JP4043184B2 - Compressor control method - Google Patents

Compressor control method Download PDF

Info

Publication number
JP4043184B2
JP4043184B2 JP2000313493A JP2000313493A JP4043184B2 JP 4043184 B2 JP4043184 B2 JP 4043184B2 JP 2000313493 A JP2000313493 A JP 2000313493A JP 2000313493 A JP2000313493 A JP 2000313493A JP 4043184 B2 JP4043184 B2 JP 4043184B2
Authority
JP
Japan
Prior art keywords
compressor
rotational speed
discharge pressure
bodies
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000313493A
Other languages
Japanese (ja)
Other versions
JP2002122078A (en
Inventor
海 中西
和夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000313493A priority Critical patent/JP4043184B2/en
Publication of JP2002122078A publication Critical patent/JP2002122078A/en
Application granted granted Critical
Publication of JP4043184B2 publication Critical patent/JP4043184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インバータにより回転数制御される並列配置された複数台の圧縮機本体を備えた圧縮機の制御方法に関するものである。
【0002】
【従来の技術】
従来、インバータにより回転数制御される並列配置された複数台の圧縮機本体を備えた圧縮機は公知である(特開平11-343986号公報)。この圧縮機では、上記圧縮機本体の各吐出流路を合流させた1本の主吐出流路における吐出圧力を所定の目標値に保つために、複数台の、例えば4台の圧縮機本体の内、1台の圧縮機本体のみについて、インバータによる回転数制御を行い、他の3台の圧縮機本体については、全負荷運転(定格回転数に対して100%の回転数状態)または停止(定格回転数に対して0%の回転数状態)のいずれかが選択されるようになっている。
【0003】
即ち、上記1台の圧縮機本体を回転数制御機、上記他の3台の圧縮機本体をオン−オフ機とし、例えば上記主吐出流路からの圧縮空気の使用量が減少して、上記主吐出流路における吐出圧力が上昇し、運転中の圧縮機本体の台数を一つ減少させても足りる場合には、上記オン−オフ機の1台が停止させられる。これに対して、例えば、上記圧縮空気の使用量が増大して、上記主吐出流路における吐出圧力が降下し、運転中の圧縮機本体の全てを全負荷運転させても上記吐出圧力を上記目標値に保てず、停止中の上記オン−オフ機が残っている場合には、このオン−オフ機が新たに全負荷運転させられる。
【0004】
【発明が解決しようとする課題】
上述した従来の圧縮機の場合、4台の圧縮機本体の内、1台を回転数制御機とし、残りの3台をオン−オフ機としており、また、インバータにより制御され、低減させられる回転数については、下限があり、所定の最低回転数(例:定格回転数に対して20%の値)以下には制御されない。このため、上記圧縮空気の使用量、即ち使用空気量の減少とともに、上記回転数制御機の回転数は定格回転数の100%の値から下がってゆき、上記最低回転数(20%の値)に達すると、これ以下にはならず、この最低回転数の値を保ち、運転圧縮機本体の台数が変わると、階段状に全負荷運転状態(4台から3台或いは3台から2台或いは2台から1台への切換え時)或いは停止状態(1台から0台への切換え時)となる。上記使用空気量が増大してゆく場合には、上記回転数制御機の回転数はこの逆の変化を辿る。
【0005】
したがって、上記使用空気量と運転中の圧縮機本体による消費電力との関係は、図5に示すように、上記最低回転数に対応する部分で突出した右上がりの折れ線で表される。なお、図5において、丸印内の数字は、運転中の圧縮機本体を示す符号で、具体的には、“1”は上記回転数制御機を示し、“2”,“3”,“4”は上記オン−オフ機の各々を示している。また、図5中の内周部にハッチングが付された碁盤目の各々は全負荷運転中の圧縮機本体を示している。この図5に対応して、上記使用空気量と吐出圧力との関係は、図6に示すように、上記最低回転数に達していない間では、吐出圧力は上記目標値に保たれ、一定であるが、上記回転数制御機の回転数が上記最低回転数を保っている間で吐出圧力が上記目標値から突出した折れ線で表される。
【0006】
このように、上述した従来の圧縮機の場合、吐出圧力が一定に保てないという問題、および吐出圧力が目標値よりも高くなる突出部が多く、その分消費電力の増大を招くという問題がある。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、吐出圧力の過大な上昇を抑制し、無駄な電力消費の低減を可能とした圧縮機の制御方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は、インバータにより回転数制御される並列配置された複数台の圧縮機本体と、これらの圧縮機本体の各吐出流路を合流させた一本の主吐出流路とを備え、この主吐出流路における吐出圧力を一定に保つように制御される圧縮機の運転方法において、上記吐出圧力の調整のために、上記圧縮機本体の内の運転状態にある圧縮機本体の全てに対して常時平等に上記回転数制御を行うとともに、運転圧縮機本体台数Nが1であって、上記吐出圧力が上限設定圧力を越え、且つ、上記インバータの指令回転数が上記圧縮機本体の所定の定格回転数よりも低い場合、及び、上記運転圧縮機本体台数Nが2以上であって、上記吐出圧力が下限設定圧力以上であり、且つ、上記指令回転数が上記定格回転数に(N−1)/Nと1以下の余裕率とを乗算した値以下の場合のいずれにおいても、上記運転圧縮機本体台数を1減少させ、上記吐出圧力が下限設定圧力より低い場合、及び、上記吐出圧力が下限設定圧力以上であり、且つ、上記指令回転数が上記定格回転数以上の場合のいずれにおいても、上記運転圧縮機本体台数を1増大させるようにした。
【0008】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1は、本発明に係る制御方法が適用される圧縮機1を示し、この圧縮機1は並列配置された複数台の、例えばNO.1〜NO.4の4台の圧縮機本体11、例えばスクリュ式圧縮機本体を備えている。圧縮機本体11の各々は、電源12に接続されたインバータ13により回転数制御されるモータ14により駆動される。即ち、モータ14とともに圧縮機本体11の各々は、インバータ13により回転数制御される。
【0009】
圧縮機本体11の各々の一方には、吸込流路15が接続しており、他方には吐出流路16が延びている。この4本の吐出流路16は1本の主吐出流路17に合流している。また、主吐出流路17には圧縮ガス、例えば圧縮空気を溜めるリザーバータンク18が介設されており、リザーバータンク18には、その内部圧力を検出する圧力検出器19が設けられている。そして、この圧力検出器19により検出された圧力、即ち吐出圧力を示す圧力信号はPID制御回路を有する制御装置21に入力される。なお、圧力検出器19は、必ずしもリザーバータンク18に設ける必要はなく、主吐出流路17のいずれかの位置に設けてあればよい。
一方、制御装置21には、吐出圧力の目標値PT、上限設定圧力PU、下限設定圧力PL、モータ14の定格回転数SR等が予め入力されている。そして、これらの入力データおよび圧力検出器19からの上記圧力信号に基づき、制御装置21における演算或いは制御装置21からインバータ13の各々に対する制御信号、例えば運転信号、指令回転数信号を通じて、以下に詳述する制御が行われる。なお、運転信号とは、運転させるか否かを示す信号であり、指令回転数信号とは、インバータ13がいくらの回転数でモータ14を回転させるか定めるための信号である。
【0010】
次に、上述した圧縮機1に適用される本発明に係る制御方法を図2を参照しつつ説明する。
圧縮機の運転開始とともに、その制御が開始され、まずS1(ステップ1)で、運転中の圧縮機本体11の台数Nが1とされ、1台の先発機、例えば圧縮機本体11(NO.1)の運転が開始される。
S2(ステップ2)で、全機停止指令が出ているか否か判断され、NOの場合には、圧縮機本体11の運転を続行させるためにS3(ステップ3)に進み、YESの場合には、圧縮機本体11の運転を停止させるためにS7(ステップ7)に進む。
【0011】
S3で、運転中の圧縮機本体11に対して、インバータ13、圧力検出器19、制御装置21を含む制御系により、検出された吐出圧力PDと上記目標値PTとの差をなくすように回転数制御が行われる。即ち、検出された吐出圧力PDが上記目標値PTよりも高い場合には、制御装置21からインバータ13にモータ14の回転数を下げさせる指令回転数信号が出力され、上記吐出圧力が上記目標値PTよりも低い場合には、制御装置21からインバータ13にモータ14の回転数を上げさせる指令回転数信号が出力される。上記吐出圧力が上記目標値PTに等しい場合には、現時点での運転状態を維持する指令回転数信号が出力される。
【0012】
S4(ステップ4)で、検出された吐出圧力PDが予め定めた下限設定圧力PLよりも低いか否か判断され、NOの場合には、運転中の台数を減少させる余地が有るか否かを調べる必要があるためS5(ステップ5)に進み、YESの場合には、無条件で圧縮機本体11の運転台数を追加する必要があるためS6(ステップ6)に進む。
S5で、制御装置21からインバータ13に出力した指令回転数SOがモータ14の定格回転数SRよりも小さいか否かが判断され、NOの場合には、運転中の圧縮機本体11が既に全負荷運転状態或いは過負荷状態にあるためS6に進み、YESの場合には、運転中の圧縮機本体11の台数を減少させる余地が有るか否かを調べるためS8(ステップ8)に進む。
【0013】
なお、指令回転数SOは、制御装置21で決定される値であり、各インバータ13に入力される。
S6で、制御装置21から新たにインバータ13に運転信号および指令回転数信号が出力され、圧縮機本体11の運転台数が1台追加され、その後、S2に戻る。
【0014】
一方、S7で、全機停止指令が発せられているため、制御装置21からインバータ13への停止信号により、運転中の圧縮機本体11の台数Nが0とされ、即ち全機停止させられ、制御は終了する。
また、S8で、運転中の圧縮機本体11の台数Nが1台であるか否かが判断され、YESの場合には、圧縮空気の供給量が過剰か否かを判断するためにS9(ステップ9)に進み、NOの場合には、圧縮機本体11に対する指令回転数SOが運転中の圧縮機本体11の台数Nが1台減少させ得る回転数に達しているか否かを調べるためにS11(ステップ11)に進む。
【0015】
本発明に斯かる制御方法では、図3に示すように、運転中の圧縮機本体11については、常時平等に回転数制御されるとともに、運転中の圧縮機本体11の台数は出来るだけ少なくなるように台数制御が行われる。したがって、この台数がNの場合において、使用空気量の減少とともに、制御装置21からインバータ13に対する指令回転数SOも下がってゆき、この指令回転数SOがモータ14の定格回転数SRに(N−1)/Nを乗じた値(SR・(N−1)/N)になると、台数Nは台数(N−1)に減ぜられる。逆に、使用空気量の増大とともに、上記指令回転数SOが増大してゆき、この指令回転数SOがモータ14の定格回転数SRに達すると運転圧縮機本体11の台数Nは1台追加される。
【0016】
また、この図は、一例として、使用空気量の増大による圧縮機本体11の起動順序を、NO.1→NO.2→NO.3→NO.4とし、逆に運転中の圧縮機本体11が4台である場合における、使用空気量の減少による圧縮機本体11の停止順序をNO.4→NO.3→NO.2→NO.1として表してあるが、本発明はこの順序に限定するものではない。
【0017】
S9で、検出された吐出圧力PDが予め定めた上限設定圧力PUよりも高いか否かが判断され、YESの場合には、圧縮空気の供給量が過剰であり、運転中の圧縮機本体11の台数Nを減少させるためにS10(ステップ10)に進み、NOの場合には、運転圧縮機台数Nの増減の必要がなく、回転数制御のみで足りるため、S2に戻る。
S10で、制御装置21から運転中の圧縮機本体11の台数Nを0にして、全機停止状態した後、再度上記吐出圧力PDの変化を調べるためにS4に戻る。
なお、図2において※印同士は互いにつながっていることを意味している。
【0018】
S11で、N台の圧縮機本体11が運転中の状態下、指令回転数SOが定格回転数SRに(N−1)/Nを乗じた値(SR・(N−1)/N)よりも大きいか否か判断され、YESの場合には、運転中の圧縮機本体11の台数を減少させることができない状態にあるため、運転中の圧縮機本体11の台数を変えることなく、S2に戻り、NOの場合には、運転中の圧縮機本体11の台数を減少させる余地があるため、運転中の圧縮機本体11の台数制御のためにS12(ステップ12)に進む。
なお、台数停止条件として、式SO=SR・(N−1)/Nに代えて、この右辺に余裕率α(≦1)を乗じた式SO=α・SR・(N−1)/Nを採用してもよい。
S12で、制御装置21からインバータ13への停止信号により、運転中の圧縮機本体11の台数Nを(N−1)に減少させ、その後S2に戻る。
以上の制御フローにしたがって、制御が終了するまで上記各ステップが実行される。
【0019】
上述したように、特に図3に示すように、本発明に係る制御方法では、運転中の圧縮機本体11の台数Nが1で、この圧縮機本体11が上述した最低回転数に達した場合を除き、使用空気量の増減に合わせて運転中の圧縮機本体11の回転数制御を常時平等に行うとともに、運転させる圧縮機本体11の台数制御を行うようにしているため、図5で示すように吐出圧力は、使用空気量が0に近付いた場合を除き、使用空気量の増減に拘わらず一定に保たれる。
なお、上述した圧縮機およびその制御方法については、作動ガスを空気として説明してきたが、本発明は作動ガスを空気に限定するものではない。
【0020】
【発明の効果】
以上の説明より明らかなように、本発明によれば、インバータにより回転数制御される並列配置された複数台の圧縮機本体と、これらの圧縮機本体の各吐出流路を合流させた一本の主吐出流路とを備え、この主吐出流路における吐出圧力を一定に保つように制御される圧縮機の運転方法において、上記吐出圧力の調整のために、上記圧縮機本体の内の運転状態にある圧縮機本体の全てに対して常時平等に上記回転数制御を行うとともに、運転圧縮機本体台数Nが1であって、上記吐出圧力が上限設定圧力を越え、且つ、上記インバータの指令回転数が上記圧縮機本体の所定の定格回転数よりも低い場合、及び、上記運転圧縮機本体台数Nが2以上であって、上記吐出圧力が下限設定圧力以上であり、且つ、上記指令回転数が上記定格回転数に(N−1)/Nと1以下の余裕率とを乗算した値以下の場合のいずれにおいても、上記運転圧縮機本体台数を1減少させ、上記吐出圧力が下限設定圧力より低い場合、及び、上記吐出圧力が下限設定圧力以上であり、且つ、上記指令回転数が上記定格回転数以上の場合のいずれにおいても、上記運転圧縮機本体台数を1増大させるようにしてある。
【0021】
このため、使用ガス量の増減に拘わらず、吐出圧力を過大に上昇させることなく、略一定に保ち、無駄な電力消費を低減させることが可能になるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係る制御方法が適用される圧縮機の構成を示す図である。
【図2】 図1に示す圧縮機に適用される本発明に係る制御方法を遂行するための制御フロー図である。
【図3】 図1に示す圧縮機を用いた場合の使用空気量と消費電力との関係を示す図である。
【図4】 図1に示す圧縮機を用いた場合の使用空気量と吐出圧力との関係を示す図である。
【図5】 従来の圧縮機を用いた場合の使用空気量と消費電力との関係を示す図である。
【図6】 従来の圧縮機を用いた場合の使用空気量と吐出圧力との関係を示す図である。
【符号の説明】
1 圧縮機 11 圧縮機本体
12 電源 13 インバータ
14 モータ 15 吸込流路
16 吐出流路 17 主吐出流路
18 リザーバータンク 19 圧力検出器
21 制御装置
N 運転圧縮機本体台数
D 吐出圧力(検出値)
T 吐出圧力の目標値
U 上限設定圧力
L 下限設定圧力
O 指令回転数
R モータの定格回転数
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling a compressor including a plurality of compressor main bodies arranged in parallel whose rotational speed is controlled by an inverter.
[0002]
[Prior art]
Conventionally, a compressor having a plurality of compressor main bodies arranged in parallel whose rotation speed is controlled by an inverter is known (Japanese Patent Laid-Open No. 11-343986). In this compressor, in order to maintain the discharge pressure in one main discharge flow path that joins the discharge flow paths of the compressor main body at a predetermined target value, a plurality of, for example, four compressor main bodies Of these, only one compressor body is controlled by the inverter, and the other three compressor bodies are either fully loaded (at 100% of the rated speed) or stopped ( One of the 0% rotation speed states with respect to the rated rotation speed) is selected.
[0003]
That is, the one compressor body is a rotational speed controller, and the other three compressor bodies are on-off machines, for example, the amount of compressed air used from the main discharge flow path is reduced, When the discharge pressure in the main discharge flow path rises and it is sufficient to reduce the number of operating compressor main bodies by one, one of the on-off machines is stopped. On the other hand, for example, the amount of compressed air used increases, the discharge pressure in the main discharge flow path drops, and the discharge pressure is reduced even if all the compressor main bodies in operation are operated at full load. When the target value cannot be maintained and the on-off machine that is stopped remains, the on-off machine is newly operated at full load.
[0004]
[Problems to be solved by the invention]
In the case of the conventional compressor described above, one of the four compressor main bodies is a rotational speed controller, the remaining three are on-off machines, and the rotation controlled by the inverter is reduced. The number has a lower limit and is not controlled below a predetermined minimum rotational speed (eg, 20% of the rated rotational speed). For this reason, as the amount of compressed air used, that is, the amount of air used decreases, the rotational speed of the rotational speed controller decreases from a value of 100% of the rated rotational speed, and the minimum rotational speed (20% value). When this value is reached, the value of this minimum rotation speed is not maintained, and when the number of operating compressor bodies changes, the full load operation state (steps from 4 to 3 or 3 to 2 or It becomes a stop state (when switching from 1 to 0) when switching from 2 to 1). When the amount of air used increases, the rotational speed of the rotational speed controller follows the opposite change.
[0005]
Therefore, the relationship between the amount of air used and the power consumption by the operating compressor main body is represented by a line that rises to the right and protrudes at the portion corresponding to the minimum rotational speed, as shown in FIG. In FIG. 5, the numbers in the circles are symbols indicating the compressor main body in operation. Specifically, “1” indicates the rotational speed controller, and “2”, “3”, “ 4 "indicates each of the on-off machines. In addition, each of the grids with hatching on the inner periphery in FIG. 5 indicates the compressor body during full load operation. Corresponding to FIG. 5, the relationship between the amount of air used and the discharge pressure is, as shown in FIG. 6, the discharge pressure is maintained at the target value and is constant while the minimum rotational speed is not reached. However, the discharge pressure is represented by a broken line protruding from the target value while the rotation speed of the rotation speed controller maintains the minimum rotation speed.
[0006]
As described above, in the case of the above-described conventional compressor, there are a problem that the discharge pressure cannot be kept constant and a problem that the discharge pressure is higher than the target value, and there is a problem that the power consumption is increased accordingly. is there.
The present invention has been made in order to eliminate such a conventional problem, and intends to provide a compressor control method capable of suppressing an excessive increase in discharge pressure and reducing wasteful power consumption. Is.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a plurality of compressor bodies arranged in parallel whose rotation speed is controlled by an inverter, and a single main discharge in which the discharge passages of these compressor bodies are merged. And a compressor operating method that is controlled so as to keep the discharge pressure in the main discharge flow path constant. In order to adjust the discharge pressure, the compressor body is in an operating state. The number of revolutions of the compressor main body N is 1, the discharge pressure exceeds the upper limit set pressure, and the inverter command rotational speed is When the compressor body is lower than a predetermined rated rotational speed, and when the operating compressor body number N is 2 or more, the discharge pressure is a lower limit set pressure or more, and the command rotational speed is the above Rated speed (N-1) In either case the N and less than or equal to the value obtained by multiplying the 1 less margin ratio, the driving compressor body number decreases 1, when the discharge pressure is lower than the limit set pressure, and said discharge pressure limit setting In any case where the pressure is equal to or higher than the pressure and the command rotational speed is equal to or higher than the rated rotational speed, the number of operating compressor main bodies is increased by one.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a compressor 1 to which a control method according to the present invention is applied. The compressor 1 includes a plurality of, for example, NO. 1-NO. 4 four compressor bodies 11, for example, a screw type compressor body. Each of the compressor main bodies 11 is driven by a motor 14 whose rotational speed is controlled by an inverter 13 connected to a power source 12. That is, the rotation speed of each of the compressor main bodies 11 as well as the motor 14 is controlled by the inverter 13.
[0009]
A suction passage 15 is connected to one of the compressor main bodies 11, and a discharge passage 16 extends to the other. The four discharge flow paths 16 merge with one main discharge flow path 17. In addition, a reservoir tank 18 for storing compressed gas, for example, compressed air, is interposed in the main discharge flow path 17, and the reservoir tank 18 is provided with a pressure detector 19 for detecting the internal pressure thereof. The pressure detected by the pressure detector 19, that is, a pressure signal indicating the discharge pressure is input to a control device 21 having a PID control circuit. The pressure detector 19 is not necessarily provided in the reservoir tank 18 and may be provided at any position of the main discharge flow path 17.
On the other hand, a target value P T of discharge pressure, an upper limit set pressure P U , a lower limit set pressure P L , a rated rotational speed S R of the motor 14 and the like are input in advance to the control device 21. Then, based on these input data and the pressure signal from the pressure detector 19, the details will be described below through calculation in the control device 21 or control signals from the control device 21 to each of the inverters 13, for example, an operation signal and a command rotational speed signal. The control described is performed. The operation signal is a signal indicating whether or not to operate, and the command rotation speed signal is a signal for determining how many rotations the inverter 13 rotates the motor 14.
[0010]
Next, a control method according to the present invention applied to the compressor 1 described above will be described with reference to FIG.
When the operation of the compressor is started, the control is started. First, in S1 (step 1), the number N of the compressor main bodies 11 in operation is set to 1, and one starting machine, for example, the compressor main body 11 (NO. The operation 1) is started.
In S2 (Step 2), it is determined whether or not an all-machine stop command has been issued. If NO, the process proceeds to S3 (Step 3) to continue the operation of the compressor main body 11. If YES, Then, the process proceeds to S7 (step 7) in order to stop the operation of the compressor body 11.
[0011]
In S3, with respect to the compressor body 11 during operation, the inverter 13, the pressure detector 19, the control system including the controller 21, so as to eliminate the difference between the detected discharge pressure P D and the target value P T Rotational speed control is performed. That is, when the detected discharge pressure P D is higher than the target value P T is the command speed signal which causes lowering the rotational speed of the motor 14 to the inverter 13 from the control unit 21 is output, the discharge pressure is above When it is lower than the target value P T , a command rotational speed signal for causing the inverter 13 to increase the rotational speed of the motor 14 is output from the control device 21. When the discharge pressure is equal to the target value P T , a command rotational speed signal that maintains the current operation state is output.
[0012]
The S4 (Step 4), the detected discharge pressure P D is determined whether lower than the lower limit set pressure P L to a predetermined, if NO, whether is room to reduce the number in operation there Therefore, the process proceeds to S5 (step 5), and in the case of YES, the process proceeds to S6 (step 6) because it is necessary to add the number of operating compressor main bodies 11 unconditionally.
In S5, it is determined whether or not the command rotational speed S O output from the control device 21 to the inverter 13 is smaller than the rated rotational speed S R of the motor 14, and in the case of NO, the operating compressor body 11 is in operation. Since it is already in the full load operation state or the overload state, the process proceeds to S6. In the case of YES, the process proceeds to S8 (step 8) in order to check whether there is room for reducing the number of the compressor main bodies 11 in operation. .
[0013]
The command rotation speed S O is a value determined by the control device 21 and is input to each inverter 13.
In S6, an operation signal and a command rotation speed signal are newly output from the control device 21 to the inverter 13, and one operation unit of the compressor body 11 is added, and then the process returns to S2.
[0014]
On the other hand, since the all-machine stop command is issued in S7, the number N of the compressor main bodies 11 in operation is set to 0 by the stop signal from the control device 21 to the inverter 13, that is, all the machines are stopped. Control ends.
Further, in S8, it is determined whether or not the number N of the compressor main bodies 11 in operation is one, and in the case of YES, in order to determine whether or not the supply amount of compressed air is excessive, S9 ( In step 9), in the case of NO, in order to check whether or not the command rotational speed S O for the compressor main body 11 has reached the rotational speed at which the number N of the operating compressor main bodies 11 can be decreased by one. To S11 (step 11).
[0015]
In the control method according to the present invention, as shown in FIG. 3, the rotational speed of the compressor main body 11 in operation is always controlled to be equal, and the number of compressor main bodies 11 in operation is as small as possible. The number control is performed as described above. Therefore, when this number is N, as the amount of air used decreases, the command rotation speed S O from the control device 21 to the inverter 13 also decreases, and this command rotation speed S O becomes the rated rotation speed S R of the motor 14. When the value (S R · (N−1) / N) is multiplied by (N−1) / N, the number N is reduced to the number (N−1). Conversely, as the amount of air used increases, the command rotational speed S O increases, and when the command rotational speed S O reaches the rated rotational speed S R of the motor 14, the number N of operating compressor bodies 11 is 1. Added units.
[0016]
In addition, this figure shows, as an example, the startup sequence of the compressor main body 11 due to an increase in the amount of air used. 1 → NO. 2 → NO. 3 → NO. 4 and, on the contrary, when there are four compressor main bodies 11 in operation, the stop order of the compressor main bodies 11 due to the decrease in the amount of air used is NO. 4 → NO. 3 → NO. 2 → NO. Although represented as 1, the present invention is not limited to this order.
[0017]
In S9, whether higher than the upper limit set pressure PU the detected discharge pressure P D is predetermined are determined, in the case of YES, the supply of compressed air is excessive, while driving the compressor body The process proceeds to S10 (step 10) in order to decrease the number N of 11 and, in the case of NO, there is no need to increase or decrease the number N of operating compressors, and only the rotation speed control is sufficient, so the process returns to S2.
In S10, and the number N of the compressor body 11 during operation from the controller 21 to 0, after all aircraft stopped, it returns to step S4 in order to examine the change again the discharge pressure P D.
In FIG. 2, the * marks mean that they are connected to each other.
[0018]
In S11, under the condition that the N compressor bodies 11 are in operation, the command rotational speed S O is a value obtained by multiplying the rated rotational speed S R by (N−1) / N (S R · (N−1) / N) is determined, and if YES, the number of compressor main bodies 11 in operation cannot be reduced, so the number of compressor main bodies 11 in operation is not changed. Returning to S2, in the case of NO, there is room for reducing the number of compressor main bodies 11 in operation, and therefore the process proceeds to S12 (step 12) for controlling the number of compressor main bodies 11 in operation.
As a condition for stopping the number of units, instead of the formula S O = S R · (N−1) / N, a formula S O = α · S R · (N− 1) / N may be adopted.
In S12, the number N of the compressor main bodies 11 in operation is reduced to (N-1) by a stop signal from the control device 21 to the inverter 13, and then the process returns to S2.
According to the control flow described above, the above steps are executed until the control is completed.
[0019]
As described above, in particular, as shown in FIG. 3, in the control method according to the present invention, the number N of the compressor main bodies 11 in operation is 1, and the compressor main body 11 reaches the above-described minimum rotational speed. As shown in FIG. 5, the rotational speed control of the compressor main body 11 during operation is always performed equally and the number of compressor main bodies 11 to be operated is controlled according to the increase or decrease in the amount of air used. Thus, the discharge pressure is kept constant regardless of the increase or decrease in the amount of air used, except when the amount of air used approaches zero.
In addition, about the compressor mentioned above and its control method, although working gas was demonstrated as air, this invention does not limit working gas to air.
[0020]
【The invention's effect】
As is clear from the above description, according to the present invention, a plurality of compressor bodies arranged in parallel whose rotation speed is controlled by an inverter, and one discharge passage of these compressor bodies are joined together. In the compressor operating method controlled so as to keep the discharge pressure in the main discharge flow path constant in order to adjust the discharge pressure. The rotational speed control is always performed equally to all of the compressor main bodies in the state, the number N of operating compressor main bodies is 1, the discharge pressure exceeds the upper limit set pressure, and the inverter command When the rotational speed is lower than a predetermined rated rotational speed of the compressor body, and when the operating compressor body number N is 2 or more, the discharge pressure is not less than a lower limit set pressure, and the command rotation Number above the rated speed N-1) / N and in any case less than the value obtained by multiplying the 1 less margin ratio, the driving compressor body number decreases 1, when the discharge pressure is lower than the limit set pressure, and, the In any case where the discharge pressure is equal to or higher than the lower limit set pressure and the command rotational speed is equal to or higher than the rated rotational speed, the number of operating compressor bodies is increased by one.
[0021]
For this reason, regardless of increase / decrease in the amount of gas used, there is an effect that the discharge pressure can be kept substantially constant without being excessively increased and wasteful power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a compressor to which a control method according to the present invention is applied.
FIG. 2 is a control flow chart for performing a control method according to the present invention applied to the compressor shown in FIG. 1;
FIG. 3 is a diagram showing the relationship between the amount of air used and power consumption when the compressor shown in FIG. 1 is used.
4 is a diagram showing the relationship between the amount of air used and the discharge pressure when the compressor shown in FIG. 1 is used.
FIG. 5 is a diagram showing the relationship between the amount of air used and power consumption when a conventional compressor is used.
FIG. 6 is a diagram showing the relationship between the amount of air used and the discharge pressure when a conventional compressor is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 11 Compressor main body 12 Power supply 13 Inverter 14 Motor 15 Suction flow path 16 Discharge flow path 17 Main discharge flow path 18 Reservoir tank 19 Pressure detector 21 Control device N Number of operation compressor main bodies P D Discharge pressure (detection value)
PT target value P U upper limit set pressure P L lower limit set pressure S O command speed S R motor rated speed

Claims (1)

インバータにより回転数制御される並列配置された複数台の圧縮機本体と、これらの圧縮機本体の各吐出流路を合流させた一本の主吐出流路とを備え、この主吐出流路における吐出圧力を一定に保つように制御される圧縮機の制御方法において、上記吐出圧力の調整のために、上記圧縮機本体の内の運転状態にある圧縮機本体の全てに対して常時平等に上記回転数制御を行うとともに、
運転圧縮機本体台数Nが1であって、上記吐出圧力が上限設定圧力を越え、且つ、上記インバータの指令回転数が上記圧縮機本体の所定の定格回転数よりも低い場合、及び、上記運転圧縮機本体台数Nが2以上であって、上記吐出圧力が下限設定圧力以上であり、且つ、上記指令回転数が上記定格回転数に(N−1)/Nと1以下の余裕率とを乗算した値以下の場合のいずれにおいても、上記運転圧縮機本体台数を1減少させ、
上記吐出圧力が下限設定圧力より低い場合、及び、上記吐出圧力が下限設定圧力以上であり、且つ、上記指令回転数が上記定格回転数以上の場合のいずれにおいても、上記運転圧縮機本体台数を1増大させることを特徴とする圧縮機の制御方法。
A plurality of compressor main bodies arranged in parallel whose rotation speed is controlled by an inverter, and a single main discharge flow path that joins the discharge flow paths of these compressor main bodies, In the control method of the compressor that is controlled so as to keep the discharge pressure constant, the adjustment of the discharge pressure is performed so that the compressor body is constantly and equally applied to all of the compressor bodies in the operating state within the compressor body. While controlling the rotation speed,
When the number N of operating compressor bodies is 1, the discharge pressure exceeds the upper limit set pressure, and the command rotation speed of the inverter is lower than a predetermined rated rotation speed of the compressor body, and the operation The number N of compressor main bodies is 2 or more, the discharge pressure is not less than the lower limit set pressure, and the command rotational speed is (N-1) / N and a margin ratio of 1 or less to the rated rotational speed. In any case where the value is less than the multiplied value, the number of operating compressor bodies is decreased by 1,
In both cases where the discharge pressure is lower than the lower limit set pressure and the discharge pressure is equal to or higher than the lower limit set pressure and the command rotational speed is equal to or higher than the rated rotational speed, the number of operating compressor main bodies is reduced. A method for controlling a compressor, wherein the number is increased by one.
JP2000313493A 2000-10-13 2000-10-13 Compressor control method Expired - Lifetime JP4043184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313493A JP4043184B2 (en) 2000-10-13 2000-10-13 Compressor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313493A JP4043184B2 (en) 2000-10-13 2000-10-13 Compressor control method

Publications (2)

Publication Number Publication Date
JP2002122078A JP2002122078A (en) 2002-04-26
JP4043184B2 true JP4043184B2 (en) 2008-02-06

Family

ID=18792902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313493A Expired - Lifetime JP4043184B2 (en) 2000-10-13 2000-10-13 Compressor control method

Country Status (1)

Country Link
JP (1) JP4043184B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512332B2 (en) * 2003-07-15 2010-07-28 株式会社日立産機システム Compressed air production facility
JP4924855B1 (en) * 2011-07-22 2012-04-25 三浦工業株式会社 Compressor number control system
KR101167556B1 (en) * 2011-07-22 2012-07-30 미우라고교 가부시키카이샤 Number-of-compressors controlling system
JP5685782B2 (en) * 2012-01-06 2015-03-18 オリオン機械株式会社 Chiller linked operation method and system
JP2013231396A (en) * 2012-04-27 2013-11-14 Anest Iwata Corp Compressed gas supply unit
EP3859156A4 (en) * 2018-09-27 2022-10-26 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor and control method therefor
WO2020066267A1 (en) 2018-09-27 2020-04-02 株式会社日立産機システム Gas compressor and method for controlling same

Also Published As

Publication number Publication date
JP2002122078A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
JP4635282B2 (en) Autonomous inverter drive hydraulic unit
JP2008069674A (en) Operation control device and method of vacuum pump
JP4043184B2 (en) Compressor control method
KR100597864B1 (en) Method of controlling a plurality of compressors
JP2816134B2 (en) Temperature control method in food storage chamber
JP3580941B2 (en) Engine speed control device for hydraulic construction machinery
JP4678799B2 (en) Water supply apparatus and water supply apparatus control method
JPH0988871A (en) Device and method for controlling rotary machine
JPS61190233A (en) Operation control device for air-conditioner
JPH11287189A (en) Pump control method
JP4678798B2 (en) Water supply apparatus and water supply apparatus control method
JP4512332B2 (en) Compressed air production facility
JP3002118B2 (en) Operating method of compressor
JP3744281B2 (en) Autonomous inverter drive hydraulic unit
JP2006017041A (en) Rotary compressor
JP2538675B2 (en) Inverter operating frequency control method
KR20020071225A (en) Air conditioner control system and control method thereof
JP2020112113A (en) Exhaust system and exhaust device control method
JPS6128780A (en) Liquid feed device
JPH0518390A (en) Operating number control device for pumps
JP5919819B2 (en) Motor control device and electric pump unit
WO2011052675A1 (en) Pump unit, vacuum device, and exhaust device for load lock chamber
JP2013137058A (en) Motor control device and electric pump unit
JP2003074948A (en) Controller for refrigerating device
JP2001140768A (en) Manufacturing facility for compressed air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4043184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6