JP2010071807A - Photometric method for light source bulb for vehicle lighting fixture and light emitting property model generation method - Google Patents

Photometric method for light source bulb for vehicle lighting fixture and light emitting property model generation method Download PDF

Info

Publication number
JP2010071807A
JP2010071807A JP2008239661A JP2008239661A JP2010071807A JP 2010071807 A JP2010071807 A JP 2010071807A JP 2008239661 A JP2008239661 A JP 2008239661A JP 2008239661 A JP2008239661 A JP 2008239661A JP 2010071807 A JP2010071807 A JP 2010071807A
Authority
JP
Japan
Prior art keywords
light source
light
source bulb
bulb
reflection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008239661A
Other languages
Japanese (ja)
Other versions
JP5135139B2 (en
Inventor
Akihiro Nakatani
昭広 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008239661A priority Critical patent/JP5135139B2/en
Publication of JP2010071807A publication Critical patent/JP2010071807A/en
Application granted granted Critical
Publication of JP5135139B2 publication Critical patent/JP5135139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photometric method for a light source bulb capable of contributing improvement of the accuracy of optical simulation of a vehicle lighting fixture by a simple technique. <P>SOLUTION: A light source bulb 2 having a specular surface formed by covering a surface of a base on a glass bulb side with a reflection member is disposed on a rotation support base 1 and lit, and a light receiver 3 is disposed to be movable around the light source bulb 2. The rotation support base 1 is rotated at a predetermined angle pitch every time when the light receiver 3 is moved with respect to a center axis Xc of the light source bulb 2 at the predetermined angle pitch. The brightness is measured after every movement. Since the obtained brightness data include that of direct light from the light source bulb and that of reflection light from the specular surface, brightness data of the reflection light is regarded as that of direct light from the light source bulb to the specular surface, and three-dimensional brightness distribution data of the direct light from the light source bulb is determined. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両灯具用光源バルブの測光方法及び発光特性モデル生成方法に関するものであり、詳しくは、車両用灯具の光学シミュレーションに使用する光源データファイルを構築するための実測データの収集及びデータ処理に係る車両灯具用光源バルブの測光方法及び発光特性モデル生成方法に関する。   The present invention relates to a light metering method and a light emission characteristic model generation method for a light source bulb for a vehicle lamp, and more specifically, measurement data collection and data processing for constructing a light source data file used for optical simulation of a vehicle lamp The present invention relates to a photometric method and a light emission characteristic model generation method for a light source bulb for a vehicle lamp according to the above.

車両用灯具は設計・開発段階において、光学系を構成するリフレクタ及びレンズ等の理想的な形状や、光源を含めたそれらの理想的な位置関係を光学シミュレーションを用いて検証しながら進めることが一般的である。   In general, in the design / development stage, vehicular lamps are advanced while verifying the ideal shape of reflectors and lenses that make up the optical system and their ideal positional relationship including the light source using optical simulation. Is.

その場合、光源は既に標準化されたもののなかから適宜選択して使用されることが多く、車両用灯具の設計・開発に伴って新規に開発されることは少ない。   In that case, the light source is often appropriately selected from those already standardized, and is rarely newly developed along with the design and development of the vehicular lamp.

そこで、車両用灯具の設計・開発にあたっては、選択された光源を直射光学的に実測して予め光源に関する光学シミュレーション用のデータファイル(光源データファイル)を構築し、車両用灯具の光学シミュレーションに基礎データとして活用することにより光学シミュレーションの精度の向上を図ることができる。   Therefore, when designing and developing a vehicular lamp, a data file (light source data file) for optical simulation related to the light source is constructed in advance by direct optical measurement of the selected light source, and the basis for optical simulation of the vehicular lamp. Utilizing it as data can improve the accuracy of optical simulation.

具体的な従来の実測方法としては、以下に示すような配光特性測定装置を使用した測定方法が提案されている。それは、水平基板上に順次、回転ステージ、3次元調整機構及び試料台を介して光源試料を載置し、光源試料が水平基板に垂直なZ軸を中心として360°回転するようにセットする。   As a specific conventional measurement method, a measurement method using a light distribution characteristic measurement device as described below has been proposed. That is, a light source sample is sequentially placed on a horizontal substrate via a rotary stage, a three-dimensional adjustment mechanism, and a sample stage, and the light source sample is set to rotate 360 ° about the Z axis perpendicular to the horizontal substrate.

それと同時に、水平基板上に順次、立設板部、回転軸及び回転板を介して受光器を搭載し、受光器が水平基板に垂直なZ軸方向を0°としてZ軸方向となす角度が±90°以上回転するように取り付ける。   At the same time, a light receiver is sequentially mounted on the horizontal substrate through the standing plate portion, the rotation shaft, and the rotation plate, and the angle of the light receiver to the Z-axis direction with the Z-axis direction perpendicular to the horizontal substrate being 0 ° is determined. Install so that it rotates more than ± 90 °.

測定に際しては、まず、受光器を該受光器の受光軸が光源試料の光軸(Z軸)と一致するように位置合わせを行い、その位置での光強度を測定する。次に、受光器をZ軸から所定の角度δ傾け、光源試料を360°回転させながら所定の角度θ毎に光強度を測定する。   In the measurement, first, the light receiver is aligned so that the light receiving axis of the light receiver coincides with the optical axis (Z axis) of the light source sample, and the light intensity at that position is measured. Next, the light intensity is measured at each predetermined angle θ while the light receiver is inclined by a predetermined angle δ from the Z axis and the light source sample is rotated 360 °.

そして、順次受光器をZ軸に対して所定の角度δに設定する毎に光源試料を360°回転させながら所定の角度θ毎に光強度を測定し、少なくとも受光器のZ軸に対する角度δが110°になるまで繰り返し測定を行う。これにより、光強度は、中心から所定径方向の距離Rにおける座標パラメータ(δ,θ)による関数で表わされるものとなる(例えば、特許文献1参照。)。
特開2008−70290号公報
Then, each time the light receiver is sequentially set to a predetermined angle δ with respect to the Z axis, the light intensity is measured for each predetermined angle θ while rotating the light source sample by 360 °, and at least the angle δ of the light receiver with respect to the Z axis is Repeat measurement until 110 °. Thus, the light intensity is represented by a function based on the coordinate parameters (δ, θ) at a distance R in the predetermined radial direction from the center (see, for example, Patent Document 1).
JP 2008-70290 A

ところで、光源試料が車両灯具用光源バルブ(以下、光源バルブと略称する)の場合、図13に示すように、ガラスバルブ50の底部に、該ガラスバルブ50の径方向に延びる円環状の口金51を備えたものがある。   When the light source sample is a vehicle lamp light source bulb (hereinafter abbreviated as a light source bulb), as shown in FIG. 13, an annular base 51 extending in the radial direction of the glass bulb 50 is formed at the bottom of the glass bulb 50. There is something with.

この種の光源バルブ52の光強度を上記方法で測定する場合、光源バルブ52の中心軸Xbの方向を0°として中心軸Xbとなす受光器の角度δがδmaxよりも大きくなると、光源バルブ52の発光源53から出射された光が口金51によって遮蔽されて受光器に到達せず、光強度のデータ収集が不可能となる。つまり、配光特性測定装置では光源バルブ52の発光源53から口金51に向けて出射された光を測定することができない。   When the light intensity of this type of light source bulb 52 is measured by the above method, if the angle δ of the light receiver with respect to the central axis Xb is greater than δmax when the direction of the central axis Xb of the light source bulb 52 is 0 °, the light source bulb 52 The light emitted from the light emission source 53 is shielded by the base 51 and does not reach the light receiver, making it impossible to collect light intensity data. That is, the light distribution characteristic measuring device cannot measure the light emitted from the light source 53 of the light source bulb 52 toward the base 51.

光源バルブ52を車両用灯具に実装すると、口金51の部分はリフレクタで覆われることになり、光源バルブ52の発光源53から口金51に向けて出射された光はリフレクタの、口金51を覆う領域で反射されて車両用灯具の照射方向に向けられ、照射光の一部として前方に照射される。   When the light source bulb 52 is mounted on a vehicle lamp, the portion of the base 51 is covered with a reflector, and light emitted from the light source 53 of the light source bulb 52 toward the base 51 is a region of the reflector that covers the base 51. Is reflected in the irradiation direction of the vehicular lamp and is irradiated forward as part of the irradiation light.

このような構成の車両用灯具を、上記配光特性測定装置で得られた光強度データに基づいて構築された光源データファイルにより光学シミュレーションを行うと、光源データファイルには光源バルブ52から口金51に向けて出射された光の光強度データが取り込まれておらず、光学シミュレーションの精度が低いものとなってしまう。   When the vehicle lamp having such a configuration is subjected to an optical simulation using a light source data file constructed based on the light intensity data obtained by the light distribution characteristic measuring device, the light source data file includes a light source bulb 52 to a base 51. The light intensity data of the light emitted toward is not captured, and the accuracy of the optical simulation is low.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、簡単な手法により車両用灯具の光学シミュレーションの精度向上に寄与することができる光源バルブの測光方法及び発光特性モデル生成方法を提供することにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to provide a photometric method and light emission characteristics of a light source bulb that can contribute to improving the accuracy of optical simulation of a vehicular lamp by a simple method. To provide a model generation method.

上記課題を解決するために、本発明の請求項1に記載された発明は、ガラスバルブによる気密空間内に発光源を有すると共に、前記ガラスバルブの底部に該ガラスバルブの径方向に延びる口金を備えた車両灯具用光源バルブの測光方法であって、
前記口金のガラスバルブ側の面を反射部材で覆って鏡面反射面を設けた光源バルブと前記鏡面反射面を設けない光源バルブのそれぞれについて、測定器に搭載された受光素子の方向を常に測光対象の光源バルブの発光源に向け、且つ前記受光素子と前記発光源との距離が常に一定となる状態で前記測定器によって前記測光対象の光源バルブを3次元方向から測光して3次元座標上の複数の領域ごとに光線のベクトル値及び輝度値を取得するステップと、
前記鏡面反射面を設けた光源バルブ及び鏡面反射面を設けない光源バルブから取得した、直射光及び前記鏡面反射面で反射された反射光を含む測光データ及び直射光のみを含む測光データから前記反射光の測光データを抽出するステップと、
前記反射光の測光データを前記光源バルブから前記鏡面反射面方向に出射された光として抽出するステップとを行うことを特徴とするものである。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention has a light emitting source in an airtight space by a glass bulb, and a base extending in the radial direction of the glass bulb at the bottom of the glass bulb. A photometric method of a light source bulb for a vehicle lamp provided,
The direction of the light receiving element mounted on the measuring instrument is always photometrically measured for each of the light source bulb in which the glass bulb side surface of the base is covered with a reflecting member to provide a specular reflection surface and the light source bulb in which the specular reflection surface is not provided. The light source bulb to be measured is measured in a three-dimensional direction by the measuring instrument in a state where the distance between the light receiving element and the light source is always constant, and the light source bulb is measured on a three-dimensional coordinate. Obtaining a ray vector value and a luminance value for each of a plurality of regions;
Reflection from photometric data including direct light and reflected light reflected from the specular reflection surface and from photometry data including only direct light, obtained from the light source bulb provided with the specular reflection surface and the light source bulb not provided with the specular reflection surface. Extracting light metering data; and
Extracting the photometric data of the reflected light as light emitted from the light source bulb in the direction of the specular reflection surface.

また、本発明の請求項2に記載された発明は、請求項1において、前記測定器により測光される前記3次元方向の測光範囲は、少なくとも、前記光源バルブの前記発光源を通る中心軸を中心とする円周方向については全周とし、前記中心軸を中心とする傾斜方向については、前記中心軸から前記測定器の前記受光素子を通る受光軸が前記鏡面反射面の外縁に至るまでとすることを特徴とするものである。   In the invention described in claim 2 of the present invention, in claim 1, the photometric range in the three-dimensional direction measured by the measuring device is at least a central axis passing through the light emitting source of the light source bulb. The circumferential direction as the center is the entire circumference, and the inclination direction with the central axis as the center is from the central axis until the light receiving axis passing through the light receiving element of the measuring instrument reaches the outer edge of the specular reflection surface. It is characterized by doing.

また、本発明の請求項3に記載された発明は、請求項1又は2のいずれか1項において、前記受光素子はCCDであることを特徴とするものである。   According to a third aspect of the present invention, in any one of the first or second aspect, the light receiving element is a CCD.

また、本発明の請求項4に記載された発明は、請求項1から請求項3に記載の測光方法により取得された前記光源バルブから前記鏡面反射面に出射された光と前記光源バルブからの直射光との測光データとを合成して、当該光源バルブの発光特性モデルを生成することを特徴とするものである。   Moreover, the invention described in claim 4 of the present invention is the light emitted from the light source bulb obtained by the photometric method according to claims 1 to 3 to the specular reflection surface and the light from the light source bulb. The light-emitting characteristic model of the light source bulb is generated by combining the photometric data with the direct light.

本発明は、車両用灯具の光学シミュレーションに使用する光源データファイルを構築するための光源バルブの実測データを得るための測光方法であり、特に、測光の障害となる口金を有する光源バルブの測光にあたって、口金の存在に影響されることなく所望の測光データが得られるようにするものである。   The present invention is a photometric method for obtaining actual measurement data of a light source bulb for constructing a light source data file used for optical simulation of a vehicular lamp, and in particular, in photometry of a light source bulb having a base that obstructs photometry. The desired photometric data can be obtained without being affected by the presence of the base.

そのため、口金のガラスバルブ側の面を反射部材で覆って鏡面反射面とし、測定器に搭載された受光素子の方向を常に前記光源バルブの発光源に向け、且つ前記受光素子と前記発光源との距離が常に一定となる状態で前記測定器によって前記光源バルブを3次元方向から測光し、得られた測光データのうち反射光による測光データを前記光源バルブから前記鏡面反射面方向に出射された直射光として取り込むようにした。   Therefore, the glass bulb side surface of the base is covered with a reflecting member to be a specular reflection surface, the direction of the light receiving element mounted on the measuring instrument is always directed to the light source of the light source bulb, and the light receiving element and the light source The light source bulb is photometrically measured from the three-dimensional direction by the measuring instrument in a state in which the distance is always constant, and among the obtained photometric data, photometric data based on reflected light is emitted from the light source bulb toward the specular reflection surface. Captured as direct light.

その結果、光源バルブの測光時に測光の阻害となる口金部に鏡面反射面を設けるといった簡単な処理を施すだけで、口金の存在に影響されることなく所望の測光データを得ることができるようになった。   As a result, it is possible to obtain desired photometric data without being affected by the presence of the base by simply performing a simple process such as providing a specular reflection surface on the base that interferes with photometry during light metering of the light source bulb. became.

以下、この発明の好適な実施形態を図1〜図12を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 12 (the same reference numerals are given to the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明の車両灯具用光源バルブの測光方法に係る測光装置の説明図、図2は被測定物の光源バルブの説明図、図3は本発明に係わる測光方法の説明図、図4は同じく、本発明に係わる測光方法の説明図、図5は輝度写真及び輝度写真群を示す説明図、図6は測光原理を示す説明図、図7は従来の測光方法により構築された光源データファイルの2次元画像、図8は従来の測光方法の被測定物となる光源バルブの説明図、図9は本発明の測光方法により構築された光源データファイルの2次元画像、図10は測光方向を示す説明図、図11は他の光源バルブの説明図、図12は図11の光源バルブに反射部材を取り付けた状態を示す説明図である。   FIG. 1 is an explanatory diagram of a photometric device according to a photometric method of a light source bulb for a vehicle lamp of the present invention, FIG. 2 is an explanatory diagram of a light source bulb of an object to be measured, FIG. 3 is an explanatory diagram of a photometric method according to the present invention, FIG. FIG. 5 is an explanatory diagram of a photometric method according to the present invention, FIG. 5 is an explanatory diagram showing a luminance photograph and a group of luminance photos, FIG. 6 is an explanatory diagram showing the principle of photometry, and FIG. 7 is light source data constructed by a conventional photometric method. FIG. 8 is an explanatory diagram of a light source bulb that is an object to be measured by a conventional photometric method, FIG. 9 is a two-dimensional image of a light source data file constructed by the photometric method of the present invention, and FIG. 10 is a photometric direction. FIG. 11 is an explanatory view of another light source bulb, and FIG. 12 is an explanatory view showing a state in which a reflecting member is attached to the light source bulb of FIG.

図1より、回転支持台1上に被測定物となる光源バルブ2を、回転支持台1の中心軸Xaと光源バルブ2の中心軸Xbが同一直線上に位置するように載置する。   As shown in FIG. 1, the light source bulb 2 to be measured is placed on the rotation support base 1 so that the center axis Xa of the rotation support base 1 and the center axis Xb of the light source bulb 2 are located on the same straight line.

受光器(測定器)3は受光軸Xc上に受光素子として縦横夫々複数の画素で構成されたCCD(2次元CCD)を備えており(図示せず)、その受光器3が、該受光器3の受光軸Xcが光源バルブ2の中心軸Xb及び回転支持台1の中心軸Xaと同一直線上となる位置から、光源バルブ2の測定原点(発光源)Pの位置を中心として傾斜方向に同一平面状を移動するように配置されている。   The light receiver (measuring device) 3 includes a CCD (two-dimensional CCD) (not shown) composed of a plurality of vertical and horizontal pixels as light receiving elements on the light receiving axis Xc. 3 from the position where the light receiving axis Xc of the light source bulb 2 is on the same straight line as the central axis Xb of the light source bulb 2 and the central axis Xa of the rotary support base 1 in the tilt direction with the position of the measurement origin (light emitting source) P of the light source bulb 2 as the center. They are arranged so as to move in the same plane.

従って、受光素子は常に発光源の方向を向き、受光素子と発光源との距離は常に一定である。   Therefore, the light receiving element always faces the direction of the light emitting source, and the distance between the light receiving element and the light emitting source is always constant.

回転支持台1上に載置された光源バルブ2は、図2に示すように、ガラスバルブ4の底部に、該ガラスバルブ4の径方向に延びる円環状の口金5を備えた形状を呈している。そして、測光に際して、口金5のガラスバルブ4側の面の全面を反射部材6で覆い、表面を鏡面反射面7としている。   As shown in FIG. 2, the light source bulb 2 placed on the rotary support 1 has a shape including an annular base 5 extending in the radial direction of the glass bulb 4 at the bottom of the glass bulb 4. Yes. In photometry, the entire surface of the base 5 on the glass bulb 4 side is covered with a reflecting member 6, and the surface is used as a specular reflecting surface 7.

反射部材6の厚みは、測光精度の低下を招かないために、光源バルブ2の本来の形状を損なうことがないようにできるだけ薄く形成されている。   The thickness of the reflecting member 6 is formed as thin as possible so as not to impair the original shape of the light source bulb 2 so as not to reduce the photometric accuracy.

次に、測光方法について図3を参照して説明する。まず、回転支持台1上に載置された光源バルブ2に外部の電源から定格電圧(電流)を印加して点灯させ、発光源から実用時と同等の光束が出射された状態を保持する。   Next, a photometric method will be described with reference to FIG. First, a rated voltage (current) is applied to the light source bulb 2 placed on the rotation support base 1 from an external power source to light it, and a state in which a luminous flux equivalent to that in practical use is emitted from the light emitting source is maintained.

そして、受光器3を、該受光器3の受光軸Xcが光源バルブ2の中心軸Xb及び回転支持台1の中心軸Xaと同一直線上に位置するようにセットし、受光素子(CCD)の各画素によって光源バルブ2の輝度分布を測定する。この輝度分布は恰も光源バルブ2のガラスバルブ4の表面における輝度分布をCCDによって撮影して得られた写真像のようなものである。そこで以下、輝度写真と呼称する。   Then, the light receiver 3 is set so that the light receiving axis Xc of the light receiver 3 is located on the same straight line as the central axis Xb of the light source bulb 2 and the central axis Xa of the rotation support base 1, and the light receiving element (CCD) The luminance distribution of the light source bulb 2 is measured by each pixel. This luminance distribution is like a photographic image obtained by photographing the luminance distribution on the surface of the glass bulb 4 of the light source bulb 2 with a CCD. Therefore, it is hereinafter referred to as a luminance photograph.

次に、受光器3を移動して、該受光器3の受光軸Xcが光源バルブ2の中心軸Xb方向を0°として該中心軸Xb方向となす角度αが所定の角度α(例えば、α=1°)となる位置にセットする。その後、回転支持台1を基準位置からθ方向に所定の角度β(例えば、β=1°)間隔で360°回転し、角度β毎にCCDによって輝度分布を測定して輝度写真を作成する。 Next, the light receiver 3 is moved, and the angle α that the light receiving axis Xc of the light receiver 3 makes with the central axis Xb direction of the light source bulb 2 as 0 ° is a predetermined angle α 1 (for example, Set to a position where α = 1 °. Thereafter, the rotation support 1 is rotated 360 ° from the reference position in the θ direction at a predetermined angle β 1 (for example, β 1 = 1 °), and the luminance distribution is measured by the CCD at each angle β 1 to obtain a luminance photograph. create.

そして、順次受光器3を、該受光器3の受光軸Xcが光源バルブ2の中心軸Xb方向から離れる方向(傾斜方向)に角度α間隔で移動し、その都度、回転支持台1を基準位置からθ方向に所定の角度β間隔で360°回転し、角度β毎にCCDによって輝度分布を測定して輝度写真を作成する。 Then, sequentially light receiver 3, and moves at an angle alpha 1 intervals in the direction (inclination direction) away light receiving axis Xc from the center axis Xb direction of the light source valve 2 of the light receiving unit 3, in each case, relative to the rotating support base 1 The position is rotated 360 ° in the θ direction at a predetermined angle β 1 from the position, and the luminance distribution is measured by the CCD for each angle β 1 to create a luminance photograph.

この測光処理は、受光器3の受光軸Xcが光源バルブ2の中心軸Xb及び回転支持台1の中心軸Xaと同一直線上となる位置から光源バルブ2の口金5に遮られる直前までの領域、つまり、図4に示すように、受光器3の受光軸Xcが光源バルブ2の中心軸Xbと同一直線上となる位置から中心軸Xb方向を0°として該中心軸Xb方向となす角度αがαmaxとなるまでの領域において行われる。   This photometric process is a region from the position where the light receiving axis Xc of the light receiver 3 is collinear with the central axis Xb of the light source bulb 2 and the central axis Xa of the rotation support base 1 to immediately before being blocked by the base 5 of the light source bulb 2. That is, as shown in FIG. 4, the angle α formed from the position where the light receiving axis Xc of the light receiver 3 is collinear with the central axis Xb of the light source bulb 2 with the central axis Xb direction being 0 ° and the central axis Xb direction. Is performed in a region until αmax reaches αmax.

角度αがαmax以上となると、光源バルブ2から出射された光は口金5で遮蔽されて受光器3に到達せず、上述した従来の配光特性測定装置を用いた測光方法と同様に直射光の測定は不可能となる。   When the angle α is greater than or equal to αmax, the light emitted from the light source bulb 2 is shielded by the base 5 and does not reach the light receiver 3, and direct light as in the photometric method using the conventional light distribution characteristic measuring apparatus described above. Measurement of is impossible.

そこで本発明の測光方法においては、光源バルブ2の口金5のガラスバルブ4側の面の全面を反射部材6で覆って表面を鏡面反射面7とし、光源バルブ2から口金5に向けて出射された光を、反射部材6の鏡面反射面7で反射させて反射光としてCCDに取り込み、光源バルブ2から出射された直射光と光源バルブ2から出射されて鏡面反射面7で反射された反射光が混在する輝度写真を形成する。   Therefore, in the photometric method of the present invention, the entire surface of the base 5 of the light source bulb 2 on the glass bulb 4 side is covered with the reflecting member 6 so that the surface is the specular reflection surface 7, and the light is emitted from the light source bulb 2 toward the base 5. The reflected light is reflected by the mirror reflecting surface 7 of the reflecting member 6 and taken into the CCD as reflected light. The direct light emitted from the light source bulb 2 and the reflected light emitted from the light source bulb 2 and reflected by the mirror reflecting surface 7 are reflected. To form a luminance photograph.

これにより、図5に示すに、光源バルブ2を取り巻くように、光源バルブ2の発光源(例えば、フィラメント)8の位置を中心とする球状に配置された複数の輝度写真9による輝度写真群10が生成されたことになる。   As a result, as shown in FIG. 5, a luminance photograph group 10 by a plurality of luminance photographs 9 arranged in a spherical shape around the position of the light source (for example, filament) 8 of the light source bulb 2 so as to surround the light source bulb 2. Is generated.

次に、光源バルブ2の測光によって得られた上記輝度写真群に基づく光源データファイルの作成手順を以下に説明する。   Next, a procedure for creating a light source data file based on the luminance photograph group obtained by photometry of the light source bulb 2 will be described below.

まず、CAD上に、測光に使用した光源バルブ2の3次元形状モデルを作成する。この3次元形状モデルには口金5を覆う反射部材6の鏡面反射面7も組み込まれている。   First, a three-dimensional shape model of the light source bulb 2 used for photometry is created on CAD. This three-dimensional shape model also incorporates a specular reflection surface 7 of the reflection member 6 that covers the base 5.

そして、光源バルブ2の3次元形状モデルと輝度写真群を、測光時の互いの位置関係を保つと共に光源バルブ2の測定原点(発光源)を座標原点O(0,0,0)とする3次元座標空間に配置し、輝度写真群を構成する個々の輝度写真を所定の複数の領域に分割して、分割された夫々の微小領域を基点として光源バルブ2の3次元形状モデル方向に対する光線追跡を行う。   The three-dimensional shape model of the light source bulb 2 and the luminance photograph group are maintained in the positional relationship at the time of photometry, and the measurement origin (light emission source) of the light source bulb 2 is set as the coordinate origin O (0, 0, 0) 3 The individual luminance photographs constituting the luminance photograph group, which are arranged in a three-dimensional coordinate space, are divided into a plurality of predetermined regions, and ray tracing is performed in the direction of the three-dimensional shape model of the light source bulb 2 using each divided minute region as a base point. I do.

すると、輝度写真の微小領域には、該微小領域を基点とする光線追跡の到達点が光源バルブのガラスバルブとなるものと、鏡面反射面となるものができる。   Then, in the minute region of the luminance photograph, there can be one in which the arrival point of ray tracing based on the minute region becomes the glass bulb of the light source bulb, and one that becomes the specular reflection surface.

各微小領域を基点とする光線追跡の到達点がガラスバルブとなるものは、ガラスバルブの夫々の光線追跡の到達点における3次元の光線ベクトルV(x,y,z)及び輝度値Lの各情報が、夫々の基点の測光輝度値と、基点からガラスバルブの位置Q(x,y,z)までの光線軌跡の方向に基づいて算出される。   When the reaching point of ray tracing based on each minute region is a glass bulb, each of the three-dimensional ray vector V (x, y, z) and the luminance value L at each ray tracing reaching point of the glass bulb is used. Information is calculated based on the photometric luminance value of each base point and the direction of the ray trajectory from the base point to the position Q (x, y, z) of the glass bulb.

一方、各微小領域を基点とする光線追跡の到達点が鏡面反射面となるものは、図6のように、鏡面反射面7における光線追跡の到達点の位置で反射した光線Mが交わるガラスバルブ4の位置Q(x,y,z)を求め、その位置Qの輝度値Lが夫々の基点の測光輝度値に基づいて算出される。このとき、基点の測光輝度値は、輝度値Lの算出精度を損なわないように、鏡面反射面の反射による輝度減衰分を考慮した値が使用される。   On the other hand, when the arrival point of ray tracing with each minute region as a base point becomes a specular reflection surface, as shown in FIG. 6, the glass bulb in which the light rays M reflected at the position of the ray tracing arrival point on the specular reflection surface 7 intersect. 4 position Q (x, y, z) is obtained, and the luminance value L of the position Q is calculated based on the photometric luminance value of each base point. At this time, as the photometric luminance value at the base point, a value in consideration of the luminance attenuation due to the reflection of the specular reflection surface is used so as not to impair the calculation accuracy of the luminance value L.

このときの光線ベクトルV(x,y,z)は、鏡面反射面における光線追跡の到達点の位置と鏡面反射面で反射した光線が交わるガラスバルブの位置Q(x,y,z)を結ぶ光線軌跡の方向を算出して求められる。   The ray vector V (x, y, z) at this time connects the position of the ray tracing arrival point on the specular reflection surface and the position Q (x, y, z) of the glass bulb where the ray reflected by the specular reflection surface intersects. It is obtained by calculating the direction of the ray trajectory.

つまり、鏡面反射面で反射された反射光による輝度データを光源バルブから鏡面反射面の方向へ向かう直射光によるものとして捉えるものである。   That is, the luminance data by the reflected light reflected by the specular reflection surface is regarded as the direct light from the light source bulb toward the specular reflection surface.

このように、光線を光源バルブの口金に向けて出射する光源バルブの3次元位置Q(x,y,z)における光線ベクトルV(x,y,z)及び輝度値Lの各情報は、口金を覆う反射部材6の鏡面反射面7による反射光の測光データを活用することにより求められる。   In this way, each information of the light vector V (x, y, z) and the luminance value L at the three-dimensional position Q (x, y, z) of the light source bulb that emits the light toward the base of the light source bulb is the base. It is calculated | required by utilizing the photometry data of the reflected light by the specular reflection surface 7 of the reflection member 6 which covers the surface.

つまり、光源バルブ2から出射された直射光と光源バルブ2から出射されて鏡面反射面7で反射された反射光を測光することにより、光源バルブのガラスバルブの略全面に亘る3次元位置Q(x,y,z)における光線ベクトルV(x,y,z)及び輝度値Lに係る情報データファイル(光源データファイル)を構築することが可能となる。   That is, by measuring the direct light emitted from the light source bulb 2 and the reflected light emitted from the light source bulb 2 and reflected by the specular reflection surface 7, a three-dimensional position Q (over the entire surface of the glass bulb of the light source bulb ( It is possible to construct an information data file (light source data file) related to the light vector V (x, y, z) and the luminance value L in x, y, z).

図7は、図8に示す形状の従来の光源バルブをそのまま測光して得たデータに基づいて構築した光源データファイルを2次元画像として表したものであり、図9は図8の形状の光源バルブの口金を反射部材で覆って表面を鏡面反射面とした図2に示す光源バルブ2を測光して得たデータに基づいて構築した光源データファイルを2次元画像として表したものである。   FIG. 7 shows a two-dimensional image of a light source data file constructed based on data obtained by directly measuring the conventional light source bulb having the shape shown in FIG. 8, and FIG. 9 shows a light source having the shape shown in FIG. FIG. 3 shows a two-dimensional image of a light source data file constructed on the basis of data obtained by photometric measurement of the light source bulb 2 shown in FIG. 2 in which the base of the bulb is covered with a reflecting member and the surface is a specular reflection surface.

図7及び図9は共に、縦軸のU−D(90°−90°)方向は図10のなかで示すU−D方向(発光源8となるフィラメントの巻き線方向に垂直な方向)に対応し、横軸のL−R(180°−180°)の方向は同じく図10のなかで示すL−R方向(発光源8となるフィラメントの巻き線方向に平行な方向)に対応する。また、U−D方向が0°のL−R線上に位置する一対の水滴状の光度0の領域Eは発光源(フィラメント)を支持する導入線による影の部分が投影されたものであり、一対の半円形の光度0の領域Fは口金部による影の部分が投影されたものである。   7 and 9, the UD (90 ° -90 °) direction of the vertical axis is the UD direction (direction perpendicular to the winding direction of the filament serving as the light emitting source 8) shown in FIG. Correspondingly, the direction of LR (180 ° -180 °) on the horizontal axis also corresponds to the LR direction (direction parallel to the winding direction of the filament serving as the light emitting source 8) shown in FIG. In addition, a pair of water droplet-like regions E having a luminous intensity of 0 located on the LR line whose UD direction is 0 ° is a shadow portion projected by an introduction line that supports a light emission source (filament). A pair of semi-circular light intensity areas F are projected shadow portions of the base part.

図7と図9を比較すると、図9の口金による光度0の領域Fは図7の口金の光度0の領域Fに比べて遥かに小さい。つまり、従来の測光方法に比べて本発明の測光方法が口金の影響を少なくして広範囲に亘る光源バルブの光源データファイルを構築できたことが検証されている。   When FIG. 7 is compared with FIG. 9, the area F having a light intensity of 0 by the base in FIG. 9 is much smaller than the area F having a light intensity of 0 by the base in FIG. 7. That is, it has been verified that the light metering method of the present invention can construct the light source data file of the light source bulb over a wide range by reducing the influence of the base compared with the conventional metering method.

なお、口金付き光源バルブには他の形状を呈するものもあり、例えば、図11に示すように、ガラスバルブ4の底部に平板状の融着封止部11を有するものもある。この場合、上述の図2のように、口金のガラスバルブ側の面の全面を反射部材で覆って表面を鏡面反射面として測光を行うと、受光器が光源バルブの略中心軸上に位置したときに、発光源からの直射光と、発光源からガラスバルブの直下方向に出射されて鏡面反射面で反射されて再度ガラスバルブ内を導光された反射光の光路が重なり、受光器で検知された光を直射光と反射光に分別することは困難となる。   Note that some light source bulbs with caps have other shapes, for example, some have a flat plate-like fusion sealing portion 11 at the bottom of the glass bulb 4, as shown in FIG. In this case, as shown in FIG. 2 described above, when photometry is performed with the entire surface of the base on the glass bulb side covered with a reflecting member and the surface as a specular reflecting surface, the light receiver is positioned on the substantially central axis of the light source bulb. Sometimes, the direct light from the light source overlaps the optical path of the reflected light that is emitted from the light source directly below the glass bulb, reflected by the specular reflection surface, and guided again through the glass bulb, and is detected by the light receiver. It is difficult to separate the emitted light into direct light and reflected light.

そこで、このような問題を回避するために、図12に示すように、口金を覆うように設ける反射部材6による鏡面反射面7を少なくともガラスバルブ4の直下部は、口金に対して傾斜した状態に配置する。言い換えると、ガラスバルブ4の直下部における鏡面反射面7は光源バルブ4の中心軸Xbに対して垂直とならないように反射部材6を設ける。   Therefore, in order to avoid such a problem, as shown in FIG. 12, the specular reflection surface 7 by the reflecting member 6 provided so as to cover the base is in a state where at least the portion directly below the glass bulb 4 is inclined with respect to the base. To place. In other words, the reflecting member 6 is provided so that the specular reflection surface 7 immediately below the glass bulb 4 is not perpendicular to the central axis Xb of the light source bulb 4.

これにより、発光源からの直射光と、発光源から出射して鏡面反射面で反射された反射光の光路が重なることがなく、精度を損なわない光源データファイルを構築することが可能となる。   As a result, the direct light from the light source and the optical path of the reflected light that is emitted from the light source and reflected by the specular reflection surface do not overlap, and a light source data file that does not impair accuracy can be constructed.

ところで、光源データファイルの精度を向上させるために、輝度写真データから光源データファイルを作成する際に、光源バルブのガラスバルブと受光器に搭載された受光素子との距離を考慮して測光輝度の実測値に対して距離補正パラメータγを用いることも可能である。   By the way, in order to improve the accuracy of the light source data file, when creating the light source data file from the luminance photograph data, the photometric brightness of the photometric luminance is taken into account in consideration of the distance between the glass bulb of the light source bulb and the light receiving element mounted on the receiver. It is also possible to use the distance correction parameter γ for the actually measured value.

具体的には、光源データファイルにおけるガラスバルブ上の輝度値=受光器による測光輝度の実測値×γとなる。距離補正パラメータγは、光源データファイルの構築後にガラスバルブ面の所定の位置の輝度を実測し、その実測輝度値とガラスバルブの同一位置の光源データファイルにおける輝度値を比較しながら距離補正パラメータγを調整して光源データファイルの輝度値を実測輝度値に近づけ、この処理を繰り返しながら距離補正パラメータγの最適化を図ることにより光源データファイルの精度を向上させることができる。   Specifically, the luminance value on the glass bulb in the light source data file = the measured value of photometric luminance by the light receiver × γ. The distance correction parameter γ is a distance correction parameter γ by actually measuring the luminance at a predetermined position on the glass bulb surface after the construction of the light source data file and comparing the measured luminance value with the luminance value in the light source data file at the same position of the glass bulb. Is adjusted so that the luminance value of the light source data file is close to the actually measured luminance value, and the distance correction parameter γ is optimized while repeating this processing, thereby improving the accuracy of the light source data file.

