JP2008069415A - Method of manufacturing magnetic material for bonded magnet and rare earth bonded magnet produced by using this magnetic material - Google Patents

Method of manufacturing magnetic material for bonded magnet and rare earth bonded magnet produced by using this magnetic material Download PDF

Info

Publication number
JP2008069415A
JP2008069415A JP2006249826A JP2006249826A JP2008069415A JP 2008069415 A JP2008069415 A JP 2008069415A JP 2006249826 A JP2006249826 A JP 2006249826A JP 2006249826 A JP2006249826 A JP 2006249826A JP 2008069415 A JP2008069415 A JP 2008069415A
Authority
JP
Japan
Prior art keywords
raw material
processing chamber
bonded magnet
temperature
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006249826A
Other languages
Japanese (ja)
Other versions
JP5101849B2 (en
Inventor
Hiroshi Nagata
浩 永田
Yoshinori Aragaki
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006249826A priority Critical patent/JP5101849B2/en
Publication of JP2008069415A publication Critical patent/JP2008069415A/en
Application granted granted Critical
Publication of JP5101849B2 publication Critical patent/JP5101849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a magnetic material for bonded magnets having high magnetic characteristics, strong corrosion resistance and weather resistance, and a bonded magnet produced by using this magnetic material. <P>SOLUTION: A treatment process is implemented for sticking a metal evaporation material containing at least one element selected from the group consisting of Dy, Tb, Ho, Er, Tm, Gd, Nd, Sm, Pr, Ce, La, Y, Zr, Cr, Mo, V, Ga, Zn, Cu, Mg, Li, Al, Mn, Nb and Ti, on the surface of a raw material containing a rare earth element and iron. The treatment process includes: a first process for heating a treatment room for implementing this treatment process, and forming a metal vapor environment in the treatment room by evaporating the metal evaporation material preliminarily arranged in this treatment room; and a second process for feeding the raw material kept at a temperature lower than the temperature in the treatment room, and selectively sticking the metal evaporation material to the surface of the raw material by the temperature difference between the inside of the treatment room and the raw material while moving the raw material in this treatment room. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボンド磁石用の磁性材料の製造方法及びこの磁性材料を用いて作製した希土類ボンド磁石に関する。   The present invention relates to a method for producing a magnetic material for a bonded magnet and a rare earth bonded magnet produced using the magnetic material.

ボンド磁石は、粉末状の磁性材料と樹脂バインダーとを混合し、圧縮成形機や射出成形機を用いて製作されることから、薄い形状や複雑な形状などに製造でき、しかも、寸法精度が高いなど焼結磁石にはない優れた特長を有する。このため、自動車やエレクトロニクス等の各種の分野の製品に利用され、需要は年々拡大している。ここで、Nd−Fe−B系ボンド磁石、Sm−Fe−N系ボンド磁石など、代表的な希土類ボンド磁石の磁性材料は、希土類元素及び鉄を成分するため、大気にふれると酸化され易く、使用環境によっては磁気特性が徐々に低下するという問題がある。   Bonded magnets are manufactured using a compression molding machine or injection molding machine by mixing a powdered magnetic material and a resin binder, so they can be manufactured in thin or complex shapes, and have high dimensional accuracy. It has excellent features not found in sintered magnets. For this reason, it is used for products in various fields such as automobiles and electronics, and the demand is increasing year by year. Here, since magnetic materials of typical rare earth bonded magnets such as Nd—Fe—B based bonded magnets and Sm—Fe—N based bonded magnets contain rare earth elements and iron, they are easily oxidized when exposed to the atmosphere. There is a problem that the magnetic properties gradually deteriorate depending on the use environment.

このような問題を解決するために、例えば、原料を溶解してロール急冷法で急冷して得た原料片をさらに粉砕して得た原料粉末の表面を、酸化アルミニウム膜等の酸化膜で覆って、ボンド磁石用の磁性材料を得ることが知られている(特許文献1、特許文献2)。そして、このように製作した磁性材料を、樹脂バインダーと共に成形して希土類ボンド磁石を作製している。
特開2002−363607号公報(例えば、特許請求の範囲の記載参照) 特開2004−31761号公報(例えば、特許請求の範囲の記載参照)
In order to solve such a problem, for example, the surface of the raw material powder obtained by further pulverizing the raw material piece obtained by dissolving the raw material and quenching by the roll quenching method is covered with an oxide film such as an aluminum oxide film. Thus, it is known to obtain a magnetic material for a bonded magnet (Patent Document 1, Patent Document 2). And the magnetic material produced in this way is shape | molded with the resin binder, and the rare earth bond magnet is produced.
Japanese Patent Laid-Open No. 2002-363607 (for example, refer to the description of claims) Japanese Patent Application Laid-Open No. 2004-31761 (for example, see the description of the scope of claims)

上記のものでは、原料の表面を酸化膜で覆うことで、磁気特性の低下が防止されると共に、耐食性、耐候性を向上させることができるものの、近年では、希土類ボンド磁石利用製品自体の小型、軽量化や小電力化等をさらに図ることが要請されているこから、上記従来技術のように、使用環境による磁気特性の低下を防止するだけでは十分とは言えず、一層高い磁気特性を有するボンド磁石の開発が望まれている。   In the above, by covering the surface of the raw material with an oxide film, the magnetic properties can be prevented from being lowered and the corrosion resistance and weather resistance can be improved. Since further reductions in weight and power consumption are required, it is not sufficient to prevent a decrease in magnetic properties due to the use environment, as in the above-described conventional technology, and it has higher magnetic properties. Development of bonded magnets is desired.

そこで、上記点に鑑み、本発明の目的は、高磁気特性及び強い耐食性、耐候性を有するボンド磁石用の磁性材料の製造方法及びこの磁性材料を用いて作製したボンド磁石を提供することにある。   Therefore, in view of the above points, an object of the present invention is to provide a method for producing a magnetic material for a bonded magnet having high magnetic properties, strong corrosion resistance, and weather resistance, and a bonded magnet produced using this magnetic material. .

上記課題を解決するために、本発明のボンド磁石用の磁性材料の製造方法は、希土類元素及び鉄を含有する粉末状の原料の表面に、Dy、Tb、Ho、Er、Tm、Gd、Nd、Sm、Pr、Ce、La、Y、Zr、Cr、Mo、V、Ga、Zn、Cu、Mg、Li、Al、Mn、Nb、Tiの中から選択される少なくとも1種を含有する金属蒸発材料を付着させる処理工程を含むボンド磁石用の磁性材料の製造方法であって、前記処理工程は、この処理工程を実施する処理室を加熱し、この処理室内に予め配置した前記金属蒸発材料を蒸発させて金属蒸気雰囲気を処理室内に形成する第一工程と、処理室内の温度より低く保持した原料をこの処理室に投入し、この処理室内で原料を移動させながら、処理室内と原料との間の温度差によって、原料表面に前記金属蒸発材料を選択的に付着させる第二工程とを含むことを特徴とする。   In order to solve the above-described problems, a method for producing a magnetic material for a bonded magnet according to the present invention is provided on the surface of a powdery raw material containing a rare earth element and iron, with Dy, Tb, Ho, Er, Tm, Gd, Nd Metal evaporation containing at least one selected from Sm, Pr, Ce, La, Y, Zr, Cr, Mo, V, Ga, Zn, Cu, Mg, Li, Al, Mn, Nb, Ti A method of manufacturing a magnetic material for a bonded magnet including a processing step for adhering a material, wherein the processing step heats a processing chamber in which the processing step is performed, and the metal evaporation material disposed in advance in the processing chamber The first step of evaporating to form a metal vapor atmosphere in the processing chamber, and the raw material kept lower than the temperature in the processing chamber are charged into this processing chamber, and while moving the raw material in this processing chamber, By temperature difference between Characterized in that it comprises a second step of selectively depositing the metal evaporating material in the raw material surface.

これによれば、処理室内に金属蒸発材料を配置した後、処理室を加熱して金属蒸気雰囲気を形成し、次いで、処理室内の温度より低く保持した原料を処理室に投入する。例えば常温の原料が高温に加熱された処理室内に投入されると、原料表面にのみ選択的に金属蒸気雰囲気中の金属原子が高速で付着して堆積する。その際、処理室内で原料を移動させながら所定時間保持すると、原料の表面全体に亘って金属蒸発材料の薄膜が形成され、さらには、高温の処理室に投入することで輻射熱により加熱された原料の表面に付着した金属原子の一部がその結晶粒界に拡散する。   According to this, after disposing the metal evaporation material in the processing chamber, the processing chamber is heated to form a metal vapor atmosphere, and then the raw material kept lower than the temperature in the processing chamber is put into the processing chamber. For example, when a normal temperature raw material is put into a processing chamber heated to a high temperature, metal atoms in the metal vapor atmosphere are selectively attached and deposited only on the surface of the raw material. At that time, if the raw material is moved in the processing chamber and kept for a predetermined time, a thin film of metal evaporation material is formed over the entire surface of the raw material, and further, the raw material heated by radiant heat by being put into a high temperature processing chamber Some of the metal atoms attached to the surface of the metal diffuse into the grain boundaries.

上記方法で得た磁性材料は、その表面だけでなく、結晶粒界にもDy等の金属蒸発材料が拡散しているため、この磁性材料を用いて希土類ボンドを作製したとき、減磁曲線の角形性が向上し、磁気特性を示す最大エネルギー積(BHmax)、残留磁束密度(Br)が格段に向上し、併せて、保磁力も向上することで、高磁気特性のものとなる。また、保磁力が向上することで耐熱性が向上すると共に、原料表面及び結晶粒界にDy等の金属蒸発材料が存することで強い耐食性、耐候性を有する。さらに、上記方法を用いると、金属蒸発材料が高速で付着堆積することで生産性が向上すると共に、原料表面にのみ選択的に金属蒸発材料が付着するため、資源的に乏しく高価なDy、Tbなどの希土類金属を用いるときでも、金属蒸発材料を有効に利用でき、ひいては製造コストを低減できる。   Since the magnetic material obtained by the above method has a metal evaporation material such as Dy diffused not only on its surface but also on the crystal grain boundary, when a rare earth bond is produced using this magnetic material, the demagnetization curve The squareness is improved, the maximum energy product (BHmax) and the residual magnetic flux density (Br) showing magnetic characteristics are remarkably improved, and the coercive force is also improved. Further, the heat resistance is improved by improving the coercive force, and the presence of a metal evaporation material such as Dy on the raw material surface and the crystal grain boundary provides strong corrosion resistance and weather resistance. Further, when the above method is used, productivity is improved by depositing and depositing the metal evaporating material at a high speed, and the metal evaporating material selectively adheres only to the surface of the raw material. Even when rare earth metals such as these are used, the metal evaporation material can be used effectively, and thus the manufacturing cost can be reduced.

前記金属蒸気雰囲気が前記処理室内で飽和状態であれば、金属蒸発材料を原料表面に高速で成膜できてよい。   If the metal vapor atmosphere is saturated in the processing chamber, the metal evaporation material may be formed on the surface of the raw material at a high speed.

また、前記処理工程を実施した後、原料表面の金属原子の結晶粒界への拡散をさらに促進させるため、必要に応じて、前記処理工程を実施した後、所定温度下で表面に金属蒸発材料が付着した原料を加熱する第一の熱処理工程を含むことが好ましい。   In addition, after performing the treatment step, in order to further promote the diffusion of metal atoms on the surface of the raw material to the crystal grain boundary, if necessary, after carrying out the treatment step, the metal evaporation material on the surface under a predetermined temperature It is preferable to include the 1st heat treatment process which heats the raw material which adhered.

この場合、前記第一の熱処理工程を実施した後、この第一の熱処理工程での熱処理温度より低い温度で表面に金属蒸発材料が付着した原料を加熱する第二の熱処理工程を含むものとすれば、磁性材料の歪が除去されて保磁力を一層高めることができる。   In this case, after the first heat treatment step, the second heat treatment step of heating the raw material having the metal evaporation material attached to the surface at a temperature lower than the heat treatment temperature in the first heat treatment step is included. In this case, the coercive force can be further increased by removing the distortion of the magnetic material.

また、上記課題を解決するために、本発明の希土類ボンド磁石は、請求項1乃至請求項4のいずれかに記載の製造方法で得た磁性材料を、樹脂バインダーと共に成形してなることを特徴とする。   In order to solve the above problems, the rare-earth bonded magnet of the present invention is formed by molding a magnetic material obtained by the manufacturing method according to any one of claims 1 to 4 together with a resin binder. And

以上説明したように、本発明のボンド磁石用の磁性材料の製造方法及びこの磁性材料を用いたボンド磁石は、高い生産性の下、高磁気特性及び強い耐食性、耐候性を有するという効果を奏する。   As described above, the method for producing a magnetic material for a bonded magnet according to the present invention and the bonded magnet using this magnetic material have the effect of having high magnetic properties, strong corrosion resistance, and weather resistance under high productivity. .

図1を参照して説明すれば、1は、希土類元素及び鉄を含有する原料の表面に選択的にDyやTbなどの金属蒸発材料Mを高速で付着堆積させ、さらには、表面に付着した金属原子を結晶粒界に拡散させてボンド磁石用の磁性材料を作製するのに適した処理装置である。処理装置1は、処理室10を構成する断面略六角形の真空チャンバ11を有する。真空チャンバ11は、床面に設置される台座21と、所定の間隔を置いて台座21に対し直角に設けた支持板22a、22bとから構成される支持手段2に取付けられている。   Referring to FIG. 1, 1 selectively deposits and deposits a metal evaporation material M such as Dy or Tb at a high speed on the surface of a raw material containing a rare earth element and iron, and further adheres to the surface. This is a processing apparatus suitable for producing a magnetic material for a bonded magnet by diffusing metal atoms into crystal grain boundaries. The processing apparatus 1 includes a vacuum chamber 11 having a substantially hexagonal cross section that constitutes a processing chamber 10. The vacuum chamber 11 is attached to a support means 2 composed of a pedestal 21 installed on the floor and support plates 22a and 22b provided at a predetermined interval and perpendicular to the pedestal 21.

支持板22a、22bの台座21から所定の高さ位置には、支持板22a、22bの内側に向かってそれぞれ突出させかつ同一水平線上に位置させて、回転軸23a、23bが軸受(図示せず)を介して回転自在に設けられ、冷却手段231を有する各回転軸23a、23bの一端が真空チャンバ11の側壁11a、11bにそれぞれ連結されている。一方の支持板22aから突出した一方の回転軸23aの他端にはプーリ24が設けられ、このプーリー24と、台座21上に設けたモータ3の回転軸31に設けたプーリー32との間にはベルトVが掛架されている。これにより、モータ3を作動させて回転軸23a、23bを回転させると、真空チャンバ11が所定の回転数(例えば、1rpm)で回転軸23a、23bを中心として回転自在となる。   The rotating shafts 23a and 23b are provided with bearings (not shown) at predetermined height positions from the pedestals 21 of the supporting plates 22a and 22b so as to protrude toward the inside of the supporting plates 22a and 22b and on the same horizontal line. ), And one end of each of the rotating shafts 23a and 23b having the cooling means 231 is connected to the side walls 11a and 11b of the vacuum chamber 11, respectively. A pulley 24 is provided at the other end of one rotating shaft 23 a protruding from one support plate 22 a, and between this pulley 24 and a pulley 32 provided on a rotating shaft 31 of the motor 3 provided on the base 21. The belt V is hung. Accordingly, when the motor 3 is operated to rotate the rotation shafts 23a and 23b, the vacuum chamber 11 can rotate about the rotation shafts 23a and 23b at a predetermined rotation speed (for example, 1 rpm).

真空チャンバ11の外周には、その略全体を覆うように内側に反射面を備えたステンレス製の断熱材41が着脱自在に設けられ、この断熱材41の内側には、ニクロム製のフィラメントを有する電気加熱ヒータ42が配置され、加熱手段4を構成する。
そして、後述するように真空チャンバ11を減圧した後、この真空チャンバ11を加熱手段4で加熱することで、処理室10を略均等に所定温度(例えば、600℃〜1700℃)に加熱できる。
On the outer periphery of the vacuum chamber 11, a stainless steel heat insulating material 41 having a reflective surface on the inner side is provided so as to cover substantially the whole, and a nichrome filament is provided inside the heat insulating material 41. An electric heater 42 is disposed and constitutes the heating means 4.
Then, after the vacuum chamber 11 is depressurized as described later, the processing chamber 10 can be heated to a predetermined temperature (for example, 600 ° C. to 1700 ° C.) substantially uniformly by heating the vacuum chamber 11 with the heating unit 4.

真空チャンバ11の上面及び下面には開口がそれぞれ設けられ、各開口には開閉弁5a、5bがそれぞれ取付けられている。各開閉弁5a、5bは、例えば公知の構造を有するバタフライバルブであり、真空チャンバ11の上面及び下面の開口にそれぞれ取付けた弁本体51を有する。弁本体51内には、回動自在な円形の弁体と、この弁体が着座する弁座とが設けられている。そして、弁本体51に設けた駆動軸(図示せず)を手動または電動で操作して、弁体が弁座に着座する閉弁位置と弁体が弁座から離間した開弁位置との間で弁体を回動させることで開閉自在となる。   Openings are respectively provided in the upper surface and the lower surface of the vacuum chamber 11, and open / close valves 5a and 5b are attached to the respective openings. Each of the on-off valves 5a and 5b is a butterfly valve having a known structure, for example, and has valve bodies 51 attached to the openings on the upper surface and the lower surface of the vacuum chamber 11, respectively. In the valve main body 51, a rotatable circular valve body and a valve seat on which the valve body is seated are provided. Then, a drive shaft (not shown) provided in the valve body 51 is operated manually or electrically, so that the valve body is located between the valve closing position where the valve body is seated on the valve seat and the valve opening position where the valve body is separated from the valve seat. It can be opened and closed by turning the valve body.

各弁本体51の真空チャンバ11と背向する側には、一端にカップリング(図示せず)を設けた排気管6またはホッパー7が着脱自在に取付けられる。蛇腹状の排気管6の他端は、ターボ分子ポンプ、クライオポンプ、拡散ポンプやロータリポンプなどから構成される真空排気手段61に接続されている。そして、両開閉弁5a、5bの閉弁位置で一方の開閉板5bの弁本体51に排気管6を接続し、真空排気手段61を作動させると共に開閉弁5bを開弁すると、処理室10が所定圧力(例えば1×10−5Pa)に減圧できる。 An exhaust pipe 6 or a hopper 7 provided with a coupling (not shown) at one end is detachably attached to the valve body 51 on the side facing the vacuum chamber 11. The other end of the bellows-like exhaust pipe 6 is connected to a vacuum exhaust means 61 including a turbo molecular pump, a cryopump, a diffusion pump, a rotary pump, and the like. Then, when the exhaust pipe 6 is connected to the valve body 51 of one of the on-off plates 5b at the closed position of both the on-off valves 5a, 5b, the vacuum exhaust means 61 is activated and the on-off valve 5b is opened, the processing chamber 10 is opened. The pressure can be reduced to a predetermined pressure (for example, 1 × 10 −5 Pa).

他方、ホッパー7は、その内部が密閉可能な金属製であり、その内部が準備室70を構成する。ホッパー7下側のシュート部71には、回動自在な円形の弁体とこの弁体が着座する弁座とからなる他の開閉弁72が設けられ、開閉弁72を閉弁位置で準備室70が密閉されるようになっている。処理室10に後述する原料を投入する場合には、ホッパー70内に原料を収納した後、シュート部71の先端に図示しない排気管を接続し、真空排気手段を作動させると共に開閉弁72を開弁させて、準備室70を所定圧力(例えば1×10−3Pa)に減圧する。 On the other hand, the hopper 7 is made of a metal that can be hermetically sealed, and the inside constitutes the preparation chamber 70. The chute portion 71 below the hopper 7 is provided with another open / close valve 72 including a rotatable circular valve body and a valve seat on which the valve body is seated. 70 is sealed. When the raw material to be described later is charged into the processing chamber 10, after the raw material is stored in the hopper 70, an exhaust pipe (not shown) is connected to the tip of the chute portion 71 to operate the vacuum exhaust means and open the on-off valve 72. The preparatory chamber 70 is depressurized to a predetermined pressure (for example, 1 × 10 −3 Pa).

原料は、希土類等方性ボンド磁石、希土類異方性ボンド磁石に用いられる公知のものであり、Nd、Sm等の希土類元素および鉄を含む粉末状のものが用いられる。例えば、Nd、Sm等の希土類元素および鉄を含む原料を所定の組成比で混合して一旦溶解させ、次いで、原料の溶湯をロール急冷法により急冷することで原料薄片を得て、次いで、原料薄片を粉砕して微細な粉末としたものを原料として用いる。   The raw material is a known material used for rare earth isotropic bonded magnets and rare earth anisotropic bonded magnets, and powders containing rare earth elements such as Nd and Sm and iron are used. For example, raw materials containing rare earth elements such as Nd and Sm and iron are mixed at a predetermined composition ratio and once melted, and then raw material flakes are obtained by quenching the raw material melt by a roll quenching method. A material obtained by pulverizing flakes into a fine powder is used as a raw material.

他方、金属蒸発材料Mは、各回転軸23a、23bの同一線上に位置させて真空チャンバ11の内壁に設けた収納室12内に収納される。収納室12は、筒状の部材から構成され、真空チャンバ11内側に開口した面には、その開口の一部を覆うように庇部12aが設けられている。これにより、真空チャンバ11を回転させたとき、庇部12aによって、収納室12に配置した金属蒸発材料Mが処理室10に飛び出すことが防止できる。収納室12は、その真空チャンバ11の内壁において周方向で等間隔に少なくとも2個配置されるが、開閉弁5a、5bを通って処理室10に投入される原料の周囲を囲って金属蒸発材料Mが配置されるように、真空チャンバ12の内壁面全体に亘る環状に形成してもよい。   On the other hand, the metal evaporation material M is stored in the storage chamber 12 provided on the inner wall of the vacuum chamber 11 so as to be positioned on the same line of the rotary shafts 23a and 23b. The storage chamber 12 is composed of a cylindrical member, and a flange 12a is provided on a surface opened inside the vacuum chamber 11 so as to cover a part of the opening. Thereby, when the vacuum chamber 11 is rotated, the metal evaporating material M arranged in the storage chamber 12 can be prevented from jumping out into the processing chamber 10 by the flange 12a. At least two storage chambers 12 are arranged at equal intervals in the circumferential direction on the inner wall of the vacuum chamber 11, and surround the periphery of the raw material charged into the processing chamber 10 through the on-off valves 5a and 5b. You may form cyclically | annularly over the whole inner wall face of the vacuum chamber 12, so that M may be arrange | positioned.

金属蒸発材料Mは、高磁気特性及び強い耐食性、耐候性を有するボンド磁石を作製できるものであって、例えば、Dy、Tb、Ho、Er、Tm、Gd、Nd、Sm、Pr、Ce、La、Y、Zr、Cr、Mo、V、Ga、Zn、Cu、Mg、Li、Al、Mn、Nb、Tiの中から選択される少なくとも1種を含有するものであり、例えば顆粒状または塊状のものが収納室12に収納される。   The metal evaporation material M is capable of producing a bonded magnet having high magnetic properties and strong corrosion resistance and weather resistance. For example, Dy, Tb, Ho, Er, Tm, Gd, Nd, Sm, Pr, Ce, La , Y, Zr, Cr, Mo, V, Ga, Zn, Cu, Mg, Li, Al, Mn, Nb, containing at least one selected from Ti, for example, granular or massive Things are stored in the storage chamber 12.

ところで、例えば真空チャンバ11の材料として、一般の真空装置でよく用いられるAlを用いると、例えば金属蒸発材料MをDyとした場合、処理室10内に金属蒸気雰囲気を形成すると、金属蒸気雰囲気中のDyとAlが反応してその表面に反応生成物を形成されると共に、Al原子がDy蒸気雰囲気中に侵入する虞がある。このため、真空チャンバ11、開閉弁5a、5bの構成部品を、金属蒸発材料Mと反応しない材料から作製するか、または処理室10を構成する真空チャンバ11の内壁等にこれらの材料を内張膜として成膜したものから作製する(金属蒸発材料MがDyのとき、例えば、Mo、W、V、Taまたはこれらの合金やCaO、Y、或いは希土類酸化物から作製する)。 By the way, for example, when Al 2 O 3 often used in a general vacuum apparatus is used as the material of the vacuum chamber 11, for example, when the metal evaporation material M is set to Dy, a metal vapor atmosphere is formed in the processing chamber 10. Dy and Al 2 O 3 in the vapor atmosphere react to form a reaction product on the surface, and Al atoms may enter the Dy vapor atmosphere. For this reason, the components of the vacuum chamber 11 and the on-off valves 5a and 5b are made of a material that does not react with the metal evaporation material M, or these materials are lined on the inner wall of the vacuum chamber 11 constituting the processing chamber 10 or the like. It is prepared from what is formed as a film (when the metal evaporation material M is Dy, for example, it is prepared from Mo, W, V, Ta or an alloy thereof, CaO, Y 2 O 3 , or a rare earth oxide).

次に、本処理装置1を用いたボンド磁石用の磁性材料の作製及びこの磁性材料を用いたボンド磁石の作製について説明する。先ず、断熱材41を取外した状態で、真空チャンバ11に側面に形成した開口部(図示せず)を介して、収納室12内に顆粒状の金属蒸発材料Mを収納する。金属蒸発材料Mの粒径は、その種類に応じて適宜選択され、例えば金属蒸発材料MがDyやTbである場合、DyやTbの粒径が10〜1000μmの範囲することが望ましい。10μm以下では、発火性を有するDy、Tbの粒の取扱いが困難であり、他方で、1000μmを超えると、蒸発に時間を要する。また、収納室12に収納する金属蒸発材料Mの総量は、金属蒸発材料Mの収率が高くなるように、原料表面に所定の膜厚で金属蒸発材料Mが成膜できるのに必要な時間だけ、真空チャンバ11内で金属蒸気雰囲気を継続させるのに必要なものとする。   Next, production of a magnetic material for a bonded magnet using the processing apparatus 1 and production of a bonded magnet using this magnetic material will be described. First, in a state where the heat insulating material 41 is removed, the granular metal evaporation material M is stored in the storage chamber 12 through an opening (not shown) formed on the side surface of the vacuum chamber 11. The particle diameter of the metal evaporating material M is appropriately selected according to the type thereof. For example, when the metal evaporating material M is Dy or Tb, the particle diameter of Dy or Tb is preferably in the range of 10 to 1000 μm. When the particle size is 10 μm or less, it is difficult to handle ignitable Dy and Tb grains. On the other hand, when the particle size exceeds 1000 μm, it takes time to evaporate. Further, the total amount of the metal evaporating material M stored in the storage chamber 12 is the time required for forming the metal evaporating material M with a predetermined film thickness on the raw material surface so that the yield of the metal evaporating material M is increased. It is only necessary to continue the metal vapor atmosphere in the vacuum chamber 11.

次いで、断熱材41を再度取付けた後、各開閉弁5a、5bの閉弁状態で下側の他方の開閉弁5bの弁本体51に排気管6を接続した後、真空排気手段61を作動させると共に駆動軸を操作して他方の開閉弁5bを開弁する。そして、収納室12に収納した金属蒸発材料Mの種類に応じて、処理室10を所定圧力(例えば1 〜10−5Pa)まで減圧した後、加熱手段4を作動させて所定温度(例えば600〜1700℃)に処理室10を加熱する。例えば、金属蒸発材料MがDyである場合、処理室10を一旦例えば1×10−5Paまで減圧した後、1000℃〜1700℃の範囲で処理室10を加熱する。1000℃より低い温度では、真空チャンバ11に投入された原料表面に高速でDyを付着堆積できる蒸気圧まで達しない。他方、1700℃を超えた温度では、原料への付着堆積時間が極端に短くなり過ぎる。 Next, after the heat insulating material 41 is attached again, the exhaust pipe 6 is connected to the valve main body 51 of the other on-off valve 5b on the lower side while the on-off valves 5a and 5b are closed, and then the vacuum exhaust means 61 is operated. At the same time, the drive shaft is operated to open the other on-off valve 5b. Then, the processing chamber 10 is depressurized to a predetermined pressure (for example, 1 to 10 −5 Pa) according to the type of the metal evaporation material M stored in the storage chamber 12, and then the heating unit 4 is operated to set the predetermined temperature (for example, 600). The processing chamber 10 is heated to ˜1700 ° C. For example, when the metal evaporation material M is Dy, the processing chamber 10 is once depressurized to, for example, 1 × 10 −5 Pa, and then the processing chamber 10 is heated in the range of 1000 ° C. to 1700 ° C. At a temperature lower than 1000 ° C., the vapor pressure at which Dy can be deposited and deposited at high speed on the surface of the raw material put into the vacuum chamber 11 is not reached. On the other hand, when the temperature exceeds 1700 ° C., the deposition time on the raw material becomes extremely short.

処理室10が所定温度に達すると、処理室10に所定の蒸気圧を持つ金属蒸気雰囲気(Dyの場合、例えば1300℃で10Paの蒸気圧)が形成される。処理室10に金属蒸気雰囲気を形成する間、ホッパー7の準備室70では、上述のように作製した原料を収納した後、シュート部71の先端に、図示しない排気管を接続し、真空排気手段を作動させると共にた開閉弁72を開弁させ、準備室70が所定圧力(例えば1×10−5Pa)まで減圧する工程が行われる。尚、準備室に収納される原料は、塊状、薄片状または粉末状のものいずれかであってもよい。 When the processing chamber 10 reaches a predetermined temperature, a metal vapor atmosphere having a predetermined vapor pressure (in the case of Dy, for example, a vapor pressure of 10 Pa at 1300 ° C.) is formed in the processing chamber 10. While forming the metal vapor atmosphere in the processing chamber 10, in the preparation chamber 70 of the hopper 7, after storing the raw material produced as described above, an exhaust pipe (not shown) is connected to the tip of the chute portion 71, and vacuum exhaust means And the opening / closing valve 72 is opened, and the preparation chamber 70 is decompressed to a predetermined pressure (for example, 1 × 10 −5 Pa). The raw material stored in the preparation chamber may be in the form of a lump, flake or powder.

また、準備室70では、減圧下において、例えば原料表面の酸化膜や水分を除去するクリーニングの前処理を行ってもよい。クリーニングの前処理は、準備室70の圧力が所定値(例えば、10×10−5Pa)に達した後、準備室70を所定温度に加熱する工程、または、図示しないガス導入手段を介してAr等の不活性ガスを導入し、高周波電源を作動させて準備室70でプラズマを発生させ、準備室70内で原料を移動させながらプラズマによるクリーニングを行う工程である。クリーニングの前処理が終了したとき、原料が室温〜200℃の温度となるようにする。 Further, in the preparation chamber 70, under the reduced pressure, for example, a cleaning pretreatment for removing an oxide film or moisture on the surface of the raw material may be performed. The cleaning pretreatment includes a step of heating the preparation chamber 70 to a predetermined temperature after the pressure in the preparation chamber 70 reaches a predetermined value (for example, 10 × 10 −5 Pa), or a gas introduction means (not shown). In this process, an inert gas such as Ar is introduced, a high-frequency power source is activated to generate plasma in the preparation chamber 70, and cleaning is performed with plasma while moving the raw material in the preparation chamber 70. When the cleaning pretreatment is completed, the raw material is set to a temperature of room temperature to 200 ° C.

次いで、処理室10での金属蒸気雰囲気の形成と、準備室70の減圧(原料のクリーニングを含む)とが終了すると、開閉弁72を閉弁し、シュート部71の先端から排気管を取外す。そして、処理室10と準備室70との間で2桁以上の圧力差が生じるように、図示しないガス導入手段を介してAr等の不活性ガスを導入し、準備室70の圧力を所定値(例えば、1000Pa)にする。   Next, when the formation of the metal vapor atmosphere in the processing chamber 10 and the decompression of the preparation chamber 70 (including the cleaning of the raw material) are completed, the open / close valve 72 is closed and the exhaust pipe is removed from the tip of the chute portion 71. Then, an inert gas such as Ar is introduced through a gas introduction means (not shown) so that a pressure difference of two digits or more is generated between the processing chamber 10 and the preparation chamber 70, and the pressure in the preparation chamber 70 is set to a predetermined value. (For example, 1000 Pa).

この状態で、ホッパー7のシュート部71の先端を、上側に位置する一方の開閉弁5aの弁本体51に接続した後、開閉弁5a、72をそれぞれ開弁すると、準備室70内の原料が、その自重で各開閉弁72、5aを通って処理室10に投入される。この場合、処理室10と準備室70との間に圧力差をつけているので、準備室70から処理室10に不活性ガスが処理室10に侵入し、処理室10の圧力が高くなることで、一旦蒸発が停止するが(加熱手段4の作動は停止しない)、金属蒸発雰囲気中の金属原子が準備室70側に入り込むことが防止できる。   In this state, after connecting the tip of the chute portion 71 of the hopper 7 to the valve body 51 of the one on-off valve 5a located on the upper side, when the on-off valves 5a and 72 are opened, the raw material in the preparation chamber 70 is obtained. The dead weight passes through the on-off valves 72 and 5a and enters the processing chamber 10. In this case, since there is a pressure difference between the processing chamber 10 and the preparation chamber 70, the inert gas enters the processing chamber 10 from the preparation chamber 70 into the processing chamber 10, and the pressure in the processing chamber 10 increases. Thus, although evaporation stops once (the operation of the heating means 4 is not stopped), it is possible to prevent metal atoms in the metal evaporation atmosphere from entering the preparation chamber 70 side.

次いで、処理室10への原料の投入が終了すると、開閉弁5a、72をそれぞれ閉弁して処理室10及び準備室70を相互に隔絶した後、ホッパー7を取り外す。そして、真空排気手段を介して排気されている真空チャンバ11の圧力が再度所定値(例えば、10×10−2Pa)に達すると、金属蒸発材料Mが再蒸発して処理室10に金属蒸気雰囲気が形成される。金属蒸気雰囲気が形成されると、開閉弁5bを閉弁し、排気管6を取り外した後、モータ3を作動させて所定の回転数で真空チャンバ11を回転させながら、所定時間保持する。 Next, when the introduction of the raw material into the processing chamber 10 is completed, the on-off valves 5a and 72 are closed to isolate the processing chamber 10 and the preparation chamber 70 from each other, and then the hopper 7 is removed. When the pressure of the vacuum chamber 11 exhausted through the vacuum exhaust means reaches a predetermined value (for example, 10 × 10 −2 Pa) again, the metal evaporation material M is re-evaporated and the metal vapor is transferred to the processing chamber 10. An atmosphere is formed. When the metal vapor atmosphere is formed, the on-off valve 5b is closed, the exhaust pipe 6 is removed, the motor 3 is operated, and the vacuum chamber 11 is rotated at a predetermined number of revolutions and held for a predetermined time.

この場合、処理室10内温度より低い原料と処理室10との温度差によって、原料表面に金属蒸気雰囲気中の金属原子が高速かつ選択的に付着して堆積する。そして、真空チャンバ11を回転させて処理室10で原料を移動させることで、原料の全表面に亘って金属蒸発材料が成膜される。その際、原料は、高温の処理室に投入されたことで輻射熱により所定温度まで加熱され、その結果、原料の表面に付着した金属原子の一部がその結晶粒界に拡散される(処理工程)。   In this case, due to the temperature difference between the raw material lower than the temperature in the processing chamber 10 and the processing chamber 10, metal atoms in the metal vapor atmosphere are deposited on the surface of the raw material at high speed and selectively. Then, by rotating the vacuum chamber 11 and moving the raw material in the processing chamber 10, a metal evaporation material is formed over the entire surface of the raw material. At that time, the raw material is put into a high-temperature processing chamber and heated to a predetermined temperature by radiant heat, and as a result, some of the metal atoms adhering to the surface of the raw material are diffused into the crystal grain boundary (processing step). ).

次いで、所定時間保持した後、加熱手段4を停止させると共に、図示しないガス導入手段を介してAr等の不活性ガスを導入して処理室10をベントすると共に、図示しない回収容器を、下側位置する開閉弁5bの弁本体51に連結し、この開閉弁5bを開弁すると、回収容器に、原料の表面が金属蒸発材料Mの膜で覆われ、ひいてはその結晶粒界に拡散されたボンド磁石用の磁性材料が回収される。   Next, after holding for a predetermined time, the heating unit 4 is stopped, an inert gas such as Ar is introduced through a gas introduction unit (not shown), the processing chamber 10 is vented, and a recovery container (not shown) is placed on the lower side. When the on-off valve 5b is connected to the valve body 51 of the on-off valve 5b and the on-off valve 5b is opened, the surface of the raw material is covered with the film of the metal evaporation material M in the recovery container, and the bond diffused to the crystal grain boundary. Magnetic material for the magnet is recovered.

尚、原料のサイズ(粒度)によっては、上記処理の際、高温の処理室10に投入しても所定温度まで昇温せず、表面に付着した金属原子の結晶粒界への拡散が不十分になる虞がある。この場合、処理室10内での金属蒸気雰囲気の形成を停止した後、再度、下側の他方の開閉弁5bの弁本体51に排気管6を接続し、真空排気手段61を作動させる共に他方の開閉弁5bを開弁して、所定圧力(10×10−3Pa)まで処理室10を再度減圧する。 Depending on the size (granularity) of the raw material, even if it is put into the high temperature processing chamber 10 during the above processing, the temperature does not rise to a predetermined temperature, and the diffusion of metal atoms adhering to the surface to the crystal grain boundary is insufficient. There is a risk of becoming. In this case, after the formation of the metal vapor atmosphere in the processing chamber 10 is stopped, the exhaust pipe 6 is connected again to the valve body 51 of the other lower on-off valve 5b to operate the vacuum exhaust means 61 and the other The on-off valve 5b is opened and the processing chamber 10 is decompressed again to a predetermined pressure (10 × 10 −3 Pa).

次いで、加熱手段4を再度作動させて、所定温度(例えば、400℃〜1000℃)下で所定時間だけ、金属蒸発材料Mが成膜されたものに対し熱処理を施し、結晶粒界への拡散を促進させてもよい(第一の拡散工程)。第一の熱処理に引き続き、その熱処理より低い所定温度(例えば、350℃〜700℃)下で所定時間(例えば、30分)だけ歪を除去する熱処理を施すことが好ましい(第二の熱処理工程)。これにより、全表面に亘って金属蒸発材料が成膜されると共に、表面に付着した金属原子を結晶粒界に拡散させて均一に行き渡らせた磁性材料が得られる。   Next, the heating means 4 is actuated again, and heat treatment is performed on the film on which the metal evaporating material M is formed at a predetermined temperature (for example, 400 ° C. to 1000 ° C.) for a predetermined time, and diffusion to the grain boundaries is performed. May be promoted (first diffusion step). Subsequent to the first heat treatment, it is preferable to perform a heat treatment for removing strain at a predetermined temperature (for example, 350 ° C. to 700 ° C.) lower than the heat treatment for a predetermined time (for example, 30 minutes) (second heat treatment step). . As a result, a metal evaporation material is formed over the entire surface, and a magnetic material in which metal atoms attached to the surface are diffused to the crystal grain boundaries and uniformly distributed is obtained.

次いで、上記処理により得られた粉末状の磁性材料の種類に応じて、そのままの状態でまたは適宜5〜300μmの粒径に微粉砕した後、PPS等の樹脂バインダーとを混合し、公知の構造を有する圧縮成形機や射出成形機を用いて所定形状の希土類ボンド磁石に成形される。この場合、希土類ボンド磁石は、大気にふれると酸化され易く、使用環境によっては磁気特性が徐々に低下するという問題があったが、極めて高い耐食性、耐候性を有するDyやTbなどの金属蒸発材料が表面及び結晶粒界に存在することで強い耐食性、耐候性を有するものとなる。   Next, according to the kind of the powdered magnetic material obtained by the above treatment, it is pulverized as it is or appropriately to a particle size of 5 to 300 μm, and then mixed with a resin binder such as PPS to form a known structure Is formed into a rare-earth bonded magnet having a predetermined shape using a compression molding machine or an injection molding machine. In this case, the rare earth bonded magnet is easily oxidized when exposed to the atmosphere, and there is a problem that the magnetic properties gradually deteriorate depending on the use environment. However, a metal evaporation material such as Dy or Tb having extremely high corrosion resistance and weather resistance. Is present on the surface and grain boundaries, it has strong corrosion resistance and weather resistance.

また、上記方法で得た磁性材料は、その表面だけでなく、結晶粒界にもDy等の金属蒸発材料が拡散しているため、この磁性材料を用いて希土類ボンドを作製したとき、減磁曲線の角形性が向上し、磁気特性を示す最大エネルギー積(BHmax)、残留磁束密度(Br)が格段に向上し、併せて、保磁力も向上することで、高磁気特性のものとなる。尚、塊状の原料に上記処理を実施した後に適宜所定の粒径に微粉砕した磁性材料を用いて、希土類ボンドを作製しても、結晶粒界相に耐食性のよいDy、Tb等のリッチ相が多く存在するため、磁気特性が劣化することはない。   In addition, the magnetic material obtained by the above method has a metal evaporation material such as Dy diffused not only on its surface but also on the crystal grain boundary. Therefore, when a rare earth bond is produced using this magnetic material, demagnetization is achieved. The squareness of the curve is improved, the maximum energy product (BHmax) and the residual magnetic flux density (Br) showing magnetic characteristics are remarkably improved, and the coercive force is also improved, so that the magnetic characteristics are improved. Note that even if a rare earth bond is produced using a magnetic material that has been appropriately pulverized to a predetermined particle size after performing the above treatment on the bulk material, the grain boundary phase has a rich phase such as Dy or Tb that has good corrosion resistance. Therefore, the magnetic characteristics are not deteriorated.

(試料1)先ず、以下のように公知の方法で、希土類等方性ボンド磁石用の磁性材料を試料1として得る。この場合、出発材料である原料粉末は、Nd−Fe−B系超急冷等方性ボンド磁石用のものであり、組成(at%)がNd13Fe84Coのものを、真空溶解後に、水冷銅ロールで急冷した後、粉砕して得た。この原料粉末の粒度は10〜60μmであった。 (Sample 1) First, a magnetic material for a rare earth isotropic bonded magnet is obtained as a sample 1 by a known method as follows. In this case, the raw material powder as a starting material is for an Nd—Fe—B ultra-rapidly cooled isotropic bonded magnet, and a composition (at%) of Nd 13 Fe 84 Co 2 B 1 is vacuum-dissolved. Later, it was quenched with a water-cooled copper roll and then pulverized. The particle size of this raw material powder was 10 to 60 μm.

次に、上記処理装置1を用い、上記方法によって原料表面に金属蒸発材料を付着堆積させた。この場合、金属蒸発材料Mとして、Dy、Nd、Ce、Zr、Cr、Al、Nbを1:1:0.5:1:1:1:1の組成比で混合して得た合金を用い、顆粒状のものを収納室12に収納した。また、処理室10を、10−3Paまで真空排気すると共に、加熱手段4による処理室10の加熱温度1000℃に設定して、1分間処理を実施した。この場合、処理室の温度が600℃に到達した後、0.2rpmの回転速度で真空チャンバ11を回転させることとした。 Next, using the processing apparatus 1, a metal evaporation material was deposited on the surface of the raw material by the above method. In this case, an alloy obtained by mixing Dy, Nd, Ce, Zr, Cr, Al, and Nb at a composition ratio of 1: 1: 0.5: 1: 1: 1: 1 is used as the metal evaporation material M. The granular product was stored in the storage chamber 12. Further, the processing chamber 10 was evacuated to 10 −3 Pa, and the heating temperature of the processing chamber 10 by the heating unit 4 was set to 1000 ° C., and the processing was performed for 1 minute. In this case, after the temperature of the processing chamber reached 600 ° C., the vacuum chamber 11 was rotated at a rotation speed of 0.2 rpm.

次いで、原料粉末表面に、金属蒸発材料Mが成膜処理されたものを、800℃の温度で30分間、第一の熱処理を実施し、引き続き、600℃の温度で20分間、第二の熱処理(アニール処理)を実施して、上記磁性材料を得た。   Next, the surface of the raw material powder on which the metal evaporation material M was formed is subjected to a first heat treatment at a temperature of 800 ° C. for 30 minutes, followed by a second heat treatment at a temperature of 600 ° C. for 20 minutes. (Annealing treatment) was performed to obtain the magnetic material.

(試料2)先ず、以下のように公知の方法で、希土類等方性ボンド磁石用の磁性材料を試料2として得る。この場合、出発材料である原料粉末は、Nd−Fe−B系交換スプリング系等方性ボンド磁石用の原料粉末であり、組成(at%)がNdFe7620のものを、真空溶解した後、水冷銅ロールで超急冷後のリボンを粉砕して得た。この原料粉末の粒度は5〜20μmであった。 (Sample 2) First, a magnetic material for a rare earth isotropic bonded magnet is obtained as a sample 2 by a known method as follows. In this case, the raw material powder as a starting material is a raw material powder for an Nd—Fe—B exchange spring isotropic bonded magnet, and a composition (at%) of Nd 4 Fe 76 B 20 is vacuum-dissolved. Then, the ribbon after ultra-rapid cooling with a water-cooled copper roll was pulverized. The particle size of this raw material powder was 5 to 20 μm.

次に、上記処理装置1を用い、上記方法によって原料表面に金属蒸発材料を付着堆積させた。この場合、金属蒸発材料Mとして、Dy、Tb、Pr、La、Mo、V、Gaを1:1:1:0.2:0.2:0.2:0.2の組成比で混合して得た合金を用い、顆粒状のものを収納室12に収納した。また、処理室10を、10−8Paまで真空排気すると共に、加熱手段4による処理室10の加熱温度1200℃に設定して、2分間処理を実施した。この場合、処理室の温度が800℃に到達した後、0.5rpmの回転速度で真空チャンバ11を回転させることとした。 Next, using the processing apparatus 1, a metal evaporation material was deposited on the surface of the raw material by the above method. In this case, as the metal evaporation material M, Dy, Tb, Pr, La, Mo, V, and Ga are mixed at a composition ratio of 1: 1: 1: 0.2: 0.2: 0.2: 0.2. Granules were stored in the storage chamber 12 using the alloy obtained above. Further, the processing chamber 10 was evacuated to 10 −8 Pa, and the heating temperature of the processing chamber 10 by the heating unit 4 was set to 1200 ° C., and the processing was performed for 2 minutes. In this case, after the temperature of the processing chamber reached 800 ° C., the vacuum chamber 11 was rotated at a rotation speed of 0.5 rpm.

次いで、原料粉末表面に、金属蒸発材料Mが成膜処理されたものを、600℃の温度で60分間、第一の熱処理を実施し、引き続き、500℃の温度で5分間、第二の熱処理(アニール処理)を実施して、上記磁性材料(試料2)を得た。   Next, the surface of the raw material powder on which the metal evaporating material M was formed is subjected to a first heat treatment at a temperature of 600 ° C. for 60 minutes, and subsequently, a second heat treatment is performed at a temperature of 500 ° C. for 5 minutes. (Annealing treatment) was performed to obtain the magnetic material (sample 2).

(試料3)先ず、以下のように公知の方法で、希土類異方性ボンド磁石用の磁性材料を試料2として得る。この場合、出発材料である原料粉末は、Nd−Fe−B系HDDR異方性ボンド磁石用のものであり、組成(at%)がNdFe14のインゴットを、真空高周波誘導溶解炉を用いて、炉内温度1100℃、12時間、溶体化処理を施した後、インゴットに対し、800℃でHDDR処理を施して得た。この原料粉末の粒度は20〜80μmであった。 (Sample 3) First, a magnetic material for a rare earth anisotropic bonded magnet is obtained as Sample 2 by a known method as follows. In this case, the raw material powder as a starting material is for an Nd—Fe—B HDDR anisotropic bonded magnet, and an ingot having a composition (at%) of Nd 2 Fe 14 B 1 is used as a vacuum high frequency induction melting furnace. After performing solution treatment for 12 hours at an in-furnace temperature of 1100 ° C., the ingot was subjected to HDDR treatment at 800 ° C. The particle size of this raw material powder was 20 to 80 μm.

次に、上記処理装置1を用い、上記方法によって原料表面に金属蒸発材料を付着堆積させた。この場合、金属蒸発材料Mとして、Dy、Tb、Y、Cu、Znを1:1:1:1:1の組成比で混合して得た合金を用い、顆粒状のものを収納室12に収納した。また、処理室10を、10−6Paまで真空排気すると共に、加熱手段4による処理室10の加熱温度1000℃に設定して、5分間処理を実施した。この場合、処理室の温度が900℃に到達した後、0.3rpmの回転速度で真空チャンバ11を回転させることとした。 Next, using the processing apparatus 1, a metal evaporation material was deposited on the surface of the raw material by the above method. In this case, as the metal evaporation material M, an alloy obtained by mixing Dy, Tb, Y, Cu, and Zn at a composition ratio of 1: 1: 1: 1: 1 is used. Stowed. Further, the processing chamber 10 was evacuated to 10 −6 Pa, and the heating temperature of the processing chamber 10 by the heating unit 4 was set to 1000 ° C., and the processing was performed for 5 minutes. In this case, the vacuum chamber 11 was rotated at a rotation speed of 0.3 rpm after the temperature of the processing chamber reached 900 ° C.

次いで、原料粉末表面に、金属蒸発材料Mが成膜処理されたものを、800℃の温度で60分間、第一の熱処理を実施し、引き続き、600℃の温度で30分間、第二の熱処理(アニール処理)を実施して、上記磁性材料(試料3)を得た。   Next, the surface of the raw material powder on which the metal evaporation material M was formed is subjected to a first heat treatment at a temperature of 800 ° C. for 60 minutes, followed by a second heat treatment at a temperature of 600 ° C. for 30 minutes. (Annealing treatment) was performed to obtain the magnetic material (sample 3).

(試料4)先ず、以下のように公知の方法で、希土類等方性ボンド磁石用の磁性材料を試料4として得る。この場合、出発材料である原料粉末は、Sm−Fe−N系等方性ボンド磁石用のものであり、組成(at%)がSmZr0.2Fe16Mnのものを、真空溶解後に、超急冷法でフレークを作製した後、600℃で窒化処理した後に粉砕して得た。この原料粉末の粒度は10〜50μmであった。 (Sample 4) First, a magnetic material for a rare earth isotropic bonded magnet is obtained as a sample 4 by a known method as follows. In this case, the starting material powder as a starting material is for Sm—Fe—N isotropic bonded magnets, and the composition (at%) of Sm 2 Zr 0.2 Fe 16 Mn 1 is vacuum-dissolved. Later, flakes were prepared by a super-quenching method, and after nitriding at 600 ° C., pulverization was performed. The particle size of this raw material powder was 10 to 50 μm.

次に、上記処理装置1を用い、上記方法によって原料表面に金属蒸発材料を付着堆積させた。この場合、金属蒸発材料Mとして、Ho、Er、Sm、Mg、Znを1:1:1:1:1の組成比で混合して得た合金を用い、顆粒状のものを収納室12に収納した。また、処理室10を、10−5Paまで真空排気すると共に、加熱手段4による処理室10の加熱温度800℃に設定して、5分間処理を実施した。この場合、処理室の温度が550℃に到達した後、1rpmの回転速度で真空チャンバ11を回転させることとした。 Next, using the processing apparatus 1, a metal evaporation material was deposited on the surface of the raw material by the above method. In this case, an alloy obtained by mixing Ho, Er, Sm, Mg, Zn at a composition ratio of 1: 1: 1: 1: 1 is used as the metal evaporation material M, and the granular material is stored in the storage chamber 12. Stowed. Further, the processing chamber 10 was evacuated to 10 −5 Pa, and the heating temperature of the processing chamber 10 by the heating unit 4 was set to 800 ° C., and the processing was performed for 5 minutes. In this case, after the temperature of the processing chamber reached 550 ° C., the vacuum chamber 11 was rotated at a rotation speed of 1 rpm.

次いで、原料粉末表面に、金属蒸発材料Mが成膜処理されたものを、550℃の温度で180分間、第一の熱処理を実施し、引き続き、400℃の温度で60分間、第二の熱処理(アニール処理)を実施して、上記磁性材料(試料4)を得た。   Next, the surface of the raw material powder on which the metal evaporation material M was formed is subjected to a first heat treatment at a temperature of 550 ° C. for 180 minutes, and subsequently, a second heat treatment is performed at a temperature of 400 ° C. for 60 minutes. (Annealing treatment) was performed to obtain the magnetic material (sample 4).

(試料5)先ず、以下のように公知の方法で、希土類異方性ボンド磁石用の磁性材料を試料5として得る。この場合、出発材料である原料粉末は、Sm−Fe−N系異方性ボンド磁石用のものであり、組成(at%)がSmTi0.2Fe16Coのものを、真空溶解後、ストリップキャスティング法で急冷後のフレークを、600℃で窒化処理後に微粉砕して得た。この原料粉末の粒度は5〜20μmであった。 (Sample 5) First, a magnetic material for a rare earth anisotropic bonded magnet is obtained as Sample 5 by a known method as follows. In this case, the raw material powder as the starting material is for an Sm—Fe—N anisotropic bonded magnet, and the composition (at%) of Sm 2 Ti 0.2 Fe 16 Co 1 is vacuum-dissolved. Thereafter, the flakes rapidly cooled by the strip casting method were obtained by pulverizing after nitriding at 600 ° C. The particle size of this raw material powder was 5 to 20 μm.

次に、上記処理装置1を用い、上記方法によって原料表面に金属蒸発材料を付着堆積させた。この場合、金属蒸発材料Mとして、Tm、Gd、Li、Ti、Zn、Sm、Mnを1:1:1:1:1:1:1の組成比で混合して得た合金を用い、顆粒状のものを収納室12に収納した。また、処理室10を、10−4Paまで真空排気すると共に、加熱手段4による処理室10の加熱温度900℃に設定して、1分間処理を実施した。この場合、処理室の温度が580℃に到達した後、2rpmの回転速度で真空チャンバ11を回転させることとした。 Next, using the processing apparatus 1, a metal evaporation material was deposited on the surface of the raw material by the above method. In this case, an alloy obtained by mixing Tm, Gd, Li, Ti, Zn, Sm, and Mn at a composition ratio of 1: 1: 1: 1: 1: 1: 1 is used as the metal evaporation material M. The product was stored in the storage chamber 12. In addition, the processing chamber 10 was evacuated to 10 −4 Pa, and the heating temperature of the processing chamber 10 by the heating unit 4 was set to 900 ° C., and the processing was performed for 1 minute. In this case, after the temperature of the processing chamber reached 580 ° C., the vacuum chamber 11 was rotated at a rotation speed of 2 rpm.

次いで、原料粉末表面に、金属蒸発材料Mが成膜処理されたものを、550℃の温度で120分間、第一の熱処理を実施し、引き続き、450℃の温度で20分間、第二の熱処理(アニール処理)を実施して、上記磁性材料(試料5)を得た。   Next, the surface of the raw material powder on which the metal evaporation material M was formed is subjected to a first heat treatment at a temperature of 550 ° C. for 120 minutes, and subsequently, a second heat treatment is performed at a temperature of 450 ° C. for 20 minutes. (Annealing treatment) was performed to obtain the magnetic material (sample 5).

そして、上記のように得た試料1乃至試料5に、1〜5重量%の割合で12ナイロンを混合した後、公知の射出成形機で射出成形して希土類等方性ボンド磁石、希土類異方性ボンド磁石を得た。   Samples 1 to 5 obtained as described above were mixed with 12 nylon in a proportion of 1 to 5% by weight, and then injection molded with a known injection molding machine to produce a rare earth isotropic bonded magnet, rare earth anisotropic A bonded magnet was obtained.

図2は、上記のように作製した希土類等方性ボンド磁石、希土類異方性ボンド磁石の磁気特性及び耐熱温度を示す表である。この場合、各原料に金属蒸発材料Mの成膜、拡散処理を行わずに、上記手順で希土類等方性ボンド磁石、希土類異方性ボンド磁石をそれぞれ得たときの磁気特性及び耐熱温度を比較例として併せて示す。耐熱温度は、フラックスロス法によるパーミアンスを5として得たときのものである。   FIG. 2 is a table showing the magnetic properties and heat-resistant temperatures of the rare earth isotropic bonded magnets and rare earth anisotropic bonded magnets produced as described above. In this case, the magnetic properties and heat resistance temperature when the rare earth isotropic bond magnet and the rare earth anisotropic bond magnet were obtained by the above procedure without performing the film formation and diffusion treatment of the metal evaporation material M on each raw material were compared. It is also shown as an example. The heat-resistant temperature is obtained when the permeance by the flux loss method is set to 5.

これによれば、実施例1では、金属蒸発材料Mの各金属元素が結晶粒界に効率よく拡散していることで、角形性が向上したため、最大エネルギー積が10MG0e以上の希土類等方性ボンド磁石、最大エネルギー積15MG0e希土類異方性ボンド磁石が得られていることが判る。つまり、実施例1では、比較例のものと比較して格段に最大エネルギー積及び残留磁束密度が向上していることが判る。また、実施例1のものでは、14k0e以上の高い保磁力を有することで、耐熱温度が、比較例のものと比較して倍以上になっていることが判る。   According to this, in Example 1, since each metal element of the metal evaporation material M is efficiently diffused to the crystal grain boundary and the squareness is improved, the rare earth isotropic bond having a maximum energy product of 10MG0e or more. It can be seen that a magnet and a maximum energy product of 15MG0e rare earth anisotropic bonded magnet are obtained. That is, in Example 1, it turns out that the maximum energy product and the residual magnetic flux density are remarkably improved as compared with the comparative example. Moreover, in the thing of Example 1, it turns out that heat-resistant temperature has become twice or more compared with the thing of a comparative example by having a high coercive force of 14 k0e or more.

本発明の処理装置の構成を概略的に説明する図。The figure which illustrates roughly the structure of the processing apparatus of this invention. 実施例1で得たボンド磁石の磁気特性を示す表。The table | surface which shows the magnetic characteristic of the bond magnet obtained in Example 1. FIG.

符号の説明Explanation of symbols

1 処理装置
10 処理室
11 真空チャンバ
12 収納室
M 金属磁性材料
DESCRIPTION OF SYMBOLS 1 Processing apparatus 10 Processing chamber 11 Vacuum chamber 12 Storage chamber M Metal magnetic material

Claims (5)

希土類元素及び鉄を含有する粉末状の原料の表面に、Dy、Tb、Ho、Er、Tm、Gd、Nd、Sm、Pr、Ce、La、Y、Zr、Cr、Mo、V、Ga、Zn、Cu、Mg、Li、Al、Mn、Nb、Tiの中から選択される少なくとも1種を含有する金属蒸発材料を付着させる処理工程を含むボンド磁石用の磁性材料の製造方法であって、前記処理工程は、この処理工程を実施する処理室を加熱し、この処理室内に予め配置した前記金属蒸発材料を蒸発させて金属蒸気雰囲気を処理室内に形成する第一工程と、処理室内の温度より低く保持した原料をこの処理室に投入し、この処理室内で原料を移動させながら、処理室内と原料との間の温度差によって、原料表面に前記金属蒸発材料を選択的に付着させる第二工程とを含むことを特徴とするボンド磁石用の磁性材料の製造方法。 Dy, Tb, Ho, Er, Tm, Gd, Nd, Sm, Pr, Ce, La, Y, Zr, Cr, Mo, V, Ga, Zn on the surface of the powdery raw material containing rare earth elements and iron A method for producing a magnetic material for a bonded magnet comprising a treatment step of attaching a metal evaporation material containing at least one selected from Cu, Mg, Li, Al, Mn, Nb, and Ti, The processing step includes heating a processing chamber in which the processing step is performed, evaporating the metal evaporation material previously disposed in the processing chamber to form a metal vapor atmosphere in the processing chamber, and a temperature in the processing chamber. A second step in which the metal evaporation material is selectively attached to the surface of the raw material due to the temperature difference between the processing chamber and the raw material while the raw material kept low is put into the processing chamber and the raw material is moved in the processing chamber And including Method of manufacturing a magnetic material for a bonded magnet to symptoms. 前記金属蒸気雰囲気が、前記処理室内で飽和状態であることを特徴とする請求項1記載のボンド磁石用の磁性材料の製造方法。 The method for producing a magnetic material for a bond magnet according to claim 1, wherein the metal vapor atmosphere is saturated in the processing chamber. 前記処理工程を実施した後、所定温度下で表面に金属蒸発材料が付着した原料を加熱する第一の熱処理工程を含むことを特徴とする請求項1または請求項2記載のボンド磁石用の磁性材料の製造方法。 3. The magnet for a bonded magnet according to claim 1, further comprising a first heat treatment step of heating a raw material having a metal evaporation material attached to a surface at a predetermined temperature after performing the treatment step. 4. Material manufacturing method. 前記第一の熱処理工程を実施した後、この第一の熱処理工程での熱処理温度より低い温度で表面に金属蒸発材料が付着した原料を加熱する第二の熱処理工程を含むことを特徴とする請求項3記載のボンド磁石用の磁性材料の製造方法。 The method includes a second heat treatment step of heating the raw material having the metal evaporation material attached to the surface thereof at a temperature lower than the heat treatment temperature in the first heat treatment step after performing the first heat treatment step. Item 4. A method for producing a magnetic material for a bonded magnet according to Item 3. 請求項1乃至請求項4のいずれかに記載の製造方法で得た磁性材料を、樹脂バインダーと共に成形してなることを特徴とする希土類ボンド磁石。 5. A rare earth bonded magnet obtained by molding a magnetic material obtained by the manufacturing method according to claim 1 together with a resin binder.
JP2006249826A 2006-09-14 2006-09-14 Manufacturing method of magnetic material for bonded magnet excellent in magnetic properties, heat resistance, corrosion resistance and weather resistance, and rare earth bonded magnet manufactured using this magnetic material Active JP5101849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249826A JP5101849B2 (en) 2006-09-14 2006-09-14 Manufacturing method of magnetic material for bonded magnet excellent in magnetic properties, heat resistance, corrosion resistance and weather resistance, and rare earth bonded magnet manufactured using this magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249826A JP5101849B2 (en) 2006-09-14 2006-09-14 Manufacturing method of magnetic material for bonded magnet excellent in magnetic properties, heat resistance, corrosion resistance and weather resistance, and rare earth bonded magnet manufactured using this magnetic material

Publications (2)

Publication Number Publication Date
JP2008069415A true JP2008069415A (en) 2008-03-27
JP5101849B2 JP5101849B2 (en) 2012-12-19

Family

ID=39291257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249826A Active JP5101849B2 (en) 2006-09-14 2006-09-14 Manufacturing method of magnetic material for bonded magnet excellent in magnetic properties, heat resistance, corrosion resistance and weather resistance, and rare earth bonded magnet manufactured using this magnetic material

Country Status (1)

Country Link
JP (1) JP5101849B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108072A1 (en) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Method for producing powder for dust core, dust core using powder for dust core produced using said method for producing powder for dust core, and device for producing powder for dust core
JP5510457B2 (en) * 2009-07-15 2014-06-04 日立金属株式会社 Method for producing RTB-based sintered magnet
KR101534717B1 (en) * 2013-12-31 2015-07-24 현대자동차 주식회사 Process for preparing rare earth magnets
CN105321702A (en) * 2015-11-19 2016-02-10 北京科技大学 Method for improving coercivity of sintered NdFeB magnet
CN106787268A (en) * 2016-11-22 2017-05-31 广东美芝制冷设备有限公司 Compressor and the method for preparing permanent magnet for the compressor
CN107876791A (en) * 2017-10-27 2018-04-06 内蒙古盛本荣科技有限公司 Produce the devices and methods therefor of powder
CN108396203A (en) * 2018-05-04 2018-08-14 上海康速金属材料有限公司 Rare earth er element enhances the special AlSi10Mg Al alloy powders of SLM and its application
CN108486429A (en) * 2018-05-04 2018-09-04 上海康速金属材料有限公司 Rare earth er element enhances the special AlSi7Mg Al alloy powders of SLM and its application
JP2020050904A (en) * 2018-09-26 2020-04-02 日亜化学工業株式会社 Magnetic powders and method for producing same
JP7364158B2 (en) 2019-12-26 2023-10-18 国立大学法人東北大学 Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979917A (en) * 2015-07-02 2015-10-14 广东美芝制冷设备有限公司 Permanent magnet for compressor motor, preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826245A (en) * 1971-08-10 1973-04-06
JP2005325450A (en) * 2000-07-24 2005-11-24 Kenichi Machida Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826245A (en) * 1971-08-10 1973-04-06
JP2005325450A (en) * 2000-07-24 2005-11-24 Kenichi Machida Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510457B2 (en) * 2009-07-15 2014-06-04 日立金属株式会社 Method for producing RTB-based sintered magnet
CN102292178A (en) * 2010-03-02 2011-12-21 丰田自动车株式会社 Method for producing powder for dust core, dust core using powder for dust core produced using said method for producing powder for dust core, and device for producing powder for dust core
JP5187438B2 (en) * 2010-03-02 2013-04-24 トヨタ自動車株式会社 Powder core powder manufacturing method, powder magnetic core powder using powder core powder manufactured by the powder core manufacturing method, and powder core powder manufacturing apparatus
WO2011108072A1 (en) * 2010-03-02 2011-09-09 トヨタ自動車株式会社 Method for producing powder for dust core, dust core using powder for dust core produced using said method for producing powder for dust core, and device for producing powder for dust core
KR101534717B1 (en) * 2013-12-31 2015-07-24 현대자동차 주식회사 Process for preparing rare earth magnets
CN105321702B (en) * 2015-11-19 2017-10-20 北京科技大学 One kind improves the coercitive method of sintered NdFeB magnet
CN105321702A (en) * 2015-11-19 2016-02-10 北京科技大学 Method for improving coercivity of sintered NdFeB magnet
CN106787268A (en) * 2016-11-22 2017-05-31 广东美芝制冷设备有限公司 Compressor and the method for preparing permanent magnet for the compressor
CN107876791A (en) * 2017-10-27 2018-04-06 内蒙古盛本荣科技有限公司 Produce the devices and methods therefor of powder
CN108396203A (en) * 2018-05-04 2018-08-14 上海康速金属材料有限公司 Rare earth er element enhances the special AlSi10Mg Al alloy powders of SLM and its application
CN108486429A (en) * 2018-05-04 2018-09-04 上海康速金属材料有限公司 Rare earth er element enhances the special AlSi7Mg Al alloy powders of SLM and its application
JP2020050904A (en) * 2018-09-26 2020-04-02 日亜化学工業株式会社 Magnetic powders and method for producing same
US11424055B2 (en) 2018-09-26 2022-08-23 Nichia Corporation Magnetic powder and preparation method thereof
US11710586B2 (en) 2018-09-26 2023-07-25 Nichia Corporation Magnetic powder
JP7364158B2 (en) 2019-12-26 2023-10-18 国立大学法人東北大学 Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder

Also Published As

Publication number Publication date
JP5101849B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5101849B2 (en) Manufacturing method of magnetic material for bonded magnet excellent in magnetic properties, heat resistance, corrosion resistance and weather resistance, and rare earth bonded magnet manufactured using this magnetic material
TWI433174B (en) Vacuum steam treatment device
TWI427648B (en) Production method of permanent magnet and permanent magnet
TWI430294B (en) A film forming method and a film forming apparatus, and a method of manufacturing the permanent magnet and the permanent magnet
US9837193B2 (en) R-T-B sintered magnet
CN101563737B (en) Permanent magnet and method for producing permanent magnet
WO2014101882A1 (en) Method for manufacturing alloy powder for rear-earth magnet based on evaporation processing and method for manufacturing rear-earth magnet
JP7220300B2 (en) Rare earth permanent magnet material, raw material composition, manufacturing method, application, motor
WO2008023731A1 (en) Permanent magnet and process for producing the same
WO2012008426A1 (en) Method for producing r-t-b-based sintered magnets
JP2007329250A (en) Permanent magnet, and manufacturing method of permanent magnet
TWI751788B (en) NdFeB MAGNET MATERIAL, RAW MATERIAL COMPOSITION, PREPARATION METHOD AND APPLICATION
TW202123262A (en) R-t-b series permanent magnetic material, preparation method and application
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP2007305878A (en) Permanent magnet and manufacturing method therefor
TW200823304A (en) Vacuum evaporation processing equipment
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4922704B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5210585B2 (en) Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
JP5025372B2 (en) Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method
JP2008063642A (en) Method for producing soft magnetic powder, and powder magnetic core using the soft magnetism powder
JP2011060965A (en) Method and apparatus for manufacturing r2fe14b rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250