lime and iron-based compounds contained in the steelmaking slag is about 1000 μm or less. Therefore, it is preferable that the steelmaking slag is crushed or pulverized (hereinafter, also simply referred to as “pulverization or the like”) after being discharged in the steelmaking process to be formed into particulate slag particles.
破砕または粉砕されたスラグ粒子の最大粒径は、ケイ酸カルシウム、遊離石灰および鉄系化合物などの組織と同程度以下の大きさであることが好ましく、1000μm以下であることがより好ましい。上記最大粒径が1000μm以下であると、スラグ粒子の体積あたりの表面積がより大きくなるためスラグ粒子の内部までCO2水溶液が十分に浸透できたり、または、ケイ酸カルシウムおよび遊離石灰などが単独の粒子として存在し得たりするため、後述の工程でカルシウムを溶出させやすい。同様の観点からは、スラグ粒子の最大粒径は500μm以下であることが好ましく、250μm以下であることがより好ましく、100μm以下であることがさらに好ましい。スラグ粒子は、たとえば、破砕されたスラグ粒子をハンマーミル、ローラミルおよびボールミルなどを含む粉砕機でさらに粉砕することで、最大粒径が上記範囲となる程度に小さくすることができる。
The maximum particle size of the crushed or pulverized slag particles is preferably about the same as or less than the structure of calcium silicate, free lime, iron-based compounds, and the like, and more preferably 1000 μm or less. When the maximum particle size is 1000 μm or less, the surface area per volume of the slag particles becomes larger, so that the CO 2 aqueous solution can sufficiently penetrate into the inside of the slag particles, or calcium silicate and free lime are used alone. Since calcium can be present as particles, calcium is easily eluted in the steps described below. From the same viewpoint, the maximum particle size of the slag particles is preferably 500 μm or less, more preferably 250 μm or less, and even more preferably 100 μm or less. The slag particles can be reduced to such an extent that the maximum particle size falls within the above range, for example, by further crushing the crushed slag particles with a crusher including a hammer mill, a roller mill, a ball mill and the like.
また、上記製鋼スラグは、水が入った容器に製鋼スラグを入れて、遊離石灰および水酸化カルシウムの浸出、ならびにカルシウム化合物の表層のカルシウムの浸出を行った後に、ろ過して得られる、ろ過残スラグであってもよい。ろ過残スラグを使用することにより、カルシウムがある程度溶出したスラグを用いることができるため、CO2水溶液への接触によりカルシウムを溶出させる際の負荷を軽減できる。このとき同時に得られる、カルシウムが浸出したろ過水は、pH11以上の高アルカリ性の水溶液(以下、単に「高アルカリ浸出水」ともいう。)である。高アルカリ浸出水は、第2の実施形態においてCO2水溶液のpHをさらに上昇させるためのカルシウム系のアルカリ性物質として使用することができる。
In addition, the steelmaking slag is obtained by putting steelmaking slag in a container filled with water, leaching free lime and calcium hydroxide, and leaching calcium in the surface layer of a calcium compound, and then filtering the slag. It may be slag. Since the slag from which calcium has been eluted to some extent can be used by using the filtration residual slag, the load when eluting calcium by contact with the CO 2 aqueous solution can be reduced. At this time, the filtered water from which calcium is leached is a highly alkaline aqueous solution having a pH of 11 or more (hereinafter, also simply referred to as “highly alkaline leached water”). The highly alkaline leachate can be used as a calcium-based alkaline substance for further increasing the pH of the aqueous CO 2 solution in the second embodiment.
(工程S120:CO2水溶液との接触)
本工程では、上記製鋼スラグをCO2水溶液に接触させる。上記製鋼スラグは、CO2水溶液との接触によりカルシウムを溶出する。 (Step S120: Contact with CO 2 aqueous solution)
In this step, the steelmaking slag is brought into contact with a CO 2 aqueous solution. The steel slag elutes calcium by contact with CO 2 solution.
本工程では、上記製鋼スラグをCO2水溶液に接触させる。上記製鋼スラグは、CO2水溶液との接触によりカルシウムを溶出する。 (Step S120: Contact with CO 2 aqueous solution)
In this step, the steelmaking slag is brought into contact with a CO 2 aqueous solution. The steel slag elutes calcium by contact with CO 2 solution.
本工程において、あらかじめ二酸化炭素を溶解させた水に製鋼スラグを浸漬させてもよいし、製鋼スラグを水に浸漬した後に二酸化炭素を水に溶解させてもよい。ただし、カルシウムがCO2水溶液に溶出する際には、カルシウムと二酸化炭素とが反応して水溶性の炭酸水素カルシウムが生成するため、カルシウムの溶解に伴いCO2水溶液中の二酸化炭素は減少する。そのため、カルシウムの溶出効率を高める観点からは、製鋼スラグが接触しているCO2水溶液に二酸化炭素を導入してカルシウムを溶出させ続けることが好ましい。なお、製鋼スラグを水溶液に浸漬している間は、反応性を高める観点から、これらを攪拌することが好ましい。
In this step, the steelmaking slag may be immersed in water in which carbon dioxide is dissolved in advance, or the carbon dioxide may be dissolved in water after immersing the steelmaking slag in water. However, when calcium elutes into the CO 2 aqueous solution, calcium and carbon dioxide react with each other to produce water-soluble calcium bicarbonate. Therefore, the amount of carbon dioxide in the CO 2 aqueous solution decreases with the dissolution of calcium. Therefore, from the viewpoint of improving the calcium elution efficiency, it is preferable to introduce carbon dioxide into the CO 2 aqueous solution in contact with the steelmaking slag to continuously elute calcium. Note that, while the steelmaking slag is immersed in the aqueous solution, it is preferable to stir the slag from the viewpoint of increasing the reactivity.
二酸化炭素は、たとえば、二酸化炭素を含むガスのバブリング(吹込み)によって水に溶解させることができる。製鋼スラグからのカルシウムの溶出性を高める観点からは、水溶液には、30ppm以上のイオン化していない二酸化炭素(遊離炭酸)が溶解していることが好ましい。なお、一般の水道水中に含まれうる遊離炭酸の量は、3mg/L以上20mg/L以下である。
Carbon dioxide can be dissolved in water, for example, by bubbling (blowing) a gas containing carbon dioxide. From the viewpoint of improving the dissolution of calcium from steelmaking slag, it is preferable that 30 ppm or more of non-ionized carbon dioxide (free carbonic acid) is dissolved in the aqueous solution. In addition, the amount of free carbonic acid that can be contained in general tap water is 3 mg / L or more and 20 mg / L or less.
前記二酸化炭素を含むガスは、純粋な二酸化炭素ガスでもよいし、二酸化炭素以外の成分(たとえば、酸素または窒素)を含むガスでもよい。前記二酸化炭素を含むガスの例には、燃焼後の排ガス、ならびに、二酸化炭素、大気および水蒸気の混合ガスが含まれる。水溶液中の二酸化炭素濃度を高めて、製鋼スラグから水溶液中へのカルシウム化合物(ケイ酸カルシウムなど)の溶出性を高める観点からは、前記二酸化炭素を含むガスは、二酸化炭素を高濃度(例えば、90%)で含むことが好ましい。
The gas containing carbon dioxide may be pure carbon dioxide gas or a gas containing components other than carbon dioxide (for example, oxygen or nitrogen). Examples of the gas containing carbon dioxide include exhaust gas after combustion, and a mixed gas of carbon dioxide, air, and water vapor. From the viewpoint of increasing the concentration of carbon dioxide in the aqueous solution to enhance the dissolution of calcium compounds (such as calcium silicate) from the steelmaking slag into the aqueous solution, the gas containing carbon dioxide has a high concentration of carbon dioxide (for example, 90%).
このとき、CO2水溶液に接触している製鋼スラグを粉砕等してもよい。CO2水溶液に接触している製鋼スラグを粉砕等することで、CO2水溶液に溶解しにくいシリコン、アルミニウムおよび鉄などの水酸化物、炭酸化物または水和物が未だ残存または析出していない新たな表面が連続的に形成される。これにより、上記連続的に形成される表面から製鋼スラグの内部までCO2水溶液を浸透させやすくしたり、CO2水溶液とスラグ粒子との接触面積をより大きくしたりして、製鋼スラグからもカルシウムをより溶出させやすくすることができる。
At this time, the steelmaking slag that is in contact with the CO 2 aqueous solution may be pulverized. The steelmaking slag in contact with the CO 2 aqueous solution by grinding or the like, a new silicon hardly dissolved in CO 2 aqueous solution, a hydroxide such as aluminum and iron, carbonates or hydrates yet to remain or deposit Surface is continuously formed. Thus, with or larger contact area with the or, CO 2 aqueous solution and slag particles easily infiltrated CO 2 aqueous solution from the surface to be the continuously formed to the inside of the steel slag, calcium from steelmaking slag Can be more easily eluted.
また、このとき、CO2水溶液中で製鋼スラグを沈降させて、粒径がより大きくより沈降しやすいスラグ粒子を含むスラリーをCO2水溶液の深部側から選別して取り出し、取り出されたスラグ粒子を選択的に粉砕等してもよい。上記取り出されたスラリーは、水の割合が少なくなっているため、粉砕等されるべきスラグ粒子がより効率的に粉砕等されやすい。このようにして粉砕等された製鋼スラグを上記CO2水溶液に再導入することにより、製鋼スラグの粉砕等の効率を高めて、容易により多量のカルシウムを製鋼スラグから溶出させることができる。
At this time, allowed to settle steelmaking slag in CO 2 aqueous solution, taken out by selecting a slurry containing precipitated easily slag particles than larger particle size from the deep side of the CO 2 aqueous solution, the retrieved slag particles You may selectively grind etc. Since the extracted slurry has a small proportion of water, the slag particles to be pulverized or the like are more easily pulverized or the like. By re-introducing the steelmaking slag pulverized in this manner into the CO 2 aqueous solution, the efficiency of the pulverization of the steelmaking slag and the like can be increased, and a larger amount of calcium can be easily eluted from the steelmaking slag.
図2は、本実施形態において使用できるカルシウムを溶出させる装置(以下、単に「溶出装置」ともいう。)の構成を示す模式図である。
FIG. 2 is a schematic diagram showing a configuration of an apparatus for eluting calcium (hereinafter, also simply referred to as “elution apparatus”) that can be used in the present embodiment.
溶出装置100は、製鋼スラグおよびCO2水溶液を含むスラリーが収容され、スラリー中の製鋼スラグ(図中網掛け領域)を沈降させる溶出・沈降槽110と、溶出・沈降槽110の底部側から取り出されたスラリーに含まれる製鋼スラグを粉砕等する粉砕部120と、上記スラリーに二酸化炭素を導入する二酸化炭素導入部130と、溶出・沈降槽110から取り出したスラリーを粉砕部120に導入し、かつ、粉砕部120で粉砕等された製鋼スラグを含むスラリーを溶出・沈降槽110に再導入するスラリー流路140と、を有する。
The dissolution apparatus 100 contains a slurry containing a steelmaking slag and an aqueous solution of CO 2, and dissolves the steelmaking slag (hatched area in the figure) in the slurry, and removes the steelmaking slag from the bottom side of the dissolution and sedimentation tank 110. A crushing unit 120 for crushing steelmaking slag contained in the obtained slurry, a carbon dioxide introduction unit 130 for introducing carbon dioxide into the slurry, and a slurry taken out from the elution / sedimentation tank 110 to the crushing unit 120, and And a slurry flow path 140 for re-introducing the slurry containing the steelmaking slag pulverized in the pulverizing section 120 into the elution / sedimentation tank 110.
溶出・沈降槽110は、スラリーが収容される容器である。溶出・沈降槽110は、スラリー取出口112を底部側に有し、粉砕部120からのスラリーが再導入されるスラリー再導入口114をスラリー取出口112よりも上部側(液面側)に有する。溶出・沈降槽110の底面は、堆積した製鋼スラグを取り出しやすくするため、スラリー取出口112に向けて深くなるように傾斜した傾斜面である。
The elution / sedimentation tank 110 is a container for storing the slurry. The elution / sedimentation tank 110 has a slurry outlet 112 on the bottom side, and a slurry re-introduction port 114 for re-introducing the slurry from the pulverizing section 120 on the upper side (liquid level side) of the slurry outlet 112. . The bottom surface of the elution / settling tank 110 is an inclined surface that is inclined so as to become deeper toward the slurry outlet 112 in order to easily take out the deposited steelmaking slag.
溶出・沈降槽110は、底面に堆積した製鋼スラグを取り出しやすくするため、底面の近傍でスラリーを撹拌するインペラー118を有する。インペラー118は、溶出・沈降槽110を大型化してもこれらの稼働による底面に堆積した製鋼スラグの取出しが容易となるよう、スラリー流路142の中を通って配置された回転棒119によって、溶出・沈降槽110の底面側から支持されて回転されることが好ましい。また、インペラー118は、より上部側での製鋼スラグの沈降を妨げないように、溶出・沈降槽110の底面にのみ配置されることが好ましい。
The elution / sedimentation tank 110 has an impeller 118 that stirs the slurry near the bottom surface in order to easily take out the steelmaking slag deposited on the bottom surface. The impeller 118 is rotated by a rotating rod 119 disposed through the slurry flow path 142 so that even when the dissolution / settling tank 110 is enlarged, the steelmaking slag deposited on the bottom surface can be easily removed by these operations. It is preferable that the sedimentation tank 110 be rotated while being supported from the bottom side. Further, it is preferable that the impeller 118 is disposed only on the bottom surface of the elution / settling tank 110 so as not to prevent the steelmaking slag from settling on the upper side.
粉砕部120は、スラリー流路142によって溶出・沈降槽110のスラリー取出口112と連通しており、スラリー流路144によって溶出・沈降槽110のスラリー再導入口114と連通する。
The pulverizing section 120 is connected to the slurry outlet 112 of the elution / settling tank 110 by a slurry flow path 142, and is connected to the slurry re-introduction port 114 of the elution / settling tank 110 by a slurry flow path 144.
粉砕部120は、スラリー流路142から導入されたスラリー中に含まれる製鋼スラグを粉砕等する。たとえば、粉砕部120は、粉砕容器に投入されたボールミルに用いる公知のボールおよびビーズミルに用いる公知のビーズなど(以下、単に「粉砕媒体」ともいう。)を撹拌により流動させて、流動されて回転する粉砕媒体がスラグ粒子に接触してスラグ粒子を摺動することにより、スラグ粒子を粉砕等する。粉砕部120は、スラリーを流通させながらスラリーに含まれる製鋼スラグを粉砕等する、連続式の粉砕装置であってもよいし、スラリーを一時的に貯留してスラリーに含まれる製鋼スラグを粉砕等する、バッチ式の粉砕装置であってもよい。
The crushing unit 120 crushes steelmaking slag contained in the slurry introduced from the slurry flow path 142. For example, the pulverizing section 120 causes a known ball used in a ball mill and a known bead used in a bead mill (hereinafter, also simply referred to as a “pulverizing medium”), which are put into a pulverizing container, to flow by stirring, and to flow and rotate. The slag particles are smashed by the slag particles sliding on the slag particles when the crushing medium comes into contact with the slag particles. The crushing unit 120 may be a continuous crushing device that crushes steelmaking slag included in the slurry while flowing the slurry, or may temporarily store the slurry and crush the steelmaking slag included in the slurry. Or a batch-type pulverizer.
二酸化炭素導入部130は、外部の二酸化炭素供給源から供給された二酸化炭素をスラリーに導入する。二酸化炭素導入部130は、溶出・沈降槽110、スラリー流路142(図2参照)、粉砕部120およびスラリー流路144のいずれにおいて二酸化炭素をスラリーに導入してもよい。二酸化炭素導入部130は、二酸化炭素のバブルを微細化するためのバブル微細化装置を有してもよい。
The carbon dioxide introduction unit 130 introduces carbon dioxide supplied from an external carbon dioxide supply source into the slurry. The carbon dioxide introduction unit 130 may introduce carbon dioxide into the slurry in any of the elution / sedimentation tank 110, the slurry channel 142 (see FIG. 2), the pulverizing unit 120, and the slurry channel 144. The carbon dioxide introduction unit 130 may have a bubble miniaturization device for miniaturizing carbon dioxide bubbles.
スラリー流路140は、溶出・沈降槽110のスラリー取出口112から、製鋼スラグの沈降により製鋼スラグの濃度が高められたスラリーを取り出して、粉砕部120に導入するスラリー流路142と、粉砕部120で粉砕等された製鋼スラグを含むスラリーを溶出・沈降槽110に再導入するスラリー流路144と、スラリーを流動させるポンプ146と、を有する。
The slurry flow path 140 takes out the slurry in which the concentration of the steelmaking slag is increased by the sedimentation of the steelmaking slag from the slurry outlet 112 of the elution / sedimentation tank 110, and introduces the slurry into the pulverizing section 120. It has a slurry flow path 144 for re-introducing a slurry containing steelmaking slag pulverized at 120 into the elution / sedimentation tank 110 and a pump 146 for flowing the slurry.
溶出・沈降槽110には、製鋼スラグおよびCO2水溶液を含むスラリーが投入されるか、または製鋼スラグおよびCO2水溶液が別個に投入されてスラリーとなる。上記スラリー中の製鋼スラグは、粒径がより大きいスラグ粒子から沈降していく。上記沈降した製鋼スラグを含むスラリーは、インペラー118によって攪拌されて流動姓を高められてスラリー取出口112から取り出され、ポンプ146により、スラリー流路142を通って粉砕部120に導入される。粉砕部120で粉砕等された製鋼スラグを含むスラリーは、スラリー流路144から溶出・沈降槽110に再導入される。このとき、スラリーには二酸化炭素導入部130から二酸化炭素が導入され続ける。溶出・沈降槽110、スラリー流路142、粉砕部120およびスラリー流路144にスラリーを循環させることで、製鋼スラグの粉砕等を行いながら、効率的に製鋼スラグをCO2水溶液に接触させて、製鋼スラグからCO2水溶液にカルシウムを溶出させることができる。
Elution-sedimentation tank 110, or a slurry containing steelmaking slag and CO 2 solution is introduced, or steel slag and CO 2 aqueous solution is separately introduced to a slurry. The steelmaking slag in the slurry settles from slag particles having a larger particle size. The slurry containing the settled steelmaking slag is stirred by the impeller 118 to increase the fluidity, taken out from the slurry outlet 112, and introduced into the pulverizing unit 120 through the slurry flow path 142 by the pump 146. The slurry containing the steelmaking slag pulverized in the pulverizing section 120 is re-introduced into the elution / sedimentation tank 110 from the slurry channel 144. At this time, carbon dioxide is continuously introduced into the slurry from the carbon dioxide introduction unit 130. By circulating the slurry through the elution / sedimentation tank 110, the slurry channel 142, the pulverizing section 120, and the slurry channel 144, the steelmaking slag is efficiently brought into contact with the CO 2 aqueous solution while the steelmaking slag is being pulverized. Calcium can be eluted from the steelmaking slag into the CO 2 aqueous solution.
その後、スラリーをろ過したり、スラリーを静置して製鋼スラグを沈殿させた後の上澄み液を回収したりして、カルシウムが溶出したCO2水溶液と製鋼スラグとを分離してもよい。ただし、次工程の噴霧に顕著な影響がない限りにおいて、カルシウムが溶出したCO2水溶液と製鋼スラグとを分離しなくてもよい。
You can then filtered slurry, slurry or recovered standing supernatant after precipitation of steelmaking slag and may be separated and CO 2 aqueous calcium eluted with steelmaking slag. However, as long as there is no significant effect on the spray of the next step, it is not necessary to separate the CO 2 aqueous calcium eluted with steelmaking slag.
(工程S130:CO2水溶液の噴霧)
本工程では、上記製鋼スラグに接触したCO2水溶液を噴霧する。 (Step S130: Spray of CO 2 aqueous solution)
In this step, the CO 2 aqueous solution that has come into contact with the steelmaking slag is sprayed.
本工程では、上記製鋼スラグに接触したCO2水溶液を噴霧する。 (Step S130: Spray of CO 2 aqueous solution)
In this step, the CO 2 aqueous solution that has come into contact with the steelmaking slag is sprayed.
上記噴霧により、CO2水溶液から二酸化炭素が除去され、CO2水溶液のpHが上昇する。これにより、CO2水溶液中の水素イオン(H+)量が減少するため、下記の平衡式(式1)において、炭酸水素イオン(HCO3
-)がカルシウムイオン(Ca2+)と結びつき、水素イオン(H+)と難溶性の炭酸カルシウム(CaCO3)とが生成する方向に平衡が移動する。本工程では、このようにしてカルシウムが析出していると考えられる。
HCO3 - + Ca2+ ⇔ H+ + CaCO3 (式1) By the spray, carbon dioxide is removed from the CO 2 aqueous solution, pH of the CO 2 aqueous solution is increased. As a result, the amount of hydrogen ions (H + ) in the CO 2 aqueous solution decreases, so that in the following equilibrium equation (Equation 1), hydrogen carbonate ions (HCO 3 − ) are associated with calcium ions (Ca 2+ ), and hydrogen ions The equilibrium shifts in the direction in which (H + ) and poorly soluble calcium carbonate (CaCO 3 ) are generated. In this step, it is considered that calcium was thus precipitated.
HCO 3 - + Ca 2+ ⇔ H + + CaCO 3 ( Equation 1)
HCO3 - + Ca2+ ⇔ H+ + CaCO3 (式1) By the spray, carbon dioxide is removed from the CO 2 aqueous solution, pH of the CO 2 aqueous solution is increased. As a result, the amount of hydrogen ions (H + ) in the CO 2 aqueous solution decreases, so that in the following equilibrium equation (Equation 1), hydrogen carbonate ions (HCO 3 − ) are associated with calcium ions (Ca 2+ ), and hydrogen ions The equilibrium shifts in the direction in which (H + ) and poorly soluble calcium carbonate (CaCO 3 ) are generated. In this step, it is considered that calcium was thus precipitated.
HCO 3 - + Ca 2+ ⇔ H + + CaCO 3 ( Equation 1)
なお、本工程において析出するカルシウムは炭酸カルシウムに限られず、炭酸カルシウム水和物、塩基性炭酸カルシウム、および水酸化カルシウムなどが析出することもある。
カ ル シ ウ ム Note that the calcium precipitated in this step is not limited to calcium carbonate, and calcium carbonate hydrate, basic calcium carbonate, calcium hydroxide, and the like may be precipitated.
本工程では、噴霧によりCO2水溶液と周囲の雰囲気ガスとの接触面積を大きくすることができるため、CO2水溶液から周囲の雰囲気ガスへの二酸化炭素の除去によるカルシウムの析出を容易にかつ短時間で行うことができる。なお、噴霧後のCO2水溶液中にも、周囲の雰囲気ガスの二酸化炭素の分圧と同程度の二酸化炭素は残留する。
In this step, since the contact area between the CO 2 aqueous solution and the surrounding atmosphere gas can be increased by spraying, precipitation of calcium by removing carbon dioxide from the CO 2 aqueous solution to the surrounding atmosphere gas can be performed easily and in a short time. Can be done with It should be noted that carbon dioxide of the same level as the partial pressure of carbon dioxide in the surrounding atmospheric gas remains in the sprayed CO 2 aqueous solution.
噴霧は、シャワー状に行ってもよいし、霧状に行ってもよい。いずれにおいても、CO2水溶液と周囲の雰囲気ガスとの接触面積をより大きくして、二酸化炭素の除去によるカルシウムの析出をより促進する観点からは、噴霧は、噴霧されたCO2水溶液の液滴の径が5000μm以下となるように行うことが好ましく、上記径が1000μm以下となるように行うことがより好ましく、上記径が500μm以下となるように行うことがさらに好ましく、上記径が200μm以下となるように行うことが特に好ましい。上記径の下限値は特に限定されないものの、0.1μmとすることができる。上記液滴の径は、CO2水溶液を噴霧するための吐出口やノズルの大きさによって調整することができる。
Spraying may be performed in the form of a shower or in the form of a mist. In any case, from the viewpoint of increasing the contact area between the CO 2 aqueous solution and the surrounding atmosphere gas to further promote the precipitation of calcium by removing carbon dioxide, the spray is performed by spraying the droplets of the CO 2 aqueous solution. Is preferably performed so that the diameter is 5000 μm or less, more preferably performed so that the diameter is 1000 μm or less, further preferably performed so that the diameter is 500 μm or less, and the diameter is 200 μm or less. It is particularly preferred that the process be performed as follows. The lower limit of the diameter is not particularly limited, but may be 0.1 μm. The diameter of the droplet can be adjusted according to the size of a discharge port or a nozzle for spraying the CO 2 aqueous solution.
二酸化炭素の除去によるカルシウムの析出をより促進する観点からは、噴霧は、複数回行ってもよい。一方で、十分な量のカルシウムが析出するようであれば、噴霧は、1回のみ行ってもよい。噴霧回数は、噴霧後のCO2水溶液のpH(後述)などをもとに定めることができる。
Spraying may be performed multiple times from the viewpoint of further promoting the precipitation of calcium by removing carbon dioxide. On the other hand, if a sufficient amount of calcium is deposited, spraying may be performed only once. The number of times of spraying can be determined based on the pH of the CO 2 aqueous solution after spraying (described later) and the like.
上記二酸化炭素の除去によるカルシウムの析出を促進する観点からは、噴霧は、上記製鋼スラグに接触したCO2水溶液中の二酸化炭素の平衡圧力よりも二酸化炭素の分圧が低い雰囲気ガスを有する空間に対して行うことが好ましい。
From the viewpoint of promoting the precipitation of calcium by removing the carbon dioxide, spraying is performed in a space having an atmosphere gas having a partial pressure of carbon dioxide lower than the equilibrium pressure of carbon dioxide in the aqueous CO 2 solution in contact with the steelmaking slag. It is preferable to perform it.
上記雰囲気ガスは特に限定されないものの、水と反応してイオンを生成するガス(塩素ガスおよび亜硫酸ガス)よりも、CO2水溶液との反応性が低いかまたは反応しないガスであることが好ましい。ガスが水と反応してイオンを生成すると、生成されたイオンがCO2水溶液中のカルシウムイオンと反応して塩を形成し、カルシウムの析出効率が低下したり、塩の除去が困難であるときにはカルシウムを析出させた後のCO2水溶液の再利用に手間がかかったりすることがある。そのため、上記雰囲気ガスは、CO2水溶液との反応性が低いかまたは反応しないガスであり、特にはカルシウムイオンと塩を形成するようなイオンをCO2水溶液との接触によって生成しないガスであることが好ましい。
The atmosphere gas is not particularly limited, but is preferably a gas that has lower reactivity with or does not react with a CO 2 aqueous solution than gases (chlorine gas and sulfur dioxide gas) that react with water to generate ions. When the gas reacts with water to generate ions, the generated ions react with calcium ions in the CO 2 aqueous solution to form a salt, and when the precipitation efficiency of calcium decreases or when it is difficult to remove the salt, Reuse of the aqueous solution of CO 2 after the precipitation of calcium may be troublesome. Therefore, the atmosphere gas is a gas that has low reactivity or does not react with the CO 2 aqueous solution, and in particular, is a gas that does not generate ions that form salts with calcium ions by contact with the CO 2 aqueous solution. Is preferred.
上記CO2水溶液との反応性が低いかまたは反応しないガスは、無機系ガスでもよいし有機系ガスでもよい。これらのうち、外部に漏れたときの燃焼および爆発の可能性が少ないことから、無機系ガスが好ましい。上記無機系ガスの例には、大気、窒素(N2)、酸素(O2)、水素(H2)、アルゴン(Ar)およびヘリウム(He)などを含むガス、ならびにこれらの混合ガスであることがより好ましい。なお、上記大気は、窒素(N2)と酸素(O2)とをおよそ4:1の割合で含有する、噴霧を行う環境の大気であればよい。上記有機系ガスの例には、メタン(CH4)、エタン(C2H6)、エチレン(C2H4)、アセチレン(C2H2)、プロパン(C3H8)、およびフルオロカーボンガス(CnHmF2n+2-m)などが含まれる。
The gas having low or no reactivity with the CO 2 aqueous solution may be an inorganic gas or an organic gas. Of these, inorganic gases are preferred because they are less likely to burn and explode when leaked to the outside. Examples of the inorganic gas include air, a gas containing nitrogen (N 2 ), oxygen (O 2 ), hydrogen (H 2 ), argon (Ar), helium (He), and the like, and a mixed gas thereof. Is more preferable. Note that the atmosphere may be an atmosphere containing nitrogen (N 2 ) and oxygen (O 2 ) at a ratio of about 4: 1 and in an environment where spraying is performed. Examples of the organic gas include methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ), propane (C 3 H 8 ), and fluorocarbon gas. (C n H m F 2n + 2-m ) and the like.
本工程でCO2水溶液から除去された二酸化炭素を回収して、再利用しやすくする観点からは、噴霧は、密閉容器中で行うことが好ましい。回収した二酸化炭素は、たとえば、上記製鋼スラグをCO2水溶液に接触させるとき(工程S120)にCO2水溶液に導入するために用いることができる。
The spraying is preferably performed in a closed container from the viewpoint of recovering the carbon dioxide removed from the aqueous CO 2 solution in this step and making it easier to reuse. The recovered carbon dioxide, for example, can be used to introduce the CO 2 aqueous solution (step S120) when contacting the steel slag in CO 2 solution.
なお、密閉容器中で噴霧を行うとき、CO2水溶液から除去された二酸化炭素によって密閉容器中の二酸化炭素濃度が上昇すると、CO2水溶液からの二酸化炭素の除去速度が低下するか、または除去されなくなり、カルシウムの析出効率が低下することがある。そのため、密閉容器中に上記雰囲気ガスを導入し、かつ密閉容器中から二酸化炭素を含むガスを排出しながら、CO2水溶液の噴霧を行うことが好ましい。
Incidentally, sealed when performing spray in the container, the carbon dioxide concentration in the sealed container with carbon dioxide removed from the CO 2 aqueous solution increases, or the rate of removal of carbon dioxide from the CO 2 aqueous solution is reduced, or removed And the calcium deposition efficiency may decrease. Therefore, it is preferable to spray the CO 2 aqueous solution while introducing the above atmospheric gas into the closed container and discharging the gas containing carbon dioxide from the closed container.
また、このとき、密閉容器の内部を減圧または加熱することで、水への二酸化炭素の溶解度を低下させてもよい。これにより、CO2水溶液からの二酸化炭素の除去効率を高めて、カルシウムの析出効率も高めることができる。また、密閉容器の内部を加熱することにより、水への炭酸カルシウムなどの溶解度が低下することによっても、カルシウムの析出効率を高めることができる。このときの密閉容器の内部の圧力は、大気圧(約0.1MPa)以下であることが好ましく、このときの密閉容器の内部の温度は、水の蒸気圧が雰囲気圧力を超えない程度であることが好ましく、常温以上100℃未満(密閉容器の内部が大気圧であるとき)であることがより好ましい。上記減圧および加熱は、いずれか一方のみ行ってもよいし、双方を行ってもよい。
At this time, the solubility of carbon dioxide in water may be reduced by reducing or heating the inside of the sealed container. Thereby, the removal efficiency of carbon dioxide from the CO 2 aqueous solution can be increased, and the precipitation efficiency of calcium can also be increased. Further, by heating the inside of the sealed container, the solubility of calcium carbonate or the like in water is reduced, so that the calcium deposition efficiency can be increased. At this time, the pressure inside the sealed container is preferably equal to or lower than the atmospheric pressure (about 0.1 MPa), and the temperature inside the sealed container at this time is such that the vapor pressure of water does not exceed the atmospheric pressure. The temperature is more preferably room temperature or higher and lower than 100 ° C. (when the inside of the closed container is at atmospheric pressure). Either one of the pressure reduction and the heating may be performed, or both may be performed.
図3は、本実施形態において使用できる密閉容器中でCO2水溶液を噴霧する装置(以下、単に「噴霧装置」ともいう。)の構成を示す模式図である。
FIG. 3 is a schematic diagram illustrating a configuration of a device (hereinafter, also simply referred to as “spray device”) for spraying a CO 2 aqueous solution in a closed container that can be used in the present embodiment.
噴霧装置200は、CO2水溶液が噴霧される密閉容器210と、CO2水溶液を噴霧する噴霧器220と、密閉容器210の内部に雰囲気ガスを導入するガス導入部230と、密閉容器210の内部から二酸化炭素を含むガスを排出するガス排出部240と、密閉容器の内部を減圧するポンプ250と、密閉容器の内部を加熱するヒーター260と、を有する。
Spraying device 200 includes a sealed container 210 that CO 2 aqueous solution is sprayed, the spray device 220 to spray the CO 2 aqueous solution, a gas inlet 230 for introducing the atmospheric gas inside the sealed container 210, from the interior of the sealed container 210 It has a gas discharge part 240 for discharging gas containing carbon dioxide, a pump 250 for reducing the pressure inside the sealed container, and a heater 260 for heating the inside of the sealed container.
密閉容器210は、製鋼スラグに接触したCO2水溶液が内部で噴霧される容器である。密閉容器210は、噴霧されたCO2水溶液を取り出すCO2水溶液取出口212を底部側に有する。密閉容器210の底面は、噴霧されて底面に到達したCO2水溶液を取り出しやすくするため、CO2水溶液取出口212に向けて深くなるように傾斜した傾斜面である。
The closed container 210 is a container into which the CO 2 aqueous solution that has come into contact with the steelmaking slag is sprayed. The closed container 210 has a CO 2 aqueous solution outlet 212 for taking out the sprayed CO 2 aqueous solution on the bottom side. The bottom surface of the sealed container 210 is an inclined surface that is inclined so as to become deeper toward the CO 2 aqueous solution outlet 212 in order to easily take out the CO 2 aqueous solution that has reached the bottom surface after being sprayed.
噴霧器220は、前工程(工程S120)で製鋼スラグに接触したCO2水溶液が流送されるCO2水溶液流路222と、CO2水溶液流路222から流送されたCO2水溶液をシャワー状に噴霧するためのシャワーヘッド224と、を有する。シャワーヘッド224は、密閉容器210の上部側に設置され、複数の開口から密閉容器210の底部側に向けて、CO2水溶液の液滴を吐出する。なお、図3では噴霧器220は1個のシャワーヘッド224のみを有するが、噴霧器220は複数個のシャワーヘッドを有してもよい。
Nebulizer 220, before the CO 2 solution passage 222 CO 2 aqueous solution in contact with the steelmaking slag in step (step S120) is Nagareoku, the CO 2 aqueous solution is Nagareoku from CO 2 aqueous solution passage 222 like a shower Shower head 224 for spraying. The shower head 224 is installed on the upper side of the closed container 210, and discharges a droplet of the CO 2 aqueous solution from a plurality of openings toward the bottom side of the closed container 210. In FIG. 3, the sprayer 220 has only one shower head 224, but the sprayer 220 may have a plurality of shower heads.
また、図3では、傾斜面となっている密閉容器210の底面側に、噴霧されたCO2水溶液を貯留しているが、CO2水溶液を貯留せず、噴霧されたCO2水溶液がそのままCO2水溶液取出口212から排出されるようにしてもよい。
In FIG. 3, the sprayed CO 2 aqueous solution is stored on the bottom surface side of the closed container 210 having an inclined surface, but the CO 2 aqueous solution is not stored, and the sprayed CO 2 aqueous solution is used as it is. The second aqueous solution outlet 212 may be discharged.
ガス導入部230は、上記雰囲気ガスを密閉容器210の内部に導入する。このとき、容器の底部側では、噴霧されたCO2水溶液から二酸化炭素が除去されてCO2水溶液中の二酸化炭素濃度(二酸化炭素の平衡圧力)が低下しており、CO2水溶液から二酸化炭素が除去されにくくなっている。そのため、ガス導入部230は、密閉容器210の底部側から上記雰囲気ガスを導入して、密閉容器210の底部側における雰囲気ガス中の二酸化炭素濃度(二酸化炭素の分圧)を低くすることが好ましい。
The gas introduction unit 230 introduces the above atmospheric gas into the closed container 210. In this case, the bottom side of the container, is removed carbon dioxide from the atomized CO 2 aqueous solution have reduced concentration of carbon dioxide in the CO 2 aqueous solution (the equilibrium pressure of carbon dioxide), carbon dioxide from the CO 2 aq It is difficult to remove. Therefore, it is preferable that the gas introduction unit 230 introduces the above-mentioned atmosphere gas from the bottom side of the closed vessel 210 to lower the concentration of carbon dioxide (partial pressure of carbon dioxide) in the atmosphere gas on the bottom side of the closed vessel 210. .
なお、図3では密閉容器210に対して2個のガス導入部230のみを設けているが、密閉容器210の外周に沿って周方向に等間隔で複数のガス導入部230を配置して、密閉容器210の内部の底部側に均等に上記雰囲気ガスを導入し、底部側の二酸化炭素濃度を全体的に均等に低下させてもよい。
In FIG. 3, only two gas introduction units 230 are provided for the closed container 210, but a plurality of gas introduction units 230 are arranged at equal intervals in the circumferential direction along the outer periphery of the closed container 210. The above-mentioned atmospheric gas may be uniformly introduced to the bottom side inside the closed vessel 210, and the carbon dioxide concentration on the bottom side may be uniformly reduced as a whole.
ガス排出部240は、密閉容器210の内部から雰囲気ガスを排出する。排出される雰囲気ガスは、CO2水溶液の噴霧によりCO2水溶液から除去された二酸化炭素が含まれるため、二酸化炭素濃度が高くなっている。本実施形態によれば、このとき、二酸化炭素濃度が5体積%以上である雰囲気ガスをガス排出部240から排出させることができる。CO2水溶液を連続的に一定量供給することによって、排出される雰囲気ガスの二酸化炭素濃度および量を噴霧の初期から終盤にかけて一定とすることができる。このような雰囲気ガスをからは、二酸化炭素を工業的に回収して精製することにより、二酸化炭素濃度が99体積%以上である、工業的な再利用が可能な二酸化炭素を得ることが容易である。このように、本実施形態では、二酸化炭素濃度が高い雰囲気ガスを得ることができ、二酸化炭素の再利用が容易である。
The gas discharge unit 240 discharges the atmospheric gas from the inside of the closed container 210. Atmosphere gas discharged is because it contains carbon dioxide removed from the CO 2 aqueous solution by spraying the CO 2 aqueous solution, carbon dioxide concentration is high. According to the present embodiment, at this time, the atmospheric gas having a carbon dioxide concentration of 5% by volume or more can be discharged from the gas discharge unit 240. By continuously supplying a constant amount of the CO 2 aqueous solution, the concentration and the amount of carbon dioxide in the discharged atmospheric gas can be kept constant from the beginning to the end of spraying. From such an atmospheric gas, it is easy to obtain industrially reusable carbon dioxide having a carbon dioxide concentration of 99% by volume or more by industrially recovering and purifying carbon dioxide. is there. Thus, in the present embodiment, an atmosphere gas having a high carbon dioxide concentration can be obtained, and the carbon dioxide can be easily reused.
ポンプ250は、ガス排出部240の配管に配置され、密閉容器210の内部からの雰囲気ガスの排出量を調整して、密閉容器210の内部を減圧する。ポンプ250は、上記減圧により噴霧されたCO2水溶液からの二酸化炭素の除去効率を高めるほか、密閉容器210の上部側に配置されたガス排出部240から減圧することで、密閉容器210の下部側から上部側への二酸化炭素の移動を促進し、密閉容器210の内部の二酸化炭素濃度を低下させやすくする。
The pump 250 is disposed in the pipe of the gas discharge unit 240, and adjusts the discharge amount of the atmospheric gas from the inside of the closed container 210 to reduce the pressure inside the closed container 210. The pump 250 increases the efficiency of removing carbon dioxide from the CO 2 aqueous solution sprayed by the above-described depressurization, and also reduces the pressure from the gas discharge unit 240 disposed on the upper side of the closed vessel 210 to thereby reduce the lower side of the closed vessel 210. And promotes the movement of carbon dioxide from above to the upper side, so that the concentration of carbon dioxide inside the closed container 210 is easily reduced.
ヒーター260は、密閉容器210の内部を加熱するためのジャケットヒーターなどの公知のヒーターであればよい。ヒーター260による密閉容器210の内部の加熱と、ポンプ250による密閉容器210の内部の減圧と、により、CO2水溶液からの二酸化炭素の除去効率を高めることができる。また、ヒーター260による密閉容器210の内部の加熱により、CO2水溶液からのカルシウムの析出効率を高めることもできる。また、ヒーター260による密閉容器210の内部の加熱と、ポンプ250による密閉容器210の内部の減圧と、を併用することにより、上記二酸化炭素の除去効率およびカルシウムの析出効率を高めるための加熱温度をさほど高くしなくても、カルシウムの析出効率を効率的に十分に高めることができる。
The heater 260 may be a known heater such as a jacket heater for heating the inside of the closed container 210. By heating the inside of the sealed container 210 with the heater 260 and depressurizing the inside of the sealed container 210 with the pump 250, the efficiency of removing carbon dioxide from the CO 2 aqueous solution can be increased. In addition, by heating the inside of the closed container 210 by the heater 260, the efficiency of calcium precipitation from the CO 2 aqueous solution can be increased. Further, by using both the heating of the inside of the sealed container 210 by the heater 260 and the depressurization of the inside of the sealed container 210 by the pump 250, the heating temperature for increasing the carbon dioxide removal efficiency and the calcium deposition efficiency is reduced. Even if not so high, the calcium deposition efficiency can be efficiently and sufficiently increased.
なお、ヒーター260は、ガス導入部230から導入される雰囲気ガスを加熱してもよい。
The heater 260 may heat the atmospheric gas introduced from the gas introduction unit 230.
図4は、本実施形態における別の噴霧装置200aの構成を示す模式図である。噴霧装置200aは、噴霧装置220aがCO2水溶液を霧状に噴霧するノズル226を有する。このような噴霧装置200aでも、同様にCO2水溶液から二酸化炭素を効率的に除去して、カルシウムを効率的に析出させることができる。なお、図4では噴霧装置220aは1個のノズル226のみを有するが、噴霧装置220aは複数個のノズルを有してもよい。
FIG. 4 is a schematic diagram illustrating a configuration of another spraying device 200a according to the present embodiment. Spray device 200a has a nozzle 226 spraying device 220a is sprayed CO 2 aqueous solution is atomized. Also in such a spraying device 200a, similarly, carbon dioxide can be efficiently removed from the CO 2 aqueous solution, and calcium can be efficiently precipitated. In FIG. 4, the spray device 220a has only one nozzle 226, but the spray device 220a may have a plurality of nozzles.
このようにしてカルシウムを析出させるとき、CO2水溶液に含まれる少量の鉄(Fe)、マンガン(Mn)およびリン(P)なども同時に析出する。そのため、本実施形態においてカルシウムを析出させた後の水溶液は、廃水処理を簡素化するかまたは不要にして、廃水処理のコストを抑制することができる。
When calcium is precipitated in this manner, a small amount of iron (Fe), manganese (Mn), phosphorus (P), and the like contained in the CO 2 aqueous solution are simultaneously precipitated. For this reason, in the present embodiment, the aqueous solution after the precipitation of calcium can simplify or eliminate wastewater treatment, and can suppress the cost of wastewater treatment.
また、カルシウムを析出させた後の残水溶液は、カルシウム(Ca)、鉄(Fe)、マンガン(Mn)、アルミニウム(Al)、およびリン(P)などの元素、および二酸化炭素をほとんど含まないので、工程内での再利用が可能である。そのため、本実施形態は、処理によって生じる排水の量を低減させることができる。
Further, since the remaining aqueous solution after the precipitation of calcium hardly contains elements such as calcium (Ca), iron (Fe), manganese (Mn), aluminum (Al), and phosphorus (P), and carbon dioxide, , And can be reused in the process. Therefore, the present embodiment can reduce the amount of wastewater generated by the treatment.
(工程S140:固体成分の回収)
本工程では、上記CO2水溶液の噴霧により析出したカルシウムを含む固体成分を回収する。上記固体成分は、沈降沈殿法、加圧濾過を含む公知の方法によって回収することができる。この固体成分には、製鋼スラグ由来のカルシウムが含まれる。 (Step S140: Recover solid component)
In this step, a solid component containing calcium precipitated by spraying the CO 2 aqueous solution is recovered. The solid component can be recovered by a known method including a sedimentation precipitation method and pressure filtration. This solid component includes calcium derived from steelmaking slag.
本工程では、上記CO2水溶液の噴霧により析出したカルシウムを含む固体成分を回収する。上記固体成分は、沈降沈殿法、加圧濾過を含む公知の方法によって回収することができる。この固体成分には、製鋼スラグ由来のカルシウムが含まれる。 (Step S140: Recover solid component)
In this step, a solid component containing calcium precipitated by spraying the CO 2 aqueous solution is recovered. The solid component can be recovered by a known method including a sedimentation precipitation method and pressure filtration. This solid component includes calcium derived from steelmaking slag.
(効果)
上述した製鋼スラグからカルシウムを回収する方法によれば、CO2水溶液に溶出したカルシウムを、より容易な方法で回収することができる。 (effect)
According to the method for recovering calcium from steelmaking slag described above, calcium eluted in the CO 2 aqueous solution can be recovered by an easier method.
上述した製鋼スラグからカルシウムを回収する方法によれば、CO2水溶液に溶出したカルシウムを、より容易な方法で回収することができる。 (effect)
According to the method for recovering calcium from steelmaking slag described above, calcium eluted in the CO 2 aqueous solution can be recovered by an easier method.
[第2の実施形態]
図5は、本発明の第2の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、第1の実施形態と同様に、製鋼スラグを用意し(工程S110)、CO2水溶液に用意された製鋼スラグを接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧する(工程S130)。その後、本実施形態では、CO2水溶液にカルシウム系のアルカリ性物質を投入し(工程S150)、析出したカルシウムを含む固体成分を回収する(工程S140)。なお、工程S110、工程S120、工程S130、および工程S140は、第1の実施形態と同様に行い得るので、重複する説明は省略する。 [Second embodiment]
FIG. 5 is a flowchart of a method for recovering calcium from steelmaking slag in the second embodiment of the present invention. In the present embodiment, as in the first embodiment, to prepare the steelmaking slag (step S110), contacting the steel slag prepared for CO 2 aqueous solution (step S120), the CO 2 aqueous solution steelmaking slag in contact Is sprayed (step S130). Thereafter, in the present embodiment, a calcium-based alkaline substance is introduced into the CO 2 aqueous solution (Step S150), and a solid component containing precipitated calcium is recovered (Step S140). Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
図5は、本発明の第2の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、第1の実施形態と同様に、製鋼スラグを用意し(工程S110)、CO2水溶液に用意された製鋼スラグを接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧する(工程S130)。その後、本実施形態では、CO2水溶液にカルシウム系のアルカリ性物質を投入し(工程S150)、析出したカルシウムを含む固体成分を回収する(工程S140)。なお、工程S110、工程S120、工程S130、および工程S140は、第1の実施形態と同様に行い得るので、重複する説明は省略する。 [Second embodiment]
FIG. 5 is a flowchart of a method for recovering calcium from steelmaking slag in the second embodiment of the present invention. In the present embodiment, as in the first embodiment, to prepare the steelmaking slag (step S110), contacting the steel slag prepared for CO 2 aqueous solution (step S120), the CO 2 aqueous solution steelmaking slag in contact Is sprayed (step S130). Thereafter, in the present embodiment, a calcium-based alkaline substance is introduced into the CO 2 aqueous solution (Step S150), and a solid component containing precipitated calcium is recovered (Step S140). Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
(工程S150:カルシウム系のアルカリ性物質の投入)
図6は、本実施形態においてCO2水溶液の噴霧(工程S130)およびカルシウム系のアルカリ性物質のCO2水溶液への投入(工程S150)に使用できる噴霧装置の構成を示す模式図である。 (Step S150: Injection of calcium-based alkaline substance)
Figure 6 is a schematic diagram showing the structure of a spray apparatus that can be used for spraying of CO 2 solution in this embodiment (step S130) and turned into calcium-based CO 2 aqueous solution of an alkaline material (step S150).
図6は、本実施形態においてCO2水溶液の噴霧(工程S130)およびカルシウム系のアルカリ性物質のCO2水溶液への投入(工程S150)に使用できる噴霧装置の構成を示す模式図である。 (Step S150: Injection of calcium-based alkaline substance)
Figure 6 is a schematic diagram showing the structure of a spray apparatus that can be used for spraying of CO 2 solution in this embodiment (step S130) and turned into calcium-based CO 2 aqueous solution of an alkaline material (step S150).
噴霧装置200bは、カルシウム系のアルカリ性物質を密閉容器210aの内部のCO2水溶液に投入するアルカリ性物質投入口270を有し、密閉容器210aが、カルシウム系のアルカリ性物質を投入されたCO2水溶液を撹拌する撹拌羽根214および撹拌羽根214を回転させる回転棒216を有する。なお、噴霧装置200bのその他の構成は、図3に示した噴霧装置200と同様であるので、重複する説明は省略する。
Spray apparatus 200b has an alkaline substance inlet 270 to introduce an alkaline substance calcium system in the interior of the CO 2 aqueous solution of the sealed container 210a, the sealed container 210a is a CO 2 aqueous solution is charged with alkaline substance calcium-based It has a stirring blade 214 for stirring and a rotating rod 216 for rotating the stirring blade 214. The other configuration of the spraying device 200b is the same as that of the spraying device 200 shown in FIG.
アルカリ性物質投入口270は、カルシウム系のアルカリ性物質を密閉容器210aの内部に投入し、CO2水溶液に接触させる。図6では、アルカリ性物質投入口270は、噴霧されて密閉容器210aの底部に溜まったCO2水溶液に、カルシウム系のアルカリ性物質を投入する。
The alkaline substance introduction port 270 introduces a calcium-based alkaline substance into the inside of the closed container 210a and makes the calcium-based alkaline substance come into contact with the CO 2 aqueous solution. In FIG. 6, the alkaline substance inlet 270 injects a calcium-based alkaline substance into the CO 2 aqueous solution that has been sprayed and collected at the bottom of the closed container 210a.
上述したように、CO2水溶液の噴霧(工程S130)では、二酸化炭素の除去によりCO2水溶液のpHを上昇させて、CO2水溶液からカルシウムを析出させる。しかし、CO2水溶液のpHが8.5程度を越えると、もはやCO2水溶液中に二酸化炭素は存在し得ないため、上述した噴霧によるCO2水溶液のpHの上昇は、8.5程度が限度である。一方で、CO2水溶液には、pHが8.5以上でも炭酸水素イオン(HCO3
-)が存在し、この炭酸水素イオンと平衡してカルシウムイオン(Ca2+)も残存する。これに対し、噴霧によって二酸化炭素が(部分的に)除去されたCO2水溶液にカルシウム系のアルカリ性物質を投入することで、CO2水溶液のpHをさらに上昇させて、上記残存するカルシウムイオンを炭酸カルシウムなどとして析出させることができる。
As described above, in the spraying of the CO 2 aqueous solution (step S130), the pH of the CO 2 aqueous solution is increased by removing carbon dioxide, and calcium is precipitated from the CO 2 aqueous solution. However, when the pH of the CO 2 aqueous solution exceeds about 8.5, carbon dioxide can no longer exist in the CO 2 aqueous solution, and therefore, the rise of the pH of the CO 2 aqueous solution by the above spraying is limited to about 8.5. It is. On the other hand, hydrogen carbonate ions (HCO 3 − ) exist in the CO 2 aqueous solution even at a pH of 8.5 or more, and calcium ions (Ca 2+ ) remain in equilibrium with the hydrogen carbonate ions. On the other hand, by introducing a calcium-based alkaline substance into the CO 2 aqueous solution from which carbon dioxide has been (partially) removed by spraying, the pH of the CO 2 aqueous solution is further raised, and the remaining calcium ions are carbonated. It can be precipitated as calcium or the like.
より詳細には、図7は、水溶液中の炭酸(H2CO3)の濃度[H2CO3
*]、炭酸水素イオン(HCO3
-)の濃度[HCO3
-]、および炭酸イオン(CO3
2-)の濃度[CO3
2-]の存在比率と、pHとの関係を示すグラフである。ここで[H2CO3
*]は二酸化炭素の濃度[CO2]と炭酸の濃度[H2CO3]とを合わせた濃度である。なお、水溶液中の[CO2]と[H2CO3]の比([CO2]/[H2CO3])は650程度であり、炭酸(H2CO3)よりも二酸化炭素(CO2)の存在割合が圧倒的に大きい。図7から明らかなように、pHが8.5程度を越えると、[H2CO3
*]はほぼ0であり、二酸化炭素は水溶液中にほとんど存在しない。なお、図7は公知の文献(例えば、「腐食・防食ハンドブック」社団法人腐食・防食協会、2000年、p.155)に記載されている。
More specifically, FIG. 7 shows the concentration of carbonic acid (H 2 CO 3 ) [H 2 CO 3 * ], the concentration of hydrogen carbonate ion (HCO 3 − ) [HCO 3 − ], and the concentration of carbonate ion (CO 2 ) in the aqueous solution. It is a graph which shows the relationship between the abundance ratio of the concentration [CO 3 2- ] of 3 2- ) and pH. Here, [H 2 CO 3 * ] is the combined concentration of the concentration of carbon dioxide [CO 2 ] and the concentration of carbon dioxide [H 2 CO 3 ]. Note that the ratio of [CO 2 ] and [H 2 CO 3 ] in the aqueous solution ([CO 2 ] / [H 2 CO 3 ]) is about 650, and carbon dioxide (CO 2 ) is higher than carbon dioxide (H 2 CO 3 ). 2 ) The existence ratio is overwhelmingly large. As is clear from FIG. 7, when the pH exceeds about 8.5, [H 2 CO 3 * ] is almost 0, and carbon dioxide hardly exists in the aqueous solution. FIG. 7 is described in a known document (for example, "Corrosion and Corrosion Protection Handbook", Corrosion and Corrosion Protection Association, 2000, p. 155).
ここで、水溶液中での上記各炭酸種(CO2、H2CO3、HCO3
-、およびCO3
2-)の存在状態は、下記の平衡式(式2)~平衡式(式4)で表される。具体的には、pHが8.5程度よりも低いときは、平衡式(式2)および平衡式(式3)で表される平衡関係が成立し、pHが8.5程度よりも高いときは、平衡式(式3)および平衡式(式4)で表される平衡関係が成立する。
CO2 + H2O ⇔ H2CO3 (式2)
H2CO3 ⇔ H+ + HCO3 - (式3)
HCO3 - ⇔ H+ + CO3 2- (式4) Here, the presence state of each of the above carbonic acid species (CO 2 , H 2 CO 3 , HCO 3 − , and CO 3 2− ) in the aqueous solution is determined by the following equilibrium formula (formula 2) to equilibrium formula (formula 4) It is represented by Specifically, when the pH is lower than about 8.5, the equilibrium relationship represented by the equilibrium equation (Equation 2) and the equilibrium equation (Equation 3) holds, and when the pH is higher than about 8.5. Satisfies the equilibrium relationship represented by the equilibrium equation (Equation 3) and the equilibrium equation (Equation 4).
CO 2 + H 2 O⇔H 2 CO 3 (formula 2)
H 2 CO 3 ⇔ H + + HCO 3 - ( Equation 3)
HCO 3 - ⇔ H + + CO 3 2- ( Equation 4)
CO2 + H2O ⇔ H2CO3 (式2)
H2CO3 ⇔ H+ + HCO3 - (式3)
HCO3 - ⇔ H+ + CO3 2- (式4) Here, the presence state of each of the above carbonic acid species (CO 2 , H 2 CO 3 , HCO 3 − , and CO 3 2− ) in the aqueous solution is determined by the following equilibrium formula (formula 2) to equilibrium formula (formula 4) It is represented by Specifically, when the pH is lower than about 8.5, the equilibrium relationship represented by the equilibrium equation (Equation 2) and the equilibrium equation (Equation 3) holds, and when the pH is higher than about 8.5. Satisfies the equilibrium relationship represented by the equilibrium equation (Equation 3) and the equilibrium equation (Equation 4).
CO 2 + H 2 O⇔H 2 CO 3 (formula 2)
H 2 CO 3 ⇔ H + + HCO 3 - ( Equation 3)
HCO 3 - ⇔ H + + CO 3 2- ( Equation 4)
水溶液中のCO2を減少させると、pH8.5程度までは、CO2の減少を補うため、(式2)の平衡が左に偏り、H2CO3が減少する。H2CO3が減少すると、それを補うため(式3)の平衡が左に偏り、H+が減少して水溶液のpHが上昇する。また、H+が減少すると、平衡式(式5)の平衡が右に偏り、カルシウムイオン(Ca2+)と炭酸水素イオン(HCO3
-)とが反応して難溶性の炭酸カルシウム(CaCO3)が生じてカルシウムが析出する。このとき、上記各平衡の移動によるH+の濃度の変化ともに、平衡式(式6)の水の平衡移動も生じる。そのためpHを全体の反応の進行の指標として用いることができる。
Ca2+ + HCO3 - ⇔ H+ + CaCO3 (式5)
H2O ⇔ H+ + OH- (式6) When CO 2 in the aqueous solution is reduced, up to a pH of about 8.5, the equilibrium of (Equation 2) is biased to the left to compensate for the decrease in CO 2 , and H 2 CO 3 is reduced. When H 2 CO 3 decreases, the equilibrium of (Equation 3) shifts to the left to compensate for the decrease, H + decreases, and the pH of the aqueous solution increases. Further, when H + decreases, the equilibrium of the equilibrium equation (Equation 5) shifts to the right, and calcium ions (Ca 2+ ) and hydrogen carbonate ions (HCO 3 − ) react to cause insoluble calcium carbonate (CaCO 3 ). Occurs and calcium is precipitated. At this time, the equilibrium movement of water of the equilibrium equation (Equation 6) occurs together with the change of the concentration of H + due to the movement of each equilibrium. Therefore, pH can be used as an indicator of the progress of the whole reaction.
Ca 2+ + HCO 3 - ⇔ H + + CaCO 3 ( Formula 5)
H 2 O ⇔ H + + OH - ( Equation 6)
Ca2+ + HCO3 - ⇔ H+ + CaCO3 (式5)
H2O ⇔ H+ + OH- (式6) When CO 2 in the aqueous solution is reduced, up to a pH of about 8.5, the equilibrium of (Equation 2) is biased to the left to compensate for the decrease in CO 2 , and H 2 CO 3 is reduced. When H 2 CO 3 decreases, the equilibrium of (Equation 3) shifts to the left to compensate for the decrease, H + decreases, and the pH of the aqueous solution increases. Further, when H + decreases, the equilibrium of the equilibrium equation (Equation 5) shifts to the right, and calcium ions (Ca 2+ ) and hydrogen carbonate ions (HCO 3 − ) react to cause insoluble calcium carbonate (CaCO 3 ). Occurs and calcium is precipitated. At this time, the equilibrium movement of water of the equilibrium equation (Equation 6) occurs together with the change of the concentration of H + due to the movement of each equilibrium. Therefore, pH can be used as an indicator of the progress of the whole reaction.
Ca 2+ + HCO 3 - ⇔ H + + CaCO 3 ( Formula 5)
H 2 O ⇔ H + + OH - ( Equation 6)
上記の数種の平衡状態が同時に移動するため、CO2水溶液から二酸化炭素を除去するとき、除去開始直後は、(式5)の右に偏る反応に対して(式3)の平衡が左側に偏る反応が優勢のためpHが上昇し、少量の炭酸カルシウムが析出する。その後(式5)の平衡が右に偏る反応が優勢になるため、pHが降下し、かつ炭酸カルシウム(CaCO3)が多く析出していく。その後、再び(式3)の左側に偏る反応が(式5)の右に偏る反応より優勢になり、pHは上昇する。このときも(式5)の右に偏る反応により炭酸カルシウムが析出し続ける。このようにして、CO2水溶液中の二酸化炭素がなくなるpH8.5程度までは、(式2)、(式3)、および(式5)の平衡移動による炭酸カルシウムの析出が進行する。
Since the above-mentioned several equilibrium states move simultaneously, when carbon dioxide is removed from the CO 2 aqueous solution, immediately after the start of the removal, the equilibrium of (Equation 3) is shifted to the left side for the reaction biased to the right of (Equation 5). The pH rises due to the predominantly biased reaction, and a small amount of calcium carbonate precipitates. Thereafter, the reaction in which the equilibrium of (Equation 5) shifts to the right becomes dominant, so that the pH drops and more calcium carbonate (CaCO 3 ) precipitates. Thereafter, the leftward reaction of (Equation 3) becomes more dominant than the rightward reaction of (Equation 5) again, and the pH rises. At this time, calcium carbonate continues to be precipitated due to the rightward reaction of (Equation 5). In this way, the precipitation of calcium carbonate by the equilibrium transfer of (Equation 2), (Equation 3), and (Equation 5) proceeds until the pH becomes about 8.5 at which carbon dioxide in the CO 2 aqueous solution disappears.
一方で、二酸化炭素が水溶液からほぼなくなったpH8.5程度以上では、pHの上昇により水溶液中のH+が減少すると、(式5)の平衡が右に偏って、カルシウムイオンと炭酸水素イオンとの反応により難溶性の炭酸カルシウム(CaCO3)が生成することにより、カルシウムの析出が進行する。この平衡移動により、水溶液中のカルシウムは、pH10までにほぼ全てが析出する。
On the other hand, at about pH 8.5 or more at which carbon dioxide has almost disappeared from the aqueous solution, when H + in the aqueous solution decreases due to an increase in pH, the equilibrium of (Equation 5) shifts to the right, and calcium ion and bicarbonate ion The formation of calcium carbonate (CaCO 3 ), which is hardly soluble in the reaction, promotes the precipitation of calcium. Due to this equilibrium movement, almost all of the calcium in the aqueous solution precipitates by pH 10.
しかし、上記説明したように、CO2水溶液からの二酸化炭素の除去では、水溶液中に二酸化炭素が存在しなくなるpH8.5程度までしか、水溶液のpHを上昇させることができない。これに対し、二酸化炭素をある程度除去した後のCO2水溶液にカルシウム系のアルカリ性物質を投入することで、CO2水溶液中のカルシウム濃度とpHを上昇させ、式(5)の平衡を右側により偏りやすくして、炭酸カルシウムの析出を促進することができる。
However, as described above, in the removal of carbon dioxide from a CO 2 aqueous solution, the pH of the aqueous solution can be increased only to about pH 8.5 at which carbon dioxide does not exist in the aqueous solution. On the other hand, by introducing a calcium-based alkaline substance into the CO 2 aqueous solution after removing carbon dioxide to some extent, the calcium concentration and the pH in the CO 2 aqueous solution are increased, and the equilibrium of the equation (5) is shifted to the right. It can facilitate the precipitation of calcium carbonate.
なお、CO2水溶液の二酸化炭素濃度がより低くなるほど、CO2水溶液からのさらなる二酸化炭素の除去の効率は低下する。そのため、噴霧(二酸化炭素の除去)によりCO2水溶液のpHをより高く上昇させようとすると、噴霧されたCO2水溶液が飛行する距離を指数的に長くしていく必要がある。これに対し、噴霧によるCO2水溶液からの二酸化炭素の除去を、CO2水溶液中にある程度の二酸化炭素が残存する程度で停止して、その後はカルシウム系のアルカリ性物質の投入によりカルシウムの析出を促進させることで、噴霧装置の大型化や噴霧回数の増加による処理の煩雑化などを抑制することができる。たとえば、噴霧は、CO2水溶液のpHが6.5以上8.0以下、好ましくはCO2水溶液のpHが6.6以上7.5以下となるまで行い、その後、カルシウム系のアルカリ性物質をCO2水溶液に投入することが好ましい。
In addition, the lower the carbon dioxide concentration of the aqueous CO 2 solution, the lower the efficiency of further removing carbon dioxide from the aqueous CO 2 solution. Therefore, in order to raise the pH of the CO 2 aqueous solution by spraying (removal of carbon dioxide), it is necessary to exponentially increase the flight distance of the sprayed CO 2 aqueous solution. On the other hand, the removal of carbon dioxide from the CO 2 aqueous solution by spraying is stopped when a certain amount of carbon dioxide remains in the CO 2 aqueous solution, and thereafter the precipitation of calcium is promoted by introducing a calcium-based alkaline substance. By doing so, it is possible to suppress the processing from becoming complicated due to an increase in the size of the spray device and an increase in the number of times of spraying. For example, spraying, pH of CO 2 aqueous solution is 6.5 to 8.0, preferably continued until the pH of the CO 2 aqueous solution is 6.6 to 7.5, after which the alkaline substance calcium-based CO 2 It is preferable to put in an aqueous solution.
上記カルシウム系のアルカリ性物質は、カルシウム(Ca)を含むアルカリ性の物質であればよいが、pHを上昇させやすくし、かつ、析出するカルシウムの量を増加させる観点からは、水酸化カルシウム(Ca(OH)2)を含む組成物または水中に投入されると水酸化カルシウムを生成する組成物(以下、単に「水酸化カルシウム系組成物」ともいう。)であることが好ましい。上記水酸化カルシウム系組成物は、水酸化カルシウムが溶解した水溶液でもよいし、固体状の水酸化カルシウムが分散したスラリーでもよい。あるいは、上記水酸化カルシウムを含む物質は、固体状の水酸化カルシウムでもよい。または、上記カルシウム系のアルカリ性物質は、CO2水溶液に投入されると水酸化カルシウムに変化する固体状の酸化カルシウム(CaO)であってもよい。
The calcium-based alkaline substance may be an alkaline substance containing calcium (Ca). From the viewpoint of increasing the pH and increasing the amount of precipitated calcium, calcium hydroxide (Ca ( OH) 2 ) or a composition that generates calcium hydroxide when introduced into water (hereinafter, also simply referred to as “calcium hydroxide-based composition”). The calcium hydroxide-based composition may be an aqueous solution in which calcium hydroxide is dissolved or a slurry in which solid calcium hydroxide is dispersed. Alternatively, the substance containing calcium hydroxide may be solid calcium hydroxide. Alternatively, the calcium-based alkaline substance may be solid calcium oxide (CaO), which changes into calcium hydroxide when injected into a CO 2 aqueous solution.
これらのうち、水酸化カルシウムが溶解した水溶液は、製鋼スラグからカルシウムを回収する処理の各工程において容易に入手できる。たとえば、上記水酸化カルシウムが溶解した水溶液は、製鋼スラグを用意する工程においてろ過残スラグを得るときに入手される高アルカリ浸出水であってもよいし、後述する第3の実施形態において水和処理後に得られる水和処理水であってもよいし、後述する第4の実施形態において湿式磁選後に得られる磁選水であってもよい。なお、本明細書において、上記高アルカリ浸出水、水和処理水および磁選水のように、製鋼スラグの水への接触により得られる液体成分を、スラグ浸出水ともいう。
の う ち Of these, the aqueous solution in which calcium hydroxide is dissolved can be easily obtained in each step of the process of recovering calcium from steelmaking slag. For example, the aqueous solution in which the calcium hydroxide is dissolved may be high alkali leaching water obtained when obtaining filtration residual slag in the step of preparing steelmaking slag, or may be hydrated in a third embodiment described later. The water may be hydration-treated water obtained after the treatment, or may be magnetic separation water obtained after wet magnetic separation in a fourth embodiment described later. In the present specification, a liquid component obtained by contacting steelmaking slag with water, such as the above-mentioned highly alkaline leaching water, hydration-treated water, and magnetic separation water, is also referred to as slag leaching water.
上記スラグ浸出水は、CO2水溶液の噴霧(工程S130)およびカルシウム系のアルカリ性物質の投入(工程S150)によってカルシウムを析出させる製鋼スラグへの、これ以前の処理工程中で得られたものであってもよいし、他の製鋼スラグへの処理工程中に得られたものであってもよい。本工程においてスラグ浸出水をCO2水溶液に投入することは、製鋼スラグからカルシウムを回収するための各工程で排出されるスラグ浸出水の有効活用の観点から好ましい。
The slag leaching water was obtained in a previous processing step on steelmaking slag in which calcium is precipitated by spraying a CO 2 aqueous solution (step S130) and charging a calcium-based alkaline substance (step S150). May be obtained during the process of processing other steelmaking slag. It is preferable to add the slag leachate to the CO 2 aqueous solution in this step from the viewpoint of effective utilization of the slag leachate discharged in each step for recovering calcium from the steelmaking slag.
あるいは、上記水酸化カルシウムが溶解した水溶液は、製鋼スラグからカルシウムを回収する処理以外の処理で得られた廃液であってもよい。上記廃液の例には、炭化カルシウム(カルシウムカーバイド)と水とを反応させてアセチレンを生成するときに生じる廃水溶液などが含まれる。上記廃水溶液は、ほぼ水および水酸化カルシウムからなる。そのため、上記廃水溶液を用いることで、析出するカルシウムを含む固体成分への不純物の混入量を低減することができる。
Alternatively, the aqueous solution in which the calcium hydroxide is dissolved may be a waste liquid obtained by a process other than the process of recovering calcium from steelmaking slag. Examples of the waste liquid include a waste aqueous solution generated when acetylene is produced by reacting calcium carbide (calcium carbide) with water. The waste aqueous solution is substantially composed of water and calcium hydroxide. Therefore, the use of the waste aqueous solution can reduce the amount of impurities mixed into the solid component containing precipitated calcium.
なお、上記カルシウム系のアルカリ性物質にかえて、水酸化ナトリウムなどを含むナトリウム系物質、およびアンモニアなどを含むアンモニア系物質をCO2水溶液に投入してもよい。しかし、これらを投入して得られた析出するカルシウムを含む固体成分には、焼結炉や高炉に含まれる耐火物の寿命を短くするおそれがあるナトリウムや、加熱により有毒なアンモニアガスを発生させるおそれがあるアンモニアが含まれる。そのため、上記カルシウム系のアルカリ性物質の投入によって、カルシウムの析出を促進することが好ましい。
Instead of the calcium-based alkaline substance, a sodium-based substance containing sodium hydroxide or the like and an ammonia-based substance containing ammonia or the like may be added to the CO 2 aqueous solution. However, the solid components containing precipitated calcium obtained by introducing these components generate sodium and toxic ammonia gas which may shorten the life of the refractory contained in the sintering furnace and the blast furnace. May contain ammonia. Therefore, it is preferable to promote the precipitation of calcium by adding the calcium-based alkaline substance.
図6では、アルカリ性物質投入口270は、密閉容器210aの底部に溜まったCO2水溶液に上記カルシウム系のアルカリ性物質を直接投入する。ただし、上記カルシウム系のアルカリ性物質の投入方法はこれに限定されない。たとえば、密閉容器210aの下流側に別途設けたタンクにおいて、CO2水溶液に上記カルシウム系のアルカリ性物質を投入してもよいし、密閉容器210aと上記タンクとを連通する流路に、CO2水溶液に上記カルシウム系のアルカリ性物質を投入して混合するための混合機を配置してもよい。ただし、CO2水溶液が噴霧される密閉容器210aにおいて上記カルシウム系のアルカリ性物質を投入するなどして、CO2水溶液の噴霧と、噴霧されたCO2水溶液へのカルシウム系のアルカリ性物質と、を同時に行うことは、処理に必要な時間を短縮でき、かつ設備構成をより簡易にできるため、好ましい。
In FIG. 6, the alkaline substance inlet 270 directly injects the calcium-based alkaline substance into the CO 2 aqueous solution collected at the bottom of the sealed container 210a. However, the method of adding the calcium-based alkaline substance is not limited to this. For example, in a separately provided tank downstream of the sealed container 210a, may be charged with an alkaline substance of the calcium-based on CO 2 aqueous solution, in the flow path for communicating the sealed container 210a and the tank, CO 2 aq A mixer for charging and mixing the above-mentioned calcium-based alkaline substance may be arranged. However, with such CO 2 aqueous solution is charged alkaline substance of the calcium-based in a sealed container 210a to be sprayed, and the spray of CO 2 aqueous solution, and the alkaline substance calcium system to the sprayed CO 2 aqueous solution, simultaneously Performing the method is preferable because the time required for the processing can be reduced and the equipment configuration can be simplified.
上記カルシウム系のアルカリ性物質を投入した後、CO2水溶液を撹拌して、上記カルシウム系のアルカリ性物質を均一に分散させること、または均一に混合することが好ましい。図6では、密閉容器210aは、カルシウム系のアルカリ性物質を投入されたCO2水溶液を撹拌する撹拌羽根214および撹拌羽根214を回転させる回転棒216を有する。
After charging the calcium-based alkaline substance, it is preferable to stir the CO 2 aqueous solution to uniformly disperse or uniformly mix the calcium-based alkaline substance. In FIG. 6, the closed vessel 210a has a stirring blade 214 for stirring a CO 2 aqueous solution into which a calcium-based alkaline substance is charged, and a rotating rod 216 for rotating the stirring blade 214.
なお、図6では、CO2水溶液をシャワー状に噴霧する噴霧器を有する噴霧装置を示したが、CO2水溶液を霧状に噴霧する噴霧器を有する噴霧装置を用いて、カルシウム系のアルカリ性物質の投入を同様に行ってもよい。
Although FIG. 6 shows a spraying device having a sprayer for spraying a CO 2 aqueous solution in a shower form, a calcium-based alkaline substance is charged by using a spraying device having a sprayer for spraying a CO 2 aqueous solution in a mist state. May be similarly performed.
(効果)
上述した製鋼スラグからカルシウムを回収する方法によれば、CO2水溶液に溶出したカルシウムを、さらに容易な方法で回収することができる。 (effect)
According to the method for recovering calcium from the steelmaking slag described above, calcium eluted in the aqueous CO 2 solution can be recovered by an easier method.
上述した製鋼スラグからカルシウムを回収する方法によれば、CO2水溶液に溶出したカルシウムを、さらに容易な方法で回収することができる。 (effect)
According to the method for recovering calcium from the steelmaking slag described above, calcium eluted in the aqueous CO 2 solution can be recovered by an easier method.
[第3の実施形態]
図8は、本発明の第3の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、第1の実施形態と同様に製鋼スラグを用意し(工程S110)、その後、上記製鋼スラグに水和処理を施す(工程S160)。その後、上記水和処理を施した製鋼スラグをCO2水溶液に接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧し(工程S130)、析出したカルシウムを含む固体成分を回収する(工程S140)。なお、工程S110、工程S120、工程S130、および工程S140は、第1の実施形態と同様に行い得るので、重複する説明は省略する。 [Third Embodiment]
FIG. 8 is a flowchart of a method for recovering calcium from steelmaking slag in the third embodiment of the present invention. In the present embodiment, as in the first embodiment, a steelmaking slag is prepared (step S110), and then the steelmaking slag is subjected to a hydration treatment (step S160). Thereafter, the hydration process alms steel slag is brought into contact with CO 2 aqueous solution (step S120), steelmaking slag is sprayed the CO 2 solution in contact (step S130), recovering a solid component comprising a precipitated calcium (Step S140). Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
図8は、本発明の第3の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、第1の実施形態と同様に製鋼スラグを用意し(工程S110)、その後、上記製鋼スラグに水和処理を施す(工程S160)。その後、上記水和処理を施した製鋼スラグをCO2水溶液に接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧し(工程S130)、析出したカルシウムを含む固体成分を回収する(工程S140)。なお、工程S110、工程S120、工程S130、および工程S140は、第1の実施形態と同様に行い得るので、重複する説明は省略する。 [Third Embodiment]
FIG. 8 is a flowchart of a method for recovering calcium from steelmaking slag in the third embodiment of the present invention. In the present embodiment, as in the first embodiment, a steelmaking slag is prepared (step S110), and then the steelmaking slag is subjected to a hydration treatment (step S160). Thereafter, the hydration process alms steel slag is brought into contact with CO 2 aqueous solution (step S120), steelmaking slag is sprayed the CO 2 solution in contact (step S130), recovering a solid component comprising a precipitated calcium (Step S140). Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
上記水和処理は、製鋼スラグに含まれるカルシウム化合物が十分に水和する方法および条件で行えばよい。
The hydration treatment may be performed by a method and under conditions in which the calcium compound contained in the steelmaking slag is sufficiently hydrated.
上述したように、製鋼スラグ中のカルシウムは、遊離石灰、水酸化カルシウム(Ca(OH)2)、炭酸カルシウム(CaCO3)、ケイ酸カルシウム(Ca2SiO4、Ca3SiO5)および酸化カルシウム鉄アルミニウム(Ca2(Al1-XFeX)2O5)などのカルシウム化合物として存在する。
As described above, calcium in steelmaking slag includes free lime, calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), calcium silicate (Ca 2 SiO 4 , Ca 3 SiO 5 ) and calcium oxide. It exists as a calcium compound such as iron aluminum (Ca 2 (Al 1-x Fe x ) 2 O 5 ).
この製鋼スラグに水和処理を施すと、たとえば、以下の(式7)に示される反応によってケイ酸カルシウムからケイ酸カルシウム水和物と水酸化カルシウム(Ca(OH)2)が生成したり、以下の(式8)に示される反応によって酸化カルシウム鉄アルミニウムから酸化カルシウム系の水和物が生成したりする(以下、水和処理によって生成し得るカルシウムを含む化合物を総称して「カルシウム水和物」ともいう。)。
2(2CaO・SiO2) + 4H2O
→ 3CaO・2SiO2・3H2O + Ca(OH)2 (式7)
2CaO・1/2(Al2O3 ・Fe2O3) +10H2O
→ 1/2(4CaO・Al2O3・19H2O) + HFeO2 (式8)
(式(8)は、酸化カルシウム鉄アルミニウム(Ca2(Al1-XFeX)2O5)においてX=1/2の場合の例を示す。) When this steelmaking slag is subjected to a hydration treatment, for example, calcium silicate hydrate and calcium hydroxide (Ca (OH) 2 ) are generated from calcium silicate by a reaction represented by the following (Formula 7), A calcium oxide-based hydrate is formed from calcium iron aluminum oxide by a reaction represented by the following (formula 8) (hereinafter, calcium-containing compounds that can be formed by hydration treatment are collectively referred to as “calcium hydrate” Also called "things").
2 (2CaO.SiO 2 ) + 4H 2 O
→ 3CaO · 2SiO 2 · 3H 2 O + Ca (OH) 2 ( Equation 7)
2CaO · 1/2 (Al 2 O 3 · Fe 2 O 3) + 10H 2 O
→ 1/2 (4CaO · Al 2 O 3 · 19H 2 O) + HFeO 2 ( Eq. 8)
(Equation (8) shows an example in which X = 1 / in calcium iron aluminum oxide (Ca 2 (Al 1−X Fe X ) 2 O 5 ).)
2(2CaO・SiO2) + 4H2O
→ 3CaO・2SiO2・3H2O + Ca(OH)2 (式7)
2CaO・1/2(Al2O3 ・Fe2O3) +10H2O
→ 1/2(4CaO・Al2O3・19H2O) + HFeO2 (式8)
(式(8)は、酸化カルシウム鉄アルミニウム(Ca2(Al1-XFeX)2O5)においてX=1/2の場合の例を示す。) When this steelmaking slag is subjected to a hydration treatment, for example, calcium silicate hydrate and calcium hydroxide (Ca (OH) 2 ) are generated from calcium silicate by a reaction represented by the following (Formula 7), A calcium oxide-based hydrate is formed from calcium iron aluminum oxide by a reaction represented by the following (formula 8) (hereinafter, calcium-containing compounds that can be formed by hydration treatment are collectively referred to as “calcium hydrate” Also called "things").
2 (2CaO.SiO 2 ) + 4H 2 O
→ 3CaO · 2SiO 2 · 3H 2 O + Ca (OH) 2 ( Equation 7)
2CaO · 1/2 (Al 2 O 3 · Fe 2 O 3) + 10H 2 O
→ 1/2 (4CaO · Al 2 O 3 · 19H 2 O) + HFeO 2 ( Eq. 8)
(Equation (8) shows an example in which X = 1 / in calcium iron aluminum oxide (Ca 2 (Al 1−X Fe X ) 2 O 5 ).)
上記反応などによって生成したカルシウム水和物は、CO2水溶液に溶解しやすい。そのため、水和処理を施すことで、製鋼スラグ中に含まれるケイ酸カルシウムおよび酸化カルシウム鉄アルミニウムなどに由来するカルシウムを、より溶出させやすくすることができる。
Calcium hydrate generated by the above reaction or the like is easily dissolved in a CO 2 aqueous solution. Therefore, by performing the hydration treatment, calcium derived from calcium silicate and calcium iron aluminum contained in the steelmaking slag can be more easily eluted.
なお、遊離石灰は、CO2水溶液に溶解しやすいものの、通常、製鋼スラグ中に10質量%未満程度しか含まれていない。これに対し、ケイ酸カルシウムは、通常、製鋼スラグ中に25質量%~70質量%程度含まれ、酸化カルシウム鉄アルミニウムは、通常、製鋼スラグ中に2質量%~30質量%程度含まれる。そのため、水和処理によってケイ酸カルシウムおよび酸化カルシウム鉄アルミニウムなどに含まれるカルシウムをCO2水溶液により溶出しやすくすれば、製鋼スラグからCO2水溶液へのカルシウムの溶出量を多くすることができ、製鋼スラグからカルシウムをより短時間で回収することも可能になると考えられる。
Although free lime is easily dissolved in a CO 2 aqueous solution, steelmaking slag usually contains only less than about 10% by mass. On the other hand, calcium silicate is usually contained in steelmaking slag at about 25% by mass to 70% by mass, and calcium iron aluminum is usually contained in steelmaking slag at about 2% by mass to 30% by mass. Therefore, if calcium contained in calcium silicate and calcium iron aluminum is easily eluted with the CO 2 aqueous solution by the hydration treatment, the amount of calcium eluted from the steelmaking slag to the CO 2 aqueous solution can be increased, It is considered that calcium can be recovered from the slag in a shorter time.
また、水和処理によって生成する化合物の体積の合計は、通常、反応前の化合物の体積の合計よりも大きくなる。さらには、水和処理中に、製鋼スラグ中の遊離石灰の一部は処理用の水に溶出する。そのため、水和処理を施すと、スラグ粒子の内部にクラックが生じ、このクラックを起点としてスラグ粒子が崩壊しやすい。このようにしてスラグ粒子が崩壊すると、スラグ粒子の粒子径が小さくなって、体積あたりの表面積が大きくなり、かつ、製鋼スラグの内部まで水またはCO2水溶液が十分に浸透できるため、本工程では多くのカルシウム化合物を水和することができ、また、その後に製鋼スラグをCO2水溶液に接触させると(工程S120)、より多量のカルシウムを溶出させることができる。
In addition, the total volume of the compound generated by the hydration treatment is usually larger than the total volume of the compound before the reaction. Furthermore, during the hydration process, some of the free lime in the steelmaking slag elutes into the water for treatment. Therefore, when the hydration treatment is performed, cracks are generated inside the slag particles, and the slag particles are likely to collapse starting from the cracks. When the slag particles collapse in this way, the particle diameter of the slag particles decreases, the surface area per volume increases, and water or a CO 2 aqueous solution can sufficiently penetrate into the steelmaking slag. Many calcium compounds can be hydrated, and when the steelmaking slag is subsequently brought into contact with a CO 2 aqueous solution (step S120), a larger amount of calcium can be eluted.
そのため、水和処理は、製鋼スラグに含まれるケイ酸カルシウムまたは酸化カルシウム鉄アルミニウムが水和可能な方法および条件で行うことが好ましい。
Therefore, the hydration treatment is preferably performed by a method and under conditions that allow calcium silicate or calcium iron aluminum oxide contained in the steelmaking slag to be hydrated.
水和処理の具体例には、水に浸漬して沈降させた製鋼スラグを静置する処理(以下、単に「浸漬静置」ともいう。)、水に浸漬した製鋼スラグを撹拌または粉砕等する処理(以下、単に「浸漬撹拌」ともいう。)、水とスラグ粒子とを含むペーストを静置する処理(以下、単に「ペースト化静置」ともいう。)、および十分な量の水蒸気を有する容器の中に製鋼スラグを静置する処理(以下、単に「湿潤静置」ともいう。)などが含まれる。これらの方法によれば、製鋼スラグと水とを十分に接触させることができる。水和処理は、上記浸漬静置、浸漬撹拌、ペースト化静置および湿潤静置などのうち1種類のみを施してもよいし、これらのうち2種類以上を任意の順番で行ってもよい。スラグ粒子の内部までより十分に水和処理して、カルシウムをより溶出させやすくする観点からは、浸漬撹拌による水和処理が好ましい。
Specific examples of the hydration treatment include a treatment in which the steelmaking slag immersed in water and settled is settled (hereinafter, also simply referred to as “immersion stationary”), and the steelmaking slag immersed in water is stirred or crushed. Treatment (hereinafter, also simply referred to as "immersion stirring"), treatment of leaving a paste containing water and slag particles (hereinafter, also simply referred to as "pasting and standing"), and a sufficient amount of water vapor A process of leaving the steelmaking slag in the container (hereinafter, also simply referred to as “wet standing”) is included. According to these methods, the steelmaking slag and the water can be brought into sufficient contact. In the hydration treatment, only one of the above immersion stationary, immersion stirring, pasting stationary and wet stationary may be performed, or two or more of these may be performed in an arbitrary order. The hydration treatment by immersion and stirring is preferred from the viewpoint of more sufficiently hydrating the interior of the slag particles to facilitate the elution of calcium.
浸漬撹拌は、撹拌インペラーを有する容器の内部で水に浸漬した製鋼スラグを撹拌してもよいし、ボールミルで製鋼スラグを撹拌しつつ粉砕等してもよい。スラグ粒子の内部までより十分に水和処理して、カルシウムをより溶出させやすくする観点からは、浸漬撹拌は、製鋼スラグを撹拌しつつ粉砕等することが好ましい。
Immersion stirring may be performed by stirring a steelmaking slag immersed in water inside a container having a stirring impeller, or by pulverizing the steelmaking slag while stirring it with a ball mill. From the viewpoint of hydrating more sufficiently to the inside of the slag particles to make calcium more easily eluted, it is preferable that the immersion stirring is performed by pulverizing the steelmaking slag while stirring.
上述した水和処理による反応は、製鋼スラグの表面近傍または内部でカルシウム化合物と水とが接触することで生じる。ここで、製鋼スラグの内部へもある程度の水は浸透するものの、表面近傍のほうが水との接触量は多い。そのため、カルシウム水和物は、製鋼スラグの表面近傍でより生成しやすい。また、製鋼スラグに含まれる成分が水和処理に使用する水に溶解すると、上述したCO2水溶液へ溶解するときと同様に、シリコン、アルミニウム、鉄およびマンガンまたはこれらの水酸化物、炭酸化物および水和物などが製鋼スラグの表面に残存または析出することがある。これらの残存または析出した物質が製鋼スラグの内部への水の浸透を阻害すると、製鋼スラグの内部ではカルシウム水和物が生成しにくくなる。
The above-described reaction due to the hydration treatment occurs when the calcium compound contacts water near or inside the surface of the steelmaking slag. Here, although a certain amount of water permeates into the steelmaking slag, the amount of contact with water is greater near the surface. Therefore, calcium hydrate is more easily generated near the surface of the steelmaking slag. Further, when the components contained in the steelmaking slag is dissolved in water used for hydration, as in the case of dissolving the CO 2 solution described above, silicon, aluminum, iron and manganese or their hydroxides, carbonates and Hydrates may remain or precipitate on the surface of the steelmaking slag. When these remaining or precipitated substances inhibit the penetration of water into the steelmaking slag, calcium hydrate is less likely to be generated inside the steelmaking slag.
これに対し、水和処理中に、水に浸漬した製鋼スラグを粉砕等することで、スラグ粒子の表面積を大きくして、水とスラグ粒子との接触面積をより大きくすることができる。また、水に浸漬した製鋼スラグを粉砕等することで、上記物質が未だ残存または析出していない新たな表面が連続的に形成され、この連続的に形成される表面から製鋼スラグの内部まで水が浸透するため、製鋼スラグの内部でもカルシウム水和物をより生成しやすくすることができる。また、製鋼スラグの表面を磨砕することで、上記残存または析出した物質が除去されて、水とスラグ粒子との接触面積がより大きくなり、かつ、製鋼スラグの内部に水をより浸透しやすくすることができる。
On the other hand, by grinding the steelmaking slag immersed in water during the hydration treatment, the surface area of the slag particles can be increased, and the contact area between the water and the slag particles can be further increased. In addition, by crushing the steelmaking slag immersed in water, a new surface on which the above-mentioned substance still does not remain or precipitate is continuously formed, and water is continuously transferred from the surface formed continuously to the inside of the steelmaking slag. , Calcium hydrate can be more easily generated inside the steelmaking slag. Also, by grinding the surface of the steelmaking slag, the remaining or precipitated substance is removed, the contact area between water and slag particles becomes larger, and water is more easily permeated into the steelmaking slag. can do.
水和処理に使用する水は、イオン化していない遊離炭酸およびイオン化した炭酸水素イオン(HCO3
-)などを含む二酸化炭素の含有量が300mg/L未満であることが好ましい。上記二酸化炭素の含有量が300mg/L未満だと、水和処理に使用する水に遊離石灰、水酸化カルシウム以外のカルシウム化合物が溶出しにくいため、製鋼スラグに含まれるカルシウムの大部分をCO2水溶液との接触(工程S120)時にCO2水溶液に溶出させることができ、カルシウムの回収が煩雑になりにくい。また、水に二酸化炭素含有量が多いと、遊離石灰や水酸化カルシウムなどから溶出するカルシウムと二酸化炭素とが反応して生成および析出した炭酸カルシウムがスラグ粒子の表面を覆い、水和反応が進み難くなるが、二酸化炭素の含有量が300mg/L未満であると上記炭酸カルシウムの析出による水和反応の阻害が生じにくい。なお、工業用水中の上記二酸化炭素の含有量は、通常、300mg/L未満である。そのため、上記浸漬静置または浸漬撹拌による水和処理に使用する水は、意図的に二酸化炭素を添加または含有させない工業用水であることが好ましい。
The water used for the hydration treatment preferably has a carbon dioxide content of less than 300 mg / L, including free non-ionized carbonic acid and ionized hydrogen carbonate ion (HCO 3 − ). If the content of the carbon dioxide is less than 300 mg / L, calcium compounds other than free lime and calcium hydroxide are hardly eluted in water used for the hydration treatment, so that most of the calcium contained in the steelmaking slag is CO 2 It can be eluted into the aqueous CO 2 solution at the time of contact with the aqueous solution (step S120), and the recovery of calcium does not easily become complicated. Also, if the water has a high carbon dioxide content, calcium eluted from free lime or calcium hydroxide reacts with carbon dioxide, and the generated and precipitated calcium carbonate covers the surface of the slag particles, and the hydration reaction proceeds If the content of carbon dioxide is less than 300 mg / L, inhibition of the hydration reaction due to the precipitation of calcium carbonate is unlikely to occur. The content of the carbon dioxide in the industrial water is usually less than 300 mg / L. Therefore, it is preferable that the water used for the hydration treatment by immersion standing or immersion stirring is industrial water to which carbon dioxide is not intentionally added or contained.
水和処理に使用する水の温度は、水が激しく蒸発しない温度であればよい。たとえば、ほぼ大気圧である条件で製鋼スラグに水和処理を施すときは、水の温度は100℃以下であることが好ましい。ただし、オートクレーブなどを用いてより高い圧力で水和処理を行うときは、水和処理を行う際の圧力における水の沸点以下である限り、上記水の温度は100℃以上であってもかまわない。具体的には、浸漬静置または浸漬撹拌によって水和処理を施すときの水の温度は、0℃以上80℃以下であることが好ましい。オートクレーブなどを用いてより高い圧力で水和処理を行うときは、温度の上限は特にないが、装置の耐圧性および経済的な面から300℃以下が好ましい。また、ペースト化静置によって水和処理を施すときの温度は、0℃以上70℃以下であることが好ましい。
(4) The temperature of the water used for the hydration treatment may be a temperature at which the water does not evaporate violently. For example, when hydrating steelmaking slag under conditions of approximately atmospheric pressure, the temperature of water is preferably 100 ° C or lower. However, when performing hydration at a higher pressure using an autoclave or the like, the temperature of the water may be 100 ° C or higher as long as the temperature is not higher than the boiling point of water at the pressure at which the hydration is performed. . Specifically, the temperature of water when performing hydration treatment by immersion standing or immersion stirring is preferably 0 ° C or more and 80 ° C or less. When the hydration treatment is performed at a higher pressure using an autoclave or the like, there is no particular upper limit on the temperature, but the temperature is preferably 300 ° C. or less from the viewpoint of the pressure resistance of the apparatus and economical aspects. The temperature at which the hydration treatment is performed by pasting and standing is preferably 0 ° C. or more and 70 ° C. or less.
水和処理を行う継続時間は、スラグの平均粒子径および水和処理を行う温度(水または水蒸気を含む空気の温度)などによって任意に設定することができる。水和処理を行う継続時間は、スラグの平均粒子径が小さいほど短時間でよく、また、水和処理を行う温度が高いほど短時間でよい。
(4) The duration of the hydration treatment can be arbitrarily set depending on the average particle diameter of the slag, the temperature at which the hydration treatment is performed (temperature of water or air containing water vapor), and the like. The duration of the hydration treatment may be shorter as the average particle diameter of the slag is smaller, and may be shorter as the temperature of the hydration treatment is higher.
たとえば、スラグ粒子の最大粒径が1000μm以下である製鋼スラグに浸漬静置または浸漬撹拌による水和処理を常温で施すときは、水和処理の継続時間は連続して8時間程度とすることができ、3時間以上30時間以下とすることが好ましい。上記水和処理を40℃以上70℃以下の水への浸漬によって施すときは、水和処理の継続時間は連続して0.6時間以上8時間以下とすることが好ましい。
For example, when the hydration treatment by immersion standing or immersion stirring is performed at room temperature on steelmaking slag in which the maximum particle size of the slag particles is 1000 μm or less, the duration of the hydration treatment may be about 8 hours continuously. It is preferable that the heating time be 3 hours or more and 30 hours or less. When the above hydration treatment is performed by immersion in water at a temperature of 40 ° C. or more and 70 ° C. or less, it is preferable that the duration of the hydration treatment is continuously 0.6 hours or more and 8 hours or less.
また、スラグ粒子の最大粒径が1000μm以下である製鋼スラグに粉砕等しながらの浸漬撹拌による水和処理を常温で施すときは、水和処理の継続時間は連続して0.1時間以上5時間以下とすることが好ましく、0.2時間以上3時間以下とすることがより好ましい。あるいは、粉砕等しながらの浸漬撹拌による水和処理を常温で施すときは、水和処理の継続時間はスラグ粒子の最大粒径が1000μm以下、好ましくは500μm以下、より好ましくは250μm、さらに好ましくは100μm以下となるまで行うことが好ましい。
Further, when hydration treatment by immersion and stirring while pulverizing steelmaking slag having a maximum particle size of 1000 μm or less is performed at room temperature, the duration of the hydration treatment is continuously 0.1 hours or more. The time is preferably not more than 0.2 hours, more preferably not less than 0.2 hours and not more than 3 hours. Alternatively, when the hydration treatment by immersion and stirring while pulverizing or the like is performed at normal temperature, the duration of the hydration treatment is such that the maximum particle size of the slag particles is 1000 μm or less, preferably 500 μm or less, more preferably 250 μm, and still more preferably It is preferable to perform the process until the thickness becomes 100 μm or less.
また、水和処理は、ケイ酸カルシウムが十分に水和物と水酸化カルシウムになるか、またはおよび酸化カルシウム鉄アルミニウムが十分に酸化カルシウム系の水和物になる程度に行うことが好ましい。たとえば、水和処理は、製鋼スラグに含まれるケイ酸カルシウムの量が50質量%以下になるまで、もしくは酸化カルシウム鉄アルミニウムの量が20質量%以下になるまで、施すことが好ましい。
The hydration treatment is preferably carried out to such an extent that calcium silicate is sufficiently converted into a hydrate and calcium hydroxide, or calcium iron aluminum oxide is sufficiently converted into a calcium oxide-based hydrate. For example, the hydration treatment is preferably performed until the amount of calcium silicate contained in the steelmaking slag becomes 50% by mass or less, or until the amount of calcium iron aluminum oxide becomes 20% by mass or less.
水和処理後の製鋼スラグは、そのままCO2水溶液との接触(工程S120)に用いてもよいが、製鋼スラグがスラリー状であるときは、固液分離して製鋼スラグと液体成分とを分離することが好ましい。固液分離は、減圧濾過および加圧濾過を含む公知の方法で行うことができる。上記固液分離によって得られた液体成分(本明細書において、単に「水和処理水」ともいう。)は、水和処理に用いた水に加えて製鋼スラグから溶出したカルシウムを含むため、アルカリ性となっている。そのため、第2の実施形態においてCO2水溶液のpHをさらに上昇させるためのカルシウム系のアルカリ性物質として、上記水和処理水を使用することができる。
The steelmaking slag after the hydration treatment may be used as it is for contact with a CO 2 aqueous solution (step S120). However, when the steelmaking slag is in a slurry state, the steelmaking slag and the liquid component are separated by solid-liquid separation. Is preferred. The solid-liquid separation can be performed by a known method including filtration under reduced pressure and filtration under pressure. The liquid component obtained by the solid-liquid separation (hereinafter simply referred to as “hydration-treated water”) contains calcium eluted from steelmaking slag in addition to the water used for the hydration treatment. It has become. Therefore, in the second embodiment, the hydration-treated water can be used as a calcium-based alkaline substance for further increasing the pH of the CO 2 aqueous solution.
なお、本実施形態においても、第2の実施形態と同様に、製鋼スラグが接触したCO2水溶液を噴霧した後、カルシウム系のアルカリ性物質を上記CO2水溶液に投入して(工程S150)、その後に析出したカルシウムを含む固体成分を回収(工程S140)してもよい。
In this embodiment, similarly to the second embodiment, after spraying a CO 2 aqueous solution contacted by steelmaking slag, a calcium-based alkaline substance is introduced into the CO 2 aqueous solution (step S150), and thereafter, The solid component containing calcium precipitated on the surface may be recovered (Step S140).
(効果)
上述した製鋼スラグからカルシウムを回収する方法によれば、製鋼スラグからCO2水溶液にカルシウムをより溶出しやすくし、製鋼スラグからのカルシウムの回収効率をより高めることができる。 (effect)
According to the above-described method of recovering calcium from steelmaking slag, calcium can be more easily eluted from the steelmaking slag into the CO 2 aqueous solution, and the efficiency of recovering calcium from steelmaking slag can be further increased.
上述した製鋼スラグからカルシウムを回収する方法によれば、製鋼スラグからCO2水溶液にカルシウムをより溶出しやすくし、製鋼スラグからのカルシウムの回収効率をより高めることができる。 (effect)
According to the above-described method of recovering calcium from steelmaking slag, calcium can be more easily eluted from the steelmaking slag into the CO 2 aqueous solution, and the efficiency of recovering calcium from steelmaking slag can be further increased.
[第4の実施形態]
図9は、本発明の第4の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、第1の実施形態と同様に製鋼スラグを用意し(工程S110)、その後、上記製鋼スラグに磁選を施す(工程S170)。その後、上記磁選を施した製鋼スラグをCO2水溶液に接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧し(工程S130)、析出したカルシウムを含む固体成分を回収する(工程S140)。なお、工程S110、工程S120、工程S130、および工程S140は、第1の実施形態と同様に行い得るので、重複する説明は省略する。 [Fourth embodiment]
FIG. 9 is a flowchart of a method for recovering calcium from steelmaking slag according to a fourth embodiment of the present invention. In the present embodiment, as in the first embodiment, a steelmaking slag is prepared (step S110), and then the steelmaking slag is subjected to magnetic separation (step S170). Then, contacting the steel slag subjected to the magnetic separator to CO 2 aqueous solution (step S120), steelmaking slag is sprayed the CO 2 solution in contact (step S130), recovering a solid component comprising a precipitated calcium (step S140). Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
図9は、本発明の第4の実施形態における、製鋼スラグからカルシウムを回収する方法のフローチャートである。本実施形態では、第1の実施形態と同様に製鋼スラグを用意し(工程S110)、その後、上記製鋼スラグに磁選を施す(工程S170)。その後、上記磁選を施した製鋼スラグをCO2水溶液に接触させ(工程S120)、製鋼スラグが接触した上記CO2水溶液を噴霧し(工程S130)、析出したカルシウムを含む固体成分を回収する(工程S140)。なお、工程S110、工程S120、工程S130、および工程S140は、第1の実施形態と同様に行い得るので、重複する説明は省略する。 [Fourth embodiment]
FIG. 9 is a flowchart of a method for recovering calcium from steelmaking slag according to a fourth embodiment of the present invention. In the present embodiment, as in the first embodiment, a steelmaking slag is prepared (step S110), and then the steelmaking slag is subjected to magnetic separation (step S170). Then, contacting the steel slag subjected to the magnetic separator to CO 2 aqueous solution (step S120), steelmaking slag is sprayed the CO 2 solution in contact (step S130), recovering a solid component comprising a precipitated calcium (step S140). Step S110, step S120, step S130, and step S140 can be performed in the same manner as in the first embodiment, and thus redundant description will be omitted.
製鋼スラグに磁選を施すことにより、製鋼スラグの表面に残存または析出した鉄を含む化合物による、製鋼スラグの表面へのCO2水溶液の接触の阻害や、比較的硬度が高い鉄を含む化合物によるCO2水溶液への接触中の粉砕または摩砕の阻害などを抑制し、製鋼スラグ中のカルシウム化合物をCO2水溶液により溶出させやすくできると考えられる。
By applying a magnetic separation in steelmaking slag, with a compound containing a remaining or deposited on the surface of the steel slag iron, inhibition or contact CO 2 aqueous solution to the surface of the steel slag, CO with a compound containing a relatively high hardness iron It is considered that inhibition of grinding or grinding during contact with the aqueous solution 2 can be suppressed, and the calcium compound in the steelmaking slag can be easily eluted with the aqueous CO 2 solution.
なお、製鋼スラグ中に含まれる酸化カルシウム鉄アルミニウムは、CO2水溶液との接触によりCaが溶出した後は磁化しにくくなり、磁選での回収が容易ではない。これに対し、CO2水溶液との接触前に磁選を施すことで、製鋼スラグ中の酸化カルシウム鉄アルミニウムも回収でき、酸化カルシウム鉄アルミニウムに由来する鉄もより容易に再利用可能となると考えられる。
The calcium iron aluminum oxide contained in the steelmaking slag is hardly magnetized after Ca is eluted by contact with a CO 2 aqueous solution, and is not easily recovered by magnetic separation. On the other hand, by performing magnetic separation before contact with the CO 2 aqueous solution, calcium iron aluminum oxide in the steelmaking slag can also be recovered, and iron derived from calcium iron aluminum can be more easily reused.
上記磁選は、公知の磁力選別機を用いて施すことができる。磁力選別機は、乾式でもよく湿式でもよく、製鋼スラグの状態(乾燥した状態かスラリー状か)によって選択できる。また、磁力選別機は、ドラム式、ベルト式および固定磁石間流動式などから適宜選択できるが、特にスラリーに含まれる製鋼スラグの選別が容易であり、かつ、磁力を高めて磁選量を多くしやすいことから、ドラム式が好ましい。また、磁力選別機が用いる磁石は、永久磁石でもよいし、電磁石でもよい。
The magnetic separation can be performed using a known magnetic separator. The magnetic separator may be either a dry type or a wet type, and can be selected according to the state of the steelmaking slag (dry state or slurry state). The magnetic separator can be appropriately selected from a drum type, a belt type, a flow type between fixed magnets, and the like.In particular, it is easy to sort steelmaking slag contained in the slurry, and the magnetic force is increased to increase the magnetic separation amount. A drum type is preferable because it is easy. Further, the magnet used by the magnetic force sorter may be a permanent magnet or an electromagnet.
磁石による磁束密度は、製鋼スラグに含まれる他の化合物から鉄系化合物および金属鉄を選択的に捕捉できる程度であればよく、たとえば、0.003T以上0.5T以下とすることができ、0.005T以上0.3T以下とすることが好ましく、0.01T以上0.15T以下とすることがより好ましい。
The magnetic flux density by the magnet may be such that the ferrous compound and metallic iron can be selectively captured from other compounds contained in the steelmaking slag. For example, the magnetic flux density can be set to 0.003T or more and 0.5T or less. It is preferably between 0.005T and 0.3T, and more preferably between 0.01T and 0.15T.
また、磁選は、製鋼スラグに含まれる鉄系化合物および金属鉄の全てを取り除くまで施す必要はない。磁選で製鋼スラグから取り除かれる鉄系化合物の量が少量であっても、従来よりもCO2水溶液にカルシウムが溶出されやすくなるという本実施形態の効果は奏される。そのため、磁選の時間および回数などは、磁選が製造コストに与える影響などに応じて、適宜選択してもよい。
Further, it is not necessary to perform the magnetic separation until all of the iron-based compound and metallic iron contained in the steelmaking slag are removed. Even if the amount of the iron-based compound removed from the steelmaking slag by the magnetic separation is small, the effect of the present embodiment that calcium is more easily eluted into the CO 2 aqueous solution than before can be obtained. Therefore, the time and the number of times of the magnetic separation may be appropriately selected according to the influence of the magnetic separation on the manufacturing cost.
なお、製鋼スラグは、磁選を施す前に、加熱処理されることが好ましい。製鋼スラグを加熱処理すると、鉄系化合物および金属鉄の磁化が高まり、磁選によってより多量の鉄系化合物を取り除くことができる。上記加熱処理は、300℃以上1000℃以下で0.01分以上60分以下行うことが好ましい。
The steelmaking slag is preferably subjected to a heat treatment before magnetic separation. When the steelmaking slag is heat-treated, the magnetization of the iron-based compound and metallic iron increases, and a larger amount of the iron-based compound can be removed by magnetic separation. The heat treatment is preferably performed at 300 ° C. or more and 1000 ° C. or less for 0.01 minutes or more and 60 minutes or less.
製鋼スラグは、磁選時に、乾燥した状態であってもよいが、水に分散したスラリー状であることが好ましい。スラリー状である製鋼スラグは、水分子の極性や水流などによってスラグ粒子が分散しやすいため、鉄系化合物および金属鉄を磁力によって選択的に捕捉しやすい。特にスラグ粒子の粒径が1000μm以下であるとき、空気などの気体中では、大気中の水蒸気の凝縮による液架橋力、スラグ粒子間のファンデルワールス力、スラグ粒子間の静電気力などによりスラグ粒子が凝集しやすいが、スラリー状とすることでスラグ粒子を十分に分散させることができる。また、製鋼スラグ中の金属鉄は微小であるため製鋼スラグが乾燥していると捕捉しにくいが、製鋼スラグをスラリー状にすると、水中に分散した金属鉄も磁選により捕捉しやすくなる。
The steelmaking slag may be in a dry state at the time of magnetic separation, but is preferably in the form of a slurry dispersed in water. Slurry-like steelmaking slag is apt to disperse slag particles due to the polarity of water molecules, water flow, and the like, so that it is easy to selectively capture iron-based compounds and metallic iron by magnetic force. In particular, when the particle diameter of the slag particles is 1000 μm or less, in a gas such as air, the slag particles are formed by a liquid bridging force due to condensation of water vapor in the atmosphere, a van der Waals force between the slag particles, an electrostatic force between the slag particles, and the like. Are easily agglomerated, but the slag particles can be sufficiently dispersed by forming the slurry. In addition, since the metallic iron in the steelmaking slag is minute, it is difficult to catch the ironmaking slag when the steelmaking slag is dry. However, when the steelmaking slag is made into a slurry, the metallic iron dispersed in water is also easily captured by magnetic separation.
磁選によって鉄系化合物および金属鉄を取り除いた後のスラリーは、そのままCO2水溶液との接触(工程S120)に用いてもよいが、製鋼スラグがスラリー状であるときは、固液分離して製鋼スラグと液体成分とを分離することが好ましい。固液分離は、減圧濾過および加圧濾過を含む公知の方法で行うことができる。上記固液分離によって得られた液体成分(本明細書において、単に「磁選水」ともいう。)は、スラリー化に用いた水に加えて製鋼スラグから溶出したカルシウムを含むため、アルカリ性となっている。そのため、第2の実施形態においてCO2水溶液のpHをさらに上昇させるためのカルシウム系のアルカリ性物質として、上記磁選水を使用することができる。
The slurry from which the iron-based compound and metallic iron have been removed by magnetic separation may be used as it is for contact with a CO 2 aqueous solution (step S120), but when the steelmaking slag is in a slurry state, it is subjected to solid-liquid separation to produce steel. Preferably, the slag and the liquid component are separated. The solid-liquid separation can be performed by a known method including filtration under reduced pressure and filtration under pressure. The liquid component obtained by the solid-liquid separation (herein, also simply referred to as “magnetically separated water”) contains calcium eluted from the steelmaking slag in addition to the water used for slurrying, and thus becomes alkaline. I have. Therefore, the magnetic separation water can be used as a calcium-based alkaline substance for further increasing the pH of the CO 2 aqueous solution in the second embodiment.
また、磁選によって製鋼スラグから取り除かれた磁選除去スラグは、上述のように鉄系化合物および金属鉄などのFeを含む化合物を多く含むため、高炉や焼結の原料として再利用することができる。
磁 Furthermore, since the magnetically separated slag removed from the steelmaking slag by the magnetic separation contains a large amount of a compound containing Fe such as an iron compound and metallic iron as described above, it can be reused as a raw material for a blast furnace or sintering.
製鋼スラグは、磁選を施す前に、加熱処理されることが好ましい。製鋼スラグを加熱処理すると、鉄系化合物の磁化が高まり、磁選によってより多量の鉄系化合物を取り除くことができる。上記加熱処理は、300℃以上1000℃以下で0.01分以上180分以下行うことが好ましい。
The steelmaking slag is preferably subjected to a heat treatment before the magnetic separation. When the steelmaking slag is heat-treated, the magnetization of the iron-based compound increases, and a larger amount of the iron-based compound can be removed by magnetic separation. The heat treatment is preferably performed at a temperature of 300 ° C. or more and 1000 ° C. or less for 0.01 minute or more and 180 minutes or less.
なお、本実施形態においても、第2の実施形態と同様に、製鋼スラグが接触したCO2水溶液を噴霧した後、カルシウム系のアルカリ性物質を上記CO2水溶液に投入して(工程S150)、その後に析出したカルシウムを含む固体成分を回収(工程S140)してもよい。
In this embodiment, similarly to the second embodiment, after spraying a CO 2 aqueous solution contacted by steelmaking slag, a calcium-based alkaline substance is introduced into the CO 2 aqueous solution (step S150), and thereafter, The solid component containing calcium precipitated on the surface may be recovered (Step S140).
なお、本実施形態においても、第3の実施形態と同様に、CO2水溶液に接触させる前の製鋼スラグに水和処理(工程S160)を施してもよい。本実施形態において製鋼スラグにさらに水和処理を施すとき、水和処理および磁選のいずれを先に行ってもよいし、湿式による磁選を行ったり、湿式による磁選を施すスラリーを循環させたりして、両方を同時に行ってもよい。これらのいずれかを先に行う場合、水和処理(特に浸漬撹拌による水和処理)を先に行い、その後に磁選を行うと、特に装置を大型化したときに、カルシウムの回収率がより高まるほか、より短時間で全体の処理を行うことができる。
In addition, also in this embodiment, similarly to the third embodiment, the hydration treatment (step S160) may be performed on the steelmaking slag before being brought into contact with the CO 2 aqueous solution. When further hydration treatment is performed on the steelmaking slag in this embodiment, any of the hydration treatment and the magnetic separation may be performed first, or the wet magnetic separation is performed, or the slurry subjected to the wet magnetic separation is circulated. , May be performed simultaneously. If any of these is performed first, the hydration treatment (particularly hydration treatment by immersion and stirring) is performed first, and then magnetic separation increases the calcium recovery rate, especially when the apparatus is upsized. In addition, the entire process can be performed in a shorter time.
以下、本発明について実施例を参照してより具体的に説明する。なお、これらの実施例は、本発明の範囲を以下に記載の具体的方法に限定するものではない。
Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that these examples do not limit the scope of the present invention to the specific methods described below.
[実験1]
表1に記載の成分比率を有する製鋼スラグを準備した。なお、製鋼スラグの成分は、化学分析法によって測定した。 [Experiment 1]
A steelmaking slag having the component ratio shown in Table 1 was prepared. The components of the steelmaking slag were measured by a chemical analysis method.
表1に記載の成分比率を有する製鋼スラグを準備した。なお、製鋼スラグの成分は、化学分析法によって測定した。 [Experiment 1]
A steelmaking slag having the component ratio shown in Table 1 was prepared. The components of the steelmaking slag were measured by a chemical analysis method.
表1に示す製鋼スラグを、直径が8mm以下になるように粉砕した後、750℃で20分加熱した。加熱後、製鋼スラグを常温になるまで空冷した。その後さらに製鋼スラグを粉砕した後、目開き106μmの篩を通過したものをその後の処理に使用した。
鋼 The steelmaking slag shown in Table 1 was pulverized to a diameter of 8 mm or less, and then heated at 750 ° C for 20 minutes. After heating, the steelmaking slag was air-cooled to room temperature. Thereafter, the steelmaking slag was further pulverized and then passed through a sieve having an opening of 106 μm, and used for the subsequent treatment.
なお、以下の各実験において、各水溶液のカルシウム濃度は、スラリーをろ過してスラグを分離した後、化学分析法によって測定した。
In the following experiments, the calcium concentration of each aqueous solution was measured by a chemical analysis method after filtering the slurry to separate the slag.
また、以下の各実験において、各水溶液およびスラリーのpHは、ガラス電極法によって測定した。
PH In each of the following experiments, the pH of each aqueous solution and slurry was measured by a glass electrode method.
[実験1]
(水和処理:ボールミルによる水和)
内径500mmのボールミルを用意した。このボールミルに、1kgの磁選を行っていない製鋼スラグを投入し、1Lの水を投入して製鋼スラグをスラリー状とした。さらにボールミル内に6kgのアルミナボール(粉砕媒体)を投入した。ボールの直径は10mmだった。その後、ボールミルを50rpmで回転させ、回転するボールと製鋼スラグとを接触させて製鋼スラグを粉砕等した。この粉砕しながらの水和により、スラグの粒子径(d90)は20μmとなった。スラリー状の製鋼スラグ中への二酸化炭素の導入は行わなかった。 [Experiment 1]
(Hydration treatment: hydration by ball mill)
A ball mill having an inner diameter of 500 mm was prepared. 1 kg of steelmaking slag not subjected to magnetic separation was charged into the ball mill, and 1 L of water was charged to turn the steelmaking slag into a slurry. Further, 6 kg of alumina balls (crushing medium) were charged into the ball mill. The diameter of the ball was 10 mm. Thereafter, the ball mill was rotated at 50 rpm, and the rotating balls were brought into contact with the steelmaking slag to pulverize the steelmaking slag and the like. By this hydration while pulverizing, the particle diameter (d90) of the slag became 20 μm. Carbon dioxide was not introduced into the slurry steelmaking slag.
(水和処理:ボールミルによる水和)
内径500mmのボールミルを用意した。このボールミルに、1kgの磁選を行っていない製鋼スラグを投入し、1Lの水を投入して製鋼スラグをスラリー状とした。さらにボールミル内に6kgのアルミナボール(粉砕媒体)を投入した。ボールの直径は10mmだった。その後、ボールミルを50rpmで回転させ、回転するボールと製鋼スラグとを接触させて製鋼スラグを粉砕等した。この粉砕しながらの水和により、スラグの粒子径(d90)は20μmとなった。スラリー状の製鋼スラグ中への二酸化炭素の導入は行わなかった。 [Experiment 1]
(Hydration treatment: hydration by ball mill)
A ball mill having an inner diameter of 500 mm was prepared. 1 kg of steelmaking slag not subjected to magnetic separation was charged into the ball mill, and 1 L of water was charged to turn the steelmaking slag into a slurry. Further, 6 kg of alumina balls (crushing medium) were charged into the ball mill. The diameter of the ball was 10 mm. Thereafter, the ball mill was rotated at 50 rpm, and the rotating balls were brought into contact with the steelmaking slag to pulverize the steelmaking slag and the like. By this hydration while pulverizing, the particle diameter (d90) of the slag became 20 μm. Carbon dioxide was not introduced into the slurry steelmaking slag.
(磁選)
上記水和処理したスラリー状の製鋼スラグに水を加えて、スラリー体積が40Lになるようにした。このスラリーをドラム式の磁選機に投入して、ドラム表面の最大磁束密度0.07T、ドラム周速40m/minの条件で磁選した。磁選された後の製鋼スラグ中の鉄濃度を化学分析法による測定および重量測定をしたところ、最初の製鋼スラグに含まれていた鉄元素のうち41質量%が除去されていた。磁選終了後、残スラリーをろ過して残スラグを分離した。残スラグを分離した後に残ったカルシウムが浸出した水溶液である磁選水を後の工程のために取り置いた。この磁選水のカルシウム濃度は480mg/Lであった。なお、事前の予備実験で、0.15kgの乾燥重量のスラグが磁選により分離されることを確認した。 (Magnetic selection)
Water was added to the hydrated slurry steelmaking slag so that the slurry volume became 40 L. This slurry was put into a drum type magnetic separator, and magnetically selected under the conditions of a maximum magnetic flux density of 0.07 T on the drum surface and a drum peripheral speed of 40 m / min. When the iron concentration in the steelmaking slag after the magnetic separation was measured by a chemical analysis method and the weight was measured, 41% by mass of the iron element contained in the first steelmaking slag was removed. After the magnetic separation, the remaining slurry was filtered to separate the remaining slag. The magnetically separated water, which is an aqueous solution from which the residual calcium was leached after the residual slag was separated, was set aside for the subsequent process. The calcium concentration of the magnetic separation water was 480 mg / L. In a preliminary experiment, it was confirmed that slag having a dry weight of 0.15 kg was separated by magnetic separation.
上記水和処理したスラリー状の製鋼スラグに水を加えて、スラリー体積が40Lになるようにした。このスラリーをドラム式の磁選機に投入して、ドラム表面の最大磁束密度0.07T、ドラム周速40m/minの条件で磁選した。磁選された後の製鋼スラグ中の鉄濃度を化学分析法による測定および重量測定をしたところ、最初の製鋼スラグに含まれていた鉄元素のうち41質量%が除去されていた。磁選終了後、残スラリーをろ過して残スラグを分離した。残スラグを分離した後に残ったカルシウムが浸出した水溶液である磁選水を後の工程のために取り置いた。この磁選水のカルシウム濃度は480mg/Lであった。なお、事前の予備実験で、0.15kgの乾燥重量のスラグが磁選により分離されることを確認した。 (Magnetic selection)
Water was added to the hydrated slurry steelmaking slag so that the slurry volume became 40 L. This slurry was put into a drum type magnetic separator, and magnetically selected under the conditions of a maximum magnetic flux density of 0.07 T on the drum surface and a drum peripheral speed of 40 m / min. When the iron concentration in the steelmaking slag after the magnetic separation was measured by a chemical analysis method and the weight was measured, 41% by mass of the iron element contained in the first steelmaking slag was removed. After the magnetic separation, the remaining slurry was filtered to separate the remaining slag. The magnetically separated water, which is an aqueous solution from which the residual calcium was leached after the residual slag was separated, was set aside for the subsequent process. The calcium concentration of the magnetic separation water was 480 mg / L. In a preliminary experiment, it was confirmed that slag having a dry weight of 0.15 kg was separated by magnetic separation.
(CO2水溶液との接触:粉砕等を行いながらのCO2水溶液との接触)
図2に示す構成を有する装置を用いた。溶出・沈降槽は、内径480mmの円筒状の容器であり、沈降して堆積した製鋼スラグが吸込み口に移動するように底面に沿って回転するインペラーを設置した。インペラーは40rpmで回転させた。この溶出・沈降槽に前記の磁選工程後のろ過で採取した残スラグを乾燥させずに投入し、スラリー量が100Lになるように水を加えた。このとき水とスラグの比はおおよそ120:1であった。底部から採取した製鋼スラグをポンプで粉砕部に送り、ボールミルを使用して連続式の粉砕装置で粉砕等した。この粉砕部は、内径200mmの横型円筒状で、内部にφ10mmのボールを全容積の70%入れた。これらと同時に20L/minの二酸化炭素を溶出・沈降槽と粉砕部との間の配管部に導入した。CO2水溶液との接触は30分行った。 (Contact with CO 2 aqueous solution: Contact with CO 2 aqueous solution while pulverizing etc.)
An apparatus having the configuration shown in FIG. 2 was used. The elution / sedimentation tank was a cylindrical container having an inner diameter of 480 mm, and was provided with an impeller that rotated along the bottom surface so that the steelmaking slag that had settled and accumulated moved to the suction port. The impeller was rotated at 40 rpm. The remaining slag collected by the filtration after the magnetic separation step was put into the elution / sedimentation tank without drying, and water was added so that the slurry amount became 100 L. At this time, the ratio of water to slag was approximately 120: 1. The steelmaking slag collected from the bottom was sent to a pulverizing unit by a pump, and was pulverized by a continuous pulverizer using a ball mill. The pulverizing part was a horizontal cylindrical shape having an inner diameter of 200 mm, and a ball of φ10 mm was placed therein at 70% of the total volume. At the same time, 20 L / min of carbon dioxide was introduced into the pipe section between the elution / settling tank and the pulverizing section. The contact with the CO 2 aqueous solution was performed for 30 minutes.
図2に示す構成を有する装置を用いた。溶出・沈降槽は、内径480mmの円筒状の容器であり、沈降して堆積した製鋼スラグが吸込み口に移動するように底面に沿って回転するインペラーを設置した。インペラーは40rpmで回転させた。この溶出・沈降槽に前記の磁選工程後のろ過で採取した残スラグを乾燥させずに投入し、スラリー量が100Lになるように水を加えた。このとき水とスラグの比はおおよそ120:1であった。底部から採取した製鋼スラグをポンプで粉砕部に送り、ボールミルを使用して連続式の粉砕装置で粉砕等した。この粉砕部は、内径200mmの横型円筒状で、内部にφ10mmのボールを全容積の70%入れた。これらと同時に20L/minの二酸化炭素を溶出・沈降槽と粉砕部との間の配管部に導入した。CO2水溶液との接触は30分行った。 (Contact with CO 2 aqueous solution: Contact with CO 2 aqueous solution while pulverizing etc.)
An apparatus having the configuration shown in FIG. 2 was used. The elution / sedimentation tank was a cylindrical container having an inner diameter of 480 mm, and was provided with an impeller that rotated along the bottom surface so that the steelmaking slag that had settled and accumulated moved to the suction port. The impeller was rotated at 40 rpm. The remaining slag collected by the filtration after the magnetic separation step was put into the elution / sedimentation tank without drying, and water was added so that the slurry amount became 100 L. At this time, the ratio of water to slag was approximately 120: 1. The steelmaking slag collected from the bottom was sent to a pulverizing unit by a pump, and was pulverized by a continuous pulverizer using a ball mill. The pulverizing part was a horizontal cylindrical shape having an inner diameter of 200 mm, and a ball of φ10 mm was placed therein at 70% of the total volume. At the same time, 20 L / min of carbon dioxide was introduced into the pipe section between the elution / settling tank and the pulverizing section. The contact with the CO 2 aqueous solution was performed for 30 minutes.
以上のようにして得られたカルシウムが溶出したスラリーをろ過し、スラグと分離して、カルシウムが溶出したCO2水溶液を得た。このときのCO2水溶液のpHは6.6であり、カルシウム濃度は1230mg/Lであった。
The calcium-eluted slurry obtained as described above was filtered and separated from the slag to obtain a calcium-eluted CO 2 aqueous solution. At this time, the pH of the aqueous CO 2 solution was 6.6, and the calcium concentration was 1,230 mg / L.
(噴霧)
図3に示すシャワー噴霧式法でカルシウムを析出させた。径0.5mmの孔が複数開いたシャワーヘッドで4.5mの高さから内径960mmの密閉容器内に下向きに5L/minの流量で上記CO2水溶液を噴霧した。密閉容器の底部側からは、合計40L/minの流量で空気を対向する2ヶ所から吹き込んだ。密閉容器の底部に到達したCO2水溶液は、密閉容器の底部から取り出し、密閉容器に連結されるタンクに導入した。1回噴霧した後、カルシウム化合物(炭酸カルシウム)が析出したCO2水溶液の液体成分をタンクから回収し、もう1回噴霧した(合計2回噴霧)。 (Spray)
Calcium was precipitated by the shower spray method shown in FIG. The above CO 2 aqueous solution was sprayed downward at a flow rate of 5 L / min into a closed container having an inner diameter of 960 mm from a height of 4.5 m with a shower head having a plurality of holes having a diameter of 0.5 mm. From the bottom side of the sealed container, air was blown from two opposing locations at a total flow rate of 40 L / min. The CO 2 aqueous solution that reached the bottom of the closed container was taken out from the bottom of the closed container and introduced into a tank connected to the closed container. After spraying once, the liquid component of the aqueous CO 2 solution on which the calcium compound (calcium carbonate) was precipitated was recovered from the tank and sprayed once more (total of two sprays).
図3に示すシャワー噴霧式法でカルシウムを析出させた。径0.5mmの孔が複数開いたシャワーヘッドで4.5mの高さから内径960mmの密閉容器内に下向きに5L/minの流量で上記CO2水溶液を噴霧した。密閉容器の底部側からは、合計40L/minの流量で空気を対向する2ヶ所から吹き込んだ。密閉容器の底部に到達したCO2水溶液は、密閉容器の底部から取り出し、密閉容器に連結されるタンクに導入した。1回噴霧した後、カルシウム化合物(炭酸カルシウム)が析出したCO2水溶液の液体成分をタンクから回収し、もう1回噴霧した(合計2回噴霧)。 (Spray)
Calcium was precipitated by the shower spray method shown in FIG. The above CO 2 aqueous solution was sprayed downward at a flow rate of 5 L / min into a closed container having an inner diameter of 960 mm from a height of 4.5 m with a shower head having a plurality of holes having a diameter of 0.5 mm. From the bottom side of the sealed container, air was blown from two opposing locations at a total flow rate of 40 L / min. The CO 2 aqueous solution that reached the bottom of the closed container was taken out from the bottom of the closed container and introduced into a tank connected to the closed container. After spraying once, the liquid component of the aqueous CO 2 solution on which the calcium compound (calcium carbonate) was precipitated was recovered from the tank and sprayed once more (total of two sprays).
2回噴霧した後のCO2水溶液のpHは8.0であり、カルシウム濃度は61mg/Lであった。
The pH of the aqueous CO 2 solution after spraying twice was 8.0, and the calcium concentration was 61 mg / L.
(固体成分の回収)
噴霧されたCO2水溶液が導入されたタンクからは、カルシウムを含む固体成分を容易に回収することができた。 (Recovery of solid components)
From the tank into which the sprayed CO 2 aqueous solution was introduced, solid components containing calcium could be easily recovered.
噴霧されたCO2水溶液が導入されたタンクからは、カルシウムを含む固体成分を容易に回収することができた。 (Recovery of solid components)
From the tank into which the sprayed CO 2 aqueous solution was introduced, solid components containing calcium could be easily recovered.
この結果から、噴霧によりCO2水溶液のpHが上昇し、カルシウム化合物(炭酸カルシウム)がCO2水溶液から析出することがわかった。このときのカルシウム析出率((100(%)-噴霧後のカルシウム濃度(%))/噴霧前のカルシウム濃度(%))は、2回噴霧後、約95.0%だった。
From this result, it was found that the pH of the aqueous CO 2 solution was increased by spraying, and a calcium compound (calcium carbonate) was precipitated from the aqueous CO 2 solution. At this time, the calcium deposition rate ((100 (%)-calcium concentration (%) after spraying) / calcium concentration (%) before spraying) was about 95.0% after spraying twice.
[実験2]
実験1と同様の手順により水和処理、磁選、カルシウムの溶出、およびろ過によるスラグとCO2水溶液との分離を行った。その後、実験1と同様の手順でカルシウムの回収を行った。このとき、噴霧は1回のみ8L/minの流量で行った。 [Experiment 2]
Hydration treatment, magnetic separation, elution of calcium, and separation of the slag and the CO 2 aqueous solution were performed by the same procedure as in Experiment 1. Thereafter, calcium was recovered in the same procedure as in Experiment 1. At this time, spraying was performed only once at a flow rate of 8 L / min.
実験1と同様の手順により水和処理、磁選、カルシウムの溶出、およびろ過によるスラグとCO2水溶液との分離を行った。その後、実験1と同様の手順でカルシウムの回収を行った。このとき、噴霧は1回のみ8L/minの流量で行った。 [Experiment 2]
Hydration treatment, magnetic separation, elution of calcium, and separation of the slag and the CO 2 aqueous solution were performed by the same procedure as in Experiment 1. Thereafter, calcium was recovered in the same procedure as in Experiment 1. At this time, spraying was performed only once at a flow rate of 8 L / min.
なお、実験中に密閉容器から排出されたガスの二酸化炭素濃度を赤外線方式で測定したところ、約10%だった。このガスの二酸化炭素濃度は一般的な天然ガス火力発電所からの排ガス中の二酸化炭素濃度(約9%)よりも高く、回収および精製が容易に行える程度であった。
The carbon dioxide concentration of the gas discharged from the closed container during the experiment was measured by an infrared method, and was about 10%. The concentration of carbon dioxide in this gas was higher than the concentration of carbon dioxide in exhaust gas from a general natural gas-fired power plant (about 9%), and was such that recovery and purification could be easily performed.
(カルシウム系のアルカリ性物質の投入)
その後、タンクに溜まったCO2水溶液(pH:7.0、カルシウム濃度:190mg/L、カルシウム析出率:84.5%)に、水酸化カルシウム系組成物-1(上記磁選工程で得た磁選水)、水酸化カルシウム系組成物-2(水酸化カルシウムを水に溶解させて用意した水溶液)、および水酸化カルシウム系組成物-3(固体状の水酸化カルシウムを水酸化カルシウム水中に分散させて用意したスラリー)、のいずれかを、CO2溶液を攪拌しながら投入した。投入後のCO2水溶液のpHが8.0、8.5、9.0および9.5のいずれかになるように、それぞれの投入量を調整した。 (Injection of calcium-based alkaline substance)
Thereafter, the calcium hydroxide-based composition-1 (the magnetic separation obtained in the above magnetic separation step) was added to the aqueous CO 2 solution (pH: 7.0, calcium concentration: 190 mg / L, calcium deposition rate: 84.5%) stored in the tank. Water), calcium hydroxide composition-2 (aqueous solution prepared by dissolving calcium hydroxide in water), and calcium hydroxide composition-3 (solid calcium hydroxide is dispersed in calcium hydroxide water) Slurry prepared in advance) was added while stirring the CO 2 solution. The amount of each CO 2 aqueous solution was adjusted so that the pH of the CO 2 aqueous solution became 8.0, 8.5, 9.0, or 9.5.
その後、タンクに溜まったCO2水溶液(pH:7.0、カルシウム濃度:190mg/L、カルシウム析出率:84.5%)に、水酸化カルシウム系組成物-1(上記磁選工程で得た磁選水)、水酸化カルシウム系組成物-2(水酸化カルシウムを水に溶解させて用意した水溶液)、および水酸化カルシウム系組成物-3(固体状の水酸化カルシウムを水酸化カルシウム水中に分散させて用意したスラリー)、のいずれかを、CO2溶液を攪拌しながら投入した。投入後のCO2水溶液のpHが8.0、8.5、9.0および9.5のいずれかになるように、それぞれの投入量を調整した。 (Injection of calcium-based alkaline substance)
Thereafter, the calcium hydroxide-based composition-1 (the magnetic separation obtained in the above magnetic separation step) was added to the aqueous CO 2 solution (pH: 7.0, calcium concentration: 190 mg / L, calcium deposition rate: 84.5%) stored in the tank. Water), calcium hydroxide composition-2 (aqueous solution prepared by dissolving calcium hydroxide in water), and calcium hydroxide composition-3 (solid calcium hydroxide is dispersed in calcium hydroxide water) Slurry prepared in advance) was added while stirring the CO 2 solution. The amount of each CO 2 aqueous solution was adjusted so that the pH of the CO 2 aqueous solution became 8.0, 8.5, 9.0, or 9.5.
上記投入した水酸化カルシウム系組成物-1~水酸化カルシウム系組成物-3のpHおよびカルシウム濃度を、表2に示す。なお、スラリーである水酸化カルシウム系組成物-3のカルシウム濃度は、固形分も含めた平均濃度である。
Table 2 shows the pH and calcium concentration of the calcium hydroxide composition-1 to calcium hydroxide composition-3 charged above. The calcium concentration of the calcium hydroxide-based composition-3, which is a slurry, is an average concentration including the solid content.
上記各水酸化カルシウム系組成物を投入した後のCO2水溶液のpHおよびカルシウム濃度、ならびにカルシウム析出率(噴霧および水酸化カルシウム系組成物の投入後のカルシウム濃度/噴霧前のカルシウム濃度)を、表3に示す。
The pH and calcium concentration of the CO 2 aqueous solution after the above-mentioned calcium hydroxide-based composition was charged, and the calcium deposition rate (calcium concentration after spraying and calcium hydroxide-based composition / calcium concentration before spraying) It is shown in Table 3.
表3から明らかなように、噴霧後のCO2水溶液に水酸化カルシウム系組成物を投入することで、カルシウム濃度が1回噴霧した後のカルシウム濃度(190mg/L)よりも低下しており、水酸化カルシウム系組成物の投入によりカルシウムがさらに析出することがわかった。このときのカルシウム析出率は、投入する水酸化カルシウム系組成物の種類によらず、投入後のpHにほぼ相関していた。
As is clear from Table 3, by adding the calcium hydroxide-based composition to the CO 2 aqueous solution after spraying, the calcium concentration is lower than the calcium concentration after spraying once (190 mg / L), It was found that calcium was further precipitated by feeding the calcium hydroxide-based composition. The calcium precipitation rate at this time was substantially correlated with the pH after the addition, regardless of the type of the calcium hydroxide-based composition to be added.
また、水酸化カルシウムの投入後のCO2水溶液のpHが8.0以上だとカルシウム析出率は90%以上であり、水酸化カルシウムの投入後のCO2水溶液のpHが8.5以上だとカルシウム析出率は94%以上であり、水酸化カルシウムの投入後のCO2水溶液のpHが9.0以上だとカルシウム析出率は95%以上であった。
When the pH of the aqueous CO 2 solution after the addition of calcium hydroxide is 8.0 or more, the calcium precipitation rate is 90% or more, and when the pH of the aqueous CO 2 solution after the addition of calcium hydroxide is 8.5 or more. The calcium deposition rate was 94% or more, and the calcium deposition rate was 95% or more when the pH of the CO 2 aqueous solution after the addition of calcium hydroxide was 9.0 or more.
[実験3]
(水和処理-1:ボールミルを用いた浸漬撹拌による水和)
内径500mmのボールミルを用意した。このボールミルに、1kgの磁選を行っていない製鋼スラグを投入し、1Lの水を投入して製鋼スラグをスラリー状とした。さらにボールミル内に6kgのアルミナボール(粉砕媒体)を投入した。ボールの直径は10mmだった。その後、ボールミルを50rpmで回転させ、回転するボールと製鋼スラグとを接触させて製鋼スラグを粉砕等した。この粉砕しながらの水和により、スラグの粒子径(d90)は20μmとなった。スラリー状の製鋼スラグ中への二酸化炭素の導入は行わなかった。 [Experiment 3]
(Hydration treatment-1: Hydration by immersion stirring using a ball mill)
A ball mill having an inner diameter of 500 mm was prepared. 1 kg of steelmaking slag not subjected to magnetic separation was charged into the ball mill, and 1 L of water was charged to turn the steelmaking slag into a slurry. Further, 6 kg of alumina balls (crushing medium) were charged into the ball mill. The diameter of the ball was 10 mm. Thereafter, the ball mill was rotated at 50 rpm, and the rotating balls were brought into contact with the steelmaking slag to pulverize the steelmaking slag and the like. By this hydration while pulverizing, the particle diameter (d90) of the slag became 20 μm. Carbon dioxide was not introduced into the slurry steelmaking slag.
(水和処理-1:ボールミルを用いた浸漬撹拌による水和)
内径500mmのボールミルを用意した。このボールミルに、1kgの磁選を行っていない製鋼スラグを投入し、1Lの水を投入して製鋼スラグをスラリー状とした。さらにボールミル内に6kgのアルミナボール(粉砕媒体)を投入した。ボールの直径は10mmだった。その後、ボールミルを50rpmで回転させ、回転するボールと製鋼スラグとを接触させて製鋼スラグを粉砕等した。この粉砕しながらの水和により、スラグの粒子径(d90)は20μmとなった。スラリー状の製鋼スラグ中への二酸化炭素の導入は行わなかった。 [Experiment 3]
(Hydration treatment-1: Hydration by immersion stirring using a ball mill)
A ball mill having an inner diameter of 500 mm was prepared. 1 kg of steelmaking slag not subjected to magnetic separation was charged into the ball mill, and 1 L of water was charged to turn the steelmaking slag into a slurry. Further, 6 kg of alumina balls (crushing medium) were charged into the ball mill. The diameter of the ball was 10 mm. Thereafter, the ball mill was rotated at 50 rpm, and the rotating balls were brought into contact with the steelmaking slag to pulverize the steelmaking slag and the like. By this hydration while pulverizing, the particle diameter (d90) of the slag became 20 μm. Carbon dioxide was not introduced into the slurry steelmaking slag.
(水和処理-2:浸漬撹拌による水和)
上記水和されたスラリー状のスラグに水を加えてスラリー量を40Lとして、15分間撹拌した。その後、スラリーをろ過して、スラグと水和処理水(水溶液)とを分離した。水和処理水のpHは12.5であり、カルシウム濃度は470mg/Lであった。 (Hydration treatment-2: Hydration by immersion stirring)
Water was added to the hydrated slurry slag to make the slurry amount 40 L, and the mixture was stirred for 15 minutes. Thereafter, the slurry was filtered to separate slag and hydration-treated water (aqueous solution). The pH of the hydrated water was 12.5, and the calcium concentration was 470 mg / L.
上記水和されたスラリー状のスラグに水を加えてスラリー量を40Lとして、15分間撹拌した。その後、スラリーをろ過して、スラグと水和処理水(水溶液)とを分離した。水和処理水のpHは12.5であり、カルシウム濃度は470mg/Lであった。 (Hydration treatment-2: Hydration by immersion stirring)
Water was added to the hydrated slurry slag to make the slurry amount 40 L, and the mixture was stirred for 15 minutes. Thereafter, the slurry was filtered to separate slag and hydration-treated water (aqueous solution). The pH of the hydrated water was 12.5, and the calcium concentration was 470 mg / L.
(CO2水溶液との接触:粉砕等を行いながらのCO2水溶液との接触)
実験1と同様の装置の溶出・沈降槽に、上記水和処理―2の後のろ過により分離されたスラグを乾燥させずに投入し、スラリー量が100Lになるように水を加えた。このとき水とスラグの比はおおよそ100:1であった。その他の条件は実験1と同様にして、カルシウムの溶出を行った。 (Contact with CO 2 aqueous solution: Contact with CO 2 aqueous solution while pulverizing etc.)
The slag separated by the filtration after the above-mentioned hydration treatment-2 was put into a dissolution / sedimentation tank of the same apparatus as in Experiment 1 without drying, and water was added so that the slurry amount became 100 L. At this time, the ratio of water to slag was approximately 100: 1. Elution of calcium was carried out in the same manner as in Experiment 1 under other conditions.
実験1と同様の装置の溶出・沈降槽に、上記水和処理―2の後のろ過により分離されたスラグを乾燥させずに投入し、スラリー量が100Lになるように水を加えた。このとき水とスラグの比はおおよそ100:1であった。その他の条件は実験1と同様にして、カルシウムの溶出を行った。 (Contact with CO 2 aqueous solution: Contact with CO 2 aqueous solution while pulverizing etc.)
The slag separated by the filtration after the above-mentioned hydration treatment-2 was put into a dissolution / sedimentation tank of the same apparatus as in Experiment 1 without drying, and water was added so that the slurry amount became 100 L. At this time, the ratio of water to slag was approximately 100: 1. Elution of calcium was carried out in the same manner as in Experiment 1 under other conditions.
以上のようにして得られたカルシウムが溶出したスラリーをろ過し、スラグと分離して、カルシウムが溶出したCO2水溶液を得た。このときのCO2水溶液のpHは6.7であり、カルシウム濃度は1390mg/Lであった。
The calcium-eluted slurry obtained as described above was filtered and separated from the slag to obtain a calcium-eluted CO 2 aqueous solution. At this time, the pH of the CO 2 aqueous solution was 6.7, and the calcium concentration was 1390 mg / L.
(噴霧)
実験12と同様に、シャワー噴霧式法で上記得られたCO2水溶液を噴霧してカルシウムを析出させた。噴霧は1回のみ行った。 (Spray)
As inExperiment 12, to precipitate calcium by spraying the CO 2 aqueous solution obtained above in the shower spray method. Spraying was performed only once.
実験12と同様に、シャワー噴霧式法で上記得られたCO2水溶液を噴霧してカルシウムを析出させた。噴霧は1回のみ行った。 (Spray)
As in
1回噴霧した後のCO2水溶液のpHは6.9であり、カルシウム濃度は230mg/Lであった。このときのカルシウム析出率は、83.5%だった。
After spraying once, the pH of the aqueous CO 2 solution was 6.9, and the calcium concentration was 230 mg / L. At this time, the calcium deposition rate was 83.5%.
(カルシウム系のアルカリ性物質の投入)
その後、タンクに溜まったCO2水溶液に、水酸化カルシウム系組成物-4(水和処理―2で得た水和処理水)を、CO2溶液を攪拌しながら投入した。投入後のCO2水溶液のpHが8.0、8.5および9.0のいずれかになるように、水酸化カルシウム系組成物-4の投入量を調整した。 (Injection of calcium-based alkaline substance)
Thereafter, the CO 2 aqueous solution collected in the tank, calcium hydroxide-based composition 4 (hydration water obtained in the hydration treatment -2) was charged with stirring CO 2 solution. The amount of the calcium hydroxide-based composition-4 was adjusted so that the pH of the CO 2 aqueous solution after the introduction was any one of 8.0, 8.5, and 9.0.
その後、タンクに溜まったCO2水溶液に、水酸化カルシウム系組成物-4(水和処理―2で得た水和処理水)を、CO2溶液を攪拌しながら投入した。投入後のCO2水溶液のpHが8.0、8.5および9.0のいずれかになるように、水酸化カルシウム系組成物-4の投入量を調整した。 (Injection of calcium-based alkaline substance)
Thereafter, the CO 2 aqueous solution collected in the tank, calcium hydroxide-based composition 4 (hydration water obtained in the hydration treatment -2) was charged with stirring CO 2 solution. The amount of the calcium hydroxide-based composition-4 was adjusted so that the pH of the CO 2 aqueous solution after the introduction was any one of 8.0, 8.5, and 9.0.
上記投入した水酸化カルシウム系組成物-4のpHおよびカルシウム濃度を、表4に示す。
PHTable 4 shows the pH and calcium concentration of the calcium hydroxide composition-4 charged above.
水酸化カルシウム系組成物-4を投入した後のCO2水溶液のpHおよびカルシウム濃度、ならびにカルシウム析出率(噴霧および水酸化カルシウム系組成物の投入後のカルシウム濃度/噴霧前のカルシウム濃度)を、表5に示す。
The pH and the calcium concentration of the aqueous CO 2 solution after the calcium hydroxide-based composition-4 was charged, and the calcium deposition rate (calcium concentration after spraying and calcium hydroxide-based composition charged / calcium concentration before spraying) It is shown in Table 5.
表5から明らかなように、噴霧後のCO2水溶液に水和処理水を投入したときも、カルシウム濃度が1回噴霧した後のカルシウム濃度(190mg/L)よりも低下しており、カルシウムがさらに析出することがわかった。
As is clear from Table 5, when the hydration-treated water was added to the CO 2 aqueous solution after spraying, the calcium concentration was lower than the calcium concentration (190 mg / L) after spraying once, and It was found that further precipitation occurred.
(固体成分の回収)
噴霧されたCO2水溶液が導入されたタンクからは、カルシウムを含む固体成分を容易に回収することができた。 (Recovery of solid components)
From the tank into which the sprayed CO 2 aqueous solution was introduced, solid components containing calcium could be easily recovered.
噴霧されたCO2水溶液が導入されたタンクからは、カルシウムを含む固体成分を容易に回収することができた。 (Recovery of solid components)
From the tank into which the sprayed CO 2 aqueous solution was introduced, solid components containing calcium could be easily recovered.
本出願は、2018年9月20日出願の日本国出願番号2018-175965号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲、明細書および図面に記載された内容は本出願に援用される。
This application is an application claiming priority based on Japanese Patent Application No. 2018-175965 filed on Sep. 20, 2018, and the contents described in the claims, the specification, and the drawings of this application are the same as those of the present application. Incorporated in application.
本発明は、製鋼スラグからCO2水溶液に溶出したカルシウムをより簡易な方法で析出させることができるため、製鉄におけるカルシウム資源の回収方法として有用である。
INDUSTRIAL APPLICABILITY The present invention is useful as a method for recovering calcium resources in iron making, since calcium eluted in a CO 2 aqueous solution from steelmaking slag can be precipitated by a simpler method.
100 溶出装置
110 溶出・沈降槽
112 スラリー取出口
114 スラリー再導入口
118 インペラー
119 回転棒
120 粉砕部
130 二酸化炭素導入部
140 スラリー流路
142 スラリー流路
144 スラリー流路
146 ポンプ
200、200a、200b 噴霧装置
210、210a 密閉容器
212 CO2水溶液取出口
214 撹拌羽根
216 回転棒
220、220a 噴霧装置
222 CO2水溶液流路
224 シャワーヘッド
226 ノズル
230 ガス導入部
240 ガス排出部
250 ポンプ
260 ヒーター
270 アルカリ性物質投入口 REFERENCE SIGNSLIST 100 dissolution apparatus 110 dissolution / sedimentation tank 112 slurry outlet 114 slurry re-introduction port 118 impeller 119 rotary rod 120 pulverizing unit 130 carbon dioxide introduction unit 140 slurry flow path 142 slurry flow path 144 slurry flow path 146 pump 200, 200a, 200b spray device 210,210a closed container 212 CO 2 solution outlet port 214 stirring blade 216 rotational rod 220,220a spray device 222 CO 2 solution passage 224 showerhead 226 nozzles 230 gas inlet 240 gas outlet 250 pump 260 heater 270 alkaline material input mouth
110 溶出・沈降槽
112 スラリー取出口
114 スラリー再導入口
118 インペラー
119 回転棒
120 粉砕部
130 二酸化炭素導入部
140 スラリー流路
142 スラリー流路
144 スラリー流路
146 ポンプ
200、200a、200b 噴霧装置
210、210a 密閉容器
212 CO2水溶液取出口
214 撹拌羽根
216 回転棒
220、220a 噴霧装置
222 CO2水溶液流路
224 シャワーヘッド
226 ノズル
230 ガス導入部
240 ガス排出部
250 ポンプ
260 ヒーター
270 アルカリ性物質投入口 REFERENCE SIGNS
Claims (8)
- 二酸化炭素を含有する水溶液であるCO2水溶液に製鋼スラグを接触させる工程と、
前記製鋼スラグが接触したCO2水溶液を噴霧する工程と、
を有する、製鋼スラグからカルシウムを回収する方法。 Contacting steelmaking slag with a CO 2 aqueous solution that is an aqueous solution containing carbon dioxide;
Spraying a CO 2 aqueous solution contacted by the steelmaking slag;
A method for recovering calcium from steelmaking slag, comprising: - 前記CO2水溶液を噴霧する工程の前に、前記製鋼スラグが接触したCO2水溶液から製鋼スラグを除去する工程を有する、請求項1に記載の製鋼スラグからカルシウムを回収する方法。 Before the step of spraying the CO 2 aqueous solution, a step of removing the steel slag from CO 2 aqueous solution in which the steelmaking slag is in contact, a method for recovering calcium from steel slag according to claim 1.
- 前記CO2水溶液よりも二酸化炭素の分圧が低い空間に前記CO2水溶液を噴霧する、請求項1または2に記載の製鋼スラグからカルシウムを回収する方法。 Wherein the CO partial pressure of carbon dioxide than 2 aqueous solution is spraying the CO 2 aqueous solution to a lower space, and recovering calcium from steel slag according to claim 1 or 2.
- 大気、窒素(N2)、酸素(O2)、水素(H2)、アルゴン(Ar)およびヘリウム(He)からなる群から選択される無機系ガスを含む空間に前記CO2水溶液を噴霧する、請求項1~3のいずれか1項に記載の製鋼スラグからカルシウムを回収する方法。 The CO 2 aqueous solution is sprayed into a space containing an inorganic gas selected from the group consisting of air, nitrogen (N 2 ), oxygen (O 2 ), hydrogen (H 2 ), argon (Ar), and helium (He). The method for recovering calcium from steelmaking slag according to any one of claims 1 to 3.
- 噴霧された前記CO2水溶液にカルシウム系のアルカリ性物質を投入する工程を含む、請求項1~4のいずれか1項に記載の製鋼スラグからカルシウムを回収する方法。 The method for recovering calcium from steelmaking slag according to any one of claims 1 to 4, further comprising a step of introducing a calcium-based alkaline substance into the sprayed CO 2 aqueous solution.
- 前記カルシウム系のアルカリ性物質の投入は、水酸化カルシウムが溶解した水溶液、固体状の水酸化カルシウムが分散したスラリー、固体状の水酸化カルシウム、および固体状の酸化カルシウムからなる群から選択される水酸化カルシウム系組成物の投入である、請求項5に記載の製鋼スラグからカルシウムを回収する方法。 The introduction of the calcium-based alkaline substance is performed by selecting an aqueous solution in which calcium hydroxide is dissolved, a slurry in which solid calcium hydroxide is dispersed, solid calcium hydroxide, and water selected from the group consisting of solid calcium oxide. The method for recovering calcium from steelmaking slag according to claim 5, which is charging of a calcium oxide-based composition.
- 前記投入される水酸化カルシウム系組成物は、製鋼スラグの水への接触により得られるスラグ浸出水である、請求項5または6に記載の製鋼スラグからカルシウムを回収する方法。 The method for recovering calcium from steelmaking slag according to claim 5 or 6, wherein the calcium hydroxide-based composition to be charged is slag leachate obtained by contacting steelmaking slag with water.
- 前記カルシウム系のアルカリ性物質の投入は、前記CO2水溶液の噴霧と同時に行われる、請求項5~7のいずれか1項に記載の製鋼スラグからカルシウムを回収する方法。
The method for recovering calcium from steelmaking slag according to any one of claims 5 to 7, wherein the introduction of the calcium-based alkaline substance is performed simultaneously with the spraying of the CO 2 aqueous solution.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-175965 | 2018-09-20 | ||
JP2018175965A JP2020045260A (en) | 2018-09-20 | 2018-09-20 | Method of recovering calcium from steelmaking slag |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059455A1 true WO2020059455A1 (en) | 2020-03-26 |
Family
ID=69888719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033881 WO2020059455A1 (en) | 2018-09-20 | 2019-08-29 | Method for recovering calcium from steelmaking slag |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2020045260A (en) |
TW (1) | TW202012643A (en) |
WO (1) | WO2020059455A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI766691B (en) * | 2021-05-20 | 2022-06-01 | 中國鋼鐵股份有限公司 | Method of electric furnace steelmaking |
TWI775369B (en) * | 2021-03-26 | 2022-08-21 | 賴世宗 | Metal recovery method and recovery system of metal smelting slag |
CN115672950A (en) * | 2022-09-20 | 2023-02-03 | 原初科技(北京)有限公司 | Steel slag carbon fixation device and use method thereof |
CN115889399A (en) * | 2022-11-26 | 2023-04-04 | 安徽华塑股份有限公司 | Carbide slag recycling equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621832A (en) * | 1985-02-07 | 1987-01-07 | Sumitomo Metal Ind Ltd | Method for recovering alkaline metal from slag formed at molten pig iron treatment |
WO2018135439A1 (en) * | 2017-01-18 | 2018-07-26 | 日新製鋼株式会社 | Method for eluting calcium from steelmaking slag, and method for collecting calcium from steelmaking slag |
-
2018
- 2018-09-20 JP JP2018175965A patent/JP2020045260A/en active Pending
-
2019
- 2019-08-29 WO PCT/JP2019/033881 patent/WO2020059455A1/en active Application Filing
- 2019-09-19 TW TW108133854A patent/TW202012643A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621832A (en) * | 1985-02-07 | 1987-01-07 | Sumitomo Metal Ind Ltd | Method for recovering alkaline metal from slag formed at molten pig iron treatment |
WO2018135439A1 (en) * | 2017-01-18 | 2018-07-26 | 日新製鋼株式会社 | Method for eluting calcium from steelmaking slag, and method for collecting calcium from steelmaking slag |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI775369B (en) * | 2021-03-26 | 2022-08-21 | 賴世宗 | Metal recovery method and recovery system of metal smelting slag |
TWI766691B (en) * | 2021-05-20 | 2022-06-01 | 中國鋼鐵股份有限公司 | Method of electric furnace steelmaking |
CN115672950A (en) * | 2022-09-20 | 2023-02-03 | 原初科技(北京)有限公司 | Steel slag carbon fixation device and use method thereof |
CN115889399A (en) * | 2022-11-26 | 2023-04-04 | 安徽华塑股份有限公司 | Carbide slag recycling equipment |
CN115889399B (en) * | 2022-11-26 | 2024-05-17 | 安徽华塑股份有限公司 | Carbide slag recycle equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2020045260A (en) | 2020-03-26 |
TW202012643A (en) | 2020-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020059455A1 (en) | Method for recovering calcium from steelmaking slag | |
JP6794842B2 (en) | How to elute calcium from steelmaking slag and how to recover calcium from steelmaking slag | |
JP6927033B2 (en) | How to recover calcium from steelmaking slag | |
Mattila et al. | Production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues | |
TWI679282B (en) | Method for recovering calcium-containing solid content from steelmaking slag | |
WO2015114703A1 (en) | Phosphorus and calcium collection method, and mixture produced by said collection method | |
WO2014005227A1 (en) | Slag stabilization with captured carbon dioxide | |
Wang et al. | Sustainable process for enhanced CO2 mineralization of calcium silicates using a recyclable chelating agent under alkaline conditions | |
Cheng et al. | CO2 sequestration and CaCO3 recovery with steel slag by a novel two-step leaching and carbonation method | |
KR101303051B1 (en) | Apparatus and Method for Treating Slag | |
WO2019107116A1 (en) | Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag | |
WO2019107115A1 (en) | Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag | |
JP5983537B2 (en) | Method for removing sulfur from slag containing sulfur | |
JP2004292806A (en) | Soil renewing agent and method for renewal of soil | |
JP2004149829A (en) | Method for producing iron powder, and soil cleaning agent | |
JP5748925B1 (en) | Method for recovering phosphorus and calcium and mixture obtained by said recovery method | |
CN111807598B (en) | Method for harmlessly treating electrolytic manganese slag leachate by electric field and phosphate tailings | |
Li et al. | Highly efficient CO2 mineralization: Mechanisms and feasibility of utilizing electrolytic manganese residue as a feedstock and implementing ammonia recycling | |
WO2024121768A1 (en) | Apparatus for accelerated mineralization of carbon dioxide with by-products of industrial processes and related process | |
JP2023137509A (en) | Method of producing calcium carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19862929 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19862929 Country of ref document: EP Kind code of ref document: A1 |