JP2008070290A - Apparatus for measuring light distribution characteristics - Google Patents

Apparatus for measuring light distribution characteristics Download PDF

Info

Publication number
JP2008070290A
JP2008070290A JP2006250540A JP2006250540A JP2008070290A JP 2008070290 A JP2008070290 A JP 2008070290A JP 2006250540 A JP2006250540 A JP 2006250540A JP 2006250540 A JP2006250540 A JP 2006250540A JP 2008070290 A JP2008070290 A JP 2008070290A
Authority
JP
Japan
Prior art keywords
sample
stage
rotating
led
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250540A
Other languages
Japanese (ja)
Inventor
Keiji Kobayashi
林 啓 志 小
Mikio Soma
馬 幹 雄 相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI SPECTRA CO Ltd
Original Assignee
ASAHI SPECTRA CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI SPECTRA CO Ltd filed Critical ASAHI SPECTRA CO Ltd
Priority to JP2006250540A priority Critical patent/JP2008070290A/en
Publication of JP2008070290A publication Critical patent/JP2008070290A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a space-saving apparatus with a mechanism for rotating a light emission source sample to be measured by 360 degrees and capable of measuring three-dimensional light distribution characteristics by moving an optical receiver with respect to a Z-axis in one direction only by ±90 degrees. <P>SOLUTION: The apparatus includes a sample base 11; a sample base part 10; a rotating stage 30 for rotating the sample base part 10; a horizontal substrate 100 for mounting the rotating stage; a raised plate part 40 vertically raised over the horizontal substrate and provided with a rotatable bearing part; a rotating plate 50 capable of rotating by 180 degrees with the rotatable bearing part of the raised plate part as a fulcrum; the optical receiver 60 fastened to the surface of the rotating plate on the side of a measuring position point and capable of receiving axial rays from the measuring position point at a prescribed distance in a radial direction and measuring their intensity; and an imaging camera 70 for imaging the periphery of the light emission source sample. The optical receiver measures luminous intensity in spherical coordinates (a Z-axis direction δ>0) at the prescribed distance in a radial direction from the measuring position point of a light emission source and in a circumferential direction (θ) by rotating the rotating plate and the rotating stage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、測定対象の各種電極端子形状を有する発光源試料を予め定めた測定位置点に設定し、その測定位置点を球面座標系の中心とし、その座標中心から所定径方向距離における発光源試料の光放射方向とその強度の関係を示す3次元配光特性を測定する装置に関する。   The present invention sets a light emitting source sample having various electrode terminal shapes to be measured as a predetermined measurement position point, sets the measurement position point as the center of a spherical coordinate system, and emits light at a predetermined radial distance from the coordinate center. The present invention relates to an apparatus for measuring a three-dimensional light distribution characteristic indicating a relationship between a light emission direction of a sample and its intensity.

従来、発光源の配光特性を測定する装置は、光源から射出する光の強度を広い立体角範囲、例えば半球面座標系の立体角範囲の配光特性を測定する必要があった。   Conventionally, an apparatus for measuring the light distribution characteristics of a light emitting source has been required to measure the light distribution characteristics in a wide solid angle range, for example, a solid angle range of a hemispherical coordinate system, for the intensity of light emitted from the light source.

その配光特性を測定する場合、光源が点光源と見なしえる程度に、光源と測定用受光器との間の距離を大きくとる必要があった。すなわち、その光源の測定位置点から受光器までの所定径方向距離を予め設定しておく必要がある。   When measuring the light distribution characteristics, it is necessary to increase the distance between the light source and the measuring light receiver so that the light source can be regarded as a point light source. That is, it is necessary to set in advance a predetermined radial distance from the measurement position point of the light source to the light receiver.

従って、3次元配光特性を測定するのに、従来は受光器を2方向に移動させなければならなかった。例えば、発光面の正面方向をZ軸として、そのZ軸を中心として受光器を回転させる円周(θ)方向と、Z軸の方向に受光器を移動させる軸(Z)方向である。   Therefore, in order to measure the three-dimensional light distribution characteristic, conventionally, the light receiver has to be moved in two directions. For example, the front direction of the light emitting surface is the Z axis, and there are a circumferential (θ) direction that rotates the light receiver around the Z axis, and an axis (Z) direction that moves the light receiver in the direction of the Z axis.

発光源を中心として、その点から前記所定距離を離して受光器を設置して、その受光器は発光源の周囲を360度回転して光強度を測定するようにしなければならないので、3次元配光特性測定装置は、大きなスペースを必要とする問題があった。   A light receiver must be installed around the light source at a predetermined distance from the point, and the light receiver must rotate 360 degrees around the light source to measure the light intensity. The light distribution characteristic measuring apparatus has a problem of requiring a large space.

これらの問題を解決するものとして、発光面の正面方向のZ軸に対して、予め異なる放射角度に対向する位置(前記所定径方向距離だけ離れた受光位置)に複数の受光部を配設した発明が特許文献1に開示されている。   In order to solve these problems, a plurality of light receiving portions are disposed at positions facing different radiation angles in advance (light receiving positions separated by the predetermined radial distance) with respect to the Z axis in the front direction of the light emitting surface. The invention is disclosed in Patent Document 1.

この発明では、受光器の移動は円周方向の一方向360度回転のみであるが、3次元配光特性測定装置として大きなスペースを必要とする問題があった。   In this invention, the light receiver is moved only 360 degrees in the circumferential direction, but there is a problem that a large space is required as a three-dimensional light distribution characteristic measuring apparatus.

また、従来は、発光点の中心が何処にあるのかが、分かりにくかった。そのため、発光点を中心にした配光特性の測定精度は、良くなかった。さらに、LEDの配光測定を考える時に、発光面を中心にした配光特性か、或いは、樹脂先頭部(レンズ面頂部)を中心とした配光特性かと言う場合がある。目的によって必要とされた部位を中心とした、配光特性の測定が必要とされるが、従来の装置では難しい問題があった。またさらに、発光点の一部を選択して、その一部分のみから出た光の配光特性、例えば大面積で光る有機ELから一部分の場所だけ選んでの配光測定が難しい問題があった。   Conventionally, it has been difficult to understand where the center of the light emitting point is. Therefore, the measurement accuracy of the light distribution characteristics centered on the light emitting point is not good. Further, when considering the light distribution measurement of the LED, it may be said that the light distribution characteristic centered on the light emitting surface or the light distribution characteristic centered on the resin head (lens surface top). Although it is necessary to measure the light distribution characteristic centered on the part required for the purpose, there is a problem that is difficult in the conventional apparatus. Furthermore, there is a problem that it is difficult to measure the light distribution by selecting a part of the light emitting point and selecting the light distribution characteristic of the light emitted from only the part, for example, only a part of the organic EL that emits light in a large area.

特開2005−172665号公報(第2頁、第6図)Japanese Patent Laying-Open No. 2005-172665 (2nd page, FIG. 6)

本発明は、測定対象の発光源試料を360度回転させる機構を備え、受光器をZ軸に対し一方向に±90度のみの移動で3次元配光特性を測定可能とする省スペースの装置を提供することを第1の目的とする。   The present invention has a mechanism for rotating a light-emitting source sample to be measured by 360 degrees, and can save three-dimensional light distribution characteristics by moving the light receiver only by ± 90 degrees in one direction with respect to the Z axis. It is a first object to provide

また、発光源試料の形状、端子構造に対応して、容易に交換着脱を行える試料把持機構を提供することを第2の目的とする。   It is a second object of the present invention to provide a sample gripping mechanism that can be easily exchanged and attached in accordance with the shape of the luminescent source sample and the terminal structure.

さらに、各種の発光源試料を把持する試料台の電極端子接続機構を提供し、装着、接続を容易に行う構成を提供することを第3の目的とする。   It is a third object of the present invention to provide an electrode terminal connection mechanism for a sample stage that holds various light-emitting source samples, and to provide a configuration for easy mounting and connection.

前記課題を解決するため本発明の配光特性測定装置は、測定対象の各種電極端子形状の発光源試料を予め定めた測定位置点に設定し、その測定位置点を球面座標系の中心とし、その座標中心から所定径方向距離における発光源試料の放射方向とその強度の関係を示す3次元配光特性を測定する装置であって、
前記発光源試料の各種電極端子に対応して把持する着脱自在及び交換自在の試料台と、その試料へ電力を供給するケーブル端を接続させる入力端子とからなる試料台部と、
前記試料台部を搭載し、上下(Z軸)方向、左右(X軸)方向、前後(Y軸)方向へ移動させ、それらの可動範囲内で前記測定位置中心に固定する3次元調整機構と、
前記試料台部を載せた3次元調整機構を搭載すると共に、把持されている試料の前記測定位置中心を通過するZ軸の周りにその試料台を360度回転させる回転ステージと、
その回転ステージを水平に搭載する水平基板と、
その水平基板上に垂直に立設すると共に、前記測定位置中心からの垂線と交叉する位置にその垂線方向を軸とする回転軸受部を設けた立設板部と、
その立設板部の回転軸受部を支点として少なくとも180度回転ができる回転板と、
その回転板の前記測定位置点側の表面上に固着させ、その測定位置点からの輻射光線を前記所定径方向距離で受光し、その強度を測定できる受光器と、
その発光源試料周辺を撮像するカメラ装置と、を備え、
前記回転板を回転させて、そのカメラ装置を水平方向に向けて前記3次元調整機構でZ軸方向を調整し、前記測定位置点の高さ位置に設定し、次にその回転板を90度回転させ垂直方向に向けて前記カメラ装置でX及びY軸方向を調整し、前記測定位置点に合わせて設定し、
前記発光源の測定位置点から前記所定径方向距離の球面座標(Z軸方向δ>0)及びその周方向(θ)における光強度を、前記回転板及び回転ステージをそれぞれ回転させて前記受光器で測定することを特徴とする。
In order to solve the above problems, the light distribution characteristic measuring apparatus of the present invention sets a light emitting source sample of various electrode terminal shapes to be measured at a predetermined measurement position point, and sets the measurement position point as the center of a spherical coordinate system, An apparatus for measuring a three-dimensional light distribution characteristic indicating a relationship between a radiation direction of a light-emitting source sample at a predetermined radial direction distance from the coordinate center and its intensity,
A detachable and replaceable sample stage that grips corresponding to the various electrode terminals of the luminescent source sample, and a sample stage unit that connects an end of a cable that supplies power to the sample; and
A three-dimensional adjustment mechanism that mounts the sample stage, moves in the vertical (Z-axis) direction, left-right (X-axis) direction, and front-back (Y-axis) direction, and fixes the measurement position within the movable range; ,
A rotary stage that mounts a three-dimensional adjustment mechanism on which the sample stage is placed and rotates the sample stage 360 degrees around the Z axis that passes through the center of the measurement position of the gripped sample;
A horizontal substrate on which the rotary stage is mounted horizontally;
Standing vertically on the horizontal substrate, and a standing plate portion provided with a rotary bearing portion having the perpendicular direction as an axis at a position intersecting with the perpendicular from the measurement position center;
A rotating plate capable of rotating at least 180 degrees with the rotary bearing portion of the standing plate portion as a fulcrum;
A light receiver that is fixed on the surface of the rotating plate on the measurement position point side, receives a radiation beam from the measurement position point at the predetermined radial distance, and can measure the intensity;
A camera device for imaging the periphery of the luminescent source sample,
The rotating plate is rotated, the camera device is horizontally oriented, the Z-axis direction is adjusted by the three-dimensional adjusting mechanism, the height position of the measurement position point is set, and then the rotating plate is rotated 90 degrees. Rotate and adjust the X and Y axis directions with the camera device in the vertical direction, set according to the measurement position point,
The light receiver in the spherical coordinates (Z-axis direction δ> 0) and the circumferential direction (θ) of the predetermined radial distance from the measurement position point of the light emitting source is rotated by rotating the rotating plate and the rotating stage, respectively. It is characterized by measuring with.

また、前記発光源試料は発光ダイオード(LED)或いはその集合体であることを特徴とする。   The light source sample is a light emitting diode (LED) or an assembly thereof.

また、前記発光源試料は発光ダイオード(LED)であり、前記試料台部が、そのLEDを把持する際、
(1)LEDの陽極・陰極端子がそれぞれ両面側にある場合は、前記入力端子の一方に接続する固定板と、前記入力端子の他方に接続する可動板の間に前記両側面を挟み、前記可動板に対し接触圧力を加えて接続させるサイドコンタクト型試料台を用い、
(2)LEDの陽極・陰極端子が同一側面両端にある場合は、それら両端の端子に対向して電極を配置し、それぞれが前記入力端子に接続する可動電極板に接触圧力を加えて接続させるサイドビュー型試料台を用い、
(3)LEDの陽極・陰極端子が裏面の両端にある場合は、その両端に対向して電極を配置し、それらが前記入力端子に接続する被吸着電極板に吸着用配管接続口から排気して接触圧力を加えて接続させる吸着型試料台を用い、
(4)LEDが砲弾型で、陽極・陰極端子がリード線からなる場合は、その両リード線に対応する2本のトンネル状電極に前記入力端子に接続した前記リード線を挿入し、LEDの上部から中空円板を被せることにより各リード線と前記トンネル状電極との接触圧力により接続させる砲弾型LED試料台を用いることを特徴とする。
In addition, the light source sample is a light emitting diode (LED), and when the sample stage grips the LED,
(1) When the anode and cathode terminals of the LED are on both sides, the movable plate is sandwiched between the fixed plate connected to one of the input terminals and the movable plate connected to the other of the input terminals. Using a side contact type sample table that is connected by applying contact pressure to
(2) When the anode and cathode terminals of the LED are at both ends of the same side, electrodes are arranged opposite to the terminals at both ends, and each is connected by applying contact pressure to the movable electrode plate connected to the input terminal. Using a side view type sample stage,
(3) When the anode / cathode terminal of the LED is at both ends of the back surface, electrodes are arranged opposite to both ends, and they are exhausted from the suction piping connection port to the attracted electrode plate connected to the input terminal. Using an adsorption-type sample table that is connected by applying contact pressure,
(4) When the LED is bullet-shaped and the anode / cathode terminal is composed of lead wires, the lead wire connected to the input terminal is inserted into the two tunnel electrodes corresponding to both lead wires, and the LED A bullet-type LED sample stage is used, which is connected by contact pressure between each lead wire and the tunnel electrode by covering a hollow disk from above.

また、前記3次元調整機構は、Z軸方向調整用マイクロメータからなるZ軸ステージと、X方向調整マイクロメータ及びY方向調整マイクロメータからなるXYステージとを備えることを特徴とする。   The three-dimensional adjustment mechanism includes a Z-axis stage including a Z-axis direction adjustment micrometer and an XY stage including an X-direction adjustment micrometer and a Y-direction adjustment micrometer.

また、前記回転ステージは、さらにそのステージを回転させるステッピングモータを前記水平基板上に設けることを特徴とする。   The rotating stage further includes a stepping motor for rotating the stage on the horizontal substrate.

本発明は、以下に示す効果を奏する。すなわち、発光源試料を把持した試料台側を360度回転可能とする回転ステージを配設することにより、受光器は一方向の移動(発光源試料の発光面の正面方向のZ軸に対して±90度の放射角範囲の移動)のみとして、3次元配光特性測定を行えるため、従来の1/2のスペースの装置とすることができる。   The present invention has the following effects. That is, by arranging a rotation stage that can rotate 360 degrees on the sample stage side that holds the light source sample, the light receiver moves in one direction (with respect to the Z axis in the front direction of the light emitting surface of the light source sample). Since the three-dimensional light distribution characteristic measurement can be performed only by moving the radiation angle range of ± 90 degrees, it is possible to obtain a device having a space of 1/2 of the conventional one.

また、回転ステージに載せた試料台は、試料を把持した状態で交換自在の機構を備えるため、発光源試料を入れ替えてそれぞれの試料の配光特性を効率よく測定することができる。特に試料の電極端子の配置・構造が異なる場合でも、その試料に対応する各種試料台を提供できるため、交換を容易に行うことができる。   In addition, since the sample stage mounted on the rotary stage has a mechanism that can be exchanged while holding the sample, the light distribution characteristics of each sample can be efficiently measured by replacing the light source sample. In particular, even when the arrangement and structure of the electrode terminals of the sample are different, since various sample stands corresponding to the sample can be provided, the replacement can be easily performed.

また、発光源試料(LED)を各種電極端子に対応する試料台にセットするに際して、その電極端子(陽極端子、陰極端子)と、試料台の入力端子との間の接続が着脱自在であり、同時にその試料台を搭載する3次元調整機構に交換自在となるので、測定作業が効率的に行うことができる。すなわち従来のような半田付け電極接続、取り外しなどの手数がかからない。   In addition, when setting the light source sample (LED) on the sample stage corresponding to various electrode terminals, the connection between the electrode terminal (anode terminal, cathode terminal) and the input terminal of the sample stage is detachable, At the same time, it is possible to replace the three-dimensional adjustment mechanism on which the sample stage is mounted, so that the measurement work can be performed efficiently. That is, it does not require the trouble of connecting and removing the soldering electrodes as in the prior art.

また、測定対象の発光源試料、特にLEDを把持する試料台をその台を搭載した3次元調整機構によりその測定位置点を測定前に任意に設定することができる。発光源試料(LED)を各種電極端子に対応する試料台にセットした場合、そのセットされた毎に発光体の測定位置点を微細に調整することができる。このため、異なる形状及び電極配置の発光源試料(LED)を容易に効率的に測定することができる。   In addition, the measurement position point can be arbitrarily set before measurement by a three-dimensional adjustment mechanism on which a light source sample to be measured, particularly a sample stage for holding an LED, is mounted. When the light-emitting source sample (LED) is set on a sample stage corresponding to various electrode terminals, the measurement position point of the light emitter can be finely adjusted each time it is set. For this reason, light-emitting source samples (LEDs) having different shapes and electrode arrangements can be easily and efficiently measured.

また、受光器と並行して撮像カメラを備えているため、発光源試料(LED)の画像データと共に、配光特性測定値データを同時に取得することができるため、画像データと配光特性測定データを合成して表示するデータを得ることができる。   In addition, since an imaging camera is provided in parallel with the light receiver, it is possible to simultaneously acquire the light distribution characteristic measurement value data together with the image data of the light source sample (LED), so that the image data and the light distribution characteristic measurement data are obtained. Can be obtained.

さらに、撮像カメラを備えていることにより、カメラでの映像と、検出器が覗いている部分の印を画面上で同時に表示して、測定したい部位に印を合わせる事で、正確に測定部位に合わせる事が出来る様になり、発光点の中心が何処にあるのかが正確に分かり発光点を中心にした配光特性の測定が高い精度で行えるようになった。例えば、発光面を中心にした配光特性か、或いは、樹脂先頭部(レンズ面頂部)を中心とした配光特性か、目的によって必要とされた部位を中心とした配光特性の測定が出来る。   In addition, by providing an imaging camera, the image of the camera and the mark of the part that the detector is looking at are displayed simultaneously on the screen, and the mark is matched to the part to be measured, so that the measurement part can be accurately displayed. It is now possible to adjust the light distribution characteristics with high accuracy by knowing exactly where the light emission point is centered. For example, it is possible to measure light distribution characteristics centered on the light emitting surface, light distribution characteristics centered on the resin head (lens surface top), or light distribution characteristics centered on the part required by the purpose. .

またさらに、受光器先端(試料台を向いている方向)についているレンズユニットを交換する事で、発光点の一部を選択して、その一部分のみから出た光の配光特性を計ることができる。例えば、大面積で光る有機ELから、一部分の場所だけ選んでの配光測定が可能となる。   Furthermore, by exchanging the lens unit attached to the tip of the receiver (the direction facing the sample stage), it is possible to select a part of the light emission point and measure the light distribution characteristics of the light emitted from only that part. it can. For example, light distribution measurement can be performed by selecting only a part of the organic EL that shines in a large area.

以下図に基づいて本発明の実施形態を詳細に説明する。図1は、本発明の配光特性測定装置の一実施例の斜視図を示し、図2(a)はその正面図、(b)は側面図を示す。いずれも水平基板100の上に搭載されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a perspective view of an embodiment of a light distribution characteristic measuring apparatus of the present invention, FIG. 2 (a) shows a front view thereof, and FIG. 1 (b) shows a side view thereof. Both are mounted on the horizontal substrate 100.

図において、1は発光源試料、具体的には発光ダイオード(LED)などである。10は試料台部を示し、11は試料台(ワンタッチ交換型試料台)、試料台11は試料へ電力を供給するケーブル端を接続する入力端子11a、11bを備える。   In the figure, 1 is a light source sample, specifically a light emitting diode (LED). Reference numeral 10 denotes a sample stage, 11 denotes a sample stage (one-touch exchange type sample stage), and the sample stage 11 includes input terminals 11a and 11b for connecting cable ends for supplying power to the sample.

12は試料台11をワンタッチで受けて固定できる試料台部ワンタッチ受部である。   Reference numeral 12 denotes a sample table one-touch receiving unit that can receive and fix the sample table 11 with one touch.

20は3次元調整機構(XYZステージ)であり、その上に試料台11を載せた試料台部ワンタッチ受部12がある。   Reference numeral 20 denotes a three-dimensional adjustment mechanism (XYZ stage), on which a sample table unit one-touch receiving unit 12 on which the sample table 11 is placed.

3次元調整機構20は、Zステージ、Xステージ、Yステージからなり、それぞれマイクロメータ21a、22a、23aによって各ステージをZ軸方向、X−Y軸方向へ移動させることができる。   The three-dimensional adjustment mechanism 20 includes a Z stage, an X stage, and a Y stage, and each stage can be moved in the Z axis direction and the XY axis direction by the micrometers 21a, 22a, and 23a.

30は回転ステージであり、その上に3次元調整機構20を搭載してZ軸を中心として360度回転可能である。従って試料台11も360度回転される。   Reference numeral 30 denotes a rotation stage, on which the three-dimensional adjustment mechanism 20 is mounted and can be rotated 360 degrees around the Z axis. Accordingly, the sample stage 11 is also rotated 360 degrees.

30aは回転ステージ30を回転させるステッピングモータである。40は水平基板100の上に立設された板状の立設板部である。   Reference numeral 30 a denotes a stepping motor that rotates the rotary stage 30. Reference numeral 40 denotes a plate-like standing plate portion standing on the horizontal substrate 100.

図2(b)の側面図に示されるように回転軸受部40aが立設板部40に設けられている。   As shown in the side view of FIG. 2B, the rotary bearing portion 40 a is provided on the standing plate portion 40.

50は回転板であり、回転軸50aを支点として回転する。回転角度は垂直方向を0度として垂直方向となす角度±90度以上回転する。±110度程度回転できるものが望ましい。   Reference numeral 50 denotes a rotating plate that rotates about the rotating shaft 50a. The rotation angle is rotated by an angle of ± 90 degrees or more with respect to the vertical direction with the vertical direction being 0 degrees. What can rotate about ± 110 degree | times is desirable.

60は受光器であり測定位置点の光線を分光器付きラインセンサーなどで検出する。70は撮像カメラであり、後述する発光源試料1の測定位置点の位置合わせに使用する。   A light receiver 60 detects the light beam at the measurement position point with a line sensor with a spectroscope. Reference numeral 70 denotes an imaging camera, which is used for alignment of measurement position points of the light-emitting source sample 1 described later.

受光器60及び撮像カメラ70は回転板50に搭載して固定する。   The light receiver 60 and the imaging camera 70 are mounted on the rotating plate 50 and fixed.

次に、測定位置点について以下に詳しく説明する。   Next, the measurement position point will be described in detail below.

LEDなどの発光源試料1を載せた試料台11は、3次元調整機構20を介して回転ステージ30に搭載し、水平基板100の上に水平に固定されている。   A sample stage 11 on which a light emitting source sample 1 such as an LED is mounted is mounted on a rotary stage 30 via a three-dimensional adjustment mechanism 20 and is horizontally fixed on a horizontal substrate 100.

この構造で、回転ステージ30を垂直方向のZ軸に対して360度θ方向に回転したとき、発光源試料1の測定したい発光点が移動しないようにXステージ22とYステージ23によりX、Y方向を調整して発光源試料1を水平方向に移動させる必要がある(図3参照)。以上がX、Y方向の測定位置点の位置合わせである。   With this structure, when the rotary stage 30 is rotated in the direction of 360 degrees θ with respect to the Z axis in the vertical direction, the X and Y stages X and Y are controlled by the X stage 22 and the Y stage 23 so that the light emission point to be measured of the light source sample 1 does not move. It is necessary to adjust the direction and move the light source sample 1 in the horizontal direction (see FIG. 3). The above is the alignment of the measurement position points in the X and Y directions.

さらに、この構造で、回転板50を前述のように少なくとも±110度回転して水平方向に撮像カメラ70を発光源試料1に向けたとき、発光源試料1の測定したい発光点が丁度水平位置になるようにZステージ21によりZ方向を調整する(図4参照)。   Further, with this structure, when the rotating plate 50 is rotated at least ± 110 degrees as described above and the imaging camera 70 is pointed toward the light source sample 1 in the horizontal direction, the light emission point to be measured of the light source sample 1 is exactly the horizontal position. The Z direction is adjusted by the Z stage 21 (see FIG. 4).

Xステージ22、Yステージ23による水平面方向の移動により、発光源試料1のXY面座標における測定位置点が定まり、さらにZステージ21による垂直方向の調整によりZ軸座標における測定位置点が定まる。   The measurement position point in the XY plane coordinates of the light source sample 1 is determined by the movement in the horizontal plane direction by the X stage 22 and the Y stage 23, and the measurement position point in the Z axis coordinates is determined by the vertical adjustment by the Z stage 21.

すなわち、測定位置点はXYZの3ステージを有する3次元調整機構20により測定前に予め設定することができる。   That is, the measurement position point can be set in advance before measurement by the three-dimensional adjustment mechanism 20 having three stages of XYZ.

図3は、撮像カメラ70上面から発光源試料1をセットした試料台部10、3次元調整機構20、回転ステージ30を見た図である。回転ステージ30の回転軸(Z軸)を360度θ方向に回転させても発光点の中心が回転するように、発光点をZ軸に合わせるようにXステージ、Yステージを調整する。   FIG. 3 is a view of the sample stage 10, the three-dimensional adjustment mechanism 20, and the rotary stage 30 on which the light emission source sample 1 is set from the upper surface of the imaging camera 70. The X stage and the Y stage are adjusted so that the light emitting point is aligned with the Z axis so that the center of the light emitting point is rotated even if the rotation axis (Z axis) of the rotary stage 30 is rotated in the direction of 360 degrees θ.

図4は、撮像カメラ70で発光源試料1をセットした試料台部10の高さを側面から見た図である。   FIG. 4 is a side view of the height of the sample stage 10 on which the light source sample 1 is set by the imaging camera 70.

立設板部40の回転軸受部40aに入る回転軸50aを支点として回転板50が回転し、撮像カメラ70が水平方向を向いた状態を示している。この状態でZステージで試料台部10の高さを調整する。この調整により水平基板からの発光点の高さは回転軸受部40aの高さと同一となり、図4に示すように回転軸受部40aの中心部の孔の中心に発光点の位置が重なるように見える。 The rotating plate 50 rotates with the rotating shaft 50a entering the rotating bearing portion 40a of the standing plate 40 as a fulcrum, and the imaging camera 70 faces in the horizontal direction. In this state, the height of the sample stage 10 is adjusted on the Z stage. By this adjustment, the height of the light emitting point from the horizontal substrate becomes the same as the height of the rotary bearing portion 40a, and it appears that the position of the light emitting point overlaps the center of the hole in the central portion of the rotary bearing portion 40a as shown in FIG. .

図3及び図4に示した3次元調整機構20による発光源試料1の発光点の位置調整を行い、測定位置点に設定されたときは、その発光点から回転板50への垂線は、回転軸受部40aの中心を通る。   When the position of the light emission point of the light source sample 1 is adjusted by the three-dimensional adjustment mechanism 20 shown in FIGS. 3 and 4 and set to the measurement position point, the perpendicular line from the light emission point to the rotating plate 50 is rotated. It passes through the center of the bearing portion 40a.

なお、図5(a)は、発光源試料1(LED)をXY方向調整時の回転板50及び撮像カメラ70と発光源試料1(LED)の関係を示す。撮像カメラ70の中心軸は発光源試料1(LED)を通る垂直な回転軸(Z軸)と一致する。   5A shows the relationship between the rotating plate 50 and the imaging camera 70 and the light source sample 1 (LED) when the light source sample 1 (LED) is adjusted in the XY direction. The central axis of the imaging camera 70 coincides with a vertical rotation axis (Z axis) passing through the light source sample 1 (LED).

また、図5(b)は、発光源試料1(LED)をZ方向調整時の回転板50及び撮像カメラ70と発光源試料1(LED)の関係を示す。撮像カメラ70の中心軸は水平線となり発光源試料1(LED)の発光面を通る。   FIG. 5B shows the relationship between the rotating plate 50 and the imaging camera 70 and the light source sample 1 (LED) when the light source sample 1 (LED) is adjusted in the Z direction. The central axis of the imaging camera 70 is a horizontal line and passes through the light emitting surface of the light source sample 1 (LED).

次に、発光源試料1(LED)の各種の電極端子に対応した把持構造を有する試料台11において、発光源試料1を次々に替えて測定する場合の操作を説明する。   Next, an operation in the case where the light source sample 1 is measured one after another in the sample stage 11 having a gripping structure corresponding to various electrode terminals of the light source sample 1 (LED) will be described.

なお、発光源試料1(LED)などの各種の電極端子の具体的な構造については後述する。いずれにしても、試料台11は試料台部ワンタッチ受部12に着脱自在であり、発光源試料1の交換も半田付けなしで交換自在の構造としている。   In addition, the specific structure of various electrode terminals, such as the light emission source sample 1 (LED), is mentioned later. In any case, the sample stage 11 is detachably attached to the sample stage part one-touch receiving part 12, and the light source sample 1 can be exchanged without soldering.

試料台11において、セットされている発光源試料1を他の発光源試料1に交換する場合、その発光源試料1の測定位置点が機械的な精度誤差で異なる場合があっても、図5に示したような測定位置点の設定により正しい位置に移動させる。   When the set light source sample 1 is replaced with another light source sample 1 on the sample stage 11, even if the measurement position point of the light source sample 1 may be different due to a mechanical accuracy error, FIG. Move to the correct position by setting the measurement position point as shown in.

発光源試料1(LED)の電極構造(配置)などに対応して試料台11を変えて、セットされた他の試料台11にワンタッチ交換する場合は、その発光源試料1(LED)の測定位置点が当然異なるので、それに合わせて図5に示したような測定位置点の設定を行う必要がある。 When the sample stage 11 is changed corresponding to the electrode structure (arrangement) of the light source sample 1 (LED) and the other sample stage 11 is exchanged with one touch, the measurement of the light source sample 1 (LED) is performed. Since the position points are naturally different, it is necessary to set the measurement position points as shown in FIG.

次に、図6に基づいて発光源試料1(LED)を測定位置点に設定したときの測定動作を説明する。   Next, a measurement operation when the light emitting source sample 1 (LED) is set as a measurement position point will be described with reference to FIG.

図6において、Z軸は測定位置点を通過する垂直方向である。このZ軸は最初、受光器60の受光軸に一致させて、その光の強度を測定する(この場合回転ステージ30を回転させても当然変化しない)。 In FIG. 6, the Z axis is the vertical direction passing through the measurement position point. The Z-axis is first matched with the light-receiving axis of the light receiver 60, and the intensity of the light is measured (in this case, naturally, even if the rotary stage 30 is rotated).

次に、発光源試料1の発光点を球面座標の中心として、受光器60をZ軸から角度δ離れた位置に回転させて測定する。少なくとも90度或いはそれ以上回転させて、予め定めた角度毎に受光器60で光の強度を測定する。その際、各角度毎に回転ステージ30をθ方向に360度回転させて、予め定めた角度θ毎に受光器60で光の強度を測定する。   Next, measurement is performed by rotating the light receiver 60 to a position away from the Z axis by an angle δ with the light emitting point of the light source sample 1 as the center of the spherical coordinate. The light intensity is measured by the light receiver 60 at every predetermined angle by rotating at least 90 degrees or more. At that time, the rotary stage 30 is rotated 360 degrees in the θ direction for each angle, and the light intensity is measured by the light receiver 60 for each predetermined angle θ.

光の強度Iはその中心から所定径方向距離Rにおける(δ、θ)で定まる座標パラメータによる関数で表される。
I=f(R、δ、θ)
The light intensity I is represented by a function based on coordinate parameters determined by (δ, θ) at a predetermined radial distance R from the center.
I = f (R, δ, θ)

図7から図10に基づき、各種電極端子に対応した発光源試料1を把持する機構を備えた試料台11について説明する。   Based on FIGS. 7 to 10, a sample stage 11 having a mechanism for holding the light-emitting source sample 1 corresponding to various electrode terminals will be described.

図7は、陽極と陰極の電極端子が立方体状の両側面それぞれ設けてあるLED1の試料台11−1(サイドコンタクト型試料台)を示す。図7において、(a)は両側面に陽極(アノード)端子1a、陰極(カソード)端子1bを設けたLED1を示し、(b)はそのLED1をセットした試料台11−1の斜視図、(c)は(b)の、Z軸に沿うA−A´断面図を示す。   FIG. 7 shows a sample stage 11-1 (side contact type sample stage) of LED 1 in which the electrode terminals of the anode and the cathode are provided on both sides of the cube. 7A shows an LED 1 provided with an anode terminal 1a and a cathode terminal 1b on both side surfaces, and FIG. 7B is a perspective view of a sample stage 11-1 on which the LED 1 is set. c) shows an AA ′ cross-sectional view along the Z-axis of (b).

図7(c)において、11xは固定側端子板、11yは可動側端子板、11cは圧縮バネ,11dは開放ピストンである。開放ピストン11dを内部に押すと可動側端子板11yは左側へ移動し、LED1の陽極端子1a、陰極端子1bから固定側端子板11x、可動側端子11yが離れてLED1の取り出しができる。   In FIG. 7C, 11x is a fixed terminal plate, 11y is a movable terminal plate, 11c is a compression spring, and 11d is an open piston. When the open piston 11d is pushed in, the movable terminal plate 11y moves to the left, and the fixed terminal plate 11x and the movable terminal 11y are separated from the anode terminal 1a and cathode terminal 1b of the LED 1, and the LED 1 can be taken out.

開放ピストン11dの押圧を離した自然の状態では、それぞれ圧縮バネ11cにより自動的に可動側端子板11yが狭まり,LED1の電極端子1a、1bへ接触する機構である。   In a natural state in which the release piston 11d is released, the movable terminal plate 11y is automatically narrowed by the compression spring 11c, and contacts the electrode terminals 1a and 1b of the LED 1.

なお、11a、11bは電力供給ケーブルと接続する入力端子であり内部でそれぞれ11x、11yと接続されている。この構造により、LED1の取替え測定にあたり半田付けが不要でることから作業効率が向上する。   Reference numerals 11a and 11b are input terminals connected to the power supply cable, and are connected to 11x and 11y, respectively. With this structure, work efficiency is improved because soldering is not required for the replacement measurement of the LED 1.

図8は、同側面の両辺側にそれぞれ陽極端子1a、陰極端子1bが設けてあるLED1の試料台11−2(サイドビュー型試料台)を示す。図8(a)は、電極端子1a、1bの中間部に発光部があるLED1を示す。   FIG. 8 shows a sample stage 11-2 (side view type sample stage) of the LED 1 in which the anode terminal 1a and the cathode terminal 1b are provided on both sides of the same side surface, respectively. Fig.8 (a) shows LED1 which has a light emission part in the intermediate part of electrode terminal 1a, 1b.

図8(b)は、そのLED1をセットした試料台11−2の斜視図である。11y、11zは自然状態で同時にLED1の電極端子1a、1bを押さえて接触する可動電極である。LED1を取り替えるときは開放ピストン11dを押して開放する。   FIG. 8B is a perspective view of the sample stage 11-2 on which the LED 1 is set. Reference numerals 11y and 11z denote movable electrodes that are in contact with each other while simultaneously pressing the electrode terminals 1a and 1b of the LED 1 in a natural state. When replacing the LED 1, the release piston 11 d is pushed and released.

図8(c)は、入力端子11a、11bを示す。これらは内部で可動側端子板11y、11zとそれぞれ接続されている。試料台11−2も試料台11−1と同様な効果を奏する。   FIG. 8C shows the input terminals 11a and 11b. These are respectively connected to the movable side terminal plates 11y and 11z. The sample stage 11-2 also has the same effect as the sample stage 11-1.

図9は、発光面の反対側に電極端子を設けた裏面電極型のLEDの試料台11−3(吸着型試料台)を示す。(a)はそのLED1の構造を示す。   FIG. 9 shows a back electrode type LED sample stage 11-3 (adsorption type sample stage) in which an electrode terminal is provided on the opposite side of the light emitting surface. (A) shows the structure of the LED 1.

図9(b)は、試料台11−3の斜視図である。11eは吸着配管接続口の吸着穴である。裏面電極型のLED1は上部中心付近にセットする。   FIG. 9B is a perspective view of the sample stage 11-3. 11e is a suction hole of the suction pipe connection port. The back electrode type LED 1 is set near the upper center.

図9(c)、(d)は上部中心付近の拡大図である。図9(c)はLEDセット前の図、(d)はLEDセット時を示す図である。(c)において中心部には吸着穴11e、その両端には電極パット11f、11gがある。   9C and 9D are enlarged views near the upper center. FIG. 9C is a diagram before the LED is set, and FIG. 9D is a diagram showing when the LED is set. In (c), there are suction holes 11e at the center and electrode pads 11f and 11g at both ends.

図9(d)は、LED1がセットされたときで、LED1の裏面中央が吸着穴11eにより吸着され、それぞれの電極端子1a、1bが電極パット11f、11gに接触接続される。   FIG. 9D shows a state where the LED 1 is set. The center of the back surface of the LED 1 is adsorbed by the adsorption hole 11e, and the electrode terminals 1a and 1b are contact-connected to the electrode pads 11f and 11g.

その電極パット11f、11gは試料台11−3(吸着型試料台)の内部で入力端子に接続されている(図示省略)。   The electrode pads 11f and 11g are connected to an input terminal inside the sample table 11-3 (adsorption type sample table) (not shown).

図10は、LED1が砲弾型の試料台11−4(砲弾型LED試料台)を示す。   FIG. 10 shows a sample stage 11-4 (a bullet type LED sample stage) in which the LED 1 is a bullet type.

図10(a)は、その砲弾型LED1を示す。1a、1bは電極端子である。   FIG. 10A shows the bullet-type LED 1. Reference numerals 1a and 1b denote electrode terminals.

図10(b)は、このLED1がセットされた試料台11−4(砲弾型LED試料台)の斜視図である。11hは圧力ネジであり、これを回転することによって砲弾型のLED1の両電極端子1a、1bに圧力を加え試料台11−4(砲弾型LED試料台)にある入力端子に接触接続させる(図示省略)。   FIG.10 (b) is a perspective view of the sample stand 11-4 (bullet type LED sample stand) in which this LED1 was set. 11h is a pressure screw, and by rotating this, pressure is applied to both electrode terminals 1a, 1b of the bullet-type LED 1, and contact connection is made with the input terminal on the sample stage 11-4 (bullet-type LED sample stage) (illustrated). (Omitted).

本発明の配光特性測定装置の一実施例の斜視図である。It is a perspective view of one Example of the light distribution characteristic measuring apparatus of this invention. 本発明の配光特性測定装置を示し,(a)は正面図、(b)は側面図である。The light distribution characteristic measuring apparatus of this invention is shown, (a) is a front view, (b) is a side view. 測定位置点を設定するとき上面から見た状態を示す図である。It is a figure which shows the state seen from the upper surface, when setting a measurement position point. 測定一点を設定するとき水平方向の側面から見た状態を示す図である。It is a figure which shows the state seen from the side surface of the horizontal direction when setting one measurement point. (a)は、LEDのXY方向調整時の位置関係を示す図、(b)は、LEDのZ方向調整時の位置関係を示す図である。(A) is a figure which shows the positional relationship at the time of XY direction adjustment of LED, (b) is a figure which shows the positional relationship at the time of Z direction adjustment of LED. 測定動作時の受光器の移動位置を示す図である。It is a figure which shows the movement position of the light receiver at the time of measurement operation. サイドコンタクト型試料台の構造を説明する図で、(a)はLED、(b)は試料台の斜視図、(c)は(b)のA−A´断面図である。It is a figure explaining the structure of a side contact type | mold sample stand, (a) is LED, (b) is a perspective view of a sample stand, (c) is AA 'sectional drawing of (b). サイドビュー型試料台の構造を説明する図で、(a)はLED、(b)は試料台の斜視図、(c)は入力端子を示す断面図である。It is a figure explaining the structure of a side view type sample stand, (a) is LED, (b) is a perspective view of a sample stand, (c) is sectional drawing which shows an input terminal. 吸着型試料台の構造を説明する図で、(a)はLED、(b)は試料台の斜視図、(c)は上部拡大図、(d)は、LEDを搭載した上部拡大図である。It is a figure explaining the structure of an adsorption | suction type sample stand, (a) is LED, (b) is a perspective view of a sample stand, (c) is an upper enlarged view, (d) is an upper enlarged view which mounts LED. . 砲弾型LED試料台の構造を説明する図で、(a)はLED、(b)は、試料台の斜視図である。It is a figure explaining the structure of a bullet type LED sample stand, (a) is LED, (b) is a perspective view of a sample stand.

符号の説明Explanation of symbols

1 発光源試料、LED
1a 陽極端子(電極端子)
1b 陰極端子(電極端子)
10 試料台部
11 試料台、ワンタッチ交換型試料台
11−1 試料台、サイドコンタクト型試料台(両側面電極型)
11−2 試料台、サイドビュー型試料台(同側面電極型)
11−3 試料台、吸着型試料台(裏面電極型)
11−4 試料台、砲弾型LED試料台
11a 入力端子(電力供給端子)
11b 入力端子(電力供給端子)
11c 圧縮バネ
11d 開放ピストン
11e 吸着穴(吸着配管接続口)
11f 電極パット
11g 電極パット
11x 固定側端子板
11y 可動側端子板
11z 可動側端子板
12 試料台部ワンタッチ受部
20 3次元調整機構(XYZステージ)
21 Zステージ
21a マイクロメータ
22 Xステージ
22a マイクロメータ
23 Yステージ
23a マイクロメータ
30 回転ステージ
30a ステッピングモータ
40 立設板部
40a 回転軸受部
50 回転板
50a 回転軸
60 受光器
70 撮像カメラ(カメラ装置)
100 水平基板
100a 水平調節ネジ
1 Light source sample, LED
1a Anode terminal (electrode terminal)
1b Cathode terminal (electrode terminal)
10 Sample stand 11 Sample stand, one-touch exchangeable sample stand 11-1 Sample stand, side contact type sample stand (both side electrode type)
11-2 Sample stand, side view type sample stand (same side electrode type)
11-3 Sample stand, adsorption type sample stand (back electrode type)
11-4 Sample stand, bullet-type LED sample stand 11a Input terminal (power supply terminal)
11b Input terminal (power supply terminal)
11c Compression spring 11d Open piston 11e Suction hole (Suction piping connection port)
11f Electrode pad 11g Electrode pad 11x Fixed side terminal plate 11y Movable side terminal plate 11z Movable side terminal plate 12 Sample stage one-touch receiving unit 20 Three-dimensional adjustment mechanism (XYZ stage)
21 Z stage 21a Micrometer 22 X stage 22a Micrometer 23 Y stage 23a Micrometer 30 Rotating stage 30a Stepping motor 40 Standing plate portion 40a Rotating bearing portion 50 Rotating plate 50a Rotating shaft 60 Light receiver 70 Imaging camera (camera device)
100 Horizontal board 100a Leveling screw

Claims (5)

測定対象の各種電極端子形状の発光源試料を予め定めた測定位置点に設定し、その測定位置点を球面座標系の中心とし、その座標中心から所定径方向距離における発光源試料の放射方向とその強度の関係を示す3次元配光特性を測定する装置であって、
前記発光源試料の各種電極端子に対応して把持する着脱自在及び交換自在の試料台と、その試料へ電力を供給するケーブル端を接続させる入力端子とからなる試料台部と、
前記試料台部を搭載し、上下(Z軸)方向、左右(X軸)方向、前後(Y軸)方向へ移動させ、それらの可動範囲内で前記測定位置中心に固定する3次元調整機構と、
前記試料台部を載せた3次元調整機構を搭載すると共に、把持されている試料の前記測定位置中心を通過するZ軸の周りにその試料台を360度回転させる回転ステージと、
その回転ステージを水平に搭載する水平基板と、
その水平基板上に垂直に立設すると共に、前記測定位置中心からの垂線と交叉する位置にその垂線方向を軸とする回転軸受部を設けた立設板部と、
その立設板部の回転軸受部を支点として少なくとも180度回転ができる回転板と、
その回転板の前記測定位置点側の表面上に固着させ、その測定位置点からの輻射光線を前記所定径方向距離で受光し、その強度を測定できる受光器と、
その発光源試料周辺を撮像するカメラ装置と、を備え、
前記回転板を回転させて、そのカメラ装置を水平方向に向けて前記3次元調整機構でZ軸方向を調整し、前記測定位置点の高さ位置に設定し、次にその回転板を90度回転させ垂直方向に向けて前記カメラ装置でX及びY軸方向を調整し、前記測定位置点に合わせて設定し、
前記発光源の測定位置点から前記所定径方向距離の球面座標(Z軸方向δ>0)及びその周方向(θ)における光強度を、前記回転板及び回転ステージをそれぞれ回転させて前記受光器で測定することを特徴とする配光特性測定装置。
The light source sample of various electrode terminal shapes to be measured is set at a predetermined measurement position point, the measurement position point is set as the center of the spherical coordinate system, and the radiation direction of the light source sample at a predetermined radial distance from the coordinate center An apparatus for measuring a three-dimensional light distribution characteristic indicating the intensity relationship,
A detachable and replaceable sample stage that grips corresponding to the various electrode terminals of the luminescent source sample, and a sample stage unit that connects an end of a cable that supplies power to the sample; and
A three-dimensional adjustment mechanism that mounts the sample stage, moves in the vertical (Z-axis) direction, left-right (X-axis) direction, and front-back (Y-axis) direction, and fixes the measurement position within the movable range; ,
A rotary stage that mounts a three-dimensional adjustment mechanism on which the sample stage is placed and rotates the sample stage 360 degrees around the Z axis that passes through the center of the measurement position of the gripped sample;
A horizontal substrate on which the rotary stage is mounted horizontally;
Standing vertically on the horizontal substrate, and a standing plate portion provided with a rotary bearing portion having the perpendicular direction as an axis at a position intersecting with the perpendicular from the measurement position center;
A rotating plate capable of rotating at least 180 degrees with the rotary bearing portion of the standing plate portion as a fulcrum;
A light receiver that is fixed on the surface of the rotating plate on the measurement position point side, receives a radiation beam from the measurement position point at the predetermined radial distance, and can measure the intensity;
A camera device for imaging the periphery of the luminescent source sample,
The rotating plate is rotated, the camera device is horizontally oriented, the Z-axis direction is adjusted by the three-dimensional adjusting mechanism, the height position of the measurement position point is set, and then the rotating plate is rotated 90 degrees. Rotate and adjust the X and Y axis directions with the camera device in the vertical direction, set according to the measurement position point,
The light receiver in the spherical coordinates (Z-axis direction δ> 0) and the circumferential direction (θ) of the predetermined radial distance from the measurement position point of the light emitting source is rotated by rotating the rotating plate and the rotating stage, respectively. A light distribution characteristic measuring device characterized by measuring with
前記発光源試料は発光ダイオード(LED)或いはその集合体であることを特徴とする請求項1記載の配光特性測定装置。   2. The light distribution characteristic measuring apparatus according to claim 1, wherein the light source sample is a light emitting diode (LED) or an assembly thereof. 前記発光源試料は発光ダイオード(LED)であり、前記試料台部が、そのLEDを把持する際、
(1)LEDの陽極・陰極端子がそれぞれ両面側にある場合は、前記入力端子の一方に接続する固定板と、前記入力端子の他方に接続する可動板の間に前記両側面を挟み、前記可動板に対し接触圧力を加えて接続させるサイドコンタクト型試料台を用い、
(2)LEDの陽極・陰極端子が同一側面両端にある場合は、それら両端の端子に対向して電極を配置し、それぞれが前記入力端子に接続する可動電極板に接触圧力を加えて接続させるサイドビュー型試料台を用い、
(3)LEDの陽極・陰極端子が裏面の両端にある場合は、その両端に対向して電極を配置し、それらが前記入力端子に接続する被吸着電極板に吸着用配管接続口から排気して接触圧力を加えて接続させる吸着型試料台を用い、
(4)LEDが砲弾型で、陽極・陰極端子がリード線からなる場合は、その両リード線に対応する2本のトンネル状電極に前記入力端子に接続した前記リード線を挿入し、LEDの上部から中空円板を被せることにより各リード線と前記トンネル状電極との接触圧力により接続させる砲弾型試料台を用いることを特徴とする請求項1記載の配光特性測定装置。
The light source sample is a light emitting diode (LED), and when the sample stage grips the LED,
(1) When the anode and cathode terminals of the LED are on both sides, the movable plate is sandwiched between the fixed plate connected to one of the input terminals and the movable plate connected to the other of the input terminals. Using a side contact type sample table that is connected by applying contact pressure to
(2) When the anode and cathode terminals of the LED are at both ends of the same side, electrodes are arranged opposite to the terminals at both ends, and each is connected by applying contact pressure to the movable electrode plate connected to the input terminal. Using a side view type sample stage,
(3) When the anode / cathode terminal of the LED is located at both ends of the back surface, electrodes are arranged opposite to both ends, and they are exhausted from the suction piping connection port to the attracted electrode plate connected to the input terminal. Using an adsorption-type sample table that is connected by applying contact pressure,
(4) When the LED is bullet-shaped and the anode / cathode terminal is composed of lead wires, the lead wire connected to the input terminal is inserted into the two tunnel electrodes corresponding to both lead wires, and the LED 2. The light distribution characteristic measuring apparatus according to claim 1, wherein a bullet-type sample stage is used which is connected by contact pressure between each lead wire and the tunnel electrode by covering a hollow disk from above.
前記3次元調整機構は、Z軸方向調整用マイクロメータからなるZ軸ステージと、X方向調整マイクロメータ及びY方向調整マイクロメータからなるXYステージとを備えることを特徴とする請求項1記載の配光特性測定装置。   The arrangement according to claim 1, wherein the three-dimensional adjustment mechanism includes a Z-axis stage including a Z-axis direction adjusting micrometer and an XY stage including an X-direction adjusting micrometer and a Y-direction adjusting micrometer. Optical property measuring device. 前記回転ステージは、さらにそのステージを回転させるステッピングモータを前記水平基板上に設けることを特徴とする請求項1記載の配光特性測定装置。   The light distribution characteristic measuring apparatus according to claim 1, wherein the rotating stage further includes a stepping motor for rotating the stage on the horizontal substrate.
JP2006250540A 2006-09-15 2006-09-15 Apparatus for measuring light distribution characteristics Pending JP2008070290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250540A JP2008070290A (en) 2006-09-15 2006-09-15 Apparatus for measuring light distribution characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250540A JP2008070290A (en) 2006-09-15 2006-09-15 Apparatus for measuring light distribution characteristics

Publications (1)

Publication Number Publication Date
JP2008070290A true JP2008070290A (en) 2008-03-27

Family

ID=39291990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250540A Pending JP2008070290A (en) 2006-09-15 2006-09-15 Apparatus for measuring light distribution characteristics

Country Status (1)

Country Link
JP (1) JP2008070290A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071807A (en) * 2008-09-18 2010-04-02 Stanley Electric Co Ltd Photometric method for light source bulb for vehicle lighting fixture and light emitting property model generation method
JP2011033508A (en) * 2009-08-03 2011-02-17 Showa Denko Kk Device and method of measuring characteristic of measured object, program and light-emitting body
CN103148932A (en) * 2013-03-14 2013-06-12 浙江煤山矿灯电源有限公司 Device for testing luminous intensity and illumination of head lamp
JP2013217651A (en) * 2012-04-04 2013-10-24 Otsuka Denshi Co Ltd Light distribution characteristics measurement device and light distribution characteristics measurement method
RU2509988C1 (en) * 2012-10-16 2014-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Device to measure parameters and characteristics of radiation sources
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
RU2547163C1 (en) * 2013-12-27 2015-04-10 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method to measure parameters and characteristics of radiation sources
CZ306756B6 (en) * 2016-09-20 2017-06-14 Univerzita Tomáše Bati ve Zlíně A device for 3D scanning of spatial objects, especially the foot and adjacent parts of the human foot
CN110375855A (en) * 2019-08-13 2019-10-25 厦门大学 The three-dimensional optical spectrum imaging device and method of Miniature luminous device part
JP2020153713A (en) * 2019-03-18 2020-09-24 大塚電子株式会社 Light-emitting body measurement device and light-emitting body measurement method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071807A (en) * 2008-09-18 2010-04-02 Stanley Electric Co Ltd Photometric method for light source bulb for vehicle lighting fixture and light emitting property model generation method
JP2011033508A (en) * 2009-08-03 2011-02-17 Showa Denko Kk Device and method of measuring characteristic of measured object, program and light-emitting body
JP2013217651A (en) * 2012-04-04 2013-10-24 Otsuka Denshi Co Ltd Light distribution characteristics measurement device and light distribution characteristics measurement method
US8896823B2 (en) 2012-04-04 2014-11-25 Otsuka Electronics Co., Ltd. Light distribution characteristic measurement apparatus and light distribution characteristic measurement method
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
RU2509988C1 (en) * 2012-10-16 2014-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Device to measure parameters and characteristics of radiation sources
CN103148932A (en) * 2013-03-14 2013-06-12 浙江煤山矿灯电源有限公司 Device for testing luminous intensity and illumination of head lamp
RU2547163C1 (en) * 2013-12-27 2015-04-10 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method to measure parameters and characteristics of radiation sources
CZ306756B6 (en) * 2016-09-20 2017-06-14 Univerzita Tomáše Bati ve Zlíně A device for 3D scanning of spatial objects, especially the foot and adjacent parts of the human foot
JP2020153713A (en) * 2019-03-18 2020-09-24 大塚電子株式会社 Light-emitting body measurement device and light-emitting body measurement method
CN110375855A (en) * 2019-08-13 2019-10-25 厦门大学 The three-dimensional optical spectrum imaging device and method of Miniature luminous device part

Similar Documents

Publication Publication Date Title
JP2008070290A (en) Apparatus for measuring light distribution characteristics
US8085295B2 (en) Controllable micro light assembly
KR101631819B1 (en) Testing apparatus for object
CN105101657B (en) Off-axis illumination assembly and method
CN100420109C (en) Method and device for installing light emitting element
JP6356081B2 (en) Optical measurement of components with structural features present on opposite surfaces
KR102255607B1 (en) Bonding device and method for detecting the height of the object to be bonded
KR101425613B1 (en) Flip chip bonding apparatus and flip chip bonding method
KR100538796B1 (en) Apparatus for testing lcd
CN107478871A (en) It is a kind of to be used for flexible OLED panel and FPC automatic aligning lighting-up equipment
KR20180126106A (en) Position alignment device for camera module inspection apparatus
CN207424001U (en) A kind of automatic aligning lighting-up equipment for being used for flexible OLED panel and FPC
KR102393237B1 (en) Conductive ball inspection and repair device
JP5373657B2 (en) Component mounting apparatus and component mounting method
CN212180652U (en) Jack detection device
WO2023101215A1 (en) Micro-led chip transfer device
CN115985819A (en) Detection device for detecting and rotating real-time co-location of LED chip mass transfer self-compensation
JP2011214885A (en) Device for measuring luminance distribution
JP2020077716A (en) Inspection device and inspection method
JP5565278B2 (en) Light distribution measuring device, light distribution measuring method, and light distribution measuring program
CN111710639A (en) Alignment device for preparing non-silicon-based thin film device with high-density array structure
JP2012169370A (en) Display panel inspection equipment and display panel inspection method
KR101097155B1 (en) A Method For Calibrating Auxiliary Substrate Installation Depth
CN212485290U (en) Alignment device for preparing non-silicon-based thin film device with high-density array structure
CN108663549B (en) Positioning device and testing system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804