このように構築された光源データファイルは、車両用灯具の設計・開発段階において、光源バルブと共に光学系を構成するリフレクタ及びレンズ等の理想的な形状や、光源を含めたそれらの理想的な位置関係を検証する光学シミュレーションの基礎データとして活用され、最適化された灯具の実現に効果的に寄与するものである。   The light source data file constructed in this way is the ideal shape of reflectors and lenses that make up the optical system together with the light source bulb, and their ideal positions including the light source at the design and development stage of the vehicular lamp. It is used as basic data for optical simulation to verify the relationship, and effectively contributes to the realization of optimized lamps.

以上説明したように、本発明の車両灯具用光源バルブの測光方法は、光源バルブの測光時に測光の阻害となる口金に鏡面反射面を設けるといった簡単な処理を施すことにより、発光源から口金の方向に向けて出射された光を鏡面反射面による反射光として受光器に取り込んで光源データファイルの構築に活用できるという、大きな利点を有するものである。   As described above, the photometric method of the light source bulb for vehicle lamps according to the present invention performs a simple process such as providing a specular reflection surface on the base that obstructs photometry at the time of photometry of the light source bulb. This has a great advantage that light emitted in the direction can be taken into a light receiver as reflected light by a specular reflection surface and used for construction of a light source data file.

本発明に係わる測定測光装置の説明図である。It is explanatory drawing of the measurement photometry apparatus concerning this invention. 被測定物の光源バルブの説明図である。It is explanatory drawing of the light source bulb of a to-be-measured object. 本発明に係わる測光方法の説明図である。It is explanatory drawing of the photometry method concerning this invention. 同じく、本発明に係わる測光方法の説明図である。Similarly, it is explanatory drawing of the photometry method concerning this invention. 輝度写真の説明図である。It is explanatory drawing of a brightness | luminance photograph. 測光原理を示す説明図である。It is explanatory drawing which shows the photometry principle. 従来の測光方法により構築された光源データファイルの2次元画像である。It is a two-dimensional image of a light source data file constructed by a conventional photometric method. 従来の測光方法の被測定物となる光源バルブの説明図である。It is explanatory drawing of the light source bulb | ball used as the to-be-measured object of the conventional photometry method. 本発明の測光方法により構築された光源データファイルの2次元画像である。It is a two-dimensional image of the light source data file constructed by the photometric method of the present invention. 測光方向を示す説明図である。It is explanatory drawing which shows a photometry direction. 他の光源バルブの説明図である。It is explanatory drawing of another light source bulb. 図11の光源バルブに反射部材を取り付けた状態を示す説明図である。It is explanatory drawing which shows the state which attached the reflection member to the light source bulb of FIG. 従来の測光方法を説明する説明図である。It is explanatory drawing explaining the conventional photometry method.

符号の説明Explanation of symbols

1 回転支持台
2 光源バルブ
3 受光器
4 ガラスバルブ
5 口金
6 反射部材
7 鏡面反射面
8 発光源
9 輝度写真
10 輝度写真群
11 融着封止部
DESCRIPTION OF SYMBOLS 1 Rotation support stand 2 Light source bulb 3 Light receiver 4 Glass bulb 5 Base 6 Reflective member 7 Specular reflection surface 8 Light emission source 9 Luminance photograph 10 Luminance photograph group 11 Fusion sealing part

Claims (4)

ガラスバルブによる気密空間内に発光源を有すると共に、前記ガラスバルブの底部に該ガラスバルブの径方向に延びる口金を備えた車両灯具用光源バルブの測光方法であって、
前記口金のガラスバルブ側の面を反射部材で覆って鏡面反射面を設けた光源バルブと前記鏡面反射面を設けない光源バルブのそれぞれについて、測定器に搭載された受光素子の方向を常に測光対象の光源バルブの発光源に向け、且つ前記受光素子と前記発光源との距離が常に一定となる状態で前記測定器によって前記測光対象の光源バルブを3次元方向から測光して3次元座標上の複数の領域ごとに光線のベクトル値及び輝度値を取得するステップと、
前記鏡面反射面を設けた光源バルブ及び鏡面反射面を設けない光源バルブから取得した、直射光及び前記鏡面反射面で反射された反射光を含む測光データ及び直射光のみを含む測光データから前記反射光の測光データを抽出するステップと、
前記反射光の測光データを前記光源バルブから前記鏡面反射面方向に出射された光として抽出するステップとを行うことを特徴とする車両灯具用光源バルブの測光方法。
A light metering method for a light source bulb for a vehicle lamp having a light emitting source in an airtight space by a glass bulb and having a base extending in a radial direction of the glass bulb at the bottom of the glass bulb,
The direction of the light receiving element mounted on the measuring instrument is always photometrically measured for each of the light source bulb in which the glass bulb side surface of the base is covered with a reflecting member to provide a specular reflection surface and the light source bulb in which the specular reflection surface is not provided. The light source bulb to be measured is measured in a three-dimensional direction by the measuring instrument in a state where the distance between the light receiving element and the light source is always constant, and the light source bulb is measured on a three-dimensional coordinate. Obtaining a ray vector value and a luminance value for each of a plurality of regions;
Reflection from photometric data including direct light and reflected light reflected from the specular reflection surface and from photometry data including only direct light, obtained from the light source bulb provided with the specular reflection surface and the light source bulb not provided with the specular reflection surface. Extracting light metering data; and
And a step of extracting the photometric data of the reflected light as light emitted from the light source bulb toward the specular reflection surface.
前記測定器により測光される前記3次元方向の測光範囲は、少なくとも、前記光源バルブの前記発光源を通る中心軸を中心とする円周方向については全周とし、前記中心軸を中心とする傾斜方向については、前記中心軸から前記測定器の前記受光素子を通る受光軸が前記鏡面反射面の外縁に至るまでとすることを特徴とする請求項1に記載の車両灯具用光源バルブの測光方法。   The photometric range in the three-dimensional direction that is measured by the measuring device is at least an entire circumference in the circumferential direction centered on the central axis that passes through the light emitting source of the light source bulb, and is inclined about the central axis. 2. The photometric method for a light source bulb for a vehicle lamp according to claim 1, wherein the direction is such that a light receiving axis passing through the light receiving element of the measuring instrument extends from the central axis to an outer edge of the specular reflection surface. . 前記受光素子はCCDであることを特徴とする請求項1又は2のいずれか1項に記載の車両灯具用光源バルブの測光方法。   The photometric method for a light source bulb for a vehicle lamp according to claim 1, wherein the light receiving element is a CCD. 請求項1から請求項3に記載の測光方法により取得された前記光源バルブから前記鏡面反射面に出射された光と前記光源バルブからの直射光との測光データとを合成して、当該光源バルブの発光特性モデルを生成することを特徴とする光源バルブの発光特性モデル生成方法。   The light source bulb is synthesized by combining the light emitted from the light source bulb obtained by the photometric method according to claim 1 to the specular reflection surface and the photometric data of the direct light from the light source bulb. A method for generating a light emission characteristic model of a light source bulb, comprising: generating a light emission characteristic model of the light source bulb.
JP2008239661A 2008-09-18 2008-09-18 Photometric method and light emission characteristic model generation method for light source bulb for vehicle lamp Expired - Fee Related JP5135139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239661A JP5135139B2 (en) 2008-09-18 2008-09-18 Photometric method and light emission characteristic model generation method for light source bulb for vehicle lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239661A JP5135139B2 (en) 2008-09-18 2008-09-18 Photometric method and light emission characteristic model generation method for light source bulb for vehicle lamp

Publications (2)

Publication Number Publication Date
JP2010071807A true JP2010071807A (en) 2010-04-02
JP5135139B2 JP5135139B2 (en) 2013-01-30

Family

ID=42203737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239661A Expired - Fee Related JP5135139B2 (en) 2008-09-18 2008-09-18 Photometric method and light emission characteristic model generation method for light source bulb for vehicle lamp

Country Status (1)

Country Link
JP (1) JP5135139B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033508A (en) * 2009-08-03 2011-02-17 Showa Denko Kk Device and method of measuring characteristic of measured object, program and light-emitting body
CN103353345A (en) * 2013-07-13 2013-10-16 佛山分析仪有限公司 Motor vehicle headlamp detector light intensity detection method
JP2013217651A (en) * 2012-04-04 2013-10-24 Otsuka Denshi Co Ltd Light distribution characteristics measurement device and light distribution characteristics measurement method
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
CN108871738A (en) * 2018-06-27 2018-11-23 昆山睿力得软件技术有限公司 A kind of Vehicular lamp illumination device for fast detecting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0150881B2 (en) * 1980-08-27 1989-11-01 Toshiba Electric Equip
JPH0745243A (en) * 1993-07-29 1995-02-14 Toshiba Lighting & Technol Corp Metal vapor discharge lamp and luminaire using this discharge lamp
JPH09213112A (en) * 1996-02-05 1997-08-15 Ichikoh Ind Ltd Lamp of vehicle having a plurality of light source bulbs
JP2007012821A (en) * 2005-06-29 2007-01-18 Stanley Electric Co Ltd Led bulb with base
JP2008070290A (en) * 2006-09-15 2008-03-27 Asahi Spectra Co Ltd Apparatus for measuring light distribution characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0150881B2 (en) * 1980-08-27 1989-11-01 Toshiba Electric Equip
JPH0745243A (en) * 1993-07-29 1995-02-14 Toshiba Lighting & Technol Corp Metal vapor discharge lamp and luminaire using this discharge lamp
JPH09213112A (en) * 1996-02-05 1997-08-15 Ichikoh Ind Ltd Lamp of vehicle having a plurality of light source bulbs
JP2007012821A (en) * 2005-06-29 2007-01-18 Stanley Electric Co Ltd Led bulb with base
JP2008070290A (en) * 2006-09-15 2008-03-27 Asahi Spectra Co Ltd Apparatus for measuring light distribution characteristics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033508A (en) * 2009-08-03 2011-02-17 Showa Denko Kk Device and method of measuring characteristic of measured object, program and light-emitting body
JP2013217651A (en) * 2012-04-04 2013-10-24 Otsuka Denshi Co Ltd Light distribution characteristics measurement device and light distribution characteristics measurement method
CN103364177B (en) * 2012-04-04 2017-03-01 大塚电子株式会社 Light distribution characteristic measurement apparatus and light distribution characteristic measuring method
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
CN103353345A (en) * 2013-07-13 2013-10-16 佛山分析仪有限公司 Motor vehicle headlamp detector light intensity detection method
CN108871738A (en) * 2018-06-27 2018-11-23 昆山睿力得软件技术有限公司 A kind of Vehicular lamp illumination device for fast detecting

Also Published As

Publication number Publication date
JP5135139B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5135139B2 (en) Photometric method and light emission characteristic model generation method for light source bulb for vehicle lamp
TW201205033A (en) Shape measuring device and calibrating method
JP5486692B2 (en) Integrating sphere photometer and measuring method thereof
JP3855756B2 (en) 3D color shape detection device and 3D scanner
CN108369159A (en) Device and method for analyzing tire
JP2000161918A (en) Method and device for detecting position of moving body
JP2015001381A (en) Three-dimensional shape measurement device
CN111801603B (en) Optical device, luminaire and method of manufacturing an optical device
CN106444257B (en) Method of adjustment and device, the system of light valve light spot received
CN104977155A (en) Rapid measurement method of LED light distribution curve
TWI354348B (en) Substrate moving apparatus
KR20150071228A (en) Apparatus of inspecting glass of three dimensional shape
Kaminski et al. Advanced topics in source modeling
JP2008139277A (en) Inspection device and method for concave surface reflector, and manufacturing method of light source device
JP5035055B2 (en) Light source device
JP2012093234A (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, structure manufacturing method, and structure manufacturing system
JP2019158363A (en) Substrate inspection apparatus, substrate processing apparatus, and substrate inspection method
JP5565278B2 (en) Light distribution measuring device, light distribution measuring method, and light distribution measuring program
JP2019027893A (en) Inspection device
JP2002131839A (en) Position adjusting method of image displaying apparatus for large screen
JP4627590B2 (en) Curved screen
JP2003279314A (en) Projection device and irradiation device
JP5408952B2 (en) X-ray equipment
Moench Optical modeling of UHP lamps
JP2010127647A (en) Light distribution characteristic evaluator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5135139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees