JP2014162716A - Concrete composition and method for producing the same - Google Patents
Concrete composition and method for producing the same Download PDFInfo
- Publication number
- JP2014162716A JP2014162716A JP2013038109A JP2013038109A JP2014162716A JP 2014162716 A JP2014162716 A JP 2014162716A JP 2013038109 A JP2013038109 A JP 2013038109A JP 2013038109 A JP2013038109 A JP 2013038109A JP 2014162716 A JP2014162716 A JP 2014162716A
- Authority
- JP
- Japan
- Prior art keywords
- aggregate
- concrete
- cement clinker
- concrete composition
- shrinkage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 53
- 239000000203 mixture Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 21
- 239000011398 Portland cement Substances 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 9
- 230000008602 contraction Effects 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000004568 cement Substances 0.000 description 44
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 12
- 239000001569 carbon dioxide Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 235000019738 Limestone Nutrition 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- -1 etc. Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、主に、土木・建築分野で使用される、コンクリート組成物およびその製造方法に関する。 The present invention mainly relates to a concrete composition used in the field of civil engineering / architecture and a method for producing the same.
近年、コンクリートの耐久性に関して、コンクリート技術者のみならず、一般の人々からも大きな関心が寄せられている。コンクリートの耐久性と関連して、コンクリートのひび割れが問題視される。コンクリートのひび割れは、コンクリートの収縮から惹起される。このため、コンクリートの収縮を低減する研究が盛んに行われている。 In recent years, with regard to the durability of concrete, there has been a great deal of interest not only by concrete engineers but also by the general public. In relation to the durability of concrete, cracking of concrete is regarded as a problem. Concrete cracks are caused by concrete shrinkage. For this reason, research on reducing shrinkage of concrete has been actively conducted.
コンクリートの収縮を低減する方法としては、膨張材や収縮低減剤を適用する方法が挙げられる。しかしながら、これらの混和材や混和剤は使用量が少ないため、コンクリート中の単位使用量が多いセメントや骨材の影響を大きく受けるものであった。
したがって、混和材や混和剤を混和する前の、ベースコンクリートそのものの収縮をまず低減する方法も望まれている。
Examples of a method for reducing the shrinkage of concrete include a method of applying an expansion material and a shrinkage reducing agent. However, since these admixtures and admixtures are used in a small amount, they are greatly affected by cement and aggregate, which have a large unit usage in concrete.
Therefore, a method of first reducing the shrinkage of the base concrete itself before mixing the admixture or admixture is also desired.
コンクリートの構成材料の中で、骨材の使用量が最も大きい。骨材の性質によってコンクリートの収縮も大きくことなることが知られる。このため、コンクリートの収縮を小さくするような骨材の提案も待たれている。 Among the constituent materials of concrete, the amount of aggregate used is the largest. It is known that the shrinkage of concrete also depends greatly on the properties of the aggregate. For this reason, proposal of the aggregate which makes shrinkage | contraction of concrete small is also awaited.
一方、セメントクリンカーを骨材として利用する研究も行われている。セメントクリンカーを粗骨材として利用する研究(非特許文献1〜非特許文献4)や、セメントクリンカーを細骨材として用いたモルタルの性状についても報告がある(非特許文献5)。 On the other hand, research using cement clinker as an aggregate is also being conducted. There are also reports on research using cement clinker as a coarse aggregate (Non-patent Documents 1 to 4) and properties of mortar using cement clinker as a fine aggregate (Non-patent Document 5).
しかしながら、従来のポルトランドセメントクリンカーを骨材として用いたコンクリートは、強度特性は問題ないが、収縮特性や流動性に課題が残されていた。ポルトランドセメントクリンカー骨材を用いたコンクリートの収縮は、一般の天然骨材を用いたコンクリートよりも大きく、流動性も悪くなるため、積極的にコンクリート分野へ利用できるものではなかった。 However, the concrete using the conventional Portland cement clinker as an aggregate has no problem in strength characteristics, but has problems in shrinkage characteristics and fluidity. The shrinkage of concrete using Portland cement clinker aggregate is larger than that of concrete using general natural aggregate and its fluidity is worse, so it cannot be actively used in the concrete field.
本発明者らは、前記の課題に鑑み、本来は、天然骨材よりも収縮の大きなポルトランドセメントクリンカーをCO2で改質した骨材を創製するとともに、流動性も改善できることを知見し、さらに、収縮低減剤と組み合わせて配合したコンクリート組成物が、高いひび割れ抵抗性を発揮することを見出し、本発明を完成するに至った。 In view of the above problems, the inventors of the present invention have found that, originally, an aggregate obtained by modifying a Portland cement clinker having a larger shrinkage than natural aggregate with CO 2 can be improved, and fluidity can be improved. The present inventors have found that a concrete composition blended in combination with a shrinkage reducing agent exhibits high crack resistance and has completed the present invention.
コンクリートの収縮が低減でき、スランプロスも小さく、高いひび割れ抵抗性が得られるコンクリート組成物を提供する。 Provided is a concrete composition in which shrinkage of concrete can be reduced, slump loss is small, and high crack resistance is obtained.
すなわち、本発明は、(1)ポルトランドセメントクリンカーを炭酸化処理してなる骨材と、収縮低減剤とを含有するコンクリート組成物、(2)骨材のCO2含有量が2%以上である(1)のコンクリート組成物、(3)骨材が、5〜40mmの粗骨材および/または5mm下の細骨材である(1)または(2)のコンクリート組成物、(4)ポルトランドセメントクリンカーを粉砕して水に浸しながら炭酸化してなる骨材に収縮低減剤を配合するコンクリート組成物の製造方法、である。 That is, the present invention is (1) a concrete composition containing an aggregate obtained by carbonating Portland cement clinker and a shrinkage reducing agent, and (2) the CO 2 content of the aggregate is 2% or more. (1) Concrete composition, (3) Aggregate is 5-40 mm coarse aggregate and / or fine aggregate below 5 mm (1) or (2) concrete composition, (4) Portland cement A method for producing a concrete composition in which a shrinkage reducing agent is blended with an aggregate obtained by pulverizing a clinker and soaking it in water.
本発明のコンクリート組成物およびその製造方法を採用することにより、コンクリートの収縮が低減でき、高いひび割れ抵抗性を得られる。また、流動性も改善されるため、作業性にも優れるなどの効果を奏する。 By employing the concrete composition and the method for producing the same according to the present invention, shrinkage of the concrete can be reduced and high crack resistance can be obtained. Moreover, since fluidity | liquidity is also improved, there exists an effect of being excellent also in workability | operativity.
以下、本発明を詳細に説明する。
なお、本発明で云うコンクリートとは、モルタルまたはコンクリートである。
また、本発明の部や%は特に規定しない限り質量基準である。
Hereinafter, the present invention will be described in detail.
The concrete referred to in the present invention is mortar or concrete.
Further, parts and percentages in the present invention are based on mass unless otherwise specified.
本発明で云うポルトランドセメントクリンカーは、普通セメントクリンカー、早強セメントクリンカー、低熱セメントクリンカー、中庸熱セメントクリンカー、エコセメントクリンカーなどが挙げられる。これらのうち、収縮を小さくする観点から、普通セメントクリンカー、低熱セメントクリンカー、中庸熱セメントクリンカーを選定することが好ましい。 Examples of the Portland cement clinker used in the present invention include ordinary cement clinker, early strong cement clinker, low heat cement clinker, medium heat heat cement clinker, eco cement clinker and the like. Of these, from the viewpoint of reducing shrinkage, it is preferable to select a normal cement clinker, a low heat cement clinker, or a medium heat heat cement clinker.
いずれのクリンカーも鉱物として、3CaO・SiO2(C3Sと略記)や2CaO・SiO2(C2Sと略記)で表されるカルシウムシリケート、4CaO・Al2O3・Fe2O3(C4AFと略記)で表されるカルシウムアルミノフェライト、3CaO・Al2O3(C3Aと略記)で表されるカルシウムアルミネートを含有する。各鉱物の含有率はJIS R 5202またはJIS R 5204による化学分析の結果から、ボーグ式によって算出される。 As one of the clinker also minerals, 3CaO · SiO 2 (C 3 S for short) and 2CaO · SiO 2 Calcium silicate represented by (C 2 S abbreviated), 4CaO · Al 2 O 3 · Fe 2 O 3 (C 4 abbreviated as AF) and calcium aluminate represented by 3CaO.Al 2 O 3 (abbreviated as C 3 A). The content of each mineral is calculated by the Borg formula from the result of chemical analysis according to JIS R 5202 or JIS R 5204.
本発明ではポルトランドセメントクリンカーを粗骨材や細骨材として利用する。粗骨材は5〜40mmの大きさで利用できる。細骨材は5mm下の大きさで利用できる。本発明では、粗骨材や細骨材を単独でも使用できるし、併用してもよい。 In the present invention, Portland cement clinker is used as coarse aggregate or fine aggregate. The coarse aggregate can be used in a size of 5 to 40 mm. The fine aggregate can be used in a size of 5 mm below. In the present invention, coarse aggregates and fine aggregates can be used alone or in combination.
本発明では、ポルトランドセメントクリンカー骨材を炭酸化処理する。この際、CO2含有量が2%以上となるまで炭酸化処理を行う。CO2含有量が2%未満だと、収縮低減効果が十分でない。また、CO2削減の観点からも望ましくない。 In the present invention, the Portland cement clinker aggregate is carbonized. At this time, carbonation is performed until the CO 2 content is 2% or more. When the CO 2 content is less than 2%, the shrinkage reduction effect is not sufficient. It is also not desirable from the viewpoint of CO 2 reduction.
本発明の骨材の製造方法は特に限定されるものではないが、通常、以下の手順で調製することが望ましい。
(1)ポルトランドセメントクリンカーを粉砕して粗骨材や細骨材を調製する。
(2)次いで、CO2含有量が2%以上となるまで炭酸化処理を行う。
この手順が逆であると、つまり、ポルトランドセメントクリンカーの塊を先に炭酸化処理してから粉砕して粗骨材や細骨材を調製すると、十分な収縮低減効果や流動性保持効果が得られない場合がある。
Although the manufacturing method of the aggregate of this invention is not specifically limited, Usually, it is desirable to prepare in the following procedures.
(1) A coarse aggregate and a fine aggregate are prepared by pulverizing Portland cement clinker.
(2) Next, carbonation is performed until the CO 2 content becomes 2% or more.
If this procedure is reversed, that is, if the aggregate of Portland cement clinker is first carbonized and then pulverized to prepare coarse aggregate or fine aggregate, sufficient shrinkage reduction effect and fluidity retention effect can be obtained. It may not be possible.
炭酸化処理を行うにあたり、ポルトランドセメントクリンカーの粗骨材や細骨材を水に浸しながら炭酸化させることが好ましい。その具体例としては、例えば、ポルトランドセメントクリンカーの粗骨材や細骨材を水槽に入れて、その中に炭酸ガスを吹き込む方法や、ポルトランドセメントクリンカーの粗骨材や細骨材を野積みして散水により湿らせ、炭酸ガスを作用させる方法などが挙げられる。 In carrying out the carbonation treatment, it is preferable to carry out carbonation while immersing the coarse aggregate or fine aggregate of Portland cement clinker in water. Specific examples include, for example, a method in which coarse and fine aggregates of Portland cement clinker are placed in a water tank and carbon dioxide gas is blown into the tank, or coarse and fine aggregates of Portland cement clinker are piled up. For example, a method of moistening with watering and applying carbon dioxide gas can be used.
炭酸ガスは、純度の高い炭酸ガスを用いることもできるが、セメント工場から発生する排ガスを用いることが望ましい。あるいは、製鉄所、電力業界、バイオマスボイラー、焼却場、その他の産業から排出される排ガスが適用可能である。 Carbon dioxide gas can be high purity carbon dioxide, but it is desirable to use exhaust gas generated from a cement factory. Alternatively, exhaust gas discharged from steelworks, electric power industry, biomass boilers, incinerators, and other industries can be applied.
炭酸ガス濃度は、特に限定されるものではないが、5体積%〜20体積%程度あれば十分である。温度も特に限定されないが、20℃〜60℃の範囲が望ましい。 The carbon dioxide gas concentration is not particularly limited, but it is sufficient if it is about 5% by volume to 20% by volume. The temperature is not particularly limited, but is preferably in the range of 20 ° C to 60 ° C.
本発明に係る収縮低減剤とは、特に限定されるものではなく、いかなるものでも使用可能である。
主成分で大別すると、低級アルコールアルキレンオキシド付加物系、アルコール系、グリコールエーテル・アミノアルコール誘導体系、ポリエーテル系、低分子量アルキレンオキシド共重合体系などが挙げられる。
収縮低減剤は各社より市販されており、その代表例としては、例えば、電気化学工業社製「エスケーガード」、フローリック社製「ヒビガード」や「シュリンクガード」、竹本油脂社製「ヒビダン」、太平洋セメント社製「テトラガード」などが挙げられる。
The shrinkage reducing agent according to the present invention is not particularly limited, and any one can be used.
The main components are roughly classified into lower alcohol alkylene oxide adduct systems, alcohol systems, glycol ether / amino alcohol derivative systems, polyether systems, and low molecular weight alkylene oxide copolymer systems.
Shrinkage reducing agents are commercially available from various companies, and representative examples thereof include, for example, “Eskard” manufactured by Denki Kagaku Kogyo, “Hibiguard” and “Shrink Guard” manufactured by Floric, “Hibidan” manufactured by Takemoto Yushi Co., Ltd. Examples include "Tetragard" manufactured by Taiheiyo Cement.
収縮低減剤の使用量は、特に限定されないが、1kg/m3〜10kg/m3が好ましい。1kg/m3未満ではひび割れ抑制効果が十分に得られない場合があり、
10kg/m3を超えて配合すると、強度管理が難しくなる場合がある。
The amount of the shrinkage reducing agent is not particularly limited, 1kg / m 3 ~10kg / m 3 is preferred. If it is less than 1 kg / m 3 , the crack suppression effect may not be sufficiently obtained,
If it exceeds 10 kg / m 3 , strength management may be difficult.
本発明で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに高炉スラグやフライアッシュやシリカを混合した各種混合セメント、都市ゴミ焼却灰や下水汚泥焼却灰などを原料として製造された廃棄物利用セメント(エコセメント)、石灰石微粉末や高炉徐冷スラグ微粉末などを混合した各種フィラーセメントなどが挙げられ、これらのうちの1種又は2種以上が使用可能である。 As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements in which blast furnace slag, fly ash and silica are mixed with these portland cements, municipal waste Waste-use cement (eco-cement) manufactured using incineration ash, sewage sludge incineration ash, etc., and various filler cements mixed with limestone fine powder or blast furnace slow-cooled slag fine powder, etc. Species or two or more can be used.
本発明では、高炉水砕スラグ微粉末や石灰石微粉末やフライアッシュやシリカフュームなどの混和材料、凝結調整剤、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、膨張材、ポリマー、スチールファイバーやビニロンファイバーや炭素繊維などの繊維質物質、ベントナイトなどの粘土鉱物、およびハイドロタルサイトなどのアニオン交換体などの添加剤など、通常のセメント材料に用いられる公知の添加剤、細骨材、ならびに粗骨材などからなる群の1種類又は2種類以上を、本発明の目的を実質的に阻害しない範囲で併用することができる。 In the present invention, blast furnace granulated slag fine powder, limestone fine powder, fly ash, silica fume, and other admixtures, setting modifier, quick hardening material, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, Defoamers, thickeners, rust inhibitors, antifreeze agents, expanding materials, polymers, fibrous materials such as steel fibers, vinylon fibers and carbon fibers, clay minerals such as bentonite, and anion exchangers such as hydrotalcite, etc. In the range that does not substantially impede the purpose of the present invention, one or more of the group consisting of known additives used in ordinary cement materials, fine aggregates, coarse aggregates, and the like Can be used together.
「実験例1」
コンクリートにより収縮挙動とひび割れ抵抗性を調べた。下記の5〜40mmの粗骨材と5mm下の細骨材を使用し、単位セメント量330kg/m3、収縮低減剤4kg/m3使用した。単位水量175kg/m3、s/a=43%、空気量4.5±1.5%のコンクリートを調製した。このコンクリートを用いて、長さ変化率を測定し、収縮挙動を比較するとともに、ひび割れ抵抗性も検討した。
"Experiment 1"
The shrinkage behavior and crack resistance of concrete were investigated. The following coarse aggregate of 5 to 40 mm and fine aggregate below 5 mm were used, and the unit cement amount was 330 kg / m 3 and the shrinkage reducing agent was 4 kg / m 3 . Concrete having a unit water amount of 175 kg / m 3 , s / a = 43%, and an air amount of 4.5 ± 1.5% was prepared. Using this concrete, the length change rate was measured, the shrinkage behavior was compared, and the crack resistance was also examined.
<使用材料>
セメント:普通ポルトランドセメント、市販品。
収縮低減剤A:電気化学工業社製「エスケーガード」、低分子量アルキレンオキシド共重合体系。
骨材A:ケイ石系の粗骨材と細骨材、真比重2.65。
骨材B:石灰石系の粗骨材と細骨材、真比重2.71。
骨材C:普通セメントクリンカーの粗骨材と細骨材:C3S58.1%、C2S18.7%、C4AF10.0%、C3A10.2%。CO2含有量0.3%。炭酸化処理していないもの。5〜40mmと5mm下にそれぞれ粉砕。
骨材D:普通セメントクリンカーの粗骨材と細骨材:C3S58.1%、C2S18.7%、C4AF10.0%、C3A10.2%。CO2含有量3.0%。5〜40mmと5mm下にそれぞれ粉砕してから水に浸しながら炭酸化処理したもの。炭酸ガスとしてCO2濃度10体積%のセメント工場の排ガスを使用。
骨材E:エコセメントクリンカーの粗骨材と細骨材:C3S64.9%、C2S5.0%、C4AF12.7%、C3A13.3%。CO2含有量3.0%。5〜40mmと5mm下にそれぞれ粉砕してから水に浸しながら炭酸化処理したもの。炭酸ガスとしてCO2濃度10体積%のセメント工場の排ガスを使用。
骨材F:低熱セメントクリンカーの粗骨材と細骨材:C3S28.0%、C2S58.2%、C4AF1.5%、C3A10.5%。CO2含有量3.0%。5〜40mmと5mm下にそれぞれ粉砕してから水に浸しながら炭酸化処理したもの。炭酸ガスとしてCO2濃度10体積%のセメント工場のの排ガスを使用。
骨材G:中庸熱セメントクリンカーの粗骨材と細骨材:C3S43.0%、C2S39.0%、C4AF9.0%、C3A7.0%。CO2含有量3.0%。5〜40mmと5mm下にそれぞれ粉砕してから水に浸しながら炭酸化処理したもの。炭酸ガスとしてCO2濃度10体積%のセメント工場の排ガスを使用。
骨材H:早強セメントクリンカーの粗骨材と細骨材:C3S71.2%、C2S7.2%、C4AF10.0%、C3A8.7%。CO2含有量3.0%。5〜40mmと5mm下にそれぞれ粉砕してから水に浸しながら炭酸化処理したもの。炭酸ガスとしてCO2濃度10体積%のセメント工場の排ガスを使用。
骨材I:中庸熱セメントクリンカーの粗骨材と細骨材:C3S43.0%、C2S39.0%、C4AF9.0%、C3A7.0%。CO2含有量2.0%。5〜40mmと5mm下にそれぞれ粉砕してから水に浸しながら炭酸化処理したもの。炭酸ガスとしてCO2濃度10体積%のセメント工場の排ガスを使用。
骨材J:中庸熱セメントクリンカーの粗骨材と細骨材:C3S43.0%、C2S39.0%、C4AF9.0%、C3A7.0%。CO2含有量5.0%。5〜40mmと5mm下にそれぞれ粉砕してから水に浸しながら炭酸化処理したもの。炭酸ガスとしてCO2濃度10体積%のセメント工場の排ガスを使用。
<Materials used>
Cement: Ordinary Portland cement, commercially available.
Shrinkage reducing agent A: “SK GUARD” manufactured by Denki Kagaku Kogyo Co., Ltd., a low molecular weight alkylene oxide copolymer system.
Aggregate A: Silica-based coarse aggregate and fine aggregate, true specific gravity 2.65.
Aggregate B: limestone coarse aggregate and fine aggregate, true specific gravity 2.71.
Aggregate C: Rough aggregate and fine aggregate of ordinary cement clinker: C 3 S 58.1%, C 2 S 18.7%, C 4 AF 10.0%, C 3 A 10.2%. CO 2 content of 0.3%. Those that have not been carbonized. Grind to 5-40mm and 5mm below.
Aggregate D: Rough aggregate and fine aggregate of ordinary cement clinker: C 3 S 58.1%, C 2 S 18.7%, C 4 AF 10.0%, C 3 A 10.2%. CO 2 content 3.0%. What was pulverized to 5-40 mm and 5 mm below and then carbonized while being immersed in water. Using the exhaust gas of CO 2 concentration of 10% by volume of cement factories as carbon dioxide.
Aggregate E: Eco-cement clinker coarse aggregate and fine aggregate: C 3 S 64.9%, C 2 S 5.0%, C 4 AF 12.7%, C 3 A 13.3%. CO 2 content 3.0%. What was pulverized to 5-40 mm and 5 mm below and then carbonized while being immersed in water. Using the exhaust gas of CO 2 concentration of 10% by volume of cement factories as carbon dioxide.
Aggregate F: Coarse and fine aggregate of low heat cement clinker: C 3 S 28.0%, C 2 S 58.2%, C 4 AF 1.5%, C 3 A 10.5%. CO 2 content 3.0%. What was pulverized to 5-40 mm and 5 mm below and then carbonized while being immersed in water. Using the exhaust gas of the CO 2 concentration of 10% by volume of cement factories as carbon dioxide.
Aggregate G: Coarse and fine aggregate of medium heat cement clinker: C 3 S 43.0%, C 2 S 39.0%, C 4 AF 9.0%, C 3 A 7.0%. CO 2 content 3.0%. What was pulverized to 5-40 mm and 5 mm below and then carbonized while being immersed in water. Using the exhaust gas of CO 2 concentration of 10% by volume of cement factories as carbon dioxide.
Aggregate H: Coarse aggregate and fine aggregate of early strong cement clinker: C 3 S 71.2%, C 2 S 7.2%, C 4 AF 10.0%, C 3 A 8.7%. CO 2 content 3.0%. What was pulverized to 5-40 mm and 5 mm below and then carbonized while being immersed in water. Using the exhaust gas of CO 2 concentration of 10% by volume of cement factories as carbon dioxide.
Aggregate I: Coarse aggregate and fine aggregate of intermediate heat cement clinker: C 3 S 43.0%, C 2 S 39.0%, C 4 AF 9.0%, C 3 A 7.0%. CO 2 content 2.0%. What was pulverized to 5-40 mm and 5 mm below and then carbonized while being immersed in water. Using the exhaust gas of CO 2 concentration of 10% by volume of cement factories as carbon dioxide.
Aggregate J: Coarse and fine aggregate of medium heat cement clinker: C 3 S 43.0%, C 2 S 39.0%, C 4 AF 9.0%, C 3 A 7.0%. CO 2 content 5.0%. What was pulverized to 5-40 mm and 5 mm below and then carbonized while being immersed in water. Using the exhaust gas of CO 2 concentration of 10% by volume of cement factories as carbon dioxide.
<測定方法>
乾燥収縮:JIS A 6202(B)に準じて材齢91日の長さ変化率を測定して評価した。
ひび割れ観察:厚さ100mmで面積50m2のデッキスラブを造成した。デッキスラブは波型鋼板の上にコンクリートを打設して複合化させたもの。材齢5日までシート養生を行い、その後、シートを取り除いた。材齢91日においてひび割れの発生観察を行った。1m2当たり、2本を超えてひび割れが発生した場合は×、ひび割れが1〜2本発生した場合は△、ひび割れの発生がない場合は○とした。
スランプロス:18cm±1.0cmで練り上げ、90分後のスランプを測定し、練り上げ直後との差をスランプロスと定義した。ただし、練り上げたコンクリートは静置し、90分後にスコップで練り返してから測定した。
<Measurement method>
Drying shrinkage: The length change rate of 91 days of age was measured and evaluated according to JIS A 6202 (B).
Crack observation: A deck slab having a thickness of 100 mm and an area of 50 m 2 was formed. A deck slab is a composite of concrete cast on corrugated steel sheets. Sheet curing was performed until age 5 days, and then the sheet was removed. The occurrence of cracks was observed at 91 days of age. When 2 cracks occurred per 1 m 2 , it was evaluated as x, when 1 or 2 cracks were generated, and when no crack was generated, it was evaluated as ◯.
Slump loss: Kneaded at 18 cm ± 1.0 cm, measured slump after 90 minutes, and defined the difference from immediately after kneading as slump loss. However, the kneaded concrete was allowed to stand, and after 90 minutes, it was kneaded with a scoop before measurement.
表1より、本発明のコンクリート組成物を用いると、乾燥収縮が小さく、ひび割れ抵抗性も高いことがわかる。また、スランプロスも小さいことがわかる。一方、炭酸化処理していない普通セメントクリンカーの骨材を用いると、ケイ石系や石灰石系の骨材よりも、むしろ、収縮やスランプロスが大きい。 Table 1 shows that when the concrete composition of the present invention is used, the drying shrinkage is small and the crack resistance is high. It can also be seen that the slump loss is small. On the other hand, using ordinary cement clinker aggregates that have not been carbonized causes more shrinkage and slump loss than quartzite and limestone aggregates.
「実験例2」
骨材Dを使用し、収縮低減剤の種類と使用量を表2に示すように変化したこと以外は実験例1と同様に行った。結果を表2に併記した。
"Experimental example 2"
The same procedure as in Experimental Example 1 was conducted except that aggregate D was used and the type and amount of shrinkage reducing agent were changed as shown in Table 2. The results are shown in Table 2.
<使用材料>
収縮低減剤b:フローリック社製「ヒビガード」、グリコールエーテル・アミノアルコール誘導体系
収縮低減剤c:太平洋セメント社製「テトラガード」、低級アルコールのアルキレンオキシド付加物系。
<Materials used>
Shrinkage reducing agent b: “Higarard” manufactured by Floric, glycol ether / amino alcohol derivative-based shrinkage reducing agent c: “Tetragard” manufactured by Taiheiyo Cement, an alkylene oxide adduct system of lower alcohol.
表2より、本発明のコンクリート組成物を用いると、乾燥収縮が小さく、ひび割れ抵抗性も高いことがわかる。また、スランプロスも小さいことがわかる。一方、収縮低減剤を配合しないと、デッキスラブコンクリートのようなひび割れやすい構造物ではひび割れが多く発生する。 Table 2 shows that when the concrete composition of the present invention is used, the drying shrinkage is small and the crack resistance is high. It can also be seen that the slump loss is small. On the other hand, if a shrinkage reducing agent is not blended, many cracks are generated in structures that are easily cracked, such as deck slab concrete.
本発明のコンクリート組成物およびその製造方法を使用することにより、コンクリートの収縮が低減でき、スランプロスも小さく、高いひび割れ抵抗性が得られるので、土木、建築分野に広範囲に摘用できる。 By using the concrete composition of the present invention and the method for producing the same, shrinkage of the concrete can be reduced, slump loss can be reduced, and high crack resistance can be obtained, so that it can be widely used in the civil engineering and construction fields.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013038109A JP6338819B2 (en) | 2013-02-28 | 2013-02-28 | Concrete composition and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013038109A JP6338819B2 (en) | 2013-02-28 | 2013-02-28 | Concrete composition and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014162716A true JP2014162716A (en) | 2014-09-08 |
JP6338819B2 JP6338819B2 (en) | 2018-06-06 |
Family
ID=51613654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013038109A Active JP6338819B2 (en) | 2013-02-28 | 2013-02-28 | Concrete composition and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6338819B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104961415A (en) * | 2015-06-10 | 2015-10-07 | 金华市欣生沸石开发有限公司 | Concrete crack resistance silicon waterproof agent |
CN106747638A (en) * | 2016-12-23 | 2017-05-31 | 河南华泰新材科技股份有限公司 | Foam concrete main material |
JP7432341B2 (en) | 2019-11-08 | 2024-02-16 | 前田道路株式会社 | Asphalt mixture manufacturing method and asphalt plant |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49126721A (en) * | 1973-04-06 | 1974-12-04 | ||
JPH05238792A (en) * | 1992-02-28 | 1993-09-17 | Sumitomo Cement Co Ltd | Production of regenerated aggregate and regenerated aggregate |
JPH06199547A (en) * | 1992-12-28 | 1994-07-19 | Sumitomo Cement Co Ltd | High strength cement composition |
JP2002173350A (en) * | 2000-12-07 | 2002-06-21 | Sekisui Chem Co Ltd | Aggregate production process utilizing incineration ash and production equipment for the same process |
JP2005314123A (en) * | 2004-04-27 | 2005-11-10 | Nippon Concrete Gijutsu Kk | Method for producing concrete and secondary product by effectively utilizing resources |
JP2007022817A (en) * | 2005-07-12 | 2007-02-01 | Nippon Steel Corp | Treating method of steelmaking slag |
JP2007246308A (en) * | 2006-03-14 | 2007-09-27 | Tokyo Electric Power Co Inc:The | Concrete composition and method for determining composition of concrete |
JP2009028581A (en) * | 2007-07-24 | 2009-02-12 | Shimizu Corp | Method of fixing carbon dioxide |
JP2009057257A (en) * | 2007-09-03 | 2009-03-19 | Nippon Steel Corp | Carbonated slag, and carbonation treatment method for slag |
JP2011173768A (en) * | 2010-02-25 | 2011-09-08 | Kobe Steel Ltd | Method for producing fine aggregate using steelmaking slag, method for producing hydration hardened object using the fine aggregate, and fine aggregate and hydration hardened object using steelmaking slag |
JP2012101962A (en) * | 2010-11-09 | 2012-05-31 | Denki Kagaku Kogyo Kk | Fine aggregate for self-healing concrete, and the self-healing concrete |
JP2012121775A (en) * | 2010-12-09 | 2012-06-28 | Denki Kagaku Kogyo Kk | Cement composition for grout and grout material |
-
2013
- 2013-02-28 JP JP2013038109A patent/JP6338819B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49126721A (en) * | 1973-04-06 | 1974-12-04 | ||
JPH05238792A (en) * | 1992-02-28 | 1993-09-17 | Sumitomo Cement Co Ltd | Production of regenerated aggregate and regenerated aggregate |
JPH06199547A (en) * | 1992-12-28 | 1994-07-19 | Sumitomo Cement Co Ltd | High strength cement composition |
JP2002173350A (en) * | 2000-12-07 | 2002-06-21 | Sekisui Chem Co Ltd | Aggregate production process utilizing incineration ash and production equipment for the same process |
JP2005314123A (en) * | 2004-04-27 | 2005-11-10 | Nippon Concrete Gijutsu Kk | Method for producing concrete and secondary product by effectively utilizing resources |
JP2007022817A (en) * | 2005-07-12 | 2007-02-01 | Nippon Steel Corp | Treating method of steelmaking slag |
JP2007246308A (en) * | 2006-03-14 | 2007-09-27 | Tokyo Electric Power Co Inc:The | Concrete composition and method for determining composition of concrete |
JP2009028581A (en) * | 2007-07-24 | 2009-02-12 | Shimizu Corp | Method of fixing carbon dioxide |
JP2009057257A (en) * | 2007-09-03 | 2009-03-19 | Nippon Steel Corp | Carbonated slag, and carbonation treatment method for slag |
JP2011173768A (en) * | 2010-02-25 | 2011-09-08 | Kobe Steel Ltd | Method for producing fine aggregate using steelmaking slag, method for producing hydration hardened object using the fine aggregate, and fine aggregate and hydration hardened object using steelmaking slag |
JP2012101962A (en) * | 2010-11-09 | 2012-05-31 | Denki Kagaku Kogyo Kk | Fine aggregate for self-healing concrete, and the self-healing concrete |
JP2012121775A (en) * | 2010-12-09 | 2012-06-28 | Denki Kagaku Kogyo Kk | Cement composition for grout and grout material |
Non-Patent Citations (2)
Title |
---|
山下牧生他: "セメントクリンカーを細骨材としたモルタルの諸性状", 宇部三菱セメント研究報告, JPN6017039494, 5 January 2004 (2004-01-05), pages 56 - 64, ISSN: 0003662779 * |
田中勲他: "クリンカーを骨材に使用したリサイクルしやすいコンクリートに関する研究", 日本建築学会学術講演梗概集, JPN6017039496, August 1995 (1995-08-01), pages 1497 - 1498, ISSN: 0003662780 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104961415A (en) * | 2015-06-10 | 2015-10-07 | 金华市欣生沸石开发有限公司 | Concrete crack resistance silicon waterproof agent |
CN104961415B (en) * | 2015-06-10 | 2017-05-24 | 金华市欣生沸石开发有限公司 | Concrete crack resistance silicon waterproof agent |
CN106747638A (en) * | 2016-12-23 | 2017-05-31 | 河南华泰新材科技股份有限公司 | Foam concrete main material |
JP7432341B2 (en) | 2019-11-08 | 2024-02-16 | 前田道路株式会社 | Asphalt mixture manufacturing method and asphalt plant |
Also Published As
Publication number | Publication date |
---|---|
JP6338819B2 (en) | 2018-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101313015B1 (en) | Cement additive and cement composition | |
JP4502298B2 (en) | Cement composition and acid resistant cement / concrete using the same | |
Khalil et al. | Carbonation of ternary cementitious concrete systems containing fly ash and silica fume | |
JP5818579B2 (en) | Neutralization suppression type early strong cement composition | |
JP2012101962A (en) | Fine aggregate for self-healing concrete, and the self-healing concrete | |
JP6639608B2 (en) | Highly durable mortar, highly durable concrete, and method of manufacturing high durable mortar | |
JP2018100204A (en) | Method of producing cement composition | |
JP4382614B2 (en) | Cement admixture and cement composition using the same | |
JP6338819B2 (en) | Concrete composition and method for producing the same | |
JP5085237B2 (en) | Premixed mortar and method for producing the same | |
JP4762953B2 (en) | Low heat generation type high strength concrete and hardened concrete using the same | |
CN114368946A (en) | Mineral admixture hydraulic concrete | |
JP5116193B2 (en) | Cement admixture, cement composition, and high fluid concrete using the same | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
JP2014040347A (en) | Cement composition | |
JP4877892B2 (en) | Cement admixture, cement composition, and high fluidity concrete using the same | |
JP6157148B2 (en) | Concrete composition and method for producing the same | |
JP6347575B2 (en) | Aggregate and method for producing the same | |
JP2021178744A (en) | concrete | |
KR101300867B1 (en) | Mass concrete composition mixed with the sludge of water treatment and the method of preparing it | |
Łukowski et al. | Frost resistance of concretes containing ground granulated blast-furnace slag | |
JP2021155310A (en) | Salinity tolerance grout composition and salinity tolerance grout | |
JP2009057219A (en) | Limestone aggregate and its manufacturing process | |
JP6179357B2 (en) | Chloride ion permeation suppression inorganic admixture for concrete, concrete using the admixture, and method for producing the same | |
JP6003900B2 (en) | Cement admixture manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160104 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20161205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6338819 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |