WO2011052675A1 - Pump unit, vacuum device, and exhaust device for load lock chamber - Google Patents

Pump unit, vacuum device, and exhaust device for load lock chamber Download PDF

Info

Publication number
WO2011052675A1
WO2011052675A1 PCT/JP2010/069155 JP2010069155W WO2011052675A1 WO 2011052675 A1 WO2011052675 A1 WO 2011052675A1 JP 2010069155 W JP2010069155 W JP 2010069155W WO 2011052675 A1 WO2011052675 A1 WO 2011052675A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pump
power value
control
pump unit
Prior art date
Application number
PCT/JP2010/069155
Other languages
French (fr)
Japanese (ja)
Inventor
敏生 鈴木
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011538475A priority Critical patent/JPWO2011052675A1/en
Publication of WO2011052675A1 publication Critical patent/WO2011052675A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0208Power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber

Definitions

  • the present invention relates to a pump unit, an exhaust device for a load lock chamber, and a vacuum device, and more particularly to a technique that can be efficiently operated without applying an excessive load to the pump.
  • a load lock chamber load lock chamber
  • process chamber processing chamber
  • the load lock chamber maintains the inside of the process chamber in a vacuum (vacuum state) when exchanging a wafer or the like between the process chamber and the outside of the semiconductor manufacturing apparatus or the FPD manufacturing apparatus.
  • Such a load lock chamber is connected to a vacuum pump (pump unit) for making a predetermined vacuum (vacuum pressure) in the chamber.
  • a vacuum pump pump unit
  • the internal space of the load lock chamber is isolated from the outside of the semiconductor manufacturing apparatus, and the internal pressure of the load lock chamber is set to a predetermined degree of vacuum by a vacuum pump.
  • the wafer or the like is exchanged between the load lock chamber and the process chamber.
  • the internal space of the load lock chamber is isolated from the process chamber and the internal pressure of the load lock chamber is returned to the atmospheric pressure.
  • the wafer or the like is exchanged between the load lock chamber and the outside of the semiconductor manufacturing apparatus.
  • the state of the open / close valve connected between the load lock chamber and the vacuum pump is changed. After switching from the closed state to the open state, the load lock chamber is depressurized by a vacuum pump. At this time, when the open / close valve is switched from the closed state to the open state while the vacuum pump is being driven, the internal pressure of the vacuum pump suddenly increases from vacuum to atmospheric pressure. Thereby, the load resulting from the pressure difference which generate
  • a sensor for monitoring the rotational speed or power value of the motor is provided outside the vacuum pump (pump unit), and the monitoring signal detected by this sensor is provided to the control unit of the vacuum pump (pump unit). By inputting, the vacuum pump is controlled so that the load torque of the vacuum pump does not exceed a predetermined upper limit value.
  • the present invention has been made to solve the above-described problems, and provides a pump unit having a protection function for operating a vacuum pump within an appropriate range with a simple configuration, space-saving and low cost. For the purpose.
  • Another object of the present invention is to provide an exhaust device for a load lock chamber provided with the pump unit having the protection function. Furthermore, this invention aims at providing the vacuum apparatus provided with the pump unit which has the said protection function.
  • the pump unit includes a pump mechanism unit that sucks gas through an intake port and exhausts the sucked gas through an exhaust port, a motor unit that drives the pump mechanism unit, and the motor unit
  • An inverter unit for controlling the power value supplied to the control unit, a control unit for controlling the inverter unit and monitoring a power value of the motor unit, and a storage unit for storing a control pattern used for control by the control unit; including.
  • the control unit is in a state exceeding at least a predetermined upper limit power value, and when the motor unit is operated over a predetermined upper limit time, Alternatively, when the motor unit is operated within a predetermined time that exceeds a predetermined upper limit integrated power value, the motor unit enters a suppression operation mode in which the rotation speed is reduced while maintaining the rotation state. In addition, the inverter unit is controlled.
  • the control unit releases the suppression operation mode after a predetermined maintenance time has elapsed and controls the inverter unit so as to enter the normal operation mode.
  • the storage unit stores a plurality of different control patterns, and an optimal control pattern is selected according to the decompression body connected to the intake port. Is preferably selected by:
  • a load lock chamber exhaust apparatus includes the pump unit described above, and is provided side by side with a process chamber in a semiconductor manufacturing apparatus or a flat panel display manufacturing apparatus.
  • a vacuum device according to a third aspect of the present invention includes the pump unit described above.
  • the pump Even if the operation state in the pump unit, the exhaust device of the load lock chamber to which the pump unit is applied, and the vacuum device are in an unsteady state due to unexpected gas leakage or the like, the pump There is no need to stop the unit, and no excessive load is applied to the pump unit for a long time. For this reason, it becomes possible to continue the operation of the pump unit within a predetermined power value range.
  • FIG. 1 is a schematic diagram showing the configuration of a pump unit and a semiconductor manufacturing apparatus including the pump unit according to an embodiment of the present invention.
  • the semiconductor manufacturing apparatus 10 includes a process chamber 11 for processing a wafer or the like under vacuum, and a load lock chamber (load lock chamber, decompression body) 12 connected to the process chamber 11.
  • the process chamber 11 performs, for example, vacuum deposition processing or sputtering processing on the wafer. At this time, the inside of the process chamber 11 is depressurized to a vacuum.
  • the load lock chamber 12 When a wafer or the like is carried into the process chamber 11 configured as described above from the outside of the semiconductor manufacturing apparatus 10 or a wafer or the like is carried out from the process chamber 11 to the outside of the semiconductor manufacturing apparatus 10, the load lock chamber 12. Is used. Gate valves 13 and 14 are provided between the process chamber 11 and the load lock chamber 12 and between the load lock chamber 12 and the outside (normal pressure space), respectively. The gate valves 13 and 14 isolate the outside of the semiconductor manufacturing apparatus 10 and the internal space of the load lock chamber 12, and isolate the internal space of the load lock chamber 12 and the internal space of the process chamber 11. Accordingly, the pressures of the load lock chamber 12 and the process chamber 11 are not affected by the pressure fluctuations of the adjacent chambers by the gate valves 13 and 14.
  • a pump unit 20 is connected to the load lock chamber 12 of the semiconductor manufacturing apparatus 10 via an on-off valve 16.
  • the pump unit 20 depressurizes the interior of the load lock chamber 12 to create a vacuum space. Further, the load lock chamber 12 is communicated with an external space (outside air) of the semiconductor manufacturing apparatus 10 through an on-off valve 17.
  • the pump unit 20 includes a pump mechanism unit 21 that depressurizes the load lock chamber 13 and exhausts the internal gas, and a motor unit 22 for driving the pump mechanism unit 21 inside the housing 26. .
  • the pump mechanism 21 sucks in the gas present in the load lock chamber 13 through the on-off valve 16 and the intake port, and exhausts the gas sucked through the exhaust port.
  • the motor unit 22 is connected to the control unit 24 via the inverter unit 23.
  • the control unit 24 is provided with a storage unit 25.
  • the motor unit 22 is composed of, for example, a brushless motor, specifically, a brushless DC motor or the like. Such a motor unit 22 is driven by the electric power supplied from the inverter unit 23.
  • the inverter unit 23 adjusts the frequency of the drive current supplied to the motor unit 22 according to the control signal input from the control unit 24. Thereby, the inverter unit 23 controls the power value supplied to the motor unit 22. Accordingly, the rotation speed of the motor unit 22 is adjusted.
  • the inverter unit 23 includes, for example, a current detection sensor and a voltage detection sensor, and detects a power value supplied to the motor unit 22. Then, the inverter unit 23 outputs the detected value to the control unit 24. Based on this information (detection value), the control unit 24 controls the inverter unit 23, monitors the power value of the motor unit 22, and adjusts the operating state of the motor unit 22.
  • the inverter unit 23 has a function of controlling power.
  • the inverter unit 23 has a function of reducing the rotation of the motor unit 22 when the torque in the pump mechanism unit 21 is large.
  • the control unit 24 instructs the inverter unit 23 whether or not to enable the function of the inverter unit 23 and also instructs the inverter unit 23 about the power target value.
  • the inverter unit 23 controls the torque and the rotation frequency, that is, the voltage, the current, and the rotation frequency so that the electric power is smaller than the electric power instructed from the control unit 24. To do.
  • the storage unit 25 stores a control pattern used for control by the control unit 24.
  • control unit 24 selects an optimal control pattern from among a plurality of control patterns according to a load lock chamber (decompression body) connected to the intake port.
  • a control pattern that can be used within the condition range of the pump characteristics (exhaust characteristics) used in the pump unit is selected.
  • the control unit 24 selects an optimal control pattern based on input information input by using an input device (not shown) connected to the control unit 24.
  • input information for example, information related to arithmetic conditions for converting the integrated power, setting information related to the control operation mode (for example, a threshold value of power value, duration, integrated power, etc. described later), control operation mode Examples include setting information related to continuation conditions (for example, duration, upper limit of power supply, etc.).
  • the control operation mode means a normal operation mode and a suppression operation mode described later.
  • FIG. 2 is a graph showing changes in the power value supplied to the motor unit of the pump unit and changes in the internal pressure of the load lock chamber (vacuum vessel) accompanying the change in the power value.
  • PART (A) in FIG. 2 shows a change in which the internal pressure of the load lock chamber decreases from the atmospheric pressure toward a predetermined ultimate pressure as the gas existing in the load lock chamber is exhausted.
  • P rmax that is atmospheric pressure
  • the power value is P o1
  • the power value gradually increases.
  • the power value reaches a threshold value Po2 described later, and the power value further increases.
  • the power value increases due to the compression work of the pump unit, and the power value reaches the maximum power value Pomax at time t2. Thereafter, after the time t2 has elapsed, the compression work starts to decrease as the pressure decreases, and the power value decreases. In the process in which the power value is decreasing, at time t3, the power value reaches a threshold value Po2 described later, and the power value further decreases. And finally at time t4, the internal pressure reaches the ultimate pressure P rmin, also the smallest P Omin power value.
  • the relationship between the power value and the pressure is determined by the shape and volume of the load lock chamber (vacuum vessel, decompression body), the exhaust performance of the pump unit, and the configuration of the exhaust pipe provided between them. That is, if the vacuum vessel, the pump unit, and the piping configuration are constant, the transition of the power value and the transition of the pressure in this configuration can be estimated.
  • the PART (B) in FIG. 2 shows the pressure of the vacuum vessel when some trouble occurs, for example, when a gas leak occurs due to maintenance work of the load lock chamber (vacuum vessel) or removal work of piping. This shows the change in the power value when the pressure does not decrease and the change in the internal pressure of the vacuum vessel.
  • gas leak refers to a phenomenon in which gas cannot be sufficiently introduced between a high-pressure atmosphere and a low-pressure atmosphere, and gas is unexpectedly introduced into the vacuum vessel or vacuum pipe. means. When a leak state occurs in this way, the amount of leak and the pumping capacity of the pump unit are balanced, and the power P o3 and the pressure P r3 become steady (constant). If such a leak state continues for a long time, power is wasted.
  • the pump unit 20 is controlled as follows. In such a leak state, the electric power P o3 monitored by the inverter unit 23 is higher than the threshold value P o2 . That is, the power Po3 exceeds the upper limit power value defined in advance. In this way, the drive of the pump is continued in a state where the power exceeds the threshold value P o2 , and when a predetermined time t5 to t6 elapses, the control unit 24 changes the power value supplied to the motor unit 22 to the power P o4. Then, control of the inverter unit 23 and the motor unit 22 is started.
  • the operation state of the motor unit 22 is switched from the normal operation mode to the suppression operation mode. That is, when the motor unit 22 is operated for a predetermined upper limit time in excess of a predetermined upper limit power value, the control unit 24 rotates the rotation speed while maintaining the motor unit 22 in a rotating state.
  • the inverter unit 23 is controlled so as to be in the suppression operation mode in which The above threshold P o2 is set to be larger than the power P o1 and P Omin.
  • the control unit 24 controls the motor unit so that the power value supplied to the motor unit does not become the power Po4 .
  • the operation mode is set to the suppression operation mode (pressure P o4 ) when the pump is operating normally (normal operation mode).
  • the control pattern is set so that the times t5 to t6 are longer than the above-described times tl to t3.
  • a margin time is included in the times t5 to t6.
  • the margin time is a time set for maintaining the durability of the pump, and is a time necessary for avoiding malfunction. Such a margin time is appropriately set according to the use conditions of the manufacturing apparatus in which the pump unit is used.
  • the control unit 24 determines that the operation state of the motor unit 22 is The inverter unit 23 is controlled to return to the original operation (normal operation mode) from the suppression operation mode.
  • FIG. 3 is a graph showing a change in the power value supplied to the motor unit of the pump unit.
  • FIG. 3 illustrates a control method of the pump unit when the motor unit 22 is operated within a predetermined time that exceeds a predetermined upper limit integrated power value.
  • the integrated power value while the pump is driven is calculated by the control unit 24 based on the power value monitored by the inverter unit 23 and the elapsed time. Further, the predetermined upper limit integrated power value is stored in the control unit 24 or the storage unit 25.
  • the pump unit 20 is controlled as follows. In such a leak state, the driving of the pump is continued while the electric power exceeds the threshold value Po2 in this way. As shown in PART (A) of FIG. 3, the integrated power value indicated by the symbol X increases with the operation time of the pump. When the integrated power value X increases as the predetermined time t5 to t6 elapses, it exceeds the predetermined integrated value (predetermined upper limit integrated power value) indicated by the product of the power threshold Po2 and the time t5 to t6. The integrated power value X (the value indicated by the product of the power value monitored by the inverter unit 23 and the times t5 to t6) increases.
  • the control unit 24 uses the inverter unit 23 and the inverter unit 23 so that the power value supplied to the motor unit 22 becomes the power Po4. Control of the motor unit 22 is started. As a result, the operation state of the motor unit 22 is switched from the normal operation mode to the suppression operation mode. That is, when the motor unit 22 is operated within a predetermined time that exceeds a predetermined upper limit integrated power value, the control unit 24 reduces the rotation speed while the motor unit 22 maintains the rotation state. The inverter unit 23 is controlled so as to be in the suppression operation mode. As described above, in the control method shown in PART (A) of FIG.
  • the integrated power value X is It is continuously calculated, and it is continuously determined whether the integrated power value X is larger or smaller than a predetermined integrated value based on the power threshold value Po2 . That is, even if the power value temporarily decreases, the operation state is determined based on the integrated power value, and an excessive load is prevented from being applied to the pump unit for a long time.
  • the pump unit 20 may be controlled based on the integrated power value.
  • PART (B) in FIG. 3 shows a state in which the pump is continuously driven while the power monitored by the inverter unit 23 exceeds the threshold value Po2 .
  • the integrated power value indicated by the symbol Y increases with the operation time of the pump.
  • the integrated power value Y increases as the predetermined time t5 to t6 elapses, it exceeds the predetermined integrated value (predetermined upper limit integrated power value) indicated by the product of the power threshold Po2 and the time t5 to t6.
  • the integrated power value Y (the value indicated by the product of the power value monitored by the inverter unit 23 and the times t5 to t6) increases.
  • the control unit 24 uses the inverter unit 23 and the inverter unit 23 so that the power value supplied to the motor unit 22 becomes the power Po4. Control of the motor unit 22 is started. As a result, the operation state of the motor unit 22 is switched from the normal operation mode to the suppression operation mode. That is, when the motor unit 22 is operated within a predetermined time that exceeds a predetermined upper limit integrated power value, the control unit 24 reduces the rotation speed while the motor unit 22 maintains the rotation state.
  • the inverter unit 23 is controlled so as to be in the suppression operation mode. Also in such a control method, the operating state is determined based on the integrated power value, and an excessive load is prevented from being applied to the pump unit for a long time.
  • the control method based on the integrated power value has been described as shown in FIG. 3, but the present invention is not limited to the above-described embodiment.
  • the control unit 24 changes the operation state of the motor unit 22 from the normal operation mode to the suppression operation mode. You may switch.
  • the control part 24 may switch the driving
  • the control part 24 may switch the driving
  • the operation state of the pump unit, the exhaust device of the load lock chamber to which the pump unit is applied, and the vacuum device are in an unsteady state due to an unexpected gas leak or the like. Even if it becomes, it is not necessary to stop the pump unit 20, and an excessive load is not given to the pump unit for a long time. For this reason, it becomes possible to continue the operation of the pump unit 20 within a predetermined power value range.
  • the configuration including one pump mechanism unit and the motor unit has been described as an example of the pump unit 20, but the present invention is not limited to this structure.
  • a configuration in which two pump bodies including a pump mechanism unit 31 and a motor unit 32 are connected in series may be employed.
  • a configuration in which two pump bodies including a pump mechanism portion 41 and a motor portion 42 are connected in parallel may be employed.
  • a configuration in which three or more pump bodies including a pump mechanism unit and a motor unit are connected in series or in parallel may be employed.
  • the specifications of the pumps may be different from each other.
  • the present invention can be widely applied to pump units, exhaust devices for load lock chambers, and vacuum devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A pump unit is provided with pump mechanisms (21, 31, 41), motors (22, 32, 42), an inverter (23), a control unit (24) which controls the inverter (23) and monitors the power level of the motors (22, 32, 42), and a storage unit (25) which stores the control patterns used by the control unit (24) for the controlling operations thereof, wherein the control unit (24) controls the inverter (23) so that the operation mode thereof is a restrictive operation mode in which the motors (22, 32, 42) reduce the rotation speed while continuing to rotate. Said control is performed either when the motors (22, 32, 42) are operated at least at a power level that exceeds a prescribed upper limit power level for more than a prescribed upper limit time period, or when, within a prescribed time period, the motors (22, 32, 42) are operated at a power level exceeding a prescribed upper limit cumulative power level.

Description

ポンプユニット,ロードロックチャンバの排気装置,及び真空装置Pump unit, load lock chamber exhaust device, and vacuum device
 本発明は、ポンプユニット,ロードロックチャンバの排気装置,及び真空装置に関し、詳しくは、ポンプに過大な負荷を与えることなく、効率よく運転可能な技術に関する。
 本願は、2009年10月29日に出願された特願2009-249133号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a pump unit, an exhaust device for a load lock chamber, and a vacuum device, and more particularly to a technique that can be efficiently operated without applying an excessive load to the pump.
This application claims priority based on Japanese Patent Application No. 2009-249133 for which it applied on October 29, 2009, and uses the content here.
 例えば、半導体製造装置又はフラットパネルディスプレイ製造装置(FPD製造装置)の一例として、ウエハに成膜処理を行うプロセスチャンバ(処理室)に隣接してロードロックチャンバ(ロードロック室)が設けられた装置が知られている。このロードロックチャンバは、プロセスチャンバと半導体製造装置又はFPD製造装置の外部との間でウエハ等を交換する際に、プロセスチャンバ内を真空(真空状態)に維持する。 For example, as an example of a semiconductor manufacturing apparatus or a flat panel display manufacturing apparatus (FPD manufacturing apparatus), an apparatus in which a load lock chamber (load lock chamber) is provided adjacent to a process chamber (processing chamber) that performs a film forming process on a wafer. It has been known. The load lock chamber maintains the inside of the process chamber in a vacuum (vacuum state) when exchanging a wafer or the like between the process chamber and the outside of the semiconductor manufacturing apparatus or the FPD manufacturing apparatus.
 こうしたロードロックチャンバには、チャンバ内を所定の真空(真空圧力)にするための真空ポンプ(ポンプユニット)が接続されている。そして、ロードロックチャンバとプロセスチャンバとの間でウエハ等を交換する際には、ロードロックチャンバの内部空間が半導体製造装置の外部から隔離され、真空ポンプによってロードロックチャンバの内圧が所定の真空度に到達された状態で、ウエハ等がロードロックチャンバとプロセスチャンバとの間で交換される。 Such a load lock chamber is connected to a vacuum pump (pump unit) for making a predetermined vacuum (vacuum pressure) in the chamber. When exchanging a wafer or the like between the load lock chamber and the process chamber, the internal space of the load lock chamber is isolated from the outside of the semiconductor manufacturing apparatus, and the internal pressure of the load lock chamber is set to a predetermined degree of vacuum by a vacuum pump. The wafer or the like is exchanged between the load lock chamber and the process chamber.
 一方、ロードロックチャンバと半導体製造装置の外部との間でウエハ等を交換する際には、ロードロックチャンバの内部空間がプロセスチャンバから隔離され、ロードロックチャンバの内圧が大気圧に戻された状態でウエハ等がロードロックチャンバと半導体製造装置の外部との間で交換される。 On the other hand, when exchanging a wafer or the like between the load lock chamber and the outside of the semiconductor manufacturing apparatus, the internal space of the load lock chamber is isolated from the process chamber and the internal pressure of the load lock chamber is returned to the atmospheric pressure. Thus, the wafer or the like is exchanged between the load lock chamber and the outside of the semiconductor manufacturing apparatus.
 このような大気圧状態のロードロックチャンバの内圧が所定の真空度に到達するようにロードロックチャンバを減圧する際には、ロードロックチャンバと真空ポンプとの間に接続された開閉バルブの状態を閉状態から開状態に切り替えた後に、真空ポンプによってロードロックチャンバを減圧する。この時、真空ポンプが駆動しながら開閉バルブの状態が閉状態から開状態に切替わると、真空ポンプの内圧が真空から大気圧に急激に上昇する。これにより、真空ポンプにおいて発生する圧力差に起因する負荷が急増する。このため、真空ポンプの駆動源であるモータの出力トルクも急増する。 When reducing the load lock chamber so that the internal pressure of the load lock chamber in such an atmospheric pressure reaches a predetermined degree of vacuum, the state of the open / close valve connected between the load lock chamber and the vacuum pump is changed. After switching from the closed state to the open state, the load lock chamber is depressurized by a vacuum pump. At this time, when the open / close valve is switched from the closed state to the open state while the vacuum pump is being driven, the internal pressure of the vacuum pump suddenly increases from vacuum to atmospheric pressure. Thereby, the load resulting from the pressure difference which generate | occur | produces in a vacuum pump increases rapidly. For this reason, the output torque of the motor that is the drive source of the vacuum pump also increases rapidly.
 真空ポンプのモータの出力トルクが急激に増加すると、真空ポンプの構成部材が破損する虞がある。このため、従来は、モータの回転数又は電力値をモニタするためのセンサを真空ポンプ(ポンプユニット)の外部に設け、このセンサで検出されたモニタリング信号を真空ポンプ(ポンプユニット)の制御部に入力させることによって、真空ポンプの負荷トルクが所定の上限値を超えないように真空ポンプが制御されていた。 If the output torque of the vacuum pump motor increases rapidly, the components of the vacuum pump may be damaged. For this reason, conventionally, a sensor for monitoring the rotational speed or power value of the motor is provided outside the vacuum pump (pump unit), and the monitoring signal detected by this sensor is provided to the control unit of the vacuum pump (pump unit). By inputting, the vacuum pump is controlled so that the load torque of the vacuum pump does not exceed a predetermined upper limit value.
特開2004-003503号公報JP 2004-003503 A 特開2003-155981号公報JP 2003-155981 A
 しかしながら、上述したような従来の真空ポンプ(ポンプユニット)においては、モータの回転数又は電力値をモニタするためのセンサや、センサを制御するドライバ等を真空ポンプの外部機器として用意し、この機器を真空ポンプの外部に接続する必要があった。このため、真空ポンプ以外に、真空ポンプを適切な範囲内で運転させる保護機器を設ける手間や、保護機器が設置される設置スペースが必要になり、コストも高くなるという問題があった。 However, in the conventional vacuum pump (pump unit) as described above, a sensor for monitoring the rotational speed or power value of the motor, a driver for controlling the sensor, etc. are prepared as external devices for the vacuum pump. To the outside of the vacuum pump. For this reason, in addition to the vacuum pump, there is a problem in that it takes time and effort to provide a protective device for operating the vacuum pump within an appropriate range, and an installation space in which the protective device is installed.
 本発明は、上記課題を解決するためになされたものであって、簡易な構成で省スペース、かつ低コストで、真空ポンプを適切な範囲内で運転させる保護機能を備えたポンプユニットを提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a pump unit having a protection function for operating a vacuum pump within an appropriate range with a simple configuration, space-saving and low cost. For the purpose.
 また、本発明は、上記保護機能を有するポンプユニットを備えたロードロックチャンバの排気装置を提供することを目的とする。
 更に、本発明は、上記保護機能を有するポンプユニットを備えた真空装置を提供することを目的とする。
Another object of the present invention is to provide an exhaust device for a load lock chamber provided with the pump unit having the protection function.
Furthermore, this invention aims at providing the vacuum apparatus provided with the pump unit which has the said protection function.
 上記課題を解決するために、本発明は次のようなポンプユニットを提供する。
 すなわち、本発明の第1態様のポンプユニットは、吸気口を通じて気体を吸い込み、排気口を通じて前記吸い込まれた気体を排気するポンプ機構部と、前記ポンプ機構部を駆動させるモータ部と、前記モータ部に供給される電力値を制御するインバータ部と、前記インバータ部を制御するとともに、前記モータ部の電力値を監視する制御部と、前記制御部による制御に用いられる制御パターンを記憶する記憶部とを含む。本発明の第1態様のポンプユニットにおいては、前記制御部は、少なくとも、予め規定された上限電力値を超えた状態で、予め規定された上限時間を超えて前記モータ部が運転された時、又は予め規定した所定時間内に、予め規定された上限積算電力値を超えて前記モータ部が運転された時に、前記モータ部が回転状態を維持しつつ回転速度を低下させる抑制運転モードとなるように、前記インバータ部を制御する。
In order to solve the above problems, the present invention provides the following pump unit.
That is, the pump unit according to the first aspect of the present invention includes a pump mechanism unit that sucks gas through an intake port and exhausts the sucked gas through an exhaust port, a motor unit that drives the pump mechanism unit, and the motor unit An inverter unit for controlling the power value supplied to the control unit, a control unit for controlling the inverter unit and monitoring a power value of the motor unit, and a storage unit for storing a control pattern used for control by the control unit; including. In the pump unit according to the first aspect of the present invention, the control unit is in a state exceeding at least a predetermined upper limit power value, and when the motor unit is operated over a predetermined upper limit time, Alternatively, when the motor unit is operated within a predetermined time that exceeds a predetermined upper limit integrated power value, the motor unit enters a suppression operation mode in which the rotation speed is reduced while maintaining the rotation state. In addition, the inverter unit is controlled.
 本発明の第1態様のポンプユニットにおいては、前記制御部は、予め規定した維持時間を経過した後に前記抑制運転モードを解除し、通常運転モードとなるように前記インバータ部を制御することが好ましい。
 本発明の第1態様のポンプユニットにおいては、前記記憶部においては、互いに異なる複数の前記制御パターンが記憶され、前記吸気口に接続される減圧体に応じて、最適な制御パターンが前記制御部によって選択されることが好ましい。
 本発明の第2態様のロードロックチャンバの排気装置は、上記のポンプユニットを備え、半導体製造装置又はフラットパネルディスプレイ製造装置におけるプロセスチャンバに併設されている。
 本発明の第3態様の真空装置は、上記のポンプユニットを備える。
In the pump unit according to the first aspect of the present invention, it is preferable that the control unit releases the suppression operation mode after a predetermined maintenance time has elapsed and controls the inverter unit so as to enter the normal operation mode. .
In the pump unit according to the first aspect of the present invention, the storage unit stores a plurality of different control patterns, and an optimal control pattern is selected according to the decompression body connected to the intake port. Is preferably selected by:
A load lock chamber exhaust apparatus according to a second aspect of the present invention includes the pump unit described above, and is provided side by side with a process chamber in a semiconductor manufacturing apparatus or a flat panel display manufacturing apparatus.
A vacuum device according to a third aspect of the present invention includes the pump unit described above.
 本発明によれば、ポンプユニット,ポンプユニットが適用されたロードロックチャンバの排気装置,及び真空装置における運転状態が、不測の気体のリーク等に起因して非定常な状態になっても、ポンプユニットを停止する必要がなく、また、ポンプユニットに過大な負荷を長時間与えることがない。このため、ポンプユニットの運転を所定の電力値の範囲で続けることが可能になる。 According to the present invention, even if the operation state in the pump unit, the exhaust device of the load lock chamber to which the pump unit is applied, and the vacuum device are in an unsteady state due to unexpected gas leakage or the like, the pump There is no need to stop the unit, and no excessive load is applied to the pump unit for a long time. For this reason, it becomes possible to continue the operation of the pump unit within a predetermined power value range.
 これによって、ポンプユニットが適用されている半導体製造装置における生産を停止させることがなく、製造装置を含む設備を効率的に運用することが可能になる。また、ポンプユニットに過大な負荷が加わることを防ぐことで、ポンプユニットの耐久性及び寿命を高めることが可能になり、本発明のポンプユニットが適用された真空機器のランニングコストの低減に寄与する。 This makes it possible to efficiently operate equipment including the manufacturing apparatus without stopping production in the semiconductor manufacturing apparatus to which the pump unit is applied. Further, by preventing an excessive load from being applied to the pump unit, it becomes possible to increase the durability and life of the pump unit, which contributes to reducing the running cost of the vacuum equipment to which the pump unit of the present invention is applied. .
本発明のポンプユニットの一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the pump unit of this invention. 本発明のポンプユニットの制御方法を説明するグラフである。It is a graph explaining the control method of the pump unit of this invention. 本発明のポンプユニットの制御方法を説明するグラフである。It is a graph explaining the control method of the pump unit of this invention. 本発明のポンプユニットの第1変形例を示す概略図である。It is the schematic which shows the 1st modification of the pump unit of this invention. 本発明のポンプユニットの第2変形例を示す概略図である。It is the schematic which shows the 2nd modification of the pump unit of this invention.
 以下、本発明に係るポンプユニット,ロードロックチャンバの排気装置,及び真空装置の最良の形態について、図面に基づき説明する。
 なお、本発明の技術範囲は、以下に説明する実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 また、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode of a pump unit, a load lock chamber exhaust apparatus, and a vacuum apparatus according to the present invention will be described below with reference to the drawings.
The technical scope of the present invention is not limited to the embodiments described below, and various modifications can be made without departing from the spirit of the present invention.
In the drawings used for the following description, the scale of each member is appropriately changed in order to make each member a recognizable size.
 図1は、本発明の一実施形態のポンプユニットと、ポンプユニットを備えた半導体製造装置の構成を示す概略図である。例えば、半導体製造装置10は、ウエハ等を真空下で処理するプロセスチャンバ11と、プロセスチャンバ11に接続されるロードロックチャンバ(ロードロック室、減圧体)12とを備えている。
 プロセスチャンバ11は、例えばウエハに対する真空蒸着処理又はスパッタリング処理等を行う。この時、プロセスチャンバ11の内部は真空に減圧されている。
FIG. 1 is a schematic diagram showing the configuration of a pump unit and a semiconductor manufacturing apparatus including the pump unit according to an embodiment of the present invention. For example, the semiconductor manufacturing apparatus 10 includes a process chamber 11 for processing a wafer or the like under vacuum, and a load lock chamber (load lock chamber, decompression body) 12 connected to the process chamber 11.
The process chamber 11 performs, for example, vacuum deposition processing or sputtering processing on the wafer. At this time, the inside of the process chamber 11 is depressurized to a vacuum.
 このように構成されたプロセスチャンバ11に半導体製造装置10の外部からウエハ等を搬入したり、プロセスチャンバ11から半導体製造装置10の外部にウエハ等を搬出したりする際には、ロードロックチャンバ12が用いられる。プロセスチャンバ11とロードロックチャンバ12との間、およびロードロックチャンバ12と外部(常圧空間)との間には、それぞれ、ゲートバルブ13,14が設けられている。ゲートバルブ13,14は、半導体製造装置10の外部とロードロックチャンバ12の内部空間とを隔離し、ロードロックチャンバ12の内部空間とプロセスチャンバ11の内部空間とを隔離する。従って、ゲートバルブ13,14によって、ロードロックチャンバ12及びプロセスチャンバ11の圧力は、隣接するチャンバの圧力変動によって影響されない。 When a wafer or the like is carried into the process chamber 11 configured as described above from the outside of the semiconductor manufacturing apparatus 10 or a wafer or the like is carried out from the process chamber 11 to the outside of the semiconductor manufacturing apparatus 10, the load lock chamber 12. Is used. Gate valves 13 and 14 are provided between the process chamber 11 and the load lock chamber 12 and between the load lock chamber 12 and the outside (normal pressure space), respectively. The gate valves 13 and 14 isolate the outside of the semiconductor manufacturing apparatus 10 and the internal space of the load lock chamber 12, and isolate the internal space of the load lock chamber 12 and the internal space of the process chamber 11. Accordingly, the pressures of the load lock chamber 12 and the process chamber 11 are not affected by the pressure fluctuations of the adjacent chambers by the gate valves 13 and 14.
 半導体製造装置10のロードロックチャンバ12には、開閉弁16を介してポンプユニット20が接続されている。ポンプユニット20は、ロードロックチャンバ12の内部を減圧し、真空空間を生じさせる。更に、ロードロックチャンバ12は、開閉弁17を介して半導体製造装置10の外部空間(外気)と連通されている。 A pump unit 20 is connected to the load lock chamber 12 of the semiconductor manufacturing apparatus 10 via an on-off valve 16. The pump unit 20 depressurizes the interior of the load lock chamber 12 to create a vacuum space. Further, the load lock chamber 12 is communicated with an external space (outside air) of the semiconductor manufacturing apparatus 10 through an on-off valve 17.
 ポンプユニット20は、筐体26の内部に、ロードロックチャンバ13を減圧して内部の気体を排気するポンプ機構部21と、このポンプ機構部21を駆動するためのモータ部22とを備えている。
 ポンプ機構部21は、開閉弁16及び吸気口を通じてロードロックチャンバ13内に存在する気体を吸い込み、排気口を通じて吸い込まれた気体を排気する。
 モータ部22は、インバータ部23を介して制御部24に接続される。制御部24には記憶部25が設けられている。
The pump unit 20 includes a pump mechanism unit 21 that depressurizes the load lock chamber 13 and exhausts the internal gas, and a motor unit 22 for driving the pump mechanism unit 21 inside the housing 26. .
The pump mechanism 21 sucks in the gas present in the load lock chamber 13 through the on-off valve 16 and the intake port, and exhausts the gas sucked through the exhaust port.
The motor unit 22 is connected to the control unit 24 via the inverter unit 23. The control unit 24 is provided with a storage unit 25.
 モータ部22は、例えば、ブラシレスモータ、具体的には、ブラシレスDCモータ等から構成されている。こうしたモータ部22は、インバータ部23から供給された電力によって駆動される。インバータ部23は、制御部24から入力された制御信号に応じて、モータ部22に供給される駆動電流の周波数を調節する。これによって、インバータ部23は、モータ部22に供給される電力値を制御する。従って、モータ部22の回転速度が調節される。 The motor unit 22 is composed of, for example, a brushless motor, specifically, a brushless DC motor or the like. Such a motor unit 22 is driven by the electric power supplied from the inverter unit 23. The inverter unit 23 adjusts the frequency of the drive current supplied to the motor unit 22 according to the control signal input from the control unit 24. Thereby, the inverter unit 23 controls the power value supplied to the motor unit 22. Accordingly, the rotation speed of the motor unit 22 is adjusted.
 インバータ部23は、例えば、電流検出センサと電圧検出センサとを備え、モータ部22に供給される電力値を検出する。そして、インバータ部23は、このように検出された値を制御部24に出力する。制御部24は、この情報(検出値)に基づいて、インバータ部23を制御するとともに、モータ部22の電力値を監視し、モータ部22の運転状態を調節する。 The inverter unit 23 includes, for example, a current detection sensor and a voltage detection sensor, and detects a power value supplied to the motor unit 22. Then, the inverter unit 23 outputs the detected value to the control unit 24. Based on this information (detection value), the control unit 24 controls the inverter unit 23, monitors the power value of the motor unit 22, and adjusts the operating state of the motor unit 22.
 具体的には、インバータ部23は、電力を制御する機能を備えている。換言すれば、インバータ部23は、ポンプ機構部21におけるトルクが大きい場合には、モータ部22の回転するを下げるという機能を有している。
 制御部24は、インバータ部23の機能を有効にするか否かをインバータ部23に指示するとともに、電力目標値をインバータ部23に指示する。ここで、電力は、「(電力)=(電流)×(電圧)=(トルク)×(回転周波数)」によって示される。ポンプにおいては負荷に応じて電力が変化するため、インバータ部23は、制御部24から指示された電力よりも小さい電力となるように、トルクと回転周波数、即ち、電圧と電流と回転周波数を制御する。
Specifically, the inverter unit 23 has a function of controlling power. In other words, the inverter unit 23 has a function of reducing the rotation of the motor unit 22 when the torque in the pump mechanism unit 21 is large.
The control unit 24 instructs the inverter unit 23 whether or not to enable the function of the inverter unit 23 and also instructs the inverter unit 23 about the power target value. Here, the electric power is indicated by “(power) = (current) × (voltage) = (torque) × (rotational frequency)”. In the pump, since the electric power changes according to the load, the inverter unit 23 controls the torque and the rotation frequency, that is, the voltage, the current, and the rotation frequency so that the electric power is smaller than the electric power instructed from the control unit 24. To do.
 記憶部25においては、予め定めたモータ部22の制御に用いる検出値の標準的な変動パターンと、検出値がこの変動パターンから逸脱した際に、電力値を変化させるために用いられる閾値などが記憶される。こうした検出値の変動パターン又は閾値は、制御部24から随時参照される。即ち、記憶部25は、制御部24による制御に用いられる制御パターンを記憶する。 In the storage unit 25, a standard variation pattern of a detection value used for controlling the motor unit 22 determined in advance, a threshold value used for changing the power value when the detection value deviates from the variation pattern, and the like. Remembered. Such a fluctuation pattern or threshold value of the detected value is referred to from the control unit 24 as needed. That is, the storage unit 25 stores a control pattern used for control by the control unit 24.
 このような記憶部25においては、互いに異なる複数の前記制御パターンが記憶されている。また、複数の制御パターンの中から、吸気口に接続されるロードロックチャンバ(減圧体)に応じて、最適な制御パターンが制御部24によって選択される。このように最適な制御パターンを選択する際には、ポンプユニットにおいて用いられているポンプ特性(排気特性)の条件範囲内において利用可能な制御パターンが選択される。
 具体的には、例えば、制御部24に接続された入力装置(不図示)を用いることによって入力された入力情報に基づいて、制御部24において最適な制御パターンが選択される。このような入力情報としては、例えば、積算電力を換算するための算術条件に関する情報、制御運転モードに関する設定情報(例えば、後述する電力値の閾値、継続時間、積算電力等)、制御運転モードの継続条件に関する設定情報(例えば、継続時間、供給電力の上限等)が挙げられる。また、制御運転モードとは、後述する通常運転モード及び抑制運転モードを意味する。
In such a storage unit 25, a plurality of different control patterns are stored. Further, the control unit 24 selects an optimal control pattern from among a plurality of control patterns according to a load lock chamber (decompression body) connected to the intake port. When selecting an optimal control pattern in this way, a control pattern that can be used within the condition range of the pump characteristics (exhaust characteristics) used in the pump unit is selected.
Specifically, for example, the control unit 24 selects an optimal control pattern based on input information input by using an input device (not shown) connected to the control unit 24. As such input information, for example, information related to arithmetic conditions for converting the integrated power, setting information related to the control operation mode (for example, a threshold value of power value, duration, integrated power, etc. described later), control operation mode Examples include setting information related to continuation conditions (for example, duration, upper limit of power supply, etc.). The control operation mode means a normal operation mode and a suppression operation mode described later.
 以上のような構成を有する本発明のポンプユニットにおける、電力値を制御する具体的な方法(制御例)を図2及び図3を参照して説明する。 A specific method (control example) for controlling the power value in the pump unit of the present invention having the above-described configuration will be described with reference to FIGS.
(予め規定された上限電力値に基づく制御方法)
 図2は、ポンプユニットのモータ部に供給される電力値の変化と、電力値の変化に伴うロードロックチャンバ(真空容器)の内圧の推移を示すグラフである。
 図2のPART(A)は、ロードロックチャンバ内に存在する気体の排気に伴って、ロードロックチャンバの内圧が大気圧から所定の到達圧力に向けて低下する変化を示している。まず、大気圧であるPrmaxの時、電力値はPo1であり、気体の排気が開始すると、徐々に電力値は上昇する。電力値が上昇している過程において、時間t1において電力値は後述する閾値Po2に達し、更に電力値は上昇する。
(Control method based on a predetermined upper limit power value)
FIG. 2 is a graph showing changes in the power value supplied to the motor unit of the pump unit and changes in the internal pressure of the load lock chamber (vacuum vessel) accompanying the change in the power value.
PART (A) in FIG. 2 shows a change in which the internal pressure of the load lock chamber decreases from the atmospheric pressure toward a predetermined ultimate pressure as the gas existing in the load lock chamber is exhausted. First, at P rmax that is atmospheric pressure, the power value is P o1 , and when the exhaust of gas starts, the power value gradually increases. In the process of increasing the power value, at time t1, the power value reaches a threshold value Po2 described later, and the power value further increases.
 そして、排気を続ける過程で、ポンプユニットの圧縮仕事によって電力値が増大し、時間t2において電力値は最高電力値Pomaxに達する。その後、時間t2を経過した後に、圧力の低下に伴って圧縮仕事は減少し始め、電力値は減少する。電力値が減少している過程において、時間t3において電力値は後述する閾値Po2に達し、更に電力値は減少する。そして、最終的には時間t4において、内圧は到達圧力Prminに達し、電力値も最小のPominになる。 In the process of continuing the exhaust, the power value increases due to the compression work of the pump unit, and the power value reaches the maximum power value Pomax at time t2. Thereafter, after the time t2 has elapsed, the compression work starts to decrease as the pressure decreases, and the power value decreases. In the process in which the power value is decreasing, at time t3, the power value reaches a threshold value Po2 described later, and the power value further decreases. And finally at time t4, the internal pressure reaches the ultimate pressure P rmin, also the smallest P Omin power value.
 このような電力値と圧力との関係は、ロードロックチャンバ(真空容器、減圧体)の形状及び体積、ポンプユニットの排気性能、更にそれらの間に設けられた排気配管の構成によって定まる。即ち、真空容器,ポンプユニット,及び配管構成が一定であれば、この構成における電力値の推移と圧力の推移とを推定することができる。 The relationship between the power value and the pressure is determined by the shape and volume of the load lock chamber (vacuum vessel, decompression body), the exhaust performance of the pump unit, and the configuration of the exhaust pipe provided between them. That is, if the vacuum vessel, the pump unit, and the piping configuration are constant, the transition of the power value and the transition of the pressure in this configuration can be estimated.
 図2のPART(B)は、何らかの障害が発生した場合、例えば、ロードロックチャンバ(真空容器)のメンテナンス作業或いは配管の取り外し作業に起因して気体のリークが生じた場合など、真空容器の圧力が低下しない時の電力値の変化と、真空容器の内圧の推移を示している。
 ここで、「気体のリーク」とは、圧力が高い雰囲気と圧力が低い雰囲気との間における密閉性が十分に得られず、真空容器又は真空配管内に気体が不測に導入されてしまう現象を意味する。
 このようにリーク状態が発生している場合、リーク量とポンプユニットの排気能力とが釣合い、電力Po3、圧力Pr3が定常(一定)になる。こうしたリーク状態が長時間継続すると電力が浪費される。
The PART (B) in FIG. 2 shows the pressure of the vacuum vessel when some trouble occurs, for example, when a gas leak occurs due to maintenance work of the load lock chamber (vacuum vessel) or removal work of piping. This shows the change in the power value when the pressure does not decrease and the change in the internal pressure of the vacuum vessel.
Here, “gas leak” refers to a phenomenon in which gas cannot be sufficiently introduced between a high-pressure atmosphere and a low-pressure atmosphere, and gas is unexpectedly introduced into the vacuum vessel or vacuum pipe. means.
When a leak state occurs in this way, the amount of leak and the pumping capacity of the pump unit are balanced, and the power P o3 and the pressure P r3 become steady (constant). If such a leak state continues for a long time, power is wasted.
 本発明の実施形態における予め規定された上限電力値に基づく制御方法においては、次のようにポンプユニット20が制御される。
 このようなリーク状態においては、インバータ部23によって監視されている電力Po3は閾値Po2よりも高い。即ち、電力Po3は予め規定された上限電力値を超えている。このように電力が閾値Po2を越えた状態でポンプの駆動が継続され、所定の時間t5~t6が経過すると、制御部24はモータ部22に供給される電力値を電力Po4にするようにインバータ部23及びモータ部22の制御を開始する。これによって、モータ部22の運転状態は、通常運転モードから抑制運転モードに切り替わる。
 即ち、予め規定された上限電力値を超えた状態で予め規定された上限時間を超えてモータ部22が運転された場合に、制御部24は、モータ部22が回転状態を維持しつつ回転速度を低下させる抑制運転モードとなるように、インバータ部23を制御する。
 上記の閾値Po2は、電力Po1及びPominよりも大きくなるように設定されている。実際の生産工程においては、モータ部に供給される電力値が電力Po4にならないように制御部24はモータ部を制御する。
 また、本実施形態のポンプユニットが用いられている製造装置における実際の生産工程においては、ポンプが正常に運転している際(通常運転モード)に運転モードが抑制運転モード(圧力Po4)に切り替わることを防止するために、時間t5~t6が上述した時間tl~t3よりも大きくなるように制御パターンが設定されている。更に、この制御パターンにおいては、時間t5~t6にマージン時間が含まれている。ここで、マージン時間とは、ポンプの耐久性を維持するために設定された時間であり、誤作動を避けるために必要な時間である。このようなマージン時間は、ポンプユニットが用いられている製造装置の使用条件に応じて適切に設定されている。
In the control method based on the predetermined upper limit power value in the embodiment of the present invention, the pump unit 20 is controlled as follows.
In such a leak state, the electric power P o3 monitored by the inverter unit 23 is higher than the threshold value P o2 . That is, the power Po3 exceeds the upper limit power value defined in advance. In this way, the drive of the pump is continued in a state where the power exceeds the threshold value P o2 , and when a predetermined time t5 to t6 elapses, the control unit 24 changes the power value supplied to the motor unit 22 to the power P o4. Then, control of the inverter unit 23 and the motor unit 22 is started. As a result, the operation state of the motor unit 22 is switched from the normal operation mode to the suppression operation mode.
That is, when the motor unit 22 is operated for a predetermined upper limit time in excess of a predetermined upper limit power value, the control unit 24 rotates the rotation speed while maintaining the motor unit 22 in a rotating state. The inverter unit 23 is controlled so as to be in the suppression operation mode in which
The above threshold P o2 is set to be larger than the power P o1 and P Omin. In the actual production process, the control unit 24 controls the motor unit so that the power value supplied to the motor unit does not become the power Po4 .
Moreover, in the actual production process in the manufacturing apparatus in which the pump unit of the present embodiment is used, the operation mode is set to the suppression operation mode (pressure P o4 ) when the pump is operating normally (normal operation mode). In order to prevent switching, the control pattern is set so that the times t5 to t6 are longer than the above-described times tl to t3. Further, in this control pattern, a margin time is included in the times t5 to t6. Here, the margin time is a time set for maintaining the durability of the pump, and is a time necessary for avoiding malfunction. Such a margin time is appropriately set according to the use conditions of the manufacturing apparatus in which the pump unit is used.
 上記のようにモータ部22の運転状態が通常運転モードから抑制運転モードに切り替わり、更に、所定の時間t6~t7(維持時間)が経過した後に、制御部24は、モータ部22の運転状態が抑制運転モードから元の動作(通常運転モード)に戻るようにインバータ部23を制御する。 As described above, after the operation state of the motor unit 22 is switched from the normal operation mode to the suppression operation mode and a predetermined time t6 to t7 (maintenance time) has elapsed, the control unit 24 determines that the operation state of the motor unit 22 is The inverter unit 23 is controlled to return to the original operation (normal operation mode) from the suppression operation mode.
(積算電力値に基づく制御方法)
 次に、積算電力値に基づく制御方法について述べる。以下の説明においては、図2において説明された方法を省略または簡略化する。
 図3は、ポンプユニットのモータ部に供給される電力値の変化を示すグラフである。図3は、予め規定した所定時間内に、予め規定された上限積算電力値を超えてモータ部22が運転された時におけるポンプユニットの制御方法を説明している。
 また、ポンプが駆動されている間の積算電力値は、インバータ部23によって監視された電力値と経過時間とに基づいて制御部24によって算出されている。また、予め規定された上限積算電力値は、制御部24又は記憶部25に記憶されている。
(Control method based on integrated power value)
Next, a control method based on the integrated power value will be described. In the following description, the method described in FIG. 2 is omitted or simplified.
FIG. 3 is a graph showing a change in the power value supplied to the motor unit of the pump unit. FIG. 3 illustrates a control method of the pump unit when the motor unit 22 is operated within a predetermined time that exceeds a predetermined upper limit integrated power value.
In addition, the integrated power value while the pump is driven is calculated by the control unit 24 based on the power value monitored by the inverter unit 23 and the elapsed time. Further, the predetermined upper limit integrated power value is stored in the control unit 24 or the storage unit 25.
 図2のようにリーク状態が発生している場合、リーク量とポンプユニットの排気能力とが釣合い、電力Po3と圧力Pr3(図2参照)とが定常(一定)になる。こうしたリーク状態が長時間継続すると電力が浪費される。 When a leak state occurs as shown in FIG. 2, the amount of leak and the pumping capacity of the pump unit are balanced, and the power P o3 and the pressure P r3 (see FIG. 2) become steady (constant). If such a leak state continues for a long time, power is wasted.
 本発明の実施形態における積算電力値に基づく制御方法おいては、次のようにポンプユニット20が制御される。
 このようなリーク状態においては、このように電力が閾値Po2を越えながらポンプの駆動が継続される。図3のPART(A)に示すように、符号Xで示された積算電力値は、ポンプの運転時間に伴って増加する。所定の時間t5~t6の経過に伴って積算電力値Xが増加すると、電力閾値Po2と時間t5~t6との積によって示された所定積算値(予め規定された上限積算電力値)よりも、積算電力値X(インバータ部23によって監視された電力値と時間t5~t6との積によって示された値)が大きくなる。
In the control method based on the integrated power value in the embodiment of the present invention, the pump unit 20 is controlled as follows.
In such a leak state, the driving of the pump is continued while the electric power exceeds the threshold value Po2 in this way. As shown in PART (A) of FIG. 3, the integrated power value indicated by the symbol X increases with the operation time of the pump. When the integrated power value X increases as the predetermined time t5 to t6 elapses, it exceeds the predetermined integrated value (predetermined upper limit integrated power value) indicated by the product of the power threshold Po2 and the time t5 to t6. The integrated power value X (the value indicated by the product of the power value monitored by the inverter unit 23 and the times t5 to t6) increases.
 制御部24において積算電力値Xが予め規定された所定積算値よりも大きいと判断された場合、制御部24はモータ部22に供給される電力値を電力Po4にするようにインバータ部23及びモータ部22の制御を開始する。これによって、モータ部22の運転状態は、通常運転モードから抑制運転モードに切り替わる。
 即ち、予め規定した所定時間内に予め規定された上限積算電力値を超えてモータ部22が運転された場合に、制御部24は、モータ部22が回転状態を維持しつつ回転速度を低下させる抑制運転モードとなるように、インバータ部23を制御する。
 このように図3のPART(A)に示された制御方法においては、電力値が一時的に電力閾値Po2よりも小さくなった場合(符号X1参照)であっても、積算電力値Xは継続的に算出され、電力閾値Po2に基づく所定積算値よりも積算電力値Xが大きいか小さいかが継続的に判断される。即ち、電力値が一時的に低くなったとしても、積算電力値に基づいて運転状態が判断され、過大な負荷が長時間にポンプユニットに加わることが防止される。
When the control unit 24 determines that the integrated power value X is larger than a predetermined integrated value, the control unit 24 uses the inverter unit 23 and the inverter unit 23 so that the power value supplied to the motor unit 22 becomes the power Po4. Control of the motor unit 22 is started. As a result, the operation state of the motor unit 22 is switched from the normal operation mode to the suppression operation mode.
That is, when the motor unit 22 is operated within a predetermined time that exceeds a predetermined upper limit integrated power value, the control unit 24 reduces the rotation speed while the motor unit 22 maintains the rotation state. The inverter unit 23 is controlled so as to be in the suppression operation mode.
As described above, in the control method shown in PART (A) of FIG. 3, even when the power value is temporarily smaller than the power threshold value Po2 (see X1), the integrated power value X is It is continuously calculated, and it is continuously determined whether the integrated power value X is larger or smaller than a predetermined integrated value based on the power threshold value Po2 . That is, even if the power value temporarily decreases, the operation state is determined based on the integrated power value, and an excessive load is prevented from being applied to the pump unit for a long time.
 また、図3のPART(B)に示すように、積算電力値に基づいてポンプユニット20を制御してもよい。
 図3のPART(B)は、インバータ部23によって監視されている電力が閾値Po2を越えながらポンプの駆動が継続されている状態を示している。図3のPART(B)に示すように、符号Yで示された積算電力値は、ポンプの運転時間に伴って増加する。所定の時間t5~t6の経過に伴って積算電力値Yが増加すると、電力閾値Po2と時間t5~t6との積によって示された所定積算値(予め規定された上限積算電力値)よりも、積算電力値Y(インバータ部23によって監視された電力値と時間t5~t6との積によって示された値)が大きくなる。
Further, as shown in PART (B) of FIG. 3, the pump unit 20 may be controlled based on the integrated power value.
PART (B) in FIG. 3 shows a state in which the pump is continuously driven while the power monitored by the inverter unit 23 exceeds the threshold value Po2 . As shown in PART (B) in FIG. 3, the integrated power value indicated by the symbol Y increases with the operation time of the pump. When the integrated power value Y increases as the predetermined time t5 to t6 elapses, it exceeds the predetermined integrated value (predetermined upper limit integrated power value) indicated by the product of the power threshold Po2 and the time t5 to t6. The integrated power value Y (the value indicated by the product of the power value monitored by the inverter unit 23 and the times t5 to t6) increases.
 制御部24において積算電力値Yが予め規定された所定積算値よりも大きいと判断された場合、制御部24はモータ部22に供給される電力値を電力Po4にするようにインバータ部23及びモータ部22の制御を開始する。これによって、モータ部22の運転状態は、通常運転モードから抑制運転モードに切り替わる。
 即ち、予め規定した所定時間内に予め規定された上限積算電力値を超えてモータ部22が運転された場合に、制御部24は、モータ部22が回転状態を維持しつつ回転速度を低下させる抑制運転モードとなるように、インバータ部23を制御する。
 このような制御方法においても、積算電力値に基づいて運転状態が判断され、過大な負荷が長時間にポンプユニットに加わることが防止される。
When the control unit 24 determines that the integrated power value Y is larger than a predetermined integrated value defined in advance, the control unit 24 uses the inverter unit 23 and the inverter unit 23 so that the power value supplied to the motor unit 22 becomes the power Po4. Control of the motor unit 22 is started. As a result, the operation state of the motor unit 22 is switched from the normal operation mode to the suppression operation mode.
That is, when the motor unit 22 is operated within a predetermined time that exceeds a predetermined upper limit integrated power value, the control unit 24 reduces the rotation speed while the motor unit 22 maintains the rotation state. The inverter unit 23 is controlled so as to be in the suppression operation mode.
Also in such a control method, the operating state is determined based on the integrated power value, and an excessive load is prevented from being applied to the pump unit for a long time.
 本実施形態においては、図3に示すように積算電力値に基づく制御方法について説明したが、本発明は上記の実施形態に限定されない。例えば、インバータ部23において測定された電力値と運転時間とよって算出された所定時間内における平均電力値に基づいて、制御部24は、モータ部22の運転状態を通常運転モードから抑制運転モードに切り替えてもよい。また、運転時間に基づいて重み付けされた電力値を用いて、制御部24は、モータ部22の運転状態を上記のように切り替えてもよい。また、一般的に知られている算術的処理に基づいて電力値が処理された値を用いて、制御部24は、モータ部22の運転状態を上記のように切り替えてもよい。 In the present embodiment, the control method based on the integrated power value has been described as shown in FIG. 3, but the present invention is not limited to the above-described embodiment. For example, based on the average power value within a predetermined time calculated by the power value measured in the inverter unit 23 and the operation time, the control unit 24 changes the operation state of the motor unit 22 from the normal operation mode to the suppression operation mode. You may switch. Moreover, the control part 24 may switch the driving | running state of the motor part 22 as mentioned above using the electric power value weighted based on driving | operation time. Moreover, the control part 24 may switch the driving | running state of the motor part 22 as mentioned above using the value by which the electric power value was processed based on the arithmetic process generally known.
 以上のように、本実施形態においては、ポンプユニット,ポンプユニットが適用されたロードロックチャンバの排気装置,及び真空装置における運転状態が、不測の気体のリーク等に起因して非定常な状態になっても、ポンプユニット20を停止する必要がなく、また、ポンプユニットに過大な負荷を長時間与えることがない。このため、ポンプユニット20の運転を所定の電力値の範囲で続けることが可能になる。 As described above, in the present embodiment, the operation state of the pump unit, the exhaust device of the load lock chamber to which the pump unit is applied, and the vacuum device are in an unsteady state due to an unexpected gas leak or the like. Even if it becomes, it is not necessary to stop the pump unit 20, and an excessive load is not given to the pump unit for a long time. For this reason, it becomes possible to continue the operation of the pump unit 20 within a predetermined power value range.
 これによって、ポンプユニットが適用されている半導体製造装置における生産を停止させることなく、製造装置を含む設備を効率的に運用することが可能になる。また、ポンプユニットに過大な負荷が加わることを防ぐことで、ポンプユニットの耐久性及び寿命を高めることが可能になり、本発明のポンプユニットが適用された真空機器のランニングコストの低減に寄与する。 This makes it possible to efficiently operate the equipment including the manufacturing apparatus without stopping production in the semiconductor manufacturing apparatus to which the pump unit is applied. Further, by preventing an excessive load from being applied to the pump unit, it becomes possible to increase the durability and life of the pump unit, which contributes to reducing the running cost of the vacuum equipment to which the pump unit of the present invention is applied. .
 なお、上述した実施形態においては、ポンプユニット20の例として、1つのポンプ機構部とモータ部とを備えた構成を説明したが、本発明はこの構造に限定されない。例えば、上記実施形態の第1変形例として、図4に示すように、ポンプ機構部31とモータ部32とからなるポンプ本体が直列に2つ接続された構成が採用されてもよい。
 また、上記実施形態の第2変形例として、図5に示すように、ポンプ機構部41とモータ部42とからなるポンプ本体が並列に2つ接続された構成が採用されてもよい。
In the above-described embodiment, the configuration including one pump mechanism unit and the motor unit has been described as an example of the pump unit 20, but the present invention is not limited to this structure. For example, as a first modification of the above embodiment, as shown in FIG. 4, a configuration in which two pump bodies including a pump mechanism unit 31 and a motor unit 32 are connected in series may be employed.
As a second modification of the above embodiment, as shown in FIG. 5, a configuration in which two pump bodies including a pump mechanism portion 41 and a motor portion 42 are connected in parallel may be employed.
 上記の構成の他に、ポンプ機構部とモータ部とからなるポンプ本体が3つ以上、直列又は並列に接続された構成が採用されてもよい。上記の複数のポンプ本体を用いる構造においては、ポンプの仕様が互い異なってもよい。 In addition to the above configuration, a configuration in which three or more pump bodies including a pump mechanism unit and a motor unit are connected in series or in parallel may be employed. In the structure using the plurality of pump bodies, the specifications of the pumps may be different from each other.
 本発明は、ポンプユニット,ロードロックチャンバの排気装置,及び真空装置に広く適用可能である。 The present invention can be widely applied to pump units, exhaust devices for load lock chambers, and vacuum devices.
10 半導体製造装置
11 プロセスチャンバ
12 ロードロックチャンバ
20 ポンプユニット
21,31,41 ポンプ機構部
22,32,42 モータ部
23 インバータ部
24 制御部
25 記憶部
26 筐体
DESCRIPTION OF SYMBOLS 10 Semiconductor manufacturing apparatus 11 Process chamber 12 Load lock chamber 20 Pump unit 21, 31, 41 Pump mechanism part 22, 32, 42 Motor part 23 Inverter part 24 Control part 25 Memory | storage part 26 Case

Claims (5)

  1.  ポンプユニットであって、
     吸気口を通じて気体を吸い込み、排気口を通じて前記吸い込まれた気体を排気するポンプ機構部と、
     前記ポンプ機構部を駆動させるモータ部と、
     前記モータ部に供給される電力値を制御するインバータ部と、
     前記インバータ部を制御するとともに、前記モータ部の電力値を監視する制御部と、
     前記制御部による制御に用いられる制御パターンを記憶する記憶部と、
     を含み、
     前記制御部は、少なくとも、予め規定された上限電力値を超えた状態で、予め規定された上限時間を超えて前記モータ部が運転された時、又は予め規定した所定時間内に、予め規定された上限積算電力値を超えて前記モータ部が運転された時に、前記モータ部が回転状態を維持しつつ回転速度を低下させる抑制運転モードとなるように、前記インバータ部を制御する
     ことを特徴とするポンプユニット。
    A pump unit,
    A pump mechanism for sucking gas through the air inlet and exhausting the sucked gas through the air outlet;
    A motor unit for driving the pump mechanism unit;
    An inverter unit for controlling a power value supplied to the motor unit;
    A control unit for controlling the inverter unit and monitoring a power value of the motor unit;
    A storage unit for storing a control pattern used for control by the control unit;
    Including
    The control unit is specified in advance at least when the motor unit is operated beyond a predetermined upper limit time in a state exceeding a predetermined upper limit power value, or within a predetermined time. When the motor unit is operated exceeding the upper limit integrated power value, the inverter unit is controlled such that the motor unit enters a suppression operation mode in which the rotation speed is reduced while maintaining the rotation state. Pump unit to be used.
  2.  請求項1に記載のポンプユニットであって、
     前記制御部は、予め規定した維持時間を経過した後に前記抑制運転モードを解除し、通常運転モードとなるように前記インバータ部を制御する
     ことを特徴とするポンプユニット。
    The pump unit according to claim 1,
    The said control part cancels | releases the said suppression operation mode, after passing the maintenance time prescribed | regulated previously, and controls the said inverter part so that it may become a normal operation mode. The pump unit characterized by the above-mentioned.
  3.  請求項1又は請求項2に記載のポンプユニットであって、
     前記記憶部においては、互いに異なる複数の前記制御パターンが記憶され、
     前記吸気口に接続される減圧体に応じて、最適な制御パターンが前記制御部によって選択される
     ことを特徴とするポンプユニット。
    The pump unit according to claim 1 or 2,
    In the storage unit, a plurality of different control patterns are stored,
    The pump unit, wherein an optimal control pattern is selected by the control unit in accordance with the decompression body connected to the intake port.
  4.  ロードロックチャンバの排気装置であって、
     請求項1から請求項3のいずれか一項に記載のポンプユニットを備え、
     半導体製造装置又はフラットパネルディスプレイ製造装置におけるプロセスチャンバに併設されている
     ことを特徴とするロードロックチャンバの排気装置。
    An exhaust device for a load lock chamber,
    A pump unit according to any one of claims 1 to 3,
    An exhaust device for a load lock chamber, which is provided in a process chamber in a semiconductor manufacturing apparatus or a flat panel display manufacturing apparatus.
  5.  真空装置であって、
     請求項1から請求項3のいずれか一項に記載のポンプユニットを備えたことを特徴とする真空装置。
    A vacuum device,
    A vacuum apparatus comprising the pump unit according to any one of claims 1 to 3.
PCT/JP2010/069155 2009-10-29 2010-10-28 Pump unit, vacuum device, and exhaust device for load lock chamber WO2011052675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538475A JPWO2011052675A1 (en) 2009-10-29 2010-10-28 Pump unit, load lock chamber exhaust device, and vacuum device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-249133 2009-10-29
JP2009249133 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052675A1 true WO2011052675A1 (en) 2011-05-05

Family

ID=43922097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069155 WO2011052675A1 (en) 2009-10-29 2010-10-28 Pump unit, vacuum device, and exhaust device for load lock chamber

Country Status (3)

Country Link
JP (1) JPWO2011052675A1 (en)
TW (1) TW201139853A (en)
WO (1) WO2011052675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201685A1 (en) * 2021-03-24 2022-09-29 株式会社安川電機 Decompression system, control device, and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679159A (en) * 1991-07-17 1994-03-22 Tokyo Electron Ltd Gas induction device for vacuum chamber
JP2000110735A (en) * 1998-10-01 2000-04-18 Internatl Business Mach Corp <Ibm> Pump protection system, pump protection method, and pump system
JP2001012359A (en) * 1999-04-30 2001-01-16 Arumo Technos Kk Control method and control device for vacuum pump
JP2001281275A (en) * 2000-03-30 2001-10-10 Toshiba Corp Load controller
JP2004197644A (en) * 2002-12-18 2004-07-15 Toyota Industries Corp Controller for vacuum pump
JP2005048764A (en) * 2003-07-29 2005-02-24 Sumitomo Heavy Ind Ltd Vacuum pump control system
JP2008113477A (en) * 2006-10-30 2008-05-15 Fujitsu Access Ltd Electronic thermal device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155981A (en) * 2001-11-21 2003-05-30 Toyota Industries Corp Operation control method for vacuum pump and operation controller thereof
JP2004003503A (en) * 2003-07-08 2004-01-08 Ebara Corp Operation method of vacuum pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679159A (en) * 1991-07-17 1994-03-22 Tokyo Electron Ltd Gas induction device for vacuum chamber
JP2000110735A (en) * 1998-10-01 2000-04-18 Internatl Business Mach Corp <Ibm> Pump protection system, pump protection method, and pump system
JP2001012359A (en) * 1999-04-30 2001-01-16 Arumo Technos Kk Control method and control device for vacuum pump
JP2001281275A (en) * 2000-03-30 2001-10-10 Toshiba Corp Load controller
JP2004197644A (en) * 2002-12-18 2004-07-15 Toyota Industries Corp Controller for vacuum pump
JP2005048764A (en) * 2003-07-29 2005-02-24 Sumitomo Heavy Ind Ltd Vacuum pump control system
JP2008113477A (en) * 2006-10-30 2008-05-15 Fujitsu Access Ltd Electronic thermal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201685A1 (en) * 2021-03-24 2022-09-29 株式会社安川電機 Decompression system, control device, and control method
JP7147905B1 (en) * 2021-03-24 2022-10-05 株式会社安川電機 Decompression system, control device and control method

Also Published As

Publication number Publication date
JPWO2011052675A1 (en) 2013-03-21
TW201139853A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4737770B2 (en) Vacuum pump operation control device and method
JP4786443B2 (en) Compressed air production facility
US9062684B2 (en) Method of operating a pumping system
JP5769722B2 (en) Low power consumption exhaust method and apparatus
EP0585911B1 (en) Two stage primary dry pump
EP0343914B1 (en) Evacuation apparatus and method
JP4111728B2 (en) Vacuum pump control device and vacuum device
US20060222506A1 (en) Rapidly pumping out an enclosure while limiting energy consumption
JP2000297765A (en) Compressor device
CN109477485B (en) Method for reducing pressure in a load lock and associated pump unit
WO2013014808A1 (en) System for controlling number of compressors
JP4365059B2 (en) Operation method of vacuum exhaust system
JP4180265B2 (en) Operation method of vacuum exhaust system
US20030123990A1 (en) Method for operation control of vacuum pump and control system for vacuum pump
WO2011052675A1 (en) Pump unit, vacuum device, and exhaust device for load lock chamber
JP6997648B2 (en) Compressor system
JP2007170216A (en) Air compressor
JP7430035B2 (en) Vacuum exhaust equipment and its operating method
WO2011007652A1 (en) Pressure reduction system and vacuum treatment device
JP2008088880A (en) Evacuation apparatus
KR101121597B1 (en) System for breaking reverse-current
JP4043184B2 (en) Compressor control method
KR100962547B1 (en) System for breaking reverse-current
JP2004204691A (en) Compressed air manufacturing facility and control method of compressor
JP2003097428A (en) Vacuum pump controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538475

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826807

Country of ref document: EP

Kind code of ref document: A1