JP2020101156A - Exhaust system and exhaust device control method - Google Patents

Exhaust system and exhaust device control method Download PDF

Info

Publication number
JP2020101156A
JP2020101156A JP2018241378A JP2018241378A JP2020101156A JP 2020101156 A JP2020101156 A JP 2020101156A JP 2018241378 A JP2018241378 A JP 2018241378A JP 2018241378 A JP2018241378 A JP 2018241378A JP 2020101156 A JP2020101156 A JP 2020101156A
Authority
JP
Japan
Prior art keywords
exhaust
vacuum pressure
vacuum
variable
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018241378A
Other languages
Japanese (ja)
Other versions
JP6954642B2 (en
Inventor
吉田 洋介
Yosuke Yoshida
洋介 吉田
俊 宮澤
Shun Miyazawa
俊 宮澤
布祐紀 渋沢
Fuyuki Shibusawa
布祐紀 渋沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2018241378A priority Critical patent/JP6954642B2/en
Publication of JP2020101156A publication Critical patent/JP2020101156A/en
Application granted granted Critical
Publication of JP6954642B2 publication Critical patent/JP6954642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To further reduce power consumption.SOLUTION: When vacuum pressure inside connection piping identified on the basis of a detection signal is stabilized within a preliminarily designated pressure range with a plurality of exhaust devices including variable exhaust devices operated by a control section (Steps 12 and 14), on the basis of the number of rotations of the active variable exhaust devices and the vacuum pressure inside the connection piping (Step 15), a determination is made as to whether or not the active variable exhaust devices exist in a poor exhaust performance state with an exhaust amount of gas from an exhaust object equal to or lower than a predetermined exhaust amount (Step 16) and, when the active variable exhaust device exists in the poor exhaust performance state, at least one active variable exhaust device is stopped in the poor exhaust performance state while maintaining operation of at least one exhaust device (Step 17).SELECTED DRAWING: Figure 2

Description

本発明は、接続用配管を介して排気対象に接続された複数の排気装置を備えて構成された排気システム、およびそのような排気システムにおいて各排気装置を制御する排気装置制御方法に関するものである。 The present invention relates to an exhaust system including a plurality of exhaust devices connected to an exhaust target via a connecting pipe, and an exhaust device control method for controlling each exhaust device in such an exhaust system. ..

この種の排気システムおよび排気装置制御方法として、出願人は、射出成型機や吸着保持装置などの排気対象から真空ポンプによって空気を吸引して排気する排気システム、およびその制御方法を下記の特許文献に開示している。出願人が開示している排気システムでは、インバータ回路から供給される電力によって動作するモータ(電動機)を動力源とする真空ポンプ(排気能力可変型の真空ポンプ)を複数台備えると共に、これらの真空ポンプが接続用配管を介して排気対象に対して並列的に接続されている。 As an exhaust system and an exhaust device control method of this kind, the applicant has described an exhaust system in which air is sucked and exhausted by a vacuum pump from an exhaust target such as an injection molding machine or an adsorption holding device, and a control method thereof. It is disclosed in. The exhaust system disclosed by the applicant is provided with a plurality of vacuum pumps (exhaust capacity variable type vacuum pumps) powered by a motor (electric motor) operated by electric power supplied from an inverter circuit, and these vacuum pumps are used. The pump is connected in parallel to the exhaust target via a connecting pipe.

この排気システムでは、制御部が、上記の接続用配管に配設された圧力センサからのセンサ信号に基づいて接続用配管内の真空圧を特定すると共に、特定した真空圧が目標真空圧に対する許容範囲内の真空圧となるように各インバータ回路を制御して各真空ポンプへの電力の供給状態(すなわち、動作させる真空ポンプの台数や、動作中の真空ポンプの回転数)を変化させる制御を行う。これにより、この排気システムでは、接続用配管内の真空圧を目標真空圧に対する許容範囲内の圧力とするのに必要な台数の真空ポンプが必要な回転数で動作させられて排気対象から適量の空気が継続的に排気される。 In this exhaust system, the control unit specifies the vacuum pressure in the connecting pipe based on the sensor signal from the pressure sensor arranged in the connecting pipe, and the specified vacuum pressure is allowable for the target vacuum pressure. By controlling each inverter circuit so that the vacuum pressure is within the range, control is performed to change the power supply state to each vacuum pump (that is, the number of vacuum pumps to be operated and the rotation speed of the vacuum pumps in operation). To do. As a result, in this exhaust system, the number of vacuum pumps required to bring the vacuum pressure in the connecting pipe to a pressure within the allowable range with respect to the target vacuum pressure is operated at the required number of revolutions, and an appropriate amount of exhaust gas is exhausted from the exhaust target. Air is continuously exhausted.

特開2015−203348号公報(第12−28頁、第1−6図)JP-A-2015-203348 (page 12-28, FIG. 1-6)

ところが、出願人が開示している排気システム、およびその制御方法には、以下のような改善すべき課題が存在する。具体的には、出願人が開示している排気システムおよび制御方法では、制御部が、接続用配管内の真空圧が目標真空圧に対する許容範囲内の圧力となるように、動作させる真空ポンプの台数や、動作中の真空ポンプの回転数(一例として、真空ポンプに動力源として搭載されているモータの回転数)を規定して各真空ポンプの動作状態を制御する構成および制御方法が採用されている。 However, the exhaust system and the control method thereof disclosed by the applicant have the following problems to be improved. Specifically, in the exhaust system and the control method disclosed by the applicant, the control unit controls the vacuum pump to operate such that the vacuum pressure in the connecting pipe is within a permissible range with respect to the target vacuum pressure. A configuration and a control method are adopted in which the operating state of each vacuum pump is controlled by defining the number of units and the number of rotations of the vacuum pumps in operation (for example, the number of rotations of a motor mounted as a power source in the vacuum pumps). ing.

これにより、出願人が開示している排気システムおよび制御方法では、負荷が増加したとき(排気対象から多くの空気を排気する必要があるとき)に、制御部が、動作させる真空ポンプの台数を増加させたり、動作中の真空ポンプの回転数を上昇させたりすることで、接続用配管内の真空圧を目標真空圧に対する許容範囲内の圧力に維持することが可能となっている。また、出願人が開示している排気システムおよび制御方法では、負荷が減少したとき(排気対象から排気すべき空気の量が減少したとき)に、制御部が、動作させる真空ポンプの台数を減少させたり、動作中の真空ポンプの回転数を低下させたりすることで、接続用配管内の真空圧を目標真空圧に対する許容範囲内の圧力に維持することが可能となっている。 Thus, in the exhaust system and control method disclosed by the applicant, the control unit determines the number of vacuum pumps to operate when the load increases (when a large amount of air needs to be exhausted from the exhaust target). It is possible to maintain the vacuum pressure in the connecting pipe within a permissible range with respect to the target vacuum pressure by increasing or increasing the rotation speed of the vacuum pump during operation. Further, in the exhaust system and control method disclosed by the applicant, the control unit reduces the number of vacuum pumps to be operated when the load decreases (when the amount of air to be exhausted from the exhaust target decreases). It is possible to maintain the vacuum pressure in the connecting pipe within a permissible range with respect to the target vacuum pressure by controlling the rotation speed of the vacuum pump or reducing the rotation speed of the vacuum pump during operation.

この場合、上記のような負荷の減少時には、継続動作中の真空ポンプによる排気によって接続用配管内の真空圧が上昇したときに、それらの真空ポンプの回転数を低下させて排気対象からの単位時間あたりの空気の排気量を減少させることで接続用配管内の真空圧を低下させる処理が行われ、予め規定された回転数まで低下させた状態でも接続用配管内の真空圧が目標真空圧に対する許容範囲よりも高いとき(排気対象からの単位時間あたりの空気の排気量が多過ぎるとき)には、動作中の真空ポンプの台数を減少させる処理が行われる。これにより、接続用配管内の真空圧を目標真空圧に対する許容範囲内の圧力に維持するのに不要な真空ポンプを停止させる分だけ、消費電力が低減される。 In this case, when the load is reduced as described above, when the vacuum pressure in the connecting pipe rises due to the exhaustion by the vacuum pump during continuous operation, the rotation speed of those vacuum pumps is reduced to reduce the unit from the exhaust target. The vacuum pressure in the connection pipe is reduced by reducing the amount of air exhausted per unit of time, and the vacuum pressure in the connection pipe is reduced to the target vacuum pressure even when the rotation speed has been reduced to a specified value. When it is higher than the allowable range for (i.e., when the exhaust amount of air per unit time from the exhaust target is too large), a process of reducing the number of operating vacuum pumps is performed. As a result, the power consumption is reduced by the amount of stopping the vacuum pump that is unnecessary to maintain the vacuum pressure in the connecting pipe within the allowable range with respect to the target vacuum pressure.

一方、この種の排気システムに採用される真空ポンプは、図4に示すように、到達し得る真空圧(以下、「到達可能真空圧」ともいう)が回転数に応じて変化する。なお、同図では、許容範囲の上限の回転数を100.0%とし、許容範囲の下限の回転数を33.3%とし、この上限の回転数および下限の回転数を含む5種類の回転数を例に挙げて、各回転数毎の排気対象からの排気量(真空ポンプから排気される1気圧下での空気の体積)と、接続用配管内の真空圧との関係を図示している。つまり、同図に示す例の真空ポンプでは、100.0%の回転数で動作させた際に排気量が最小となる真空圧aが100.0%の回転数における到達可能真空圧であり、33.3%の回転数で動作させた際に排気量が最小となる真空圧eが33.3%の回転数における到達可能真空圧となっている。 On the other hand, in the vacuum pump used in this type of exhaust system, as shown in FIG. 4, the attainable vacuum pressure (hereinafter, also referred to as “reachable vacuum pressure”) changes according to the rotation speed. In the figure, the upper limit rotation speed of the allowable range is set to 100.0%, the lower limit rotation speed of the allowable range is set to 33.3%, and five types of rotation speeds including the upper limit rotation speed and the lower limit rotation speed are set. Taking the number as an example, the relationship between the exhaust amount from each exhaust target (volume of air at 1 atmospheric pressure exhausted from the vacuum pump) and the vacuum pressure in the connecting pipe is illustrated for each rotation speed. There is. That is, in the vacuum pump of the example shown in the same drawing, the vacuum pressure a at which the displacement is minimum when operated at a rotation speed of 100.0% is the attainable vacuum pressure at a rotation speed of 100.0%, The vacuum pressure e at which the exhaust amount is minimum when operated at the rotation speed of 33.3% is the attainable vacuum pressure at the rotation speed of 33.3%.

この場合、出願人が開示している排気システムにおける制御方法では、一例として、3台の真空ポンプを動作させている状態において接続用配管内の真空圧が目標真空圧に対する許容範囲よりも高いときに各真空ポンプの回転数を徐々に低下させ、回転数を66.7%まで低下させても接続用配管内の真空圧が目標真空圧に対する許容範囲よりも高いときに、3台の真空ポンプのうちの2台の真空ポンプの動作を継続させつつ、残りの1台を停止させる構成が採用されている。 In this case, in the control method in the exhaust system disclosed by the applicant, as an example, when the vacuum pressure in the connecting pipe is higher than the allowable range for the target vacuum pressure in the state where the three vacuum pumps are operated. Gradually reduce the rotation speed of each vacuum pump, and even if the rotation speed is reduced to 66.7%, if the vacuum pressure in the connecting pipe is higher than the allowable range for the target vacuum pressure, three vacuum pumps A configuration is adopted in which one of the two vacuum pumps is stopped while the other is continuously operated.

したがって、各真空ポンプを66.7%の回転数で動作させた際の到達可能真空圧である真空圧cよりも低い圧力に目標真空圧を設定した状態で3台の真空ポンプを動作させているときに負荷が減少した際には、各真空ポンプの回転数が66.7%以上となる状態において接続用配管内の真空圧が目標真空圧よりも高い圧力となるため、回転数を66.7%まで低下させても接続用配管内の真空圧が目標真空圧に対する許容範囲よりも高い圧力となる。この結果、そのように目標真空圧を設定したときには、3台動作時に負荷が減少したときに、検出される真空圧が目標真空圧よりも高いと判別され、真空圧をさらに低下させるために3台の真空ポンプのうちの1台を停止させる処理が行われる。 Therefore, the three vacuum pumps are operated with the target vacuum pressure set to a pressure lower than the vacuum pressure c which is the attainable vacuum pressure when each vacuum pump is operated at the rotation speed of 66.7%. When the load decreases while the rotation speed of each vacuum pump is 66.7% or more, the vacuum pressure in the connecting pipe becomes higher than the target vacuum pressure. Even if the pressure is reduced to 0.7%, the vacuum pressure in the connecting pipe becomes higher than the allowable range for the target vacuum pressure. As a result, when the target vacuum pressure is set in this way, it is determined that the detected vacuum pressure is higher than the target vacuum pressure when the load is reduced during operation of the three units, and in order to further reduce the vacuum pressure, The process of stopping one of the vacuum pumps is performed.

しかしながら、例えば、真空圧b(真空ポンプを66.7%の回転数で動作させた際の到達可能真空圧である真空圧cよりも高い圧力の一例)に目標真空圧を設定した状態で3台の真空ポンプを動作させているときに負荷が減少した際には、各真空ポンプの回転数を83.3%まで低下させたときに、接続用配管内の真空圧が、83.3%の回転数における到達可能真空圧であり、かつ目標真空圧である真空圧bとなるため、各真空ポンプの回転数がさらに低下させられることなく、83.3%の回転数が維持され、結果として、3台の真空ポンプ2が動作している状態が維持される。 However, for example, when the target vacuum pressure is set to the vacuum pressure b (an example of a pressure higher than the vacuum pressure c which is the attainable vacuum pressure when the vacuum pump is operated at a rotation speed of 66.7%), 3 When the load is reduced while operating the vacuum pumps of the units, when the rotation speed of each vacuum pump is reduced to 83.3%, the vacuum pressure in the connecting pipe is 83.3%. Since the vacuum pressure b is the attainable vacuum pressure and the target vacuum pressure at the rotation speed of, the rotation speed of each vacuum pump is not further reduced and the rotation speed of 83.3% is maintained. As a result, the state in which the three vacuum pumps 2 are operating is maintained.

このように、上記の制御例では、目標真空圧を真空圧cよりも低い圧力に設定したときには、3台の真空ポンプのうちの1台が停止されるのに対し、目標真空圧を真空圧cよりも高い圧力(上記の例では、真空圧b)に設定したときには、3台の真空ポンプが継続的に動作させられることとなる。この場合、例えば上記の例のように目標真空圧を真空圧bに設定することで3台の真空ポンプが83.3%の回転数で継続的に動作させられて真空圧bが維持される状態では、図4に示すように、各真空ポンプによる排気量が非常に少ない量の状態、すなわち、各真空ポンプが実質的に機能していないのと同然の状態が維持されることとなる。 As described above, in the above control example, when the target vacuum pressure is set to a pressure lower than the vacuum pressure c, one of the three vacuum pumps is stopped, while the target vacuum pressure is set to the vacuum pressure. When set to a pressure higher than c (vacuum pressure b in the above example), the three vacuum pumps are continuously operated. In this case, for example, by setting the target vacuum pressure to the vacuum pressure b as in the above example, the three vacuum pumps are continuously operated at the rotation speed of 83.3% and the vacuum pressure b is maintained. In the state, as shown in FIG. 4, a state in which the exhaust amount by each vacuum pump is extremely small, that is, a state similar to that in which each vacuum pump is not substantially functioning is maintained.

一方で、目標真空圧として設定された真空圧bは、各真空ポンプの回転数を83.3%としたときの到達可能真空圧であるため、3台の真空ポンプを動作させなくても、1台の真空ポンプを83.3%の回転数で動作させることで到達することができる。それにも拘わらず、実質的には機能していないのと同然の各真空ポンプを83.3%との高い回転数で継続的に動作させるため、排気システムの消費電力量の低減が困難となる。したがって、上記の例のような状態において消費される電力を低減可能に改善するのが好ましい。 On the other hand, since the vacuum pressure b set as the target vacuum pressure is the attainable vacuum pressure when the rotation speed of each vacuum pump is 83.3%, it is possible to operate the three vacuum pumps without operating. It can be reached by operating one vacuum pump at a rotation speed of 83.3%. Nevertheless, it is difficult to reduce the power consumption of the exhaust system because each vacuum pump, which is virtually not functioning, is continuously operated at a high rotation speed of 83.3%. .. Therefore, it is preferable to improve the power consumed in the state as in the above example so that the power can be reduced.

本発明は、かかる改善すべき課題に鑑みてなされたものであり、消費電力を一層低減し得る排気システムおよび排気装置制御方法を提供することを主目的とする。 The present invention has been made in view of such problems to be improved, and a main object of the present invention is to provide an exhaust system and an exhaust device control method capable of further reducing power consumption.

上記目的を達成すべく、請求項1記載の排気システムは、排気対象から気体を排気可能に構成されて接続用配管を介して当該排気対象に並列接続されたN台(Nは、2以上の自然数)の排気装置と、前記接続用配管内の真空圧を検出して検出信号を出力する真空圧センサと、前記検出信号に基づいて特定される前記接続用配管内の真空圧が予め指定された圧力範囲内の真空圧となるように前記各排気装置の動作を制御する制御部とを備えた排気システムであって、前記各排気装置のうちの少なくとも1台が回転数に応じて前記排気対象からの排気能力が変化する可変型排気装置で構成され、前記制御部は、前記可変型排気装置を含む複数の前記排気装置を動作させた状態において、前記検出信号に基づいて特定される前記接続用配管内の真空圧が前記予め指定された圧力範囲内で一定となったときに、動作中の前記可変型排気装置の回転数、および前記接続用配管内の真空圧に基づき、前記排気対象からの前記気体の排気量が予め規定された排気量以下となる排気能力低下状態で動作中の当該可変型排気装置が存在するか否かを判別すると共に、前記排気能力低下状態で動作中の前記可変型排気装置が存在するときに、少なくとも1台の当該排気装置の動作を継続させつつ、当該排気能力低下状態で動作中の当該可変型排気装置を少なくとも1台停止させる。 In order to achieve the above object, the exhaust system according to claim 1 is configured to be capable of exhausting gas from an exhaust target and connected in parallel to the exhaust target through a connecting pipe (N is 2 or more). (A natural number), an exhaust device, a vacuum pressure sensor that detects a vacuum pressure in the connection pipe and outputs a detection signal, and a vacuum pressure in the connection pipe that is specified based on the detection signal is designated in advance. An exhaust system including a control unit that controls the operation of each of the exhaust devices so that the vacuum pressure is within a predetermined pressure range, wherein at least one of the exhaust devices has the exhaust gas according to a rotation speed. The control unit is configured by a variable exhaust device having a variable exhaust capacity, and in a state in which a plurality of exhaust devices including the variable exhaust device are operated, the control unit is specified based on the detection signal. When the vacuum pressure in the connecting pipe becomes constant within the predetermined pressure range, the exhaust is performed based on the rotation speed of the variable exhaust device in operation and the vacuum pressure in the connecting pipe. The exhaust amount of the gas from the target is determined to be equal to or less than the predetermined exhaust amount, and it is determined whether or not the variable exhaust device is operating in the exhaust capacity lowering state, and is operating in the exhaust capacity lowering state. When the variable exhaust device is present, at least one variable exhaust device operating in the reduced exhaust capacity state is stopped while continuing the operation of at least one exhaust device.

請求項2記載の排気システムは、請求項1記載の排気システムにおいて、前記制御部は、前記排気能力低下状態で動作中の前記可変型排気装置が複数台存在し、かつ当該排気能力低下状態で動作中の当該各可変型排気装置のなかに回転数が他の当該可変型排気装置の回転数とは相違する当該可変型排気装置が存在するときに、当該排気能力低下状態で動作中の当該各可変型排気装置のなかで回転数が最も高い当該可変型排気装置を除く当該可変型排気装置のうちの少なくとも1台停止させる。 The exhaust system according to claim 2 is the exhaust system according to claim 1, wherein the control unit includes a plurality of the variable exhaust devices that are operating in the exhaust capacity lowering state, and in the exhaust capacity lowering state. When there is a variable exhaust device in which the number of revolutions is different from the number of revolutions of the other variable exhaust device in operation, the variable exhaust device in operation is in operation in the reduced exhaust capacity state. At least one of the variable exhaust devices excluding the variable exhaust device having the highest rotation speed among the variable exhaust devices is stopped.

請求項3記載の排気装置制御方法は、排気対象から気体を排気可能に構成されて接続用配管を介して当該排気対象に並列接続されたN台(Nは、2以上の自然数)の排気装置と、前記接続用配管内の真空圧を検出して検出信号を出力する真空圧センサとを備えた排気システムを制御対象として、前記検出信号に基づいて特定される前記接続用配管内の真空圧が予め指定された圧力範囲内の真空圧となるように前記各排気装置の動作を制御する排気装置制御方法であって、前記各排気装置のうちの少なくとも1台が回転数に応じて前記排気対象からの排気能力が変化する可変型排気装置で構成された前記排気システムにおいて、前記可変型排気装置を含む複数の前記排気装置を動作させた状態において、前記検出信号に基づいて特定される前記接続用配管内の真空圧が前記予め指定された圧力範囲内で一定となったときに、動作中の前記可変型排気装置の回転数、および前記接続用配管内の真空圧に基づき、前記排気対象からの前記気体の排気量が予め規定された排気量以下となる排気能力低下状態で動作中の当該可変型排気装置が存在するか否かを判別すると共に、前記排気能力低下状態で動作中の前記可変型排気装置が存在するときに、少なくとも1台の当該排気装置の動作を継続させつつ、当該排気能力低下状態で動作中の当該可変型排気装置を少なくとも1台停止させる。 The exhaust device control method according to claim 3, wherein N (N is a natural number of 2 or more) exhaust devices that are configured to be capable of exhausting gas from an exhaust target and are connected in parallel to the exhaust target via a connecting pipe. And a vacuum pressure in the connection pipe specified based on the detection signal, with an exhaust system including a vacuum pressure sensor that detects a vacuum pressure in the connection pipe and outputs a detection signal as a control target. Is an exhaust device control method for controlling the operation of each of the exhaust devices so that the exhaust pressure becomes a vacuum pressure within a predesignated pressure range, wherein at least one of the exhaust devices has the exhaust gas according to the number of revolutions. In the exhaust system composed of a variable exhaust device whose exhaust capacity from a target changes, in a state where a plurality of the exhaust devices including the variable exhaust device are operated, the exhaust system is specified based on the detection signal. When the vacuum pressure in the connecting pipe becomes constant within the predetermined pressure range, the exhaust is performed based on the rotation speed of the variable exhaust device in operation and the vacuum pressure in the connecting pipe. The exhaust amount of the gas from the target is determined to be equal to or less than the predetermined exhaust amount, and it is determined whether or not the variable exhaust device is operating in the exhaust capacity lowering state, and is operating in the exhaust capacity lowering state. When the variable exhaust device is present, at least one variable exhaust device operating in the reduced exhaust capacity state is stopped while continuing the operation of at least one exhaust device.

請求項4記載の排気装置制御方法は、請求項3記載の排気装置制御方法において、前記排気能力低下状態で動作中の前記可変型排気装置が複数台存在し、かつ当該排気能力低下状態で動作中の当該各可変型排気装置のなかに回転数が他の当該可変型排気装置の回転数とは相違する当該可変型排気装置が存在するときに、当該排気能力低下状態で動作中の当該各可変型排気装置のなかで回転数が最も高い当該可変型排気装置を除く当該可変型排気装置のうちの少なくとも1台停止させる。 The exhaust device control method according to claim 4 is the exhaust device control method according to claim 3, wherein there are a plurality of the variable exhaust devices that are operating in the exhaust capacity lowering state, and operate in the exhaust capacity lowering state. When there is the variable exhaust device whose rotation speed is different from the rotation speed of the other variable exhaust device in each of the variable exhaust devices in the inside, At least one of the variable exhaust devices excluding the variable exhaust device having the highest rotation speed among the variable exhaust devices is stopped.

なお、上記の「接続用配管内の真空圧が予め指定された圧力範囲内で一定となったとき」とは、「接続用配管内の真空圧が予め指定された圧力範囲から外れない状態が維持されたとき」を意味する。したがって、「接続用配管内の真空圧が、予め指定された圧力範囲を外れることなく僅かに変動したとき」も「接続用配管内の真空圧が予め指定された圧力範囲内で一定となったとき」に含まれる。 Note that the above "when the vacuum pressure in the connecting pipe becomes constant within a predesignated pressure range" means that the state in which the vacuum pressure in the connecting pipe does not deviate from the predesignated pressure range. When maintained" means. Therefore, "when the vacuum pressure in the connecting pipe fluctuates slightly without deviating from the predesignated pressure range", "the vacuum pressure in the connecting pipe becomes constant within the predesignated pressure range" Included in "when".

請求項1記載の排気システム、および請求項3記載の排気装置制御方法では、可変型排気装置を含む複数の排気装置を動作させた状態において、検出信号に基づいて特定される接続用配管内の真空圧が予め指定された圧力範囲内で一定となったときに、動作中の可変型排気装置の回転数、および接続用配管内の真空圧に基づき、排気対象からの気体の排気量が予め規定された排気量以下となる排気能力低下状態で動作中の可変型排気装置が存在するか否かを判別すると共に、排気能力低下状態で動作中の可変型排気装置が存在するときに、少なくとも1台の排気装置の動作を継続させつつ、排気能力低下状態で動作中の可変型排気装置を少なくとも1台停止させる。 In the exhaust system according to claim 1 and the exhaust device control method according to claim 3, in the connection pipe specified based on the detection signal in a state in which a plurality of exhaust devices including a variable exhaust device are operated. When the vacuum pressure becomes constant within the pre-specified pressure range, the amount of gas exhausted from the exhaust target is preset based on the rotation speed of the operating variable exhaust device and the vacuum pressure in the connecting piping. It is determined whether or not there is a variable exhaust system that is operating in an exhaust capacity lowering state that is less than or equal to the specified exhaust volume, and at least when there is a variable exhaust system that is operating in an exhaust capacity lowering state. While continuing the operation of one exhaust device, at least one variable exhaust device that is operating in a state in which the exhaust capacity is lowered is stopped.

したがって、請求項1記載の排気システム、および請求項3記載の排気装置制御方法によれば、複数の排気装置が動作している状態でそれらの排気装置のうちのいずれかの可変型排気装置が、排気対象からの空気の排気量が極く少量の排気能力低下状態のときに、排気装置が1台だけ動作している状態、または、動作中の排気装置のすべてが排気能力低下状態と判別されない状態となるまで、実質的には機能していない不要な可変型排気装置が停止されるため、停止させた可変型排気装置に対して供給していた電力の分だけ、排気システムの消費電力を低減することができる。これにより、排気システムのランニングコストを一層低減することができる。 Therefore, according to the exhaust system according to claim 1 and the exhaust device control method according to claim 3, any one of the variable exhaust devices of the exhaust devices is operated while the plurality of exhaust devices are operating. , When the exhaust amount of air from the exhaust target is extremely small and the exhaust capacity is reduced, it is determined that only one exhaust device is operating, or all the operating exhaust devices are in the exhaust capacity degraded state. Unnecessary variable exhaust system that is not functioning is stopped until it becomes a state where the exhaust system consumes only the power supplied to the stopped variable exhaust system. Can be reduced. As a result, the running cost of the exhaust system can be further reduced.

請求項2記載の排気システム、および請求項4記載の排気装置制御方法では、排気能力低下状態で動作中の可変型排気装置が複数台存在し、かつ排気能力低下状態で動作中の各可変型排気装置のなかに回転数が他の可変型排気装置の回転数とは相違する可変型排気装置が存在するときに、排気能力低下状態で動作中の各可変型排気装置のなかで回転数が最も高い可変型排気装置を除く可変型排気装置のうちの少なくとも1台停止させる。 In the exhaust system according to claim 2 and the exhaust device control method according to claim 4, there are a plurality of variable type exhaust devices that are operating in a reduced exhaust capacity state, and each variable type that is operating in a reduced exhaust capacity state. When there is a variable exhaust system in the exhaust system whose rotational speed is different from the rotational speed of other variable exhaust systems, the rotational speed of each variable exhaust system that is operating in a state of reduced exhaust capacity is At least one of the variable exhaust devices except the highest variable exhaust device is stopped.

したがって、請求項2記載の排気システム、および請求項4記載の排気装置制御方法によれば、排気能力低下状態で動作中の可変型排気装置が複数台存在する状況下において、排気能力低下状態で動作中の各可変型排気装置のなかで回転数が最も高い可変型排気装置を停止させる構成・方法とは異なり、排気能力低下状態で動作中の可変型排気装置を少なくとも1台停止させた際に、動作中の可変型排気装置の回転数を上昇させたり、停止中の可変型排気装置の動作を再開させたりすることなく、排気能力低下状態で動作中の各可変型排気装置のなかで回転数が最も高い可変型排気装置の動作状態(回転数)を維持するだけで、その回転数で動作中の可変型排気装置の到達可能真空圧である目標真空圧に対する許容範囲内の真空圧を維持することができる。 Therefore, according to the exhaust system of the second aspect and the exhaust system control method of the fourth aspect, in a situation where there are a plurality of variable-type exhaust devices operating in the exhaust capacity lowering state, the exhaust capacity lowering state Unlike at least one variable exhaust system that has the highest rotation speed among all operating variable exhaust systems that is operating, when at least one variable exhaust system that is operating in a reduced exhaust capacity state is stopped In addition, without increasing the rotation speed of the variable exhaust system in operation or restarting the operation of the variable exhaust system that was stopped, Only by maintaining the operating state (rotation speed) of the variable exhaust system with the highest rotation speed, the vacuum pressure within the allowable range for the target vacuum pressure, which is the attainable vacuum pressure of the variable exhaust system operating at that rotation speed. Can be maintained.

本発明の実施の形態に係る排気システム1の構成を示す構成図である。It is a block diagram which shows the structure of the exhaust system 1 which concerns on embodiment of this invention. 本発明の実施の形態に係る排気システム1における制御部6によって実行される排気量調整処理10のフローチャートである。6 is a flowchart of an exhaust amount adjustment process 10 executed by a control unit 6 in the exhaust system 1 according to the embodiment of the present invention. 本発明の実施の形態に係る排気システム1による排気量調整処理10の実行時における真空ポンプ2a〜2cの動作状態の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the operating state of the vacuum pumps 2a-2c at the time of execution of the exhaust amount adjustment process 10 by the exhaust system 1 which concerns on embodiment of this invention. 本発明の実施の形態に係る排気システム1における各真空ポンプ2a〜2cの「排気対象Xからの排気量」と「真空圧」との関係を回転数33.3%〜100.0%の各回転数毎に示した図である。In the exhaust system 1 according to the embodiment of the present invention, the relationship between the “exhaust amount from the exhaust target X” and the “vacuum pressure” of each of the vacuum pumps 2a to 2c is determined for each rotation speed of 33.3% to 100.0%. It is a figure shown for every number of rotations.

以下、添付図面を参照して、排気システム、および排気装置制御方法の実施の形態について説明する。 Embodiments of an exhaust system and an exhaust device control method will be described below with reference to the accompanying drawings.

最初に、排気システム1の構成について、添付図面を参照して説明する。 First, the configuration of the exhaust system 1 will be described with reference to the accompanying drawings.

図1に示す排気システム1は、「排気システム」の一例であって、出願人が開示している前述の排気システムと同様にして、射出成型機、吸着保持装置および真空包装機などの各種排気対象Xから空気(「気体」の一例)を吸引して排気する(排気対象Xに対して真空圧を供給する)ことができるように構成されている。具体的には、排気システム1は、真空ポンプ2a〜2c(N=3台の「排気装置」の一例:以下、これらを区別しないときには「真空ポンプ2」ともいう)、インバータ回路3a〜3c(以下、これらを区別しないときには「インバータ回路3」ともいう)、接続用配管4、真空圧センサ5、制御部6および記憶部7を備えている。 The exhaust system 1 shown in FIG. 1 is an example of an “exhaust system”, and similar to the above-described exhaust system disclosed by the applicant, various exhausts such as an injection molding machine, a suction holding device, and a vacuum packaging machine. It is configured such that air (an example of “gas”) can be sucked from the target X and exhausted (a vacuum pressure is supplied to the exhaust target X). Specifically, the exhaust system 1 includes vacuum pumps 2a to 2c (an example of N=3 "exhaust devices": hereinafter, also referred to as "vacuum pump 2" when these are not distinguished)" and inverter circuits 3a to 3c ( Hereinafter, when these are not distinguished, they are also referred to as "inverter circuit 3"), a connecting pipe 4, a vacuum pressure sensor 5, a control unit 6, and a storage unit 7.

真空ポンプ2は、「回転数に応じて排気対象からの排気能力が変化する可変型排気装置」の一例である「インバータ制御方式の真空ポンプ」であって、本例の排気システム1では、各真空ポンプ2が接続用配管4(「接続用配管」の一例)を介して排気対象Xに対して並列接続されている。この真空ポンプ2は、一例として、ベーンポンプ等のロータ方式のポンプ(回転式のポンプ)で構成されており、後述するように各インバータ回路3から供給される電力P2a〜P2c(以下、区別しないときには「電力P2」ともいう)の周波数に応じた回転数(回転速)で回転するモータを動力源として備えると共に、モータの動力出力軸と、ポンプ本体のインプットシャフトとが動力伝達機構(カップリングや、ベルト&プーリ等)を介して相互に接続されている。 The vacuum pump 2 is an “inverter-controlled vacuum pump” that is an example of a “variable exhaust device in which the exhaust capacity from an exhaust target changes according to the number of revolutions”, and in the exhaust system 1 of this example, The vacuum pump 2 is connected in parallel to the exhaust target X via a connection pipe 4 (an example of “connection pipe”). As an example, the vacuum pump 2 is configured by a rotor type pump (rotary pump) such as a vane pump, and power P2a to P2c supplied from each inverter circuit 3 (hereinafter, when no distinction is made, as will be described later). A motor that rotates at a rotation speed (rotation speed) according to the frequency of “electric power P2” is provided as a power source, and the power output shaft of the motor and the input shaft of the pump body are connected to a power transmission mechanism (coupling or coupling). , Belts & pulleys, etc.).

つまり、本例の真空ポンプ2では、モータの回転数(動力出力軸の回転数)と、ポンプ本体のインプットシャフトの回転数(ロータの回転数)とが予め規定された比率で固定されており、モータの回転数の増減に応じてロータの回転数が変化することとなる。なお、以下の説明では、排気システム1の動作に関する理解を容易とするために、「真空ポンプ2に搭載されているモータにおける動力出力軸の回転数」を単に「真空ポンプ2の回転数」ともいう。この場合、本例の排気システム1は、一例として、作動用電力の定格周波数が60Hzのモータをそれぞれ備えると共に、回転数あたりの排気能力が互いに等しい真空ポンプ(排気能力が同じ真空ポンプ)で各真空ポンプ2が構成されている。 That is, in the vacuum pump 2 of this example, the rotation speed of the motor (rotation speed of the power output shaft) and the rotation speed of the input shaft of the pump body (rotation speed of the rotor) are fixed at a predetermined ratio. The rotation speed of the rotor changes according to the increase or decrease in the rotation speed of the motor. In the following description, in order to facilitate understanding of the operation of the exhaust system 1, the “rotation speed of the power output shaft in the motor mounted in the vacuum pump 2” is simply referred to as the “rotation speed of the vacuum pump 2”. Say. In this case, as an example, the exhaust system 1 of this example includes motors each having a rated frequency of operating power of 60 Hz, and vacuum pumps having the same exhaust capacity per rotation speed (vacuum pumps having the same exhaust capacity). The vacuum pump 2 is configured.

なお、真空ポンプ2のような「可変型排気装置」は、所定の回転数を下回る動作状態において空気を十分に排気する(空気を吸引する)のが困難な状態となる。したがって、本例では、一例として、各真空ポンプ2に対して上記の定格周波数(60Hz)の電力P2を供給したときの回転数を上限の100.0%の回転数としたときに、その33.3%の回転数を下限として規定し、33.3%から100.0%の間の回転数で各真空ポンプ2を動作させるよう規定されている。なお、本例の排気システム1において採用されている各真空ポンプ2は、各回転数毎の「排気対象Xからの排気量」と「真空圧」との関係が、図4に示すような関係となるような排気能力を有している。 It should be noted that a “variable exhaust device” such as the vacuum pump 2 is in a state where it is difficult to sufficiently exhaust air (suction air) in an operating state in which the rotational speed is lower than a predetermined rotation speed. Therefore, in this example, as an example, when the rotation speed when the electric power P2 of the above-mentioned rated frequency (60 Hz) is supplied to each vacuum pump 2 is set to 100.0% of the upper limit, 33 The rotation speed of 0.3% is specified as the lower limit, and it is specified that each vacuum pump 2 is operated at the rotation speed of between 33.3% and 100.0%. In each vacuum pump 2 used in the exhaust system 1 of this example, the relationship between the “exhaust amount from the exhaust target X” and the “vacuum pressure” for each rotation speed is as shown in FIG. The exhaust capacity is

インバータ回路3は、制御部6と相俟って「制御部」を構成する。この場合、本例の排気システム1では、インバータ回路3aが制御部6からの制御信号S3aに従って真空ポンプ2aに供給する電力P2aの周波数を変化させ、インバータ回路3bが制御部6からの制御信号S3bに従って真空ポンプ2bに供給する電力P2bの周波数を変化させ、かつインバータ回路3cが制御部6からの制御信号S3cに従って真空ポンプ2cに供給する電力P2cの周波数を変化させることで各真空ポンプ2を上記の33.3%から100.0%の間の任意の回転数で動作させる(各真空ポンプ2の回転数を制御する)構成が採用されている。 The inverter circuit 3 constitutes a “control unit” together with the control unit 6. In this case, in the exhaust system 1 of the present example, the inverter circuit 3a changes the frequency of the power P2a supplied to the vacuum pump 2a according to the control signal S3a from the control unit 6, and the inverter circuit 3b causes the control signal S3b from the control unit 6. In accordance with the above, the frequency of the power P2b supplied to the vacuum pumps 2b is changed, and the frequency of the power P2c supplied to the vacuum pumps 2c is changed by the inverter circuit 3c in accordance with the control signal S3c from the control unit 6. 33.3% to 100.0% of the rotation speed of each vacuum pump 2 is controlled (the rotation speed of each vacuum pump 2 is controlled).

なお、定格周波数である60Hzの電力P2がインバータ回路3から供給されたときの回転数を100.0%の回転数として各真空ポンプ2を動作させる本例では、50Hzの電力P2を供給した真空ポンプ2が83.3%の回転数で動作し、40Hzの電力P2を供給した真空ポンプ2が66.7%の回転数で動作し、30Hzの電力P2を供給した真空ポンプ2が50.0%の回転数で動作すると共に、20Hzの電力P2を供給した真空ポンプ2が33.3%の回転数で動作することとなる。 In addition, in the present example in which each vacuum pump 2 is operated with a rotation speed of 100.0% when the power P2 of 60 Hz which is the rated frequency is supplied from the inverter circuit 3, a vacuum that supplies the power P2 of 50 Hz is used. The pump 2 operates at a rotation speed of 83.3%, the vacuum pump 2 that supplies the electric power P2 of 40 Hz operates at a rotation speed of 66.7%, and the vacuum pump 2 that supplies the electric power P2 of 30 Hz is 50.0%. %, the vacuum pump 2 supplied with the electric power P2 of 20 Hz operates at a rotation speed of 33.3%.

接続用配管4は、排気対象Xに対して各真空ポンプ2を並列的に接続する圧力配管であって、本例の排気システム1では、この接続用配管4に真空圧センサ5が取り付けられている。なお、排気システム1の構成要素として接続用配管4を備えた排気システム1の構成に代えて、排気対象Xに接続された既存の圧力配管に各真空ポンプ2を接続して真空圧センサ5を配設する構成(「排気システム」の構成要素ではない「接続用配管」を使用する構成)を採用することもできる。真空圧センサ(真空度センサ)5は、「真空圧センサ」の一例であって、上記のように接続用配管4に配設されて接続用配管4内の真空圧(真空度)を検出し、検出した真空圧に応じたセンサ信号S5(「検出信号」の一例)を出力する。 The connection pipe 4 is a pressure pipe that connects the respective vacuum pumps 2 in parallel to the exhaust target X, and in the exhaust system 1 of this example, a vacuum pressure sensor 5 is attached to the connection pipe 4. There is. Instead of the configuration of the exhaust system 1 including the connecting pipe 4 as a component of the exhaust system 1, each vacuum pump 2 is connected to the existing pressure pipe connected to the exhaust target X to connect the vacuum pressure sensor 5. It is also possible to adopt a configuration for arranging (a configuration using “connection piping” that is not a component of the “exhaust system”). The vacuum pressure sensor (vacuum degree sensor) 5 is an example of a “vacuum pressure sensor”, and is arranged in the connecting pipe 4 as described above and detects the vacuum pressure (vacuum degree) in the connecting pipe 4. , And outputs a sensor signal S5 (an example of “detection signal”) corresponding to the detected vacuum pressure.

制御部6は、前述したように、各インバータ回路3と相まって「制御部」を構成し、排気システム1を総括的に制御する。この制御部6は、後述するように、図2に示す排気量調整処理10を実行して、各インバータ回路3に対して制御信号S3a〜S3c(以下、区別しないときには「制御信号S3」ともいう)を出力することにより、接続用配管4内の真空圧が、予め設定された目標真空圧に対する許容範囲(一例として、設定された目標真空圧の±5.0%の範囲)内の真空圧となるように各真空ポンプ2を動作させる。 As described above, the control unit 6 constitutes a “control unit” together with each inverter circuit 3, and controls the exhaust system 1 as a whole. As will be described later, the control unit 6 executes the exhaust amount adjustment processing 10 shown in FIG. 2 to control the inverter circuits 3 with control signals S3a to S3c (hereinafter, also referred to as "control signal S3" when no distinction is made). ) Is output, the vacuum pressure in the connecting pipe 4 is within a permissible range (for example, a range of ±5.0% of the set target vacuum pressure) with respect to a preset target vacuum pressure. Each vacuum pump 2 is operated so that

具体的には、制御部6は、真空圧センサ5から出力されるセンサ信号S5に基づいて接続用配管4内の真空圧を特定すると共に、予め設定された目標真空圧、およびセンサ信号S5に基づいて特定した真空圧に基づき、各真空ポンプ2をどのように動作させるかを特定(決定)する。この際に、制御部6は、目標真空圧に対する許容範囲(「予め指定された圧力範囲」の一例)よりも高い真空圧に上昇したときに負荷が減少したと判別し、目標真空圧に対する許容範囲よりも低い真空圧に低下したときに負荷が増加したと判別する。 Specifically, the control unit 6 identifies the vacuum pressure in the connecting pipe 4 based on the sensor signal S5 output from the vacuum pressure sensor 5, and determines the preset target vacuum pressure and the sensor signal S5. Based on the vacuum pressure specified based on the above, how to operate each vacuum pump 2 is specified (determined). At this time, the control unit 6 determines that the load has decreased when the vacuum pressure is higher than the allowable range for the target vacuum pressure (an example of the “prespecified pressure range”), and the allowable limit for the target vacuum pressure is obtained. When the vacuum pressure is lower than the range, it is determined that the load has increased.

また、制御部6は、負荷が減少したときに、各インバータ回路3に制御信号S3を出力して各真空ポンプ2の動作状態を変更して排気システム1全体としての空気の排気量を低減させると共に、負荷が増加したときに、各インバータ回路3に制御信号S3を出力して各真空ポンプ2の動作状態を変更して排気システム1全体としての空気の排気量を増加させることにより、接続用配管4内の真空圧を上記の真空圧範囲内の真空圧に維持する。なお、制御部6による排気量調整処理10の具体的な内容については、後に詳細に説明する。 Further, when the load decreases, the control unit 6 outputs a control signal S3 to each inverter circuit 3 to change the operating state of each vacuum pump 2 to reduce the exhaust amount of air in the exhaust system 1 as a whole. At the same time, when the load increases, the control signal S3 is output to each inverter circuit 3 to change the operating state of each vacuum pump 2 to increase the exhaust amount of air in the exhaust system 1 as a whole, thereby making it possible to connect. The vacuum pressure in the pipe 4 is maintained within the above vacuum pressure range. Note that the specific content of the exhaust amount adjustment processing 10 by the control unit 6 will be described later in detail.

記憶部7は、制御部6の動作プログラムや制御部6の演算結果、および後述の排気量調整処理10において制御部6が各インバータ回路3を介して真空ポンプ2を制御するための制御用データDなどを記憶する。 The storage unit 7 stores an operation program of the control unit 6, a calculation result of the control unit 6, and control data for the control unit 6 to control the vacuum pump 2 via each inverter circuit 3 in an exhaust amount adjustment process 10 described later. Memorize D etc.

次に、排気システム1による排気対象Xからの空気の排気処理(真空圧の供給処理)について、添付図面を参照して説明する。 Next, a process of exhausting air (vacuum pressure supply process) from the exhaust target X by the exhaust system 1 will be described with reference to the accompanying drawings.

この排気システム1による排気対象Xからの空気の排気に際しては、まず、図示しない操作部を操作して目標真空圧を設定する。この際に、本例の排気システム1では、一例として、60Hzの電力P2を供給した真空ポンプ2の回転数を100.0%とすると共に、100.0%の回転数で動作させた真空ポンプ2の到達可能真空圧(図4に示す真空圧a)を上限とし、かつその真空圧の50.0%の真空圧を下限とする圧力範囲内から任意の真空圧を指定して目標真空圧として設定することが可能となっている。この際には、一例として、図4に示す真空圧eを目標真空圧として設定する。 When the air is exhausted from the exhaust target X by the exhaust system 1, first, the operation unit (not shown) is operated to set the target vacuum pressure. At this time, in the exhaust system 1 of the present example, as an example, the rotation speed of the vacuum pump 2 supplied with the electric power P2 of 60 Hz is set to 100.0%, and the vacuum pump operated at the rotation speed of 100.0% is used. A target vacuum pressure is specified by designating an arbitrary vacuum pressure within a pressure range having a maximum attainable vacuum pressure of 2 (vacuum pressure a shown in FIG. 4) and a lower limit of 50.0% of the vacuum pressure. It is possible to set as. At this time, as an example, the vacuum pressure e shown in FIG. 4 is set as the target vacuum pressure.

次いで、操作部の操作によって排気処理を開始させる。この際に、制御部6は、まず、インバータ回路3aに制御信号S3aを出力して真空ポンプ2aに対して20Hzの電力P2aを供給させる(真空ポンプ2aを33.3%の回転数で動作させる)と共に、図2に示す排気量調整処理10を開始する。 Next, the exhaust process is started by operating the operation unit. At this time, the control unit 6 first outputs a control signal S3a to the inverter circuit 3a to supply electric power P2a of 20 Hz to the vacuum pump 2a (the vacuum pump 2a is operated at a rotation speed of 33.3%). 2), the exhaust amount adjustment process 10 shown in FIG. 2 is started.

この排気量調整処理10では、制御部6は、まず、真空圧センサ5から出力されるセンサ信号S5に基づいて接続用配管4内の真空圧を特定する(ステップ11)。次いで、制御部6は、特定した真空圧が目標真空圧に対する許容範囲内の真空圧であるか否かを判別する(ステップ12)。この際には、処理開始直後で接続用配管4内が大気圧と同程度の低い真空圧のため、制御部6は、センサ信号S5に基づいて特定した真空圧が目標真空圧に対する許容範囲よりも低い真空圧であると判別する。 In the exhaust amount adjustment process 10, the control unit 6 first specifies the vacuum pressure in the connection pipe 4 based on the sensor signal S5 output from the vacuum pressure sensor 5 (step 11). Next, the control unit 6 determines whether or not the specified vacuum pressure is a vacuum pressure within an allowable range for the target vacuum pressure (step 12). At this time, since the inside of the connecting pipe 4 is as low as atmospheric pressure immediately after the start of the process, the control unit 6 determines that the vacuum pressure specified based on the sensor signal S5 is higher than the allowable range for the target vacuum pressure. Also determines that the vacuum pressure is low.

したがって、制御部6は、インバータ回路3aに制御信号S3aを出力して真空ポンプ2aに対して供給する電力P2aの周波数を上昇させることで真空ポンプ2aの回転数を上昇させて(真空ポンプの動作状態の変更:ステップ13)、真空ポンプ2aによる排気対象Xからの排気量を増加させてステップ11に戻る。なお、処理開始直後の本例では、真空圧センサ5からセンサ信号S5に基づいて特定される真空圧が目標真空圧に対する許容範囲内の真空圧となるまで、上記のステップ11〜13の処理が繰り返し実行されて排気対象Xからの排気量が徐々に増加させられる。 Therefore, the control unit 6 outputs the control signal S3a to the inverter circuit 3a to increase the frequency of the power P2a supplied to the vacuum pump 2a, thereby increasing the rotation speed of the vacuum pump 2a (the operation of the vacuum pump). State change: Step 13), the amount of exhaust from the exhaust target X by the vacuum pump 2a is increased, and the process returns to Step 11. In this example immediately after the start of the process, the processes of steps 11 to 13 above are performed until the vacuum pressure specified by the vacuum pressure sensor 5 based on the sensor signal S5 becomes a vacuum pressure within an allowable range with respect to the target vacuum pressure. The exhaust amount from the exhaust target X is gradually increased by being repeatedly executed.

具体的には、図3の左方に「排気量増加時(真空圧が低いとき)」の制御例として図示しているように、まず、真空ポンプ2aの回転数が33.3%から徐々に上昇させられて100.0%まで上昇したときに、33.3%の回転数で真空ポンプ2bの動作が開始される。この際には、33.3%の回転数で動作する真空ポンプ2bによる排気量を考慮して、真空ポンプ2aの回転数を66.7%(100.0%−33.3%の回転数)まで低下させる。これにより、排気システム1全体としての排気量が急激に上昇する事態が回避される。 Specifically, as shown in the left side of FIG. 3 as a control example of “when the exhaust amount increases (when the vacuum pressure is low)”, first, the rotation speed of the vacuum pump 2a gradually increases from 33.3%. When the temperature is increased to 100.0%, the operation of the vacuum pump 2b is started at a rotation speed of 33.3%. At this time, the rotation speed of the vacuum pump 2a is set to 66.7% (100.0%-33.3% rotation speed) in consideration of the exhaust amount of the vacuum pump 2b operating at 33.3% rotation speed. ). This avoids a situation in which the exhaust amount of the exhaust system 1 as a whole rises sharply.

また、真空ポンプ2aの回転数が66.7%から徐々に上昇させられて再び100.0%まで上昇したときには、33.3%の回転数で動作中の真空ポンプ2bの回転数が徐々に上昇させられる。さらに、真空ポンプ2bの回転数が100.0%まで上昇したときには、33.3%の回転数で真空ポンプ2cの動作が開始される。この際にも、33.3%の回転数で動作する真空ポンプ2cによる排気量を考慮して、真空ポンプ2bの回転数を66.7%まで低下させる。これにより、排気システム1全体としての排気量が急激に上昇する事態が回避される。 Further, when the rotation speed of the vacuum pump 2a is gradually increased from 66.7% and again rises to 100.0%, the rotation speed of the vacuum pump 2b operating at the rotation speed of 33.3% is gradually increased. Can be raised. Further, when the rotation speed of the vacuum pump 2b rises to 100.0%, the operation of the vacuum pump 2c is started at the rotation speed of 33.3%. Also in this case, the rotation speed of the vacuum pump 2b is reduced to 66.7% in consideration of the exhaust amount of the vacuum pump 2c operating at the rotation speed of 33.3%. This avoids a situation in which the exhaust amount of the exhaust system 1 as a whole rises sharply.

また、真空ポンプ2bの回転数が66.7%から徐々に上昇させられて再び100.0%まで上昇したときには、33.3%の回転数で動作中の真空ポンプ2cの回転数が徐々に上昇させられる。さらに、真空ポンプ2bの回転数が100.0%まで上昇したときには、真空圧センサ5からセンサ信号S5に基づいて特定される真空圧が目標真空圧に対する許容範囲内の真空圧となるまで、真空ポンプ2a〜2cの3台がそれぞれ100.0%の回転数で動作した状態が維持される。 Further, when the rotation speed of the vacuum pump 2b is gradually increased from 66.7% and rises again to 100.0%, the rotation speed of the vacuum pump 2c operating at the rotation speed of 33.3% is gradually increased. Can be raised. Further, when the rotation speed of the vacuum pump 2b rises to 100.0%, the vacuum pressure is determined until the vacuum pressure specified by the vacuum pressure sensor 5 based on the sensor signal S5 becomes a vacuum pressure within an allowable range with respect to the target vacuum pressure. The state in which the three pumps 2a to 2c each operate at a rotation speed of 100.0% is maintained.

なお、排気システム1、接続用配管4および排気対象X内の真空ラインの容積が小さく(例えば、接続用配管4の配管長さが短く)、かつ排気システム1の負荷が小さいとき(例えば、排気対象Xが可動していないとき)には、真空ポンプ2cの動作を開始させる以前(真空ポンプ2a,2bの2台が動作している状態)、または、真空ポンプ2bの動作を開始させる以前(真空ポンプ2aのみが動作している状態)において、センサ信号S5に基づいて特定される真空圧が目標真空圧に対する許容範囲内の真空圧となるが、制御部6による各真空ポンプ2の制御に関する理解を容易とするために、上記のように真空ポンプ2a〜2cの3台がそれぞれ100.0%の回転数で動作した状態となる以前に接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧に達しなかったものとする。また、上記の制御の例に代えて、排気システム1の起動時には、処理開始直後から複数台の真空ポンプ2を同時に動作開始させることもできるが、そのような制御の例に関する説明を省略する。 When the volume of the vacuum system in the exhaust system 1, the connection pipe 4 and the exhaust target X is small (for example, the pipe length of the connection pipe 4 is short) and the load of the exhaust system 1 is small (for example, exhaust gas). Before the operation of the vacuum pump 2c (when the two vacuum pumps 2a and 2b are operating) or before the operation of the vacuum pump 2b is started (when the target X is not moving). In a state where only the vacuum pump 2a is operating), the vacuum pressure specified based on the sensor signal S5 becomes a vacuum pressure within an allowable range with respect to the target vacuum pressure. In order to facilitate understanding, the vacuum pressure in the connecting pipe 4 is set to the target vacuum pressure before the three vacuum pumps 2a to 2c are in a state of operating at a rotation speed of 100.0% as described above. It is assumed that the vacuum pressure within the allowable range has not been reached. Further, instead of the example of the control described above, when starting the exhaust system 1, it is possible to simultaneously start the operation of a plurality of vacuum pumps 2 immediately after the start of the process, but the description of the example of such control is omitted.

また、処理開始に先立って設定された目標真空圧が、真空圧eである本例では、例えば排気対象Xが未稼働状態で、負荷が小さいときに、上記のように真空ポンプ2a〜2cの3台がそれぞれ100.0%の回転数で排気対象Xから空気を排気することで、接続用配管4内の真空圧(真空圧センサ5からのセンサ信号S5に基づいて特定される真空圧)が真空圧eまで上昇する。また、100.0%の回転数で3台の真空ポンプ2を動作させ続けた場合には、接続用配管4内の真空圧が、各真空ポンプ2の100.0%の回転数における到達可能真空圧である真空圧aに向かって上昇し、目標真空圧である真空圧eよりも高い真空圧となる。したがって、3台の真空ポンプ2を100.0%の回転数で動作させ続けた際には、ステップ11においてセンサ信号S5に基づいて特定される接続用配管4内の真空圧が、目標真空圧に対する許容範囲よりも高い真空圧であると特定される(ステップ12)。 Further, in the present example in which the target vacuum pressure set prior to the start of the process is the vacuum pressure e, for example, when the exhaust target X is in a non-operating state and the load is small, the vacuum pumps 2a to 2c are operated as described above. The three units each exhaust air from the exhaust target X at a rotation speed of 100.0%, so that the vacuum pressure in the connecting pipe 4 (the vacuum pressure specified based on the sensor signal S5 from the vacuum pressure sensor 5). Rises to the vacuum pressure e. Further, when the three vacuum pumps 2 are continuously operated at the rotation speed of 100.0%, the vacuum pressure in the connecting pipe 4 can reach at the rotation speed of 100.0% of each vacuum pump 2. The pressure rises toward the vacuum pressure a, which is the vacuum pressure, and becomes higher than the vacuum pressure e, which is the target vacuum pressure. Therefore, when the three vacuum pumps 2 are continuously operated at the rotation speed of 100.0%, the vacuum pressure in the connection pipe 4 specified based on the sensor signal S5 in step 11 is equal to the target vacuum pressure. The vacuum pressure is identified to be higher than the allowable range for (step 12).

この際に、制御部6は、インバータ回路3cに制御信号S3cを出力して真空ポンプ2cに対して供給する電力P2cの周波数を下降させることで真空ポンプ2cの回転数を下降させて(真空ポンプの動作状態の変更:ステップ13)、真空ポンプ2cによる排気対象Xからの排気量を減少させてステップ11に戻る。次いで、真空圧センサ5からセンサ信号S5に基づいて特定される真空圧が目標真空圧に対する許容範囲内の真空圧となるまで、上記のステップ11〜13の処理が繰り返し実行されて排気対象Xからの排気量が徐々に減少させられる。 At this time, the control unit 6 outputs the control signal S3c to the inverter circuit 3c to decrease the frequency of the power P2c supplied to the vacuum pump 2c, thereby decreasing the rotation speed of the vacuum pump 2c (vacuum pump 2c). Change of operating state: Step 13), the exhaust amount from the exhaust target X by the vacuum pump 2c is reduced, and the process returns to Step 11. Next, the processes of steps 11 to 13 described above are repeatedly executed until the vacuum pressure specified by the vacuum pressure sensor 5 based on the sensor signal S5 becomes a vacuum pressure within an allowable range with respect to the target vacuum pressure. The engine displacement is gradually reduced.

具体的には、図3の右方に「排気量低減時(真空圧が高いとき)」の制御例として図示しているように、まず、真空ポンプ2cの回転数が100.0%から徐々に下降させられて、回転数の下限値である33.3%まで下降したときに、真空ポンプ2cの回転数が33.3%の状態に維持されると共に、真空ポンプ2bの回転数が100.0%から徐々に下降させられる。また、真空ポンプ2bの回転数が66.7%まで下降したときには、真空ポンプ2cが停止させられると共に、33.3%の回転数で動作していた真空ポンプ2cの停止による排気量の減少を考慮して、真空ポンプ2bの回転数を100.0%に上昇させる。これにより、排気システム1全体としての排気量が急激に下降する事態が回避される。 Specifically, as shown in the right side of FIG. 3 as a control example of “when the exhaust amount is reduced (when the vacuum pressure is high)”, first, the rotation speed of the vacuum pump 2c is gradually changed from 100.0%. When the rotation speed of the vacuum pump 2c is lowered to 33.3%, which is the lower limit value of the rotation speed, the rotation speed of the vacuum pump 2c is maintained at 33.3%, and the rotation speed of the vacuum pump 2b is 100%. It is gradually lowered from 0.0%. Further, when the rotation speed of the vacuum pump 2b drops to 66.7%, the vacuum pump 2c is stopped, and the exhaust amount is reduced by stopping the vacuum pump 2c operating at the rotation speed of 33.3%. Considering this, the rotation speed of the vacuum pump 2b is increased to 100.0%. As a result, it is possible to avoid a situation in which the exhaust amount of the exhaust system 1 as a whole drops sharply.

さらに、真空ポンプ2bの回転数が100.0%から徐々に下降させられて、回転数の下限値である33.3%まで下降したときに、真空ポンプ2bの回転数が33.3%の状態に維持されると共に、真空ポンプ2aの回転数が100.0%から徐々に下降させられる。また、真空ポンプ2aの回転数が66.7%まで下降したときには、真空ポンプ2bが停止させられると共に、33.3%の回転数で動作していた真空ポンプ2bの停止による排気量の減少を考慮して、真空ポンプ2aの回転数を100.0%に上昇させる。これにより、排気システム1全体としての排気量が急激に下降する事態が回避される。 Further, when the rotation speed of the vacuum pump 2b is gradually decreased from 100.0% to 33.3% which is the lower limit value of the rotation speed, the rotation speed of the vacuum pump 2b is 33.3%. While maintaining the state, the rotation speed of the vacuum pump 2a is gradually decreased from 100.0%. When the rotation speed of the vacuum pump 2a drops to 66.7%, the vacuum pump 2b is stopped, and the exhaust amount is reduced by stopping the vacuum pump 2b that was operating at 33.3%. Considering this, the rotation speed of the vacuum pump 2a is increased to 100.0%. As a result, it is possible to avoid a situation in which the exhaust amount of the exhaust system 1 as a whole drops sharply.

また、真空ポンプ2aの回転数が100.0%から徐々に下降させられて、回転数の下限値である33.3%まで下降したときには、センサ信号S5に基づいて特定される接続用配管4内の真空圧が、33.3%で回転させた状態の真空ポンプ2aの到達可能真空である真空圧eとなる。したがって、制御部6は、ステップ11において特定した接続用配管4内の真空圧が、設定されている目標真空圧に対する許容範囲内の真空圧であると判別し(ステップ12)、複数台の真空ポンプ2が動作中であるか否かを判別する(ステップ13)。 When the rotation speed of the vacuum pump 2a is gradually decreased from 100.0% to 33.3% which is the lower limit value of the rotation speed, the connection pipe 4 specified based on the sensor signal S5. The internal vacuum pressure becomes the vacuum pressure e, which is the vacuum that can be reached by the vacuum pump 2a rotated at 33.3%. Therefore, the control unit 6 determines that the vacuum pressure in the connecting pipe 4 identified in Step 11 is within the allowable range with respect to the set target vacuum pressure (Step 12), and a plurality of vacuum units are vacuumed. It is determined whether or not the pump 2 is in operation (step 13).

この際には、真空ポンプ2aの1台だけが動作中のため、制御部6は、ステップ11に戻ってセンサ信号S5に基づく接続用配管4内の真空圧の特定を実行する。この後、負荷が大きくなって排気対象Xから多くの空気を排気する必要が生じるまで、上記のステップ11〜14の処理が繰り返し実行される。これにより、真空ポンプ2aの1台が33.3%の回転数で継続して排気処理を行い、接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧(本例では、真空圧e)の状態が維持される。 At this time, since only one of the vacuum pumps 2a is in operation, the control unit 6 returns to step 11 and identifies the vacuum pressure in the connecting pipe 4 based on the sensor signal S5. After that, the processes of steps 11 to 14 described above are repeatedly executed until the load becomes large and it becomes necessary to exhaust a large amount of air from the exhaust target X. As a result, one of the vacuum pumps 2a continuously performs the exhaust process at the rotation speed of 33.3%, and the vacuum pressure in the connecting pipe 4 is within the allowable range with respect to the target vacuum pressure (in this example, The vacuum pressure e) is maintained.

一方、上記の例とは異なり、図4に示す真空圧eよりも高い真空圧が目標真空圧として設定されることもある。具体的には、一例として、真空ポンプ2を83.3%の回転数で動作させた際の到達真空圧である真空圧bが目標真空圧として設定されたものとする。このような状態で操作部の操作によって排気処理の開始が指示されたときに、制御部6は、前述の制御例と同様にして、まず、真空ポンプ2aの回転数を徐々に上昇させ、真空ポンプ2aに加えて真空ポンプ2bの動作を開始して、その回転数を徐々に上昇させ、かつ真空ポンプ2a,2bに加えて真空ポンプ2cの動作を開始して、その回転数を徐々に上昇させる。これにより、真空ポンプ2a〜2cの3台がそれぞれ100.0%の回転数で動作した状態となる。 On the other hand, unlike the above example, a vacuum pressure higher than the vacuum pressure e shown in FIG. 4 may be set as the target vacuum pressure. Specifically, as an example, it is assumed that the vacuum pressure b, which is the ultimate vacuum pressure when the vacuum pump 2 is operated at a rotation speed of 83.3%, is set as the target vacuum pressure. In this state, when the start of the exhaust process is instructed by the operation of the operation unit, the control unit 6 first gradually raises the rotation speed of the vacuum pump 2a in the same manner as in the control example described above, and then the vacuum pump 2a is rotated. In addition to the pump 2a, the operation of the vacuum pump 2b is started to gradually increase its rotation speed, and the operation of the vacuum pump 2c in addition to the vacuum pumps 2a and 2b is started to gradually increase its rotation speed. Let As a result, the three vacuum pumps 2a to 2c are in a state of operating at a rotation speed of 100.0%.

また、100.0%の回転数で3台の真空ポンプ2を動作させ続けた場合には、接続用配管4内の真空圧が、各真空ポンプ2の100.0%の回転数における到達可能真空圧である真空圧aに向かって上昇し、目標真空圧である真空圧bよりも高い真空圧となる。したがって、3台の真空ポンプ2を100.0%の回転数で動作させ続けた際には、ステップ11においてセンサ信号S5に基づいて特定される接続用配管4内の真空圧が、目標真空圧に対する許容範囲よりも高い真空圧であると特定される(ステップ12)。 Further, when the three vacuum pumps 2 are continuously operated at the rotation speed of 100.0%, the vacuum pressure in the connecting pipe 4 can reach at the rotation speed of 100.0% of each vacuum pump 2. The pressure rises toward the vacuum pressure a, which is the vacuum pressure, and becomes higher than the vacuum pressure b, which is the target vacuum pressure. Therefore, when the three vacuum pumps 2 are continuously operated at the rotation speed of 100.0%, the vacuum pressure in the connection pipe 4 specified based on the sensor signal S5 in step 11 is equal to the target vacuum pressure. The vacuum pressure is identified to be higher than the allowable range for (step 12).

この際には、目標真空圧を真空圧eに設定した前述の例のときと同様にして、まず、真空ポンプ2cの回転数が100.0%から徐々に下降させられて33.3%の状態が維持されると共に、真空ポンプ2bの回転数が100.0%から徐々に下降させられ、真空ポンプ2bの回転数が66.7%まで下降したときに、真空ポンプ2cが停止させられると共に、真空ポンプ2bの回転数を100.0%に上昇させられる。次いで、真空ポンプ2bの回転数が100.0%から徐々に下降させられて33.3%の状態が維持されると共に、真空ポンプ2aの回転数が100.0%から徐々に下降させられる。 At this time, similarly to the above-described example in which the target vacuum pressure is set to the vacuum pressure e, first, the rotation speed of the vacuum pump 2c is gradually decreased from 100.0% to 33.3%. While the state is maintained, the rotation speed of the vacuum pump 2b is gradually decreased from 100.0%, and when the rotation speed of the vacuum pump 2b is decreased to 66.7%, the vacuum pump 2c is stopped. The rotation speed of the vacuum pump 2b can be increased to 100.0%. Then, the rotation speed of the vacuum pump 2b is gradually decreased from 100.0% to maintain the state of 33.3%, and the rotation speed of the vacuum pump 2a is gradually decreased from 100.0%.

さらに、真空ポンプ2aの回転数が83.3%まで下降したときには、ステップ11においてセンサ信号S5に基づいて特定される接続用配管4内の真空圧が、目標真空圧に対する許容範囲内の真空圧となる(「検出信号に基づいて特定される接続用配管内の真空圧が予め指定された圧力範囲内で一定となったとき」との状態の一例:ステップ12)。この際に、出願人が開示している排気システムのように接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧であるか否かだけに基づいて各真空ポンプ2の動作状態を制御する構成・方法では、真空ポンプ2aが83.3%の回転数で動作し、かつ真空ポンプ2bが33.3%の回転数で動作しているこの状態(2台の真空ポンプ2が動作している状態)が維持される。 Further, when the rotation speed of the vacuum pump 2a is reduced to 83.3%, the vacuum pressure in the connecting pipe 4 specified based on the sensor signal S5 in step 11 is within a permissible range with respect to the target vacuum pressure. (An example of the state “when the vacuum pressure in the connecting pipe specified based on the detection signal becomes constant within a pressure range designated in advance”: step 12). At this time, as in the exhaust system disclosed by the applicant, the operation of each vacuum pump 2 is based only on whether or not the vacuum pressure in the connecting pipe 4 is within a permissible range with respect to the target vacuum pressure. In the configuration/method for controlling the state, the vacuum pump 2a operates at a rotation speed of 83.3%, and the vacuum pump 2b operates at a rotation speed of 33.3% (two vacuum pumps 2 Is operating) is maintained.

一方、本例の排気システム1では、上記のように、ステップ12において接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧であると判別した後に、制御部6は、複数台の真空ポンプ2(本例では、真空ポンプ2a,2b)が動作中であると判別し(ステップ14)、動作中の真空ポンプ2のその時点における動作状態を特定する(ステップ15)。この際に、制御部6は、真空ポンプ2aが83.3%の回転数で動作中であり、真空ポンプ2bが33.3%の回転数で動作中であると特定する。次いで、制御部6は、特定した各真空ポンプ2の回転数、およびステップ11で特定した接続用配管4内の真空圧に基づき、排気対象Xからの空気の排気量が予め規定された排気量以下となる「排気能力低下状態」で動作中の真空ポンプ2が存在するか否かを判別する(ステップ16)。 On the other hand, in the exhaust system 1 of the present example, as described above, after it is determined in step 12 that the vacuum pressure in the connecting pipe 4 is within the allowable range for the target vacuum pressure, The vacuum pumps 2 (in this example, the vacuum pumps 2a and 2b) are determined to be in operation (step 14), and the operating state of the vacuum pump 2 in operation at that time is specified (step 15). At this time, the control unit 6 specifies that the vacuum pump 2a is operating at a rotation speed of 83.3% and the vacuum pump 2b is operating at a rotation speed of 33.3%. Next, the control unit 6 determines the exhaust amount of the air from the exhaust target X based on the identified rotation speed of each vacuum pump 2 and the vacuum pressure in the connection pipe 4 identified in step 11. It is determined whether or not there is the vacuum pump 2 in operation in the following "exhaust capacity lowering state" (step 16).

この場合、図4に示すように、33.3%の回転数で動作中の真空ポンプ2bの到達真空度は、83.3%の回転数で動作中の真空ポンプ2aの到達真空度であって目標真空度である真空度bよりも低い真空度eとなっている。したがって、真空ポンプ2bは、接続用配管4内の真空度が、33.3%の回転数での動作時における到達可能真空度よりも高い真空度bとなっていることで、排気対象Xからの排気量が極く少量(実質的には、ほぼゼロ)となっている。なお、本例の排気システム1では、一例として、排気対象Xからの排気量が同図における排気量A以下となる動作状態を「排気能力低下状態」と規定し、上記のように、実質的な排気処理に寄与していない真空ポンプ2を停止させる構成が採用されている。 In this case, as shown in FIG. 4, the ultimate vacuum degree of the vacuum pump 2b operating at the rotation speed of 33.3% is the ultimate vacuum degree of the vacuum pump 2a operating at the rotation speed of 83.3%. Therefore, the degree of vacuum e is lower than the degree of vacuum b, which is the target degree of vacuum. Therefore, in the vacuum pump 2b, the degree of vacuum in the connecting pipe 4 is higher than the attainable degree of vacuum at the time of operation at the rotation speed of 33.3%. Has a very small displacement (substantially zero). In the exhaust system 1 of the present example, as an example, an operating state in which the exhaust amount from the exhaust target X is equal to or less than the exhaust amount A in FIG. A configuration is adopted in which the vacuum pump 2 that does not contribute to proper exhaust processing is stopped.

この場合、「排気能力低下状態」とする排気量(上記の例における「排気量A」)については、図示しない操作部の操作によって任意に変更することが可能となっている。また、どのような真空圧下で、どのような回転数で真空ポンプ2を動作させたときに、その真空ポンプ2の排気量がどの程度になるか(現在の真空圧下で、どのような回転数で動作させたときに、真空ポンプ2による排気量が「排気量A」以下となるか)については、それらの関係を特定可能な制御用データDが記憶部7に記憶されている。したがって、制御部6は、ステップ11において特定した真空圧、ステップ15で特定した真空ポンプ2a,2bの回転数、および記憶部7に記憶されている制御用データDに基づき、真空ポンプ2a,2bが「排気能力低下状態」で動作中であるか否かを判別する。 In this case, the exhaust amount (“exhaust amount A” in the above example) to be in the “exhaust capacity lowering state” can be arbitrarily changed by operating the operation unit (not shown). In addition, at what vacuum pressure and at what speed the vacuum pump 2 is operated, what is the exhaust volume of the vacuum pump 2 (what rotation speed under the current vacuum pressure? Whether the exhaust amount by the vacuum pump 2 is equal to or less than the “exhaust amount A” when operated in (3), the control data D capable of specifying the relationship therebetween is stored in the storage unit 7. Therefore, the control unit 6 determines the vacuum pumps 2a and 2b based on the vacuum pressure identified in step 11, the rotation speed of the vacuum pumps 2a and 2b identified in step 15, and the control data D stored in the storage unit 7. Determines whether or not is operating in the “exhaust capacity lowering state”.

具体的には、制御部6は、33.3%の回転数で動作中の真空ポンプ2bについては、その到達可能真空圧である真空圧eが、ステップ11において特定した真空圧(目標真空圧である真空圧bに対する許容範囲内の真空圧)よりも低く、排気対象Xからの排気量が排気量Aよりも少量となる「排気能力低下状態」で動作中であると判別する(「排気能力低下状態で動作中の可変型排気装置が存在するとき」との状態の一例:ステップ16)。また、制御部6は、83.3%の回転数で動作中の真空ポンプ2aについても、ステップ11において特定した真空圧下では排気対象Xからの排気量が排気量Aよりも少量となるため、「排気能力低下状態」で動作中であると判別する(「排気能力低下状態で動作中の可変型排気装置が存在するとき」との状態の他の一例:ステップ16)。 Specifically, for the vacuum pump 2b operating at a rotation speed of 33.3%, the control unit 6 determines that the vacuum pressure e that is the attainable vacuum pressure is the vacuum pressure (target vacuum pressure) specified in step 11. Is lower than the vacuum pressure b within a permissible range) and the amount of exhaust from the exhaust target X is smaller than the exhaust amount A (exhaust capacity lowering state). "When there is a variable exhaust device that is operating in a reduced capacity state": step 16). Further, the control unit 6 also causes the exhaust amount from the exhaust target X to be smaller than the exhaust amount A under the vacuum pressure specified in step 11, even for the vacuum pump 2a operating at the rotation speed of 83.3%. It is determined that the engine is operating in the “exhaust capacity lowering state” (another example of the state “when there is a variable exhaust device operating in the lower exhaust capacity state”: step 16).

次いで、動作中の真空ポンプ2a,2bの双方が「排気能力低下状態」で動作中であると判別した制御部6は(「排気能力低下状態で動作中の可変型排気装置が複数台存在し、かつ排気能力低下状態で動作中の各可変型排気装置のなかに回転数が他の可変型排気装置の回転数とは相違する可変型排気装置が存在するとき」との状態の一例)、33.3%の回転数で動作中の真空ポンプ2b(「排気能力低下状態で動作中の各可変型排気装置のなかで回転数が最も高い可変型排気装置を除く可変型排気装置」の一例)を停止させる。 Next, the control unit 6 determines that both of the operating vacuum pumps 2a and 2b are operating in the “exhaust capacity lowering state” (there are a plurality of variable exhaust devices operating in the “exhaust capacity lowering state”). , And when there is a variable exhaust device in which the rotational speed is different from the rotational speeds of other variable exhaust devices in each of the variable exhaust devices that are operating in a state in which the exhaust capacity is reduced”), An example of the vacuum pump 2b operating at a rotation speed of 33.3% (“variable exhaust device excluding the variable exhaust device having the highest rotation speed among the variable exhaust devices operating in a state where exhaust capacity is reduced”) ) Stop.

具体的には、制御部6は、インバータ回路3bに対して制御信号S3bを出力して真空ポンプ2bに対する電力P2bの出力を停止させることにより、真空ポンプ2bを停止させる(「少なくとも1台の排気装置の動作を継続させつつ、排気能力低下状態で動作中の可変型排気装置を少なくとも1台停止させる」との処理の一例:ステップ17)。これにより、停止させた真空ポンプ2bに対して供給していた電力P2bの分だけ、排気システム1の消費電力が低減される。 Specifically, the control unit 6 stops the vacuum pump 2b by outputting the control signal S3b to the inverter circuit 3b to stop the output of the power P2b to the vacuum pump 2b (“at least one exhaust gas is exhausted”). While continuing the operation of the device, at least one variable exhaust device that is operating in the exhaust capacity lowering state is stopped". As a result, the power consumption of the exhaust system 1 is reduced by the amount of the power P2b supplied to the stopped vacuum pump 2b.

この場合、上記の制御例とは相違するが、上記のステップ17において、真空ポンプ2a(「排気能力低下状態で動作中の各可変型排気装置のなかで回転数が最も高い可変型排気装置」の一例)を停止させたときには、33.3%の回転数で動作中の真空ポンプ2bによる到達可能真空圧が、目標真空圧(本例では、真空圧b)に対する許容範囲の真空圧よりも低い真空圧eのため、接続用配管4内の真空圧を目標真空圧に対する許容範囲内の真空圧に維持することができなくなる。このような構成を採用することもできるが、上記のステップ17において、83.3%の回転数で動作中の真空ポンプ2aの動作を継続させ、33.3%の回転数で動作中の真空ポンプ2bを停止させた本例では、真空ポンプ2aを83.3%の回転数で動作させた状態を維持させることにより、接続用配管4内の真空圧が、目標真空圧に対する許容範囲内の真空圧である真空圧bの状態が維持される。 In this case, although different from the control example described above, in step 17 described above, the vacuum pump 2a (“the variable exhaust device having the highest rotation speed among the variable exhaust devices operating in the exhaust capacity lowering state”) is used. Of the target vacuum pressure (in this example, the vacuum pressure b), the reachable vacuum pressure by the vacuum pump 2b operating at a rotation speed of 33.3% is lower than the vacuum pressure within the allowable range. Due to the low vacuum pressure e, the vacuum pressure in the connecting pipe 4 cannot be maintained within the allowable range for the target vacuum pressure. Although such a configuration can be adopted, in step 17 described above, the operation of the vacuum pump 2a which is operating at the rotation speed of 83.3% is continued, and the vacuum pump which is operating at the rotation speed of 33.3% is operated. In this example in which the pump 2b is stopped, the vacuum pressure in the connecting pipe 4 is kept within the allowable range with respect to the target vacuum pressure by maintaining the state in which the vacuum pump 2a is operated at the rotation speed of 83.3%. The state of the vacuum pressure b which is the vacuum pressure is maintained.

この後、負荷が増加して排気対象Xから多くの空気を排気する必要がある状態に移行するまでは、真空ポンプ2aを83.3%の回転数で動作させているだけで、ステップ11において特定される接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧であると判別され(ステップ12)、真空ポンプ2aの一台だけが動作中であると判別されて(ステップ14)、ステップ11に戻る一連の処理が繰り返し実行される。 After that, the vacuum pump 2a is operated at a rotation speed of 83.3% until the load increases and a state in which a large amount of air needs to be exhausted from the exhaust target X is reached. It is determined that the specified vacuum pressure in the connecting pipe 4 is within the allowable range with respect to the target vacuum pressure (step 12), and it is determined that only one vacuum pump 2a is in operation (step 12). 14), the series of processes returning to step 11 is repeatedly executed.

なお、センサ信号S5に基づいて特定される接続用配管4内の真空圧に応じた各真空ポンプ2の回転数の変更や動作台数の変更に関する基本的な制御の手順(ステップ11〜13の各処理の手順)は、図3に示す制御の手順の例に限定されない。例えば、出願人が前述の特許文献に開示している排気システムおよびその制御方法の各実施の形態の制御手順と同様の手順を採用して各真空ポンプ2の動作状態を変更することできる。 In addition, a basic control procedure for changing the number of revolutions of each vacuum pump 2 and the number of operating pumps according to the vacuum pressure in the connecting pipe 4 specified based on the sensor signal S5 (each of steps 11 to 13). The processing procedure) is not limited to the example of the control procedure shown in FIG. For example, the applicant can change the operating state of each vacuum pump 2 by adopting the same procedure as the control procedure of each embodiment of the exhaust system and the control method disclosed in the above-mentioned patent document.

この場合、前述の特許文献に出願人が最初の実施例として開示している制御の例と同様に動作中の真空ポンプ2の回転数を互いに同じ回転数とする制御手順を採用したときに、上記の例のように目標真空圧を図4に示す真空圧bに設定した場合には、真空ポンプ2a〜2cの3台が83.3%の回転数でそれぞれ動作している状態で接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧bとなる。しかしながら、接続用配管4内の真空圧が真空圧bの状態で各真空ポンプ2a〜2cを83.3%の回転数で動作させても、各真空ポンプ2a〜2cの各々の排気量は、排気量Aを大きく下回る状態となる。 In this case, when the control procedure in which the rotational speeds of the vacuum pumps 2 in operation are set to the same rotational speed as each other as in the control example disclosed by the applicant as the first embodiment in the above-mentioned patent document, When the target vacuum pressure is set to the vacuum pressure b shown in FIG. 4 as in the above example, the three vacuum pumps 2a to 2c are connected while operating at a rotation speed of 83.3%. The vacuum pressure in the pipe 4 becomes the vacuum pressure b within the allowable range with respect to the target vacuum pressure. However, even if each of the vacuum pumps 2a to 2c is operated at a rotation speed of 83.3% while the vacuum pressure in the connecting pipe 4 is the vacuum pressure b, the exhaust amount of each of the vacuum pumps 2a to 2c is This is a state in which the displacement A is significantly below.

この際には、動作中の真空ポンプ2の回転数、および接続用配管4内の真空圧に基づき、真空ポンプ2a〜2cのすべてが「排気能力低下状態」であると判別される(「排気能力低下状態で動作中の可変型排気装置が複数台存在する」との状態の他の一例)。このような状態では、前述の例とは異なり、「排気能力低下状態」で動作中の真空ポンプ2a〜2cのすべての回転数が同じ回転数となっている。したがって、各真空ポンプ2のうちの「動作状態とする優先順位」を低く設定されている真空ポンプ2を停止させる。 At this time, it is determined that all of the vacuum pumps 2a to 2c are in the "exhaust capacity lowering state" based on the rotational speed of the vacuum pump 2 in operation and the vacuum pressure in the connecting pipe 4 ("exhaust capacity"). There is a plurality of variable exhaust devices that are operating in a state of reduced capacity.” Another example of the state). In such a state, unlike the above-described example, all the rotation speeds of the vacuum pumps 2a to 2c operating in the "exhaust capacity lowering state" are the same rotation speed. Therefore, among the vacuum pumps 2, the vacuum pumps 2 having a low “priority order for operating” are stopped.

この際に、「動作状態とする優先順位」として、真空ポンプ2a、真空ポンプ2bおよび真空ポンプ2cの順が設定されていたときには、まず、「排気能力低下状態」の真空ポンプ2a〜2cのうちの真空ポンプ2cを停止させると共に、真空ポンプ2a,2bを83.3%の回転数で継続動作させる(「少なくとも1台の排気装置の動作を継続させつつ、排気能力低下状態で動作中の可変型排気装置を少なくとも1台停止させる」との処理の他の一例)。次いで、真空ポンプ2cの停止後も「排気能力低下状態」である真空ポンプ2a,2bのうちの真空ポンプ2bを停止させると共に、真空ポンプ2aを83.3%の回転数で継続動作させる(「少なくとも1台の排気装置の動作を継続させつつ、排気能力低下状態で動作中の可変型排気装置を少なくとも1台停止させる」との処理のさらに他の一例)。 At this time, when the order of the vacuum pump 2a, the vacuum pump 2b, and the vacuum pump 2c is set as the "priority order to be the operation state", first, among the vacuum pumps 2a to 2c in the "exhaust capacity lowering state". The vacuum pump 2c is stopped and the vacuum pumps 2a and 2b are continuously operated at a rotation speed of 83.3% (“While the operation of at least one exhaust device is continued, the variable operation is performed in the exhaust capacity lowering state”. Another example of a process of "stopping at least one die exhaust device"). Next, even after the vacuum pump 2c is stopped, the vacuum pump 2b of the vacuum pumps 2a and 2b that is in the “exhaust capacity lowering state” is stopped, and the vacuum pump 2a is continuously operated at a rotation speed of 83.3% (“ Still another operation of at least one variable exhaust device that is operating in a state in which the exhaust capacity is lowered while continuing the operation of at least one exhaust device”.

これにより、3台の真空ポンプ2a〜2cを83.3%の回転数で動作させていた状態から、真空ポンプ2b,2cが停止させられて真空ポンプ2aの1台だけが83.3%の回転数で動作した状態となり、接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧となる状態が維持される。なお、上記のように、真空ポンプ2cを停止させ、その後に真空ポンプ2bを停止させる制御に代えて、「排気能力低下状態」の真空ポンプ2a〜2cのうちの任意の2台(例えば真空ポンプ2b,2c)を同時に停止させる制御を行うこともできる。このような制御を行った場合にも、真空ポンプ2aの1台だけが83.3%の回転数で動作した状態となり、接続用配管4内の真空圧が目標真空圧に対する許容範囲内の真空圧となる状態が維持される。 As a result, the vacuum pumps 2b and 2c are stopped from the state in which the three vacuum pumps 2a to 2c are operated at the rotation speed of 83.3%, and only one of the vacuum pumps 2a has the speed of 83.3%. A state in which the vacuum pressure in the connecting pipe 4 becomes a vacuum pressure within an allowable range with respect to the target vacuum pressure is maintained while operating at the rotation speed. As described above, in place of the control of stopping the vacuum pump 2c and then stopping the vacuum pump 2b, any two of the vacuum pumps 2a to 2c in the "exhaust capacity lowering state" (for example, vacuum pumps) It is also possible to perform control to stop 2b and 2c) at the same time. Even when such control is performed, only one of the vacuum pumps 2a is in a state of operating at a rotation speed of 83.3%, and the vacuum pressure in the connecting pipe 4 is within the allowable range for the target vacuum pressure. The pressure condition is maintained.

このように、この排気システム1および排気装置制御方法では、複数台の真空ポンプ2を動作させた状態において、真空圧センサ5からのセンサ信号S5に基づいて特定される接続用配管4内の真空圧が予め指定された圧力範囲内で一定となったときに、動作中の真空ポンプ2の回転数、および接続用配管4内の真空圧に基づき、排気対象Xからの空気の排気量が予め規定された排気量以下となる「排気能力低下状態」で動作中の真空ポンプ2が存在するか否かを判別すると共に、「排気能力低下状態」で動作中の真空ポンプ2が存在するときに、少なくとも1台の真空ポンプ2の動作を継続させつつ、「排気能力低下状態」で動作中の真空ポンプ2を少なくとも1台停止させる。 As described above, according to the exhaust system 1 and the exhaust device control method, the vacuum in the connecting pipe 4 specified based on the sensor signal S5 from the vacuum pressure sensor 5 in a state where the plurality of vacuum pumps 2 are operated. When the pressure becomes constant within a predesignated pressure range, the amount of air exhausted from the exhaust target X is preliminarily determined based on the rotation speed of the vacuum pump 2 in operation and the vacuum pressure in the connecting pipe 4. When it is determined whether or not the vacuum pump 2 that is operating is in the “exhaust capacity reduced state” that is less than or equal to the specified exhaust amount, and when the vacuum pump 2 that is operating is the “exhaust capacity reduced state”. While continuing the operation of at least one vacuum pump 2, at least one vacuum pump 2 that is operating in the “exhaust capacity lowering state” is stopped.

したがって、この排気システム1および排気装置制御方法によれば、複数の真空ポンプ2が動作している状態でそれらの真空ポンプ2のうちのいずれか(または、すべて)が、排気対象Xからの空気の排気量が極く少量の「排気能力低下状態」のときに、真空ポンプ2が1台だけ動作している状態、または、動作中の真空ポンプ2のすべてが「排気能力低下状態」と判別されない状態となるまで、実質的には機能していない不要な真空ポンプ2が停止されるため、停止させた真空ポンプ2に対して供給していた電力P2の分だけ、排気システム1の消費電力を低減することができる。これにより、排気システム1のランニングコストを一層低減することができる。 Therefore, according to the exhaust system 1 and the exhaust device control method, any one (or all) of the plurality of vacuum pumps 2 is operated while the plurality of vacuum pumps 2 are operating. When only a small amount of "is exhausted," the vacuum pump 2 is operating, or all the operating vacuum pumps 2 are "exhausted Since the unnecessary vacuum pump 2 that is not substantially functioning is stopped until the state is not reached, the power consumption of the exhaust system 1 is reduced by the amount of the power P2 supplied to the stopped vacuum pump 2. Can be reduced. Thereby, the running cost of the exhaust system 1 can be further reduced.

さらに、この排気システム1および排気装置制御方法では、「排気能力低下状態」で動作中の真空ポンプ2が複数台存在し、かつ「排気能力低下状態」で動作中の各真空ポンプ2のなかに回転数が他の真空ポンプ2の回転数とは相違する真空ポンプ2が存在するときに、「排気能力低下状態」で動作中の各真空ポンプ2のなかで回転数が最も高い真空ポンプ2を除く真空ポンプ2のうちの少なくとも1台停止させる。 Further, in the exhaust system 1 and the exhaust device control method, there are a plurality of vacuum pumps 2 operating in the “exhaust capacity lowering state”, and among the vacuum pumps 2 operating in the “exhaust capacity lowering state”. When there is a vacuum pump 2 whose rotational speed is different from the rotational speeds of the other vacuum pumps 2, the vacuum pump 2 with the highest rotational speed is selected from among the vacuum pumps 2 that are operating in the “exhaust capacity lowering state”. At least one of the vacuum pumps 2 to be removed is stopped.

したがって、この排気システム1および排気装置制御方法によれば、「排気能力低下状態」で動作中の真空ポンプ2が複数台存在する状況下において、「排気能力低下状態」で動作中の各真空ポンプ2のなかで回転数が最も高い真空ポンプ2を停止させる構成・方法とは異なり、「排気能力低下状態」で動作中の真空ポンプ2を少なくとも1台停止させた際に、動作中の真空ポンプ2の回転数を上昇させたり、停止中の真空ポンプ2の動作を再開させたりすることなく、「排気能力低下状態」で動作中の各真空ポンプ2のなかで回転数が最も高い真空ポンプ2の動作状態(回転数)を維持するだけで、その回転数で動作中の真空ポンプ2の到達可能真空圧である目標真空圧に対する許容範囲内の真空圧を維持することができる。 Therefore, according to the exhaust system 1 and the exhaust device control method, each vacuum pump operating in the “exhaust capacity lowering state” is present in a situation where there are a plurality of vacuum pumps 2 operating in the “exhaust capacity lowering state”. Unlike the configuration/method of stopping the vacuum pump 2 having the highest rotation speed among the two, the vacuum pump in operation when at least one vacuum pump 2 in operation in the “exhaust capacity reduction state” is stopped The vacuum pump 2 having the highest rotation speed among the respective vacuum pumps 2 operating in the “exhaust capacity lowering state” without increasing the rotation speed of 2 or restarting the operation of the vacuum pump 2 that is stopped. It is possible to maintain the vacuum pressure within the allowable range with respect to the target vacuum pressure which is the attainable vacuum pressure of the vacuum pump 2 operating at the rotation speed only by maintaining the operating state (rotation speed) of.

なお、「排気システム」の構成、および「排気装置制御方法」の具体的な内容は、上記の排気システム1の構成、および排気システム1における各真空ポンプ2a〜2cの制御方法の例に限定されない。例えば、「排気システム」を構成する「排気装置」の台数は、排気システム1のようなN=3台に限定されず、N=2台、または、N=4台以上の複数台を備えて「排気システム」を構成することができる。また、N=3台の「排気装置」のすべてを「可変型排気装置」である真空ポンプ2で構成した例について説明したが、N台の「排気装置」のうちの少なくとも1台が「可変型排気装置」であれば、他の「排気装置」については、「排気対象Xからの排気能力が変化しない固定型排気装置」で構成することもできる。 The configuration of the “exhaust system” and the specific content of the “exhaust device control method” are not limited to the configuration of the exhaust system 1 and the example of the control method of the vacuum pumps 2 a to 2 c in the exhaust system 1 described above. .. For example, the number of “exhaust devices” constituting the “exhaust system” is not limited to N=3 as in the exhaust system 1, but N=2 units or N=4 or more units are provided. An "exhaust system" can be configured. Also, an example has been described in which all N=3 “exhaust devices” are configured by the vacuum pump 2 that is a “variable exhaust device”, but at least one of the N “exhaust devices” is “variable”. As for the other “exhaust device” as long as it is a “type exhaust device”, it can be configured by “a fixed exhaust device whose exhaust capacity from the exhaust target X does not change”.

さらに、「可変型排気装置」の一例として、インバータ制御方式のモータを動力源とする真空ポンプ2を採用してインバータ回路3から供給する電力の周波数を変更することで各真空ポンプ2の回転数を制御する構成・方法を例に挙げて説明したが、例えば、供給電力の電圧に応じて回転数が変化するモータを動力源とする電圧可変制御型の「可変型排気装置」を採用して、その「排気装置」に供給する電力の電圧を変化させることで回転数を制御する構成・方法を採用したり、供給電力の電流に応じて回転数が変化するモータを動力源とする電流可変制御型の「可変型排気装置」を採用して、その「排気装置」に供給する電力の電流を変化させることで回転数を制御する構成・方法を採用したりすることもできる。 Further, as an example of the “variable exhaust device”, the rotation speed of each vacuum pump 2 is changed by changing the frequency of the electric power supplied from the inverter circuit 3 by adopting the vacuum pump 2 using an inverter control type motor as a power source. Although the configuration and method for controlling the engine have been described as an example, for example, a voltage variable control type “variable exhaust device” using a motor whose power source is a motor whose rotation speed changes according to the voltage of the supplied power is adopted. , Adopting a configuration/method that controls the rotation speed by changing the voltage of the power supplied to the "exhaust device", or changing the current using a motor whose power source changes the rotation speed as a power source. It is also possible to employ a control type “variable exhaust device” and adopt a configuration/method for controlling the rotation speed by changing the current of the electric power supplied to the “exhaust device”.

また、モータ(電動機)を動力源として備えた真空ポンプ2等を「排気装置」として備えた構成、およびその制御方法について説明したが、「内燃機関」や「蒸気タービン」を動力源とする「排気装置」を備えて「排気システム」を構成して、それらの「排気装置」を制御して「排気対象」から気体(空気等)を排気することもできる。 Further, the configuration in which the vacuum pump 2 having a motor (electric motor) as a power source is provided as an “exhaust device” and the control method thereof has been described, but the “internal combustion engine” or the “steam turbine” is used as a power source. It is also possible to configure an "exhaust system" by providing an "exhaust device" and control those "exhaust devices" to exhaust gas (air or the like) from the "exhaust target".

さらに、動力源(モータ等)の動力出力軸と、ポンプ本体のインプットシャフトとがカップリングや、ベルト&プーリ等を介して相互に接続されて、動力源の回転数(動力出力軸の回転数)と、インプットシャフトの回転数(ロータの回転数)とが予め規定された比率で固定された真空ポンプ2を備えた排気システム1を例に挙げて説明したが、動力源の動力出力軸と、ポンプ本体のインプットシャフトとが、可変速型の動力伝達機構を介して相互に連結されて、動力出力軸の回転数と、ポンプ本体のインプットシャフトの回転数(ロータの回転数)との比を変更可能に構成した「排気装置」を備えて構成することもできる。加えて、ロータ方式の真空ポンプ2を備えて構成した例について説明したが、ピストン&シリンダ方式の「排気装置」(往復動型の「排気装置」を備えて構成することもできる。なお、ピストン&シリンダ方式の「排気装置」では、ピストンが連結されているクランク軸の回転数が「排気装置の回転数」に相当する。 Furthermore, the power output shaft of the power source (motor, etc.) and the input shaft of the pump body are connected to each other via a coupling, belt & pulley, etc., and the rotation speed of the power source (the rotation speed of the power output shaft). ) And the number of revolutions of the input shaft (the number of revolutions of the rotor) are fixed at a predetermined ratio, the exhaust system 1 has been described as an example. , The input shaft of the pump body is connected to each other through a variable speed type power transmission mechanism, and the ratio of the rotation speed of the power output shaft to the rotation speed of the input shaft of the pump body (rotation speed of the rotor) It is also possible to configure by including an “exhaust device” configured to be changeable. In addition, an example in which the rotor type vacuum pump 2 is provided has been described, but a piston and cylinder type “exhaust device” (a reciprocating type “exhaust device” can also be provided. & In the cylinder type “exhaust device”, the rotation speed of the crankshaft to which the piston is connected corresponds to the “exhaust device rotation speed”.

1 排気システム
2a〜2c 真空ポンプ
3a〜3c インバータ回路
4 接続用配管
5 真空圧センサ
6 制御部
7 記憶部
10 排気量調整処理
P2a〜P2c 電力
S3a〜S3c 制御信号
S5 センサ信号
D 制御用データ
X 排気対象
DESCRIPTION OF SYMBOLS 1 Exhaust system 2a-2c Vacuum pump 3a-3c Inverter circuit 4 Connection piping 5 Vacuum pressure sensor 6 Control part 7 Storage part 10 Exhaust amount adjustment process P2a-P2c Electric power S3a-S3c Control signal S5 Sensor signal D Control data X Exhaust Target

Claims (4)

排気対象から気体を排気可能に構成されて接続用配管を介して当該排気対象に並列接続されたN台(Nは、2以上の自然数)の排気装置と、
前記接続用配管内の真空圧を検出して検出信号を出力する真空圧センサと、
前記検出信号に基づいて特定される前記接続用配管内の真空圧が予め指定された圧力範囲内の真空圧となるように前記各排気装置の動作を制御する制御部とを備えた排気システムであって、
前記各排気装置のうちの少なくとも1台が回転数に応じて前記排気対象からの排気能力が変化する可変型排気装置で構成され、
前記制御部は、前記可変型排気装置を含む複数の前記排気装置を動作させた状態において、前記検出信号に基づいて特定される前記接続用配管内の真空圧が前記予め指定された圧力範囲内で一定となったときに、動作中の前記可変型排気装置の回転数、および前記接続用配管内の真空圧に基づき、前記排気対象からの前記気体の排気量が予め規定された排気量以下となる排気能力低下状態で動作中の当該可変型排気装置が存在するか否かを判別すると共に、前記排気能力低下状態で動作中の前記可変型排気装置が存在するときに、少なくとも1台の当該排気装置の動作を継続させつつ、当該排気能力低下状態で動作中の当該可変型排気装置を少なくとも1台停止させる排気システム。
N (N is a natural number of 2 or more) exhaust devices that are configured to be capable of exhausting gas from an exhaust target and are connected in parallel to the exhaust target through a connecting pipe.
A vacuum pressure sensor that detects the vacuum pressure in the connection pipe and outputs a detection signal,
An exhaust system comprising: a control unit that controls the operation of each exhaust device so that the vacuum pressure in the connection pipe specified based on the detection signal becomes a vacuum pressure within a predetermined pressure range. There
At least one of the exhaust devices is a variable exhaust device in which the exhaust capacity from the exhaust target changes according to the number of revolutions,
The control unit, in a state in which a plurality of exhaust devices including the variable exhaust device are operated, the vacuum pressure in the connecting pipe specified based on the detection signal is within the predetermined pressure range. When it becomes constant, the exhaust amount of the gas from the exhaust target is equal to or less than a predetermined exhaust amount based on the rotation speed of the variable exhaust device in operation and the vacuum pressure in the connecting pipe. It is determined whether or not the variable exhaust device is operating in the exhaust capacity lowering state, and at least one of the variable exhaust devices is operating in the exhaust capacity lowering state. An exhaust system that stops at least one variable exhaust device that is operating in the exhaust capacity lowering state while continuing the operation of the exhaust device.
前記制御部は、前記排気能力低下状態で動作中の前記可変型排気装置が複数台存在し、かつ当該排気能力低下状態で動作中の当該各可変型排気装置のなかに回転数が他の当該可変型排気装置の回転数とは相違する当該可変型排気装置が存在するときに、当該排気能力低下状態で動作中の当該各可変型排気装置のなかで回転数が最も高い当該可変型排気装置を除く当該可変型排気装置のうちの少なくとも1台停止させる請求項1記載の排気システム。 The control unit includes a plurality of the variable exhaust devices that are operating in the exhaust capacity lowering state, and the number of rotations is different among the variable exhaust devices that are operating in the exhaust capacity lowering state. When there is the variable exhaust device that is different from the rotational speed of the variable exhaust device, the variable exhaust device that has the highest rotational speed among the variable exhaust devices that are operating in the reduced exhaust capacity state. The exhaust system according to claim 1, wherein at least one of the variable exhaust devices other than the above is stopped. 排気対象から気体を排気可能に構成されて接続用配管を介して当該排気対象に並列接続されたN台(Nは、2以上の自然数)の排気装置と、前記接続用配管内の真空圧を検出して検出信号を出力する真空圧センサとを備えた排気システムを制御対象として、前記検出信号に基づいて特定される前記接続用配管内の真空圧が予め指定された圧力範囲内の真空圧となるように前記各排気装置の動作を制御する排気装置制御方法であって、
前記各排気装置のうちの少なくとも1台が回転数に応じて前記排気対象からの排気能力が変化する可変型排気装置で構成された前記排気システムにおいて、前記可変型排気装置を含む複数の前記排気装置を動作させた状態において、前記検出信号に基づいて特定される前記接続用配管内の真空圧が前記予め指定された圧力範囲内で一定となったときに、動作中の前記可変型排気装置の回転数、および前記接続用配管内の真空圧に基づき、前記排気対象からの前記気体の排気量が予め規定された排気量以下となる排気能力低下状態で動作中の当該可変型排気装置が存在するか否かを判別すると共に、前記排気能力低下状態で動作中の前記可変型排気装置が存在するときに、少なくとも1台の当該排気装置の動作を継続させつつ、当該排気能力低下状態で動作中の当該可変型排気装置を少なくとも1台停止させる排気装置制御方法。
N (N is a natural number of 2 or more) exhaust devices that are configured to be capable of exhausting gas from an exhaust target and are connected in parallel to the exhaust target via a connecting pipe, and a vacuum pressure in the connecting pipe. A vacuum pressure within a predetermined pressure range in which the vacuum pressure in the connection pipe specified based on the detection signal is a control target of an exhaust system including a vacuum pressure sensor that detects and outputs a detection signal. An exhaust system control method for controlling the operation of each exhaust system so that
In the exhaust system, wherein at least one of the exhaust devices includes a variable exhaust device in which the exhaust capacity from the exhaust target changes according to the number of revolutions, in the exhaust system, the plurality of exhaust devices including the variable exhaust device. The variable exhaust device in operation when the vacuum pressure in the connection pipe specified based on the detection signal becomes constant within the predetermined pressure range in a state in which the device is operated. Based on the number of revolutions and the vacuum pressure in the connection pipe, the variable exhaust device operating in an exhaust capacity lowering state in which the exhaust amount of the gas from the exhaust target is equal to or less than a predetermined exhaust amount, It is determined whether or not the exhaust type is present, and when the variable exhaust device is operating in the exhaust capacity lowering state, the operation of at least one exhaust device is continued while the exhaust type is being lowered. An exhaust system control method for stopping at least one variable exhaust system in operation.
前記排気能力低下状態で動作中の前記可変型排気装置が複数台存在し、かつ当該排気能力低下状態で動作中の当該各可変型排気装置のなかに回転数が他の当該可変型排気装置の回転数とは相違する当該可変型排気装置が存在するときに、当該排気能力低下状態で動作中の当該各可変型排気装置のなかで回転数が最も高い当該可変型排気装置を除く当該可変型排気装置のうちの少なくとも1台停止させる請求項3記載の排気装置制御方法。 There are a plurality of the variable exhaust devices that are operating in the exhaust capacity lowering state, and among the variable exhaust devices that are operating in the exhaust capacity lowering state, the number of rotations of other variable exhaust devices is different. When the variable exhaust device having a different rotational speed from the variable exhaust device exists, the variable type exhaust device excluding the variable exhaust device having the highest rotational speed among the variable exhaust devices operating in the exhaust capacity lowering state. The exhaust system control method according to claim 3, wherein at least one of the exhaust systems is stopped.
JP2018241378A 2018-12-25 2018-12-25 Exhaust system and exhaust system control method Active JP6954642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018241378A JP6954642B2 (en) 2018-12-25 2018-12-25 Exhaust system and exhaust system control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241378A JP6954642B2 (en) 2018-12-25 2018-12-25 Exhaust system and exhaust system control method

Publications (2)

Publication Number Publication Date
JP2020101156A true JP2020101156A (en) 2020-07-02
JP6954642B2 JP6954642B2 (en) 2021-10-27

Family

ID=71139214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241378A Active JP6954642B2 (en) 2018-12-25 2018-12-25 Exhaust system and exhaust system control method

Country Status (1)

Country Link
JP (1) JP6954642B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139054A (en) * 2001-10-31 2003-05-14 Ulvac Japan Ltd Evacuation device
JP2003139055A (en) * 2001-10-31 2003-05-14 Ulvac Japan Ltd Evacuation device
JP2008069674A (en) * 2006-09-12 2008-03-27 Anest Iwata Corp Operation control device and method of vacuum pump
JP2015203348A (en) * 2014-04-14 2015-11-16 オリオン機械株式会社 Exhaust system, and exhaust device control method
JP2015203349A (en) * 2014-04-14 2015-11-16 オリオン機械株式会社 Exhaust system and exhaust device control method
WO2017143410A1 (en) * 2016-02-23 2017-08-31 Atlas Copco Airpower, Naamloze Vennootschap Method for operating a vacuum pump system and vacuum pump system applying such method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139054A (en) * 2001-10-31 2003-05-14 Ulvac Japan Ltd Evacuation device
JP2003139055A (en) * 2001-10-31 2003-05-14 Ulvac Japan Ltd Evacuation device
JP2008069674A (en) * 2006-09-12 2008-03-27 Anest Iwata Corp Operation control device and method of vacuum pump
JP2015203348A (en) * 2014-04-14 2015-11-16 オリオン機械株式会社 Exhaust system, and exhaust device control method
JP2015203349A (en) * 2014-04-14 2015-11-16 オリオン機械株式会社 Exhaust system and exhaust device control method
WO2017143410A1 (en) * 2016-02-23 2017-08-31 Atlas Copco Airpower, Naamloze Vennootschap Method for operating a vacuum pump system and vacuum pump system applying such method

Also Published As

Publication number Publication date
JP6954642B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP3751208B2 (en) Control method of multistage variable speed compressor
JP3929185B2 (en) Vacuum exhaust apparatus and method
JP4196307B1 (en) Steam system
JP5071967B2 (en) Rotary compressor and operation control method thereof
KR20060025985A (en) Fan revolution speed control method
JP2004011597A (en) Pump unit
JPH1082391A (en) Control device of two-stage screw compressor
JP5909739B2 (en) Exhaust system and exhaust device control method
JP2020101156A (en) Exhaust system and exhaust device control method
CN112513469A (en) Vacuum pump
JPH11343986A (en) Compressor control device
JP2020112113A (en) Exhaust system and exhaust device control method
JP2012524204A (en) Roughing method for positive displacement pumps
JP6078748B2 (en) Suction system and suction method
WO2020011126A1 (en) Screw compressor system and heat exchange system comprising screw compressor system
JP4043184B2 (en) Compressor control method
JP3916418B2 (en) Control method of screw compressor
JP5909738B2 (en) Exhaust system and exhaust device control method
JP2004204691A (en) Compressed air manufacturing facility and control method of compressor
JPH1137053A (en) Control method for inverter drive multistage compressor
JP5163962B2 (en) Steam system
CN107923402B (en) Two-stage screw compressor and method of operating the same
CN113167117B (en) Method for controlling scroll compressor and controller for scroll compressor
JP2017115618A (en) Pump driving system
JP6823186B2 (en) Control method of compressed gas supply device and compressed gas supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210922

R150 Certificate of patent or registration of utility model

Ref document number: 6954642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150