JP2008069674A - Operation control device and method of vacuum pump - Google Patents

Operation control device and method of vacuum pump Download PDF

Info

Publication number
JP2008069674A
JP2008069674A JP2006247398A JP2006247398A JP2008069674A JP 2008069674 A JP2008069674 A JP 2008069674A JP 2006247398 A JP2006247398 A JP 2006247398A JP 2006247398 A JP2006247398 A JP 2006247398A JP 2008069674 A JP2008069674 A JP 2008069674A
Authority
JP
Japan
Prior art keywords
vacuum
pump
pumps
negative pressure
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006247398A
Other languages
Japanese (ja)
Other versions
JP4737770B2 (en
Inventor
Takamitsu Nakayama
貴光 中山
Kazuaki Sato
和昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anest Iwata Corp
Original Assignee
Anest Iwata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anest Iwata Corp filed Critical Anest Iwata Corp
Priority to JP2006247398A priority Critical patent/JP4737770B2/en
Priority to EP07017322.4A priority patent/EP1906024B1/en
Priority to US11/853,942 priority patent/US20080063534A1/en
Priority to CN2007101821284A priority patent/CN101144470B/en
Publication of JP2008069674A publication Critical patent/JP2008069674A/en
Application granted granted Critical
Publication of JP4737770B2 publication Critical patent/JP4737770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/07Electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/56Number of pump/machine units in operation

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation control device of a plurality of vacuum pumps and a method, capable of reducing repairing work man-hours, by reducing a maintenance frequency, by restraining an increase in facility cost, by eliminating the problem by use of a vacuum sensor and control by an inverter. <P>SOLUTION: This operation control device has an electric current detecting means 5 detecting an electric current flowing to motors M<SB>A</SB>, M<SB>B</SB>and M<SB>C</SB>driving the pumps P<SB>A</SB>, P<SB>B</SB>and P<SB>C</SB>, and a control means 11 reducing the operation pump number of the plurality of vacuum pumps P<SB>A</SB>, P<SB>B</SB>and P<SB>C</SB>by determining as a state of being a vacuum or near to the vacuum when converged in a predetermined electric current range, based on an electric current value from the electric current detecting means 5, and also has an operation pump control means 11 successively transferring a monitoring motor in a plurality of motors, by determining by an electric current value of its motor by setting one of the plurality of pumps as the monitoring motor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スクロールポンプ、ベーンポンプ等の真空ポンプの運転制御装置およびその運転制御方法に関するものであり、特に、複数台設けられた真空ポンプの運転制御装置およびその運転制御方法に関する。   The present invention relates to an operation control device for a vacuum pump such as a scroll pump and a vane pump and an operation control method thereof, and more particularly, to an operation control device for a plurality of vacuum pumps and an operation control method thereof.

従来、スクロールポンプ、ベーンポンプ等の真空ポンプの運転制御方法としては、一般に、真空状態にしようとする真空タンク内の圧力を圧力センサで検出してその信号を利用して、ポンプを駆動する交流モータの回転数をインバータで周波数制御することで行なっている。このインバータによるポンプ能力の制御について、例えば、特開平9−4591号公報(特許文献1)のようなものが知られている。
この特許文献1には、図5に示すように、真空タンク01に接続された真空ブロワー(真空ポンプ)03を駆動する交流モータ04を周波数変換装置(インバータ)05によって回転数制御して、ポンプの運転差圧が減少し所要動力が低減すると回転数を上昇し、逆に、運転差圧が増大し所要動力が増大すると回転数を低減して、ポンプの駆動モータへの入力が一定となるように制御する構成が示されている。また真空タンク01の真空状態が圧力Pとして検出されている。
Conventionally, as an operation control method of a vacuum pump such as a scroll pump or a vane pump, generally, an AC motor that drives a pump using a pressure sensor that detects a pressure in a vacuum tank to be in a vacuum state by using a pressure sensor. The number of rotations is controlled by an inverter with frequency control. Regarding the control of the pump capacity by this inverter, for example, the one disclosed in JP-A-9-4591 (Patent Document 1) is known.
In Patent Document 1, as shown in FIG. 5, the rotational speed of an AC motor 04 that drives a vacuum blower (vacuum pump) 03 connected to a vacuum tank 01 is controlled by a frequency conversion device (inverter) 05, and the pump When the operating differential pressure decreases and the required power decreases, the rotational speed increases. Conversely, when the operating differential pressure increases and the required power increases, the rotational speed decreases and the input to the pump drive motor becomes constant. A configuration for controlling is shown. The vacuum state of the vacuum tank 01 is detected as the pressure P.

しかし、この特許文献1で示されるような従来の真空ポンプの運転制御においては、真空タンク01の真空状態が圧力Pとして検出されることから、真空状態の判断に真空センサが用いられており、真空センサの検出部分に真空タンクや真空設備室内等のゴミや水滴等が付着した場合には正確な信号が得られず、さらに故障に至る虞がある。そしてゴミや水滴の検出部への浸入を防ぐために防塵、防水を施した専用のセンサを設置しなければならず設備コスト、装置コストが増加する問題がある。
さらに、回転制御用のインバータからは常に電子ノイズが発生しているため、周辺に電子機器等がある場合には、この電子ノイズによって悪影響を及ぼす問題も起こる。
However, in the operation control of the conventional vacuum pump as shown in Patent Document 1, since the vacuum state of the vacuum tank 01 is detected as the pressure P, a vacuum sensor is used to determine the vacuum state. If dust or water droplets or the like in the vacuum tank or the vacuum equipment chamber adhere to the detection part of the vacuum sensor, an accurate signal cannot be obtained and there is a risk of failure. In order to prevent the entry of dust and water droplets into the detection unit, a dedicated sensor that is dustproof and waterproof must be installed, resulting in an increase in equipment cost and device cost.
Further, since electronic noise is always generated from the inverter for rotation control, when there is an electronic device or the like in the vicinity, there is a problem that the electronic noise has an adverse effect.

一方、真空タンクや真空室の真空状態を常に維持する必要がある場合、例えば、半導体製造装置における真空チャンバ内を常に高真空状態にするには、複数の真空ポンプを設置して、いずれかのポンプが故障または定期点検等で非作動になっても、残りのポンプによって排気能力は低下するが所定の真空状態を常に維持可能にする設備、または真空装置が知られている。   On the other hand, when it is necessary to always maintain the vacuum state of the vacuum tank or the vacuum chamber, for example, in order to always maintain a high vacuum state in the vacuum chamber in the semiconductor manufacturing apparatus, a plurality of vacuum pumps are installed, There is known a facility or a vacuum device that can always maintain a predetermined vacuum state although the pumping capacity is lowered by the remaining pump even if the pump is inoperative due to failure or periodic inspection.

特開平9−4591号公報Japanese Patent Laid-Open No. 9-4591

しかし、複数台のポンプを駆動するため、使用電力も多くなり設備の維持コストが高くなる。さらには、ポンプ台数も増えるため、故障の発生回数が増えるとともにポンプを含めて付属機器のメンテナンス回数も増加し、修理作業の工数も増大する問題を有している。
そこで、本発明は、このような背景に鑑みなされたものであり、真空センサの使用によるコスト増加やインバータによる回転数制御による問題点を解消するとともに、設備コスト、装置コストの増加を抑え、またメンテナンス回数を低減して修理作業工数を低減できるような複数の真空ポンプの運転制御装置および方法を提供することを課題とする。
However, since a plurality of pumps are driven, the amount of power used increases and the maintenance cost of the equipment increases. Furthermore, since the number of pumps increases, there is a problem that the number of occurrences of failures increases, the number of maintenance of the accessory equipment including the pumps also increases, and the number of repair work increases.
Therefore, the present invention has been made in view of such a background, and while solving the problems due to the cost increase due to the use of the vacuum sensor and the rotation speed control by the inverter, the increase in the equipment cost and the apparatus cost is suppressed, It is an object of the present invention to provide a plurality of vacuum pump operation control devices and methods that can reduce the number of maintenance operations and the number of repair work steps.

前記課題を解決するため、請求項1記載の発明は、複数の真空ポンプを用いてタンク、室内等を真空状態にする真空ポンプの運転制御装置において、前記ポンプを駆動するモータに流れる電流を検出する電流検出手段と、該電流検出手段からの電流値に基づいて所定の電流範囲内に収束したとき真空または真空に近い状態と判断して前記複数の真空ポンプの作動ポンプ数を低減する制御手段を備えたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 detects an electric current flowing in a motor that drives the pump in a vacuum pump operation control device that uses a plurality of vacuum pumps to vacuum a tank, a room, and the like. Current detecting means for controlling, and a control means for reducing the number of operating pumps of the plurality of vacuum pumps by determining a vacuum or a state close to vacuum when converged within a predetermined current range based on a current value from the current detecting means It is provided with.

請求項1記載の発明によれば、真空ポンプを駆動するモータに流れる電流を検出して所定の電流範囲内に収束したときには真空または真空に近い状態であると判断するため、従来のようなタンク内の圧力を検出する真空センサを設置する必要がないため、設備コストの増加を抑えることができる。特に真空タンクや真空室の環境によっては防塵、防水を施した専用のセンサを設置しなければならない場合には、コスト効果は大きいものである。
また、真空または真空に近い状態に到達したときは、排気する空気量が減るため余分なポンプを作動しなくても真空を維持できまたは真空に到達できるので、複数台の真空ポンプのうち作動ポンプの台数を低減することで、電力消費を削減でき、さらに不要なポンプの運転を停止するためポンプのメンテナンス時間をのばすことができ、さらにインバータ等の回転数制御機器を使用せずポンプの作動、停止で制御するため、インバータによる周辺機器への電子ノイズによる悪影響も生じない。
According to the first aspect of the present invention, when the current flowing through the motor that drives the vacuum pump is detected and converged within a predetermined current range, it is determined that the state is a vacuum or a state close to a vacuum. Since it is not necessary to install a vacuum sensor for detecting the internal pressure, an increase in equipment cost can be suppressed. In particular, depending on the environment of the vacuum tank or the vacuum chamber, when it is necessary to install a dedicated sensor that is dustproof and waterproof, the cost effectiveness is great.
In addition, when reaching a vacuum or a state close to vacuum, the amount of air to be exhausted is reduced, so the vacuum can be maintained or reached without operating an extra pump. By reducing the number of units, power consumption can be reduced, pump maintenance time can be extended to stop unnecessary pump operation, and pump operation without using a rotation speed control device such as an inverter, Since control is performed by stopping, there is no adverse effect caused by electronic noise on peripheral devices by the inverter.

請求項2記載の発明は、請求項1において、前記制御手段は前記所定の電流範囲内に到達したときに目標負圧(真空)前の予め設定した負圧判断点に到達したと判断するとともに、該負圧判断点に到達した後前記電流範囲内を一定時間維持したときに前記目標負圧(真空)に達したと判断する真空到達判断手段を有し、該真空到達判断手段によって前記負圧判断点または前記目標負圧(真空)に達したと判断したとき、作動ポンプ数を低減することを特徴とする。
請求項2記載の発明によれば、負圧判断点を判断したときにはその後大きい電流を必要とせずに真空に達することが出来るため作動ポンプ数を低減して電力消費を削減でき、さらに電流範囲内を一定時間維持したときに前記目標負圧(真空)に達したと判断するため、確実に真空に達したことを判断してから作動ポンプ数を低減して電力消費を削減できる。
According to a second aspect of the present invention, in the first aspect, when the control means reaches the predetermined current range, it determines that a preset negative pressure judgment point before the target negative pressure (vacuum) has been reached. And a vacuum arrival judging means for judging that the target negative pressure (vacuum) has been reached when the current range is maintained for a certain period of time after reaching the negative pressure judging point, and the vacuum reaching judging means When it is determined that the pressure determination point or the target negative pressure (vacuum) has been reached, the number of operating pumps is reduced.
According to the second aspect of the present invention, when the negative pressure judgment point is judged, a vacuum can be reached without requiring a large current thereafter, so that the number of operating pumps can be reduced and power consumption can be reduced. Since it is determined that the target negative pressure (vacuum) has been reached when the pressure is maintained for a certain time, it is possible to reduce the power consumption by reducing the number of operating pumps after reliably determining that the vacuum has been reached.

請求項3記載の発明は、請求項1において、前記所定の電流範囲の基準値を前記ポンプの運転時間が長くなるにつれて低下するようにオフセットさせることを特徴とする。
請求項3記載の発明によれば、真空ポンプの使用時間が長くなるにつれて、回転、摺動部材の当たりが馴染むことによって真空ポンプの負荷が低下していくため、真空到達を判断する所定の電流範囲を運転時間の経過とともに低下させていくことによって、運転時間を考慮したより正確な真空到達を判断することができる。
According to a third aspect of the present invention, in the first aspect, the reference value of the predetermined current range is offset so as to decrease as the operation time of the pump becomes longer.
According to the third aspect of the invention, as the usage time of the vacuum pump becomes longer, the load of the vacuum pump decreases as the rotation and the sliding member get used to each other. By reducing the range as the operation time elapses, it is possible to determine a more accurate vacuum reaching in consideration of the operation time.

請求項4記載の発明は、請求項1において、前記制御手段は作動ポンプ制御手段を有し、該作動ポンプ制御手段は複数のポンプの1つを監視ポンプとして設定し、該監視ポンプの駆動モータの電流値によって前記真空到達判断手段が前記負圧判断点または前記目標負圧(真空)に達したと判断したとき、前記監視ポンプ以外のポンプを停止せしめるとともに、前記監視ポンプを次のポンプへ移行して複数のポンプ内を順次循環せしめることを特徴とする。
請求項4記載の発明によれば、監視ポンプを設定してその監視ポンプ以外のポンプの作動を停止するとともに、該監視ポンプを複数ポンプにわたって順次移行せしめて循環させるようにすることで、特定の真空ポンプだけが常に作動し、その他の真空ポンプだけが停止することによって生じるポンプ間の運転のバラツキを防止する。その結果複数ポンプが均等に使用されるためメンテナンスの作業が均一化され、メンテナンス作業の効率化を図ることができる。
According to a fourth aspect of the present invention, in the first aspect, the control means includes an operating pump control means, and the operating pump control means sets one of a plurality of pumps as a monitoring pump, and the driving motor for the monitoring pump When the vacuum arrival determination means determines that the negative pressure determination point or the target negative pressure (vacuum) has been reached according to the current value, the pumps other than the monitoring pump are stopped and the monitoring pump is transferred to the next pump. It shifts and it circulates through a plurality of pumps one by one.
According to the fourth aspect of the invention, the monitoring pump is set to stop the operation of the pumps other than the monitoring pump, and the monitoring pump is sequentially shifted over a plurality of pumps to be circulated. Only the vacuum pump is always operated and only the other vacuum pumps are stopped to prevent the operation variation between the pumps. As a result, since a plurality of pumps are used evenly, the maintenance work is made uniform, and the efficiency of the maintenance work can be improved.

請求項5記載の発明は、請求項4において、前記複数ポンプのうちいずれかのポンプが運転不能または困難の場合には当該ポンプをスキップして他のポンプに前記監視ポンプを順次移行することを特徴とする。
請求項5記載の発明によれば、複数ポンプのうちいずれかのポンプが故障の場合においても他のポンプの運転時間の均一化がなされるため、真空ポンプ間の運転のバラツキを防止することができる。
According to a fifth aspect of the present invention, in the fourth aspect, when any one of the plurality of pumps cannot be operated or is difficult, the pump is skipped and the monitoring pump is sequentially transferred to another pump. Features.
According to the fifth aspect of the present invention, even when any one of the plurality of pumps is out of order, the operation time of the other pumps is made uniform, so that variations in operation between the vacuum pumps can be prevented. it can.

請求項6、7記載の発明は、真空ポンプの運転制御方法に関する発明であり、請求項6記載の発明は、複数の真空ポンプを用いてタンク、室内等を真空状態にする真空ポンプの運転制御方法において、前記ポンプを駆動するモータに流れる電流を検出し、該電流値に基づいて所定の電流範囲内に収束したとき真空または真空に近い状態と判断して前記複数の真空ポンプの作動ポンプ数を低減することを特徴とする。   The invention described in claims 6 and 7 is an invention relating to a method for controlling the operation of a vacuum pump, and the invention described in claim 6 controls the operation of a vacuum pump that evacuates a tank, a room, etc. using a plurality of vacuum pumps. In the method, the number of operating pumps of the plurality of vacuum pumps is determined by detecting a current flowing through the motor driving the pump and determining that the state is close to a vacuum or a vacuum when the current converges within a predetermined current range based on the current value. It is characterized by reducing.

かかる発明によれば、真空ポンプを駆動するモータに流れる電流を検出して所定の電流範囲内に収束したときには真空または真空に近い状態であると判断するため、従来のようなタンク内の圧力を検出する真空センサを設置する必要がなく、設備コストの増加を抑えることができる。特に真空タンクや真空室の環境によっては防塵、防水を施した専用のセンサを設置しなければならない場合には、コスト効果は大きいものである。
また、真空または真空に近い状態に到達したときは、排気する空気量が減るため余分なポンプを作動しなくても真空を維持できまたは真空に到達できるので、複数台の真空ポンプのうち作動ポンプの台数を低減することで、電力消費を削減でき、さらに不要なポンプの運転を停止するためポンプのメンテナンス時間をのばすことができ、さらにインバータ等の回転数制御機器を使用せずポンプの作動、停止で制御するため、インバータによる周辺機器への電子ノイズによる悪影響も生じない。
According to this invention, when the current flowing through the motor that drives the vacuum pump is detected and converged within a predetermined current range, it is determined that the pressure is in the vacuum or near the vacuum. It is not necessary to install a vacuum sensor for detection, and an increase in equipment cost can be suppressed. In particular, depending on the environment of the vacuum tank or the vacuum chamber, when it is necessary to install a dedicated sensor that is dustproof and waterproof, the cost effectiveness is great.
In addition, when reaching a vacuum or a state close to vacuum, the amount of air to be exhausted is reduced, so the vacuum can be maintained or reached without operating an extra pump. By reducing the number of units, power consumption can be reduced, pump maintenance time can be extended to stop unnecessary pump operation, and pump operation without using a rotation speed control device such as an inverter, Since control is performed by stopping, there is no adverse effect caused by electronic noise on peripheral devices by the inverter.

請求項7記載の発明は、請求項6において、前記複数のポンプの1つを監視ポンプとして設定し、該監視ポンプの駆動モータの電流値によって所定の電流範囲内に到達したときに目標負圧(真空)前の予め設定した負圧判断点に到達したと判断するとともに、該負圧判断点に到達した後前記電流範囲内を一定時間維持したときに前記目標負圧(真空)に達したと判断し、前記負圧判断点または前記目標負圧に到達したとき前記監視ポンプ以外のポンプを停止するとともに、前記監視ポンプを次のポンプに移行せしめて前記監視ポンプを複数のポンプ内を順次循環させるようにしたことを特徴とする。   According to a seventh aspect of the present invention, in the sixth aspect, when one of the plurality of pumps is set as a monitoring pump and reaches a predetermined current range depending on a current value of a driving motor of the monitoring pump, the target negative pressure is set. (Vacuum) The target negative pressure (vacuum) is reached when it is determined that the previously set negative pressure judgment point has been reached and the current range is maintained for a certain period of time after reaching the negative pressure judgment point When the negative pressure judgment point or the target negative pressure is reached, the pumps other than the monitoring pump are stopped, and the monitoring pump is transferred to the next pump so that the monitoring pumps are sequentially moved through a plurality of pumps. It is characterized by being made to circulate.

かかる発明によれば、負圧判断点を判断したときにはその後大きい電流を必要とせずに真空に達することが出来るため作動ポンプ数を低減して電力消費を削減でき、さらに電流範囲内を一定時間維持したときに前記目標負圧(真空)に達したと判断するため、確実に真空に達したことを判断してから作動ポンプ数を低減して電力消費を削減できる。
また、特定の真空ポンプだけが常に作動し、その他の真空ポンプだけが停止することによって生じるポンプ間の運転のバラツキを防止する。その結果複数ポンプが均等に使用されるためメンテナンスの作業が均一化され、メンテナンス作業の効率化を図ることができる。
According to this invention, when the negative pressure judgment point is judged, the vacuum can be reached without requiring a large current thereafter, so that the number of operating pumps can be reduced and the power consumption can be reduced, and the current range is maintained for a certain period of time. Therefore, since it is determined that the target negative pressure (vacuum) has been reached, it is possible to reduce the number of working pumps after determining that the vacuum has been reliably reached, thereby reducing power consumption.
Further, it is possible to prevent variation in operation between pumps caused by only a specific vacuum pump always operating and only other vacuum pumps being stopped. As a result, since a plurality of pumps are used evenly, the maintenance work is made uniform, and the efficiency of the maintenance work can be improved.

本発明によれば、真空センサの使用やインバータによる制御による問題点を解消するとともに、設備コストの増加を抑え、またメンテナンス回数を低減して修理作業工数を低減できるような複数の真空ポンプの運転制御装置および方法を提供することができる。   According to the present invention, it is possible to operate a plurality of vacuum pumps that can eliminate problems caused by the use of a vacuum sensor and control by an inverter, suppress an increase in equipment costs, and reduce the number of maintenance operations by reducing the number of maintenance operations. Control devices and methods can be provided.

以下、図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。但しこの実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.

図1は本発明の全体構成図であり、3台の真空ポンプP、P、Pによって真空タンク1を真空状態にする構成を示す。真空ポンプP、P、PはそれぞれモータM、M、Mによって駆動される。真空タンク1と真空ポンプP、P、Pとの間にはそれぞれ電磁開閉弁V、V、Vが設けられている。真空ポンプP、P、Pはそれぞれスクロール式、またはベーン式等の回転式の容積形ポンプで構成されている。 Figure 1 is an overall configuration diagram of the present invention, showing the configuration of the vacuum tank 1 is evacuated three vacuum pumps P A, P B, the P C. Vacuum pump P A, P B, P C are the motor M A, respectively, M B, driven by M C. Vacuum tank 1 and the vacuum pump P A, P B, respectively solenoid valve V A between the P C, V B, V C is provided. Vacuum pump P A, P B, P C are respectively constituted by a scroll or rotary displacement pump of the vane type and the like.

モータM、M、Mは電源3から電力が供給されて運転されるが、モータの回転数制御は行わないためインバータ等は設けられていない、なお、モータM、M、Mは直流モータでも、交流モータでもよい。そして各モータへの供給電流が電流検出手段5によって検出される。 Motor M A, M B, M C is the power from the power source 3 is operated is supplied, the rotational speed control of the motor is inverter or the like not provided for not performed, The motor M A, M B, M C may be a DC motor or an AC motor. The current supplied to each motor is detected by the current detection means 5.

真空ポンプP、P、Pは、制御手段7によって作動、停止が制御されており、制御手段7には、電流検出手段5からの電流値に基づいて所定の電流範囲内に収束したときに目標負圧(真空)前の予め設定した負圧判断点Sに到達したと判断するとともに、負圧判断点Sに達してから所定時間経過して真空状態に到達したと判断する真空到達判断手段9と、該真空到達判断手段9によって負圧判断点Sまたは真空状態に達したと判断したときに作動ポンプ数を低減する作動ポンプ制御手段11とが設けられている。 Vacuum pump P A, P B, P C is operated by the control means 7 are stopped control, the control unit 7, it has converged within a predetermined current range based on the current value from the current detector 5 Sometimes it is determined that a preset negative pressure judgment point S before the target negative pressure (vacuum) has been reached, and a vacuum has been reached that a predetermined time has elapsed since reaching the negative pressure judgment point S, and a vacuum state has been reached. A judgment means 9 and a working pump control means 11 for reducing the number of working pumps when it is judged by the vacuum arrival judgment means 9 that the negative pressure judgment point S or the vacuum state has been reached are provided.

スクロール式、またはベーン式等の回転式の容積形ポンプにおいては、真空ポンプの動力(電流値)特性は、図2に示すような電流値カーブを有し、一定電流値に収束する平坦な直線状態の部分と電流値が大きく変化する山形部分とからなる。
真空タンク1内を真空にする作動開始直後は、高い圧力を圧縮して排気を行うために動力(電流値)を必要とするが、負圧が進むにつれて排気する空気がなくなり仕事をしなくなるため、動力を必要とせず、10Pa〜10Pa以下ではほぼ一定値に収束する。
In a rotary positive displacement pump such as a scroll type or vane type, the power (current value) characteristic of the vacuum pump has a current value curve as shown in FIG. 2, and is a flat straight line that converges to a constant current value. It consists of a state portion and a mountain portion where the current value changes greatly.
Immediately after starting the operation of evacuating the vacuum tank 1, power (current value) is required for exhausting by compressing a high pressure. No power is required, and it converges to a substantially constant value at 10 2 Pa to 10 3 Pa or less.

そこで、真空到達判断手段9はこのような真空ポンプの動力(電流値)特性を用いて、負圧が進み真空(目標負圧)近くになると電流値が一定に収束することから、測定電流がこの一定値Pを基準に測定値の変動(ばらつき)を考慮して±αの範囲内に入った時点を検出して、この点を真空前の予め設定した負圧判断点Sとして、この点Sに到達しかつ一定時間、たとえば数分間維持されていた場合には、負圧判断点Sから真空(目標負圧)に到達したものと判断する。   Therefore, the vacuum arrival determining means 9 uses such power (current value) characteristics of the vacuum pump, and since the current value converges to a constant value when the negative pressure advances and approaches the vacuum (target negative pressure), the measured current is This point is used as a negative pressure judgment point S set in advance before vacuum by detecting a time point within a range of ± α in consideration of fluctuation (variation) of the measured value with reference to this constant value P. When the pressure reaches S and is maintained for a certain time, for example, several minutes, it is determined that the vacuum (target negative pressure) has been reached from the negative pressure determination point S.

また、一定値Pは、真空ポンプP、P、Pの運転時間が長くなるにつれて低下するように下方にオフセットされる。すなわち、運転開始時にはPであったものを、運転時間の係数kを掛けてkPとして0.9P、0.8P等と低下させていくように設定されている。
すなわち、真空ポンプの使用時間が長くなるにつれて、回転、摺動部材の当たりが馴染むことによって真空ポンプの負荷が低下していくため、負圧判断点Sへの到達を判断する所定の電流範囲を運転時間の経過とともに低下させていくことによって、運転時間を考慮したことにより正確な真空到達を判断することができる。
Further, a constant value P, the vacuum pump P A, P B, is offset downwards to decrease as the operating time of the P C is increased. That is, it is set such that P at the start of operation is reduced to 0.9P, 0.8P, etc. as kP by multiplying the coefficient k of operation time.
That is, as the operating time of the vacuum pump becomes longer, the load of the vacuum pump decreases as the rotation and sliding member become familiar, so a predetermined current range for determining the arrival at the negative pressure determination point S is set. By reducing the operating time as the operating time elapses, it is possible to determine whether the vacuum has been reached accurately by considering the operating time.

真空ポンプP、P、Pを駆動するモータM、M、Mに流れる電流値を検出して目標負圧(真空)前の予め設定した負圧判断点S、または真空状態に達したと判断するため、従来のような真空タンク内の圧力を検出する真空センサを設置する必要がないため、設備コストの増加を抑えることができる。特に真空タンクや真空室の環境によっては防塵、防水を施した専用のセンサを設置しなければならない場合には、コスト効果は大きいものである。
また、目標負圧(真空)前の予め設定した負圧判断点Sに到達したときには、排気する空気量が減るため余分なポンプを作動しなくても真空に到達できるし、また真空に達していれば余分なポンプを作動しなくても真空を維持できるので、複数台の真空ポンプのうち作動ポンプの台数を低減することで、電力消費を削減でき、さらに不要なポンプの運転を停止するためポンプのメンテナンス時間をのばすことができ、さらにインバータ等の回転数制御機器を使用せずポンプの作動、停止で制御するため、インバータによる周辺機器への電子ノイズによる悪影響も生じない。
Vacuum pump P A, P B, the motor M A for driving the P C, M B, the negative pressure determination point preset before target negative pressure by detecting a current flowing through the M C (vacuum) S or vacuum state, Therefore, since it is not necessary to install a vacuum sensor for detecting the pressure in the vacuum tank as in the prior art, an increase in equipment cost can be suppressed. In particular, depending on the environment of the vacuum tank or the vacuum chamber, when it is necessary to install a dedicated sensor that is dustproof and waterproof, the cost effectiveness is great.
When the preset negative pressure judgment point S before the target negative pressure (vacuum) is reached, the amount of air to be exhausted is reduced, so that the vacuum can be reached without operating an extra pump, and the vacuum has been reached. Since the vacuum can be maintained without operating extra pumps, power consumption can be reduced by reducing the number of operating pumps out of multiple vacuum pumps, and unnecessary pump operations can be stopped. The maintenance time of the pump can be extended, and furthermore, since the pump is controlled by operating and stopping without using a rotation speed control device such as an inverter, there is no adverse effect caused by electronic noise on peripheral devices by the inverter.

つぎに、真空到達判断手段9によって負圧判断点Sに到達したと判断したときに、作動ポンプ数を低減する作動ポンプ制御手段11について図3のタイムチャートおよび図4のフローチャートを参照して説明する。
図4に示すように、始めに真空ポンプP、P、Pの全てが作動状態にあり(S1)、真空ポンプPが監視ポンプとして設定され、その電流値Iを監視している(S2)いる。電流値IがP−α≦I≦P+αの範囲内にあるかを判断し(S3)、YESの場合には、さらにその状態が所定時間t以上経過したかを判断し(S4)、YESの場合には、真空に達したと判断して真空ポンプP、Pを停止させでポンプPのみを作動させる(S5)。
所定時間t以上経過したかを判断(S4)せずに、電流値IがP−α≦I≦P+αの範囲内にあるかを判断して(S3)負圧判断点Sで、真空ポンプP、Pを停止させることでもよい。
Next, the working pump control means 11 for reducing the number of working pumps when the vacuum reaching judging means 9 judges that the negative pressure judging point S has been reached will be described with reference to the time chart of FIG. 3 and the flowchart of FIG. To do.
As shown in FIG. 4, start the vacuum pump P A, P B, are all of the P C is in operation (S1), the vacuum pump P A is set as the monitoring pumps, monitors the current value I A Yes (S2). Current I A is determined it is within the range of P-α ≦ I A ≦ P + α (S3), in the case of YES, and further determines whether the state has passed a predetermined time t 0 or more (S4) , If YES, the vacuum pump P B is judged to have reached the vacuum is actuated only pump P a is stop the P C (S5).
Without determining whether the predetermined time t 0 or more has elapsed (S4), it is determined whether the current value I A is within the range of P−α ≦ I A ≦ P + α (S3), at the negative pressure determination point S, vacuum pump P B, may be to stop the P C.

そして、電流値Iの監視を続けて、真空状態が悪化してIがP+αより大きくなったかを判断し(S6)、大きくなった場合には、再び全ての真空ポンプP、P、Pを作動させる(S7)。そして、次に監視ポンプを真空ポンプPへ移行して(S8)、電流値IBを監視して、前記真空ポンプPを監視ポンプとした場合と同様の手法で真空状態の監視をする。この真空ポンプPを監視ポンプとした場合には、停止させるポンプは真空ポンプP、Pを停止させ、ポンプPのみを作動させる(S9)。 Then, continue to monitor the current value I A, vacuum is deteriorated I A is determined whether or larger than P + α (S6), if it becomes larger, again all of the vacuum pump P A, P B , to operate the P C (S7). Then, and then proceeds to monitor pump to the vacuum pump P B (S8), by monitoring the current values I B, the monitoring of the vacuum state in the same manner as when the vacuum pump P A was monitored pump . This when the monitored pump is a vacuum pump P B, the pump to stop the vacuum pump P A, the P C is stopped, to operate only the pump P B (S9).

そして、次に監視ポンプを真空ポンプPへ移行して(S10)、真空ポンプPを監視ポンプとした場合と同様の手法で真空状態の監視をする。この真空ポンプPを監視ポンプとした場合には、停止させるポンプは真空ポンプP、Pを停止させ、ポンプPのみを作動させる(S11)。
従って、作動ポンプ制御手段11は図4に示すように、監視ポンプが真空ポンプPのときの制御A、真空ポンプPのときの制御B、真空ポンプPのときの制御Cと順次移行して循環させるように構成されている。
Then, and then proceeds to monitor pump to the vacuum pump P C (S10), the monitoring of the vacuum in the same manner as when the vacuum pump P A was monitored pump. If this vacuum pump P C was monitored pump is a pump to stop the vacuum pump P A, the P B is stopped, to operate only the pump P C (S11).
Thus, actuating the pump control means 11 as shown in FIG. 4, the control A when monitoring the pump is a vacuum pump P A, control B when the vacuum pump P B, sequentially shifts the control C when the vacuum pump P C And is configured to circulate.

この循環の状態を図3のタイムチャートで示す。ポンプPを初期ポンプとしてONすると所定の時間差をもって、ポンプP、PがONして全てのポンプが作動する。この時間差起動は複数ポンプの立ち上げを同時に行なうと負荷が同時に掛り大電流が流れることを避けるためである。
図3上でL点は、負圧判断点Sまたは真空到達と判断して監視ポンプ以外の他のポンプを停止する時点を示す。M点は、電流値が基準範囲外になったため停止していたポンプを再び起動する時点を示す。このL点、M点の作動を、監視ポンプをPへ移行した場合、Pへ移行した場合についても同様に繰り返す。
This circulation state is shown in the time chart of FIG. The pump P A have turned ON a predetermined time difference as an initial pump, the pump P B, all the pump P C is turned ON to operate. This time difference activation is to avoid a large current from flowing due to the load being applied at the same time when a plurality of pumps are started up simultaneously.
In FIG. 3, the point L indicates the negative pressure judgment point S or the time point when the vacuum is reached and other pumps other than the monitoring pump are stopped. Point M indicates a point in time when the pump that has been stopped because the current value is outside the reference range is started again. The L point, the operating point M, if the monitoring pump and shifted to P B, is repeated for the same when the transition to the P C.

また、真空ポンプP、P、Pの何れかが運転不能または困難な場合には、そのポンプをスキップして次のポンプを監視ポンプとするように設定されている。例えばポンプPが故障またはメンテナンス時のときには、ポンプPからポンプPに監視ポンプ移行する。
さらに、電磁開閉弁V、V、Vは、真空ポンプP、P、Pから真空タンク側へポンプ作動時に高圧空気が逆流することを防止する開閉弁であり、真空ポンプP、P、Pが作動してから電磁開閉弁V、V、Vが開作動するようになっている。
Further, the vacuum pump P A, P B, if either of P C is impossible or difficult operation is set so as to monitor the pump for the next pump skips the pump. For example, when the pump P B is failure or maintenance, monitoring pumps transition from the pump P A pump P C.
Furthermore, solenoid valves V A, V B, V C is the on-off valve to prevent high pressure air from flowing back during pump operation the vacuum pump P A, P B, the P C into the vacuum tank, the vacuum pump P a, P B, P C is actuated solenoid valve from V a, V B, V C is adapted to opening operation.

なお、監視ポンプ以外の他のポンプを停止するときには必ずしも残りのポンプすべてを同時に停止せずにポンプの急激な負荷変動を避けるいみで段階的に停止してもよく、また要求真空度によっては、残り全てのポンプでなく一部のみの停止とすることも可能である。
また、真空ポンプの台数は、本実施の形態では3台で説明したが、複数台であればよく2台でも、4台以上でもよいことは勿論である。
When stopping other pumps other than the monitoring pump, it is not always necessary to stop all the remaining pumps at the same time, and may be stopped step by step to avoid sudden load fluctuations of the pump, and depending on the required vacuum level, It is possible to stop only a part of the pumps instead of all the remaining pumps.
Moreover, although the number of vacuum pumps has been described as three in this embodiment, it is needless to say that a plurality of vacuum pumps may be used, and two or four or more may be used.

以上のように、監視ポンプを設定してその監視ポンプ以外のポンプ作動を停止するとともに、該監視ポンプを複数ポンプの内を順次移行させて循環させるようにすることで、特定の真空ポンプだけが常に作動し、その他の真空ポンプだけが停止することによって生じるポンプ間の運転のバラツキを防止する。その結果複数ポンプが均等に使用されるためメンテナンスの作業が均一化され、メンテナンス作業の効率化を図ることができる。   As described above, by setting a monitoring pump and stopping pump operations other than the monitoring pump, the monitoring pump is sequentially shifted through the plurality of pumps so that only a specific vacuum pump can be circulated. It always operates and prevents the variation in operation between pumps caused by stopping only other vacuum pumps. As a result, since a plurality of pumps are used evenly, the maintenance work is made uniform, and the efficiency of the maintenance work can be improved.

本発明によれば、真空センサの使用やインバータによる制御による問題点を解消するとともに、設備コストの増加を抑え、またメンテナンス回数を低減して修理作業工数を低減できるような複数の真空ポンプの運転を可能にするので、複数の真空ポンプの運転制御装置および方法に適用されて有益である。   According to the present invention, it is possible to operate a plurality of vacuum pumps that can eliminate problems caused by the use of a vacuum sensor and control by an inverter, suppress an increase in equipment costs, and reduce the number of maintenance operations by reducing the number of maintenance operations. Therefore, the present invention is beneficially applied to an operation control apparatus and method for a plurality of vacuum pumps.

本発明の全体構成図である。1 is an overall configuration diagram of the present invention. 真空ポンプの動力(電流値)特性図である。It is a motive power (electric current value) characteristic view of a vacuum pump. 実施の形態に係るタイムチャートである。It is a time chart which concerns on embodiment. 実施の形態に係る制御フローチャートである。It is a control flowchart concerning an embodiment. 従来技術である。It is a prior art.

符号の説明Explanation of symbols

1 真空タンク
3 電源
5 電流検知手段
7 制御手段
9 真空到達判断手段
11 作動ポンプ制御手段
、P、P真空ポンプ
、V、V電磁開閉弁
、M、Mモータ
1 vacuum tank 3 Power 5 current sensing means 7 the control means 9 ultimate vacuum determining means 11 operates the pump control means P A, P B, P C vacuum pump V A, V B, V C solenoid valve M A, M B, M C motor

Claims (7)

複数の真空ポンプを用いてタンク、室内等を真空状態にする真空ポンプの運転制御装置において、
前記ポンプを駆動するモータに流れる電流を検出する電流検出手段と、該電流検出手段からの電流値に基づいて所定の電流範囲内に収束したとき真空または真空に近い状態と判断して前記複数の真空ポンプの作動ポンプ数を低減する制御手段を備えたことを特徴とする真空ポンプの運転制御装置。
In a vacuum pump operation control device that uses a plurality of vacuum pumps to evacuate tanks, chambers, etc.,
A plurality of current detecting means for detecting a current flowing in a motor for driving the pump; and a plurality of the plurality of the plurality of the current detecting means when judging that the current is converged within a predetermined current range based on a current value from the current detecting means. An operation control device for a vacuum pump, comprising control means for reducing the number of operating pumps of the vacuum pump.
前記制御手段は前記所定の電流範囲内に到達したときに目標負圧(真空)前の予め設定した負圧判断点に到達したと判断するとともに、該負圧判断点に到達した後前記電流範囲内を一定時間維持したときに前記目標負圧(真空)に達したと判断する真空到達判断手段を有し、該真空到達判断手段によって前記負圧判断点または前記目標負圧(真空)に達したと判断したとき、作動ポンプ数を低減することを特徴とする請求項1記載の真空ポンプの運転制御装置。   The control means determines that a preset negative pressure judgment point before the target negative pressure (vacuum) has been reached when reaching the predetermined current range, and the current range after reaching the negative pressure judgment point A vacuum attainment judging means for judging that the target negative pressure (vacuum) has been reached when the inside is maintained for a predetermined time, and the vacuum attainment judging means reaches the negative pressure judgment point or the target negative pressure (vacuum). 2. The operation control device for a vacuum pump according to claim 1, wherein the number of operating pumps is reduced when it is determined that the operation has been performed. 前記所定の電流範囲の基準値を前記ポンプの運転時間が長くなるにつれて低下するようにオフセットさせることを特徴とする請求項1記載の真空ポンプの運転制御装置。   2. The operation control device for a vacuum pump according to claim 1, wherein the reference value of the predetermined current range is offset so as to decrease as the operation time of the pump becomes longer. 前記制御手段は作動ポンプ制御手段を有し、該作動ポンプ制御手段は複数のポンプの1つを監視ポンプとして設定し、該監視ポンプの駆動モータの電流値によって前記真空到達判断手段が前記負圧判断点または前記目標負圧(真空)に達したと判断したとき、前記監視ポンプ以外のポンプを停止せしめるとともに、前記監視ポンプを次のポンプへ移行して複数のポンプ内を順次循環せしめることを特徴とする請求項2記載の真空ポンプの運転制御装置。   The control means has a working pump control means, and the working pump control means sets one of a plurality of pumps as a monitoring pump, and the vacuum arrival judging means determines the negative pressure according to a current value of a driving motor of the monitoring pump. When it is determined that the determination point or the target negative pressure (vacuum) has been reached, the pumps other than the monitoring pump are stopped, and the monitoring pump is transferred to the next pump to sequentially circulate through a plurality of pumps. 3. The operation control device for a vacuum pump according to claim 2, wherein the operation control device is a vacuum pump. 前記複数ポンプのうちいずれかのポンプが運転不能または困難の場合には当該ポンプをスキップして他のポンプに前記監視ポンプを順次移行することを特徴とする請求項4記載の真空ポンプの運転制御装置。   5. The operation control of the vacuum pump according to claim 4, wherein when any one of the plurality of pumps cannot be operated or is difficult, the pump is skipped and the monitoring pump is sequentially transferred to another pump. apparatus. 複数の真空ポンプを用いてタンク、室内等を真空状態にする真空ポンプの運転制御方法において、
前記ポンプを駆動するモータに流れる電流を検出し、該電流値に基づいて所定の電流範囲内に収束したとき真空または真空に近い状態と判断して前記複数の真空ポンプの作動ポンプ数を低減することを特徴とする真空ポンプの運転制御方法。
In the operation control method of the vacuum pump that uses a plurality of vacuum pumps to make the tank, the room, etc. in a vacuum state,
The current flowing through the motor that drives the pump is detected, and when it converges within a predetermined current range based on the current value, it is determined that the state is a vacuum or a state close to vacuum, and the number of operating pumps of the plurality of vacuum pumps is reduced. The operation control method of the vacuum pump characterized by the above-mentioned.
前記複数のポンプの1つを監視ポンプとして設定し、該監視ポンプの駆動モータの電流値によって所定の電流範囲内に到達したときに目標負圧(真空)前の予め設定した負圧判断点に到達したと判断するとともに、該負圧判断点に到達した後前記電流範囲内を一定時間維持したときに前記目標負圧(真空)に達したと判断し、前記負圧判断点または前記目標負圧に到達したとき前記監視ポンプ以外のポンプを停止するとともに、前記監視ポンプを次のポンプに移行せしめて前記監視ポンプを複数のポンプ内を順次循環させるようにしたことを特徴とする請求項6記載の真空ポンプの運転制御方法。   One of the plurality of pumps is set as a monitoring pump, and when the current value of the driving motor of the monitoring pump reaches a predetermined current range, a predetermined negative pressure judgment point before the target negative pressure (vacuum) is set. It is determined that the target negative pressure (vacuum) has been reached when the current range is maintained for a certain period of time after reaching the negative pressure determination point, and the negative pressure determination point or the target negative pressure is determined. 7. The pumps other than the monitoring pump are stopped when the pressure is reached, and the monitoring pump is transferred to the next pump so that the monitoring pumps are circulated through a plurality of pumps sequentially. The operation control method of the vacuum pump as described.
JP2006247398A 2006-09-12 2006-09-12 Vacuum pump operation control device and method Expired - Fee Related JP4737770B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006247398A JP4737770B2 (en) 2006-09-12 2006-09-12 Vacuum pump operation control device and method
EP07017322.4A EP1906024B1 (en) 2006-09-12 2007-09-04 Operation control device and method of vacuum pumps
US11/853,942 US20080063534A1 (en) 2006-09-12 2007-09-12 Operation control device and method of vacuum pumps
CN2007101821284A CN101144470B (en) 2006-09-12 2007-09-12 Operation control device and method of vacuum pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247398A JP4737770B2 (en) 2006-09-12 2006-09-12 Vacuum pump operation control device and method

Publications (2)

Publication Number Publication Date
JP2008069674A true JP2008069674A (en) 2008-03-27
JP4737770B2 JP4737770B2 (en) 2011-08-03

Family

ID=38727514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247398A Expired - Fee Related JP4737770B2 (en) 2006-09-12 2006-09-12 Vacuum pump operation control device and method

Country Status (4)

Country Link
US (1) US20080063534A1 (en)
EP (1) EP1906024B1 (en)
JP (1) JP4737770B2 (en)
CN (1) CN101144470B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523111A (en) * 2007-04-03 2010-07-15 デラヴァル ホルディング アーベー Method and computer program product in a milking system for producing a required decompression level
CN104066995A (en) * 2012-01-20 2014-09-24 金金均 Auxiliary control device for compressor and auxiliary control method for compressor thereof
JP2020101156A (en) * 2018-12-25 2020-07-02 オリオン機械株式会社 Exhaust system and exhaust device control method
JP2020112113A (en) * 2019-01-15 2020-07-27 オリオン機械株式会社 Exhaust system and exhaust device control method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006906A1 (en) 2004-07-13 2006-01-19 Delaval Holding Ab Controllable vacuum source
DE102008064490A1 (en) * 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Method for controlling a compressor system
JP5758818B2 (en) * 2012-02-15 2015-08-05 株式会社日立製作所 Compressor system and operation control method thereof
CN103267009B (en) * 2013-05-29 2016-08-24 赖正伦 A kind of high efficiency energy storage induction system
WO2015040385A1 (en) * 2013-09-20 2015-03-26 Micromass Uk Limited Automated cleanliness diagnostic for mass spectrometer
CN103743442B (en) * 2013-12-31 2016-10-05 中山凯旋真空技术工程有限公司 A kind of vacuum drying treatment thing water rate measuring method
EP3199813B1 (en) * 2016-01-28 2019-12-04 ABB Schweiz AG Load/unload control method for compressor system
WO2017144282A1 (en) 2016-02-24 2017-08-31 Koninklijke Philips N.V. Breast pump and method for operation
JP7019513B2 (en) * 2018-06-05 2022-02-15 株式会社荏原製作所 Control devices, control systems, control methods, programs and machine learning devices
CN109521816A (en) * 2018-12-28 2019-03-26 广州市公用事业高级技工学校(广州市公用事业技师学院、广州市公用事业高级职业技术培训学院) Vacuum degree method of adjustment, system, device, computer equipment and storage medium
CN109673473A (en) * 2018-12-29 2019-04-26 嘉兴奥拓迈讯自动化控制技术有限公司 A kind of intelligent vacuum diversion irrigation system and its irrigation method
TWI696759B (en) * 2019-07-25 2020-06-21 秦祖敬 Air extracting device and method for calculating remaining time of extracting
CN110473119B (en) * 2019-08-14 2021-11-12 国能南京电力试验研究有限公司 Optimized operation method of vacuum pump set of thermal power plant
EP3916231A1 (en) * 2020-05-29 2021-12-01 Agilent Technologies, Inc. Vacuum pumping system having a plurality of positive displacement vacuum pumps and method for operating the same
CN111706499B (en) * 2020-06-09 2022-03-01 成都数之联科技有限公司 Predictive maintenance system and method for vacuum pump and automatic vacuum pump purchasing system
CN113759995B (en) * 2021-09-07 2022-05-03 广东鑫钻节能科技股份有限公司 Joint control method and system for vacuum station
CN114646168A (en) * 2022-03-15 2022-06-21 海信(山东)冰箱有限公司 Refrigerator and control method of vacuum drawer of refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494095A (en) * 1972-05-08 1974-01-14
JPS61106989A (en) * 1984-10-08 1986-05-24 Hokuetsu Kogyo Co Ltd Control system of compressor
JP2003139055A (en) * 2001-10-31 2003-05-14 Ulvac Japan Ltd Evacuation device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128554Y2 (en) * 1972-04-20 1976-07-19
US4152902A (en) * 1976-01-26 1979-05-08 Lush Lawrence E Control for refrigeration compressors
JPS60147585A (en) * 1984-01-11 1985-08-03 Hitachi Ltd Control of compressor
FR2621141B1 (en) * 1987-09-25 1989-12-01 Cit Alcatel METHOD FOR STARTING SERIES COUPLED VACUUM PUMPS, AND DEVICE FOR CARRYING OUT SAID METHOD
FR2640697B1 (en) * 1988-12-16 1993-01-08 Cit Alcatel PUMPING ASSEMBLY FOR PROVIDING HIGH VACUUMS
FR2652390B1 (en) * 1989-09-27 1991-11-29 Cit Alcatel VACUUM PUMP GROUP.
JP3847357B2 (en) * 1994-06-28 2006-11-22 株式会社荏原製作所 Vacuum exhaust system
US5624394A (en) * 1994-10-28 1997-04-29 Iolab Corporation Vacuum system and a method of operating a vacuum system
US5971711A (en) * 1996-05-21 1999-10-26 Ebara Corporation Vacuum pump control system
GB9616457D0 (en) * 1996-08-05 1996-09-25 Boc Group Plc Improvements in vacuum pump systems
US6017192A (en) * 1996-10-28 2000-01-25 Clack; Richard N. System and method for controlling screw compressors
JP3767052B2 (en) * 1996-11-30 2006-04-19 アイシン精機株式会社 Multistage vacuum pump
TW470815B (en) * 1999-04-30 2002-01-01 Arumo Technos Kk Method and apparatus for controlling a vacuum pump
US6589023B2 (en) * 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption
JP2003155981A (en) * 2001-11-21 2003-05-30 Toyota Industries Corp Operation control method for vacuum pump and operation controller thereof
JP2004197644A (en) * 2002-12-18 2004-07-15 Toyota Industries Corp Controller for vacuum pump
GB0324068D0 (en) * 2003-10-14 2003-11-19 Boc Group Plc Improvements in pumping efficiency
DE10354205A1 (en) * 2003-11-20 2005-06-23 Leybold Vakuum Gmbh Method for controlling a drive motor of a vacuum displacement pump
KR100690674B1 (en) * 2005-04-06 2007-03-09 엘지전자 주식회사 Driving control apparatus for refrigerator in using two reciprocating compressor
CN101111680B (en) * 2005-04-08 2010-12-01 株式会社荏原制作所 Vacuum pump self-diagnosis method, vacuum pump self-diagnosis system, and vacuum pump central monitoring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494095A (en) * 1972-05-08 1974-01-14
JPS61106989A (en) * 1984-10-08 1986-05-24 Hokuetsu Kogyo Co Ltd Control system of compressor
JP2003139055A (en) * 2001-10-31 2003-05-14 Ulvac Japan Ltd Evacuation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523111A (en) * 2007-04-03 2010-07-15 デラヴァル ホルディング アーベー Method and computer program product in a milking system for producing a required decompression level
CN104066995A (en) * 2012-01-20 2014-09-24 金金均 Auxiliary control device for compressor and auxiliary control method for compressor thereof
JP2020101156A (en) * 2018-12-25 2020-07-02 オリオン機械株式会社 Exhaust system and exhaust device control method
JP2020112113A (en) * 2019-01-15 2020-07-27 オリオン機械株式会社 Exhaust system and exhaust device control method

Also Published As

Publication number Publication date
US20080063534A1 (en) 2008-03-13
CN101144470B (en) 2012-02-22
EP1906024A2 (en) 2008-04-02
CN101144470A (en) 2008-03-19
EP1906024B1 (en) 2017-06-28
EP1906024A3 (en) 2012-06-13
JP4737770B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4737770B2 (en) Vacuum pump operation control device and method
JP6050081B2 (en) Dry vacuum pump device
CN108267649B (en) Compressor phase sequence detection method and device and start control method and device thereof
JP5114059B2 (en) Exhaust system
US7408317B2 (en) Apparatus having a motor, controller for the motor, and method of controlling the motor
JP6136140B2 (en) Motor control device and electric pump unit
KR100652874B1 (en) Apparatus for controlling cooling-pan of construction equipment and Method thereof
JP4633324B2 (en) Motor control method
JP2007295673A (en) Motor controller
KR102234374B1 (en) Dry vacuum pump apparatus, control method thereof and control program
JP4001573B2 (en) Pump device
JP2020197194A (en) Pump device for vehicle
WO2011052675A1 (en) Pump unit, vacuum device, and exhaust device for load lock chamber
US11542951B2 (en) Gas compressor and control method therefor
US20220252065A1 (en) Fluid Machine Device
JP5906568B2 (en) Vacuum exhaust method
JP6079035B2 (en) Motor control device and electric pump unit
JP2012197727A (en) Scroll compressor
JP5178011B2 (en) Compressor and control method of compressor
JP3533428B2 (en) Pump device and pump control device
JP6491079B2 (en) Battery pack cooling fan controller
JP5817520B2 (en) Motor control device and electric pump unit
KR20210034154A (en) Air volume control apparatus and air volume control method
JP2016000985A (en) Pump control system
KR20110074080A (en) Apparatus and method for controlling engine torque automatically by fan load in construction equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees