JP2008066374A - Heat radiating substrate, method for manufacturing the same, and power module using the same - Google Patents

Heat radiating substrate, method for manufacturing the same, and power module using the same Download PDF

Info

Publication number
JP2008066374A
JP2008066374A JP2006240199A JP2006240199A JP2008066374A JP 2008066374 A JP2008066374 A JP 2008066374A JP 2006240199 A JP2006240199 A JP 2006240199A JP 2006240199 A JP2006240199 A JP 2006240199A JP 2008066374 A JP2008066374 A JP 2008066374A
Authority
JP
Japan
Prior art keywords
heat
thin piece
conductive sheet
base plate
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006240199A
Other languages
Japanese (ja)
Inventor
Atsuko Fujino
敦子 藤野
Kei Yamamoto
圭 山本
Seiki Hiramatsu
星紀 平松
Tetsushi Tanda
哲史 反田
Hiroshi Yoshida
博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006240199A priority Critical patent/JP2008066374A/en
Publication of JP2008066374A publication Critical patent/JP2008066374A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiating substrate which includes a heat conductive sheet provided with thin material pieces assuring higher heat conductivity within the resin material where the thin material pieces are arranged without any displacement from a heat spreading range. <P>SOLUTION: The heat radiating substrate includes: a heat conductive sheet having insulated thin material pieces within a resin composition; a heat sink provided in contact with one surface of the heat conductive sheet; and a base plate provided in contact with the other surface of the heat conductive sheet. A recessed part for preventing displacement of the entire part, a part, or respective portions of the thin material pieces, is provided at least to one of the surface in contact with the heat conductive sheet of the heat sink and the surface in contact with the heat conductive sheet of the base plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、パワー半導体素子等の発熱体からの放熱を容易にする放熱性基板および放熱性基板の製造方法、ならびに、この放熱性基板を用いたパワーモジュールに関する。   The present invention relates to a heat dissipation substrate that facilitates heat dissipation from a heating element such as a power semiconductor element, a method for manufacturing the heat dissipation substrate, and a power module that uses the heat dissipation substrate.

パワー半導体素子を内部に有するパワーモジュールは、大電流が流れるパワー半導体素子の発熱の影響で温度が上昇しパワー半導体素子の動作が不安定になることがある。そこで、これを防ぐために放熱を容易にする構造を採用し、パワーモジュールの温度上昇を抑制している。   In a power module having a power semiconductor element therein, the operation of the power semiconductor element may become unstable due to an increase in temperature due to the heat generated by the power semiconductor element through which a large current flows. Therefore, in order to prevent this, a structure that facilitates heat dissipation is employed to suppress the temperature rise of the power module.

例えば、パワー半導体素子が実装されたリードフレームの、パワー半導体素子が実装された面の反対面に、Al、AlN、BeO等、絶縁性および熱伝導性に優れたセラミックス板を接着剤により接着させたものがある(特許文献1参照)。 For example, a ceramic plate excellent in insulation and thermal conductivity, such as Al 2 O 3 , AlN, BeO, etc., is bonded to the opposite surface of the lead frame on which the power semiconductor element is mounted to the surface on which the power semiconductor element is mounted. (See Patent Document 1).

熱伝導性に優れたセラミックス板は接着剤等によりヒートスプレッダまたはリードフレーム等に接着して用いられるが、セラミックス板は、パワー半導体素子等の発熱体からの発熱によりヒートスプレッダまたはリードフレームとの熱膨張率の差等による応力を受けて接着剤との界面で剥離し、発熱体からの熱の伝導が阻害されるという問題があった。   Ceramic plates with excellent thermal conductivity are used by adhering to heat spreaders or lead frames with adhesives, etc., but ceramic plates have a coefficient of thermal expansion with the heat spreader or lead frame due to heat generated from heating elements such as power semiconductor elements. There is a problem that the heat conduction from the heating element is hindered due to peeling at the interface with the adhesive under the stress due to the difference between the two.

また、熱伝導性に加えて絶縁性および可とう性を合わせ持たせるため、高分子フィルム内に熱伝導性に優れたセラミックスの多面体を複数配置し、熱伝導性を高めた複合セラミックスシートがある(特許文献2参照)。   In addition to thermal conductivity, there is a composite ceramic sheet that has multiple thermal polyconducting ceramic polyhedrons in a polymer film to provide both insulation and flexibility. (See Patent Document 2).

特開2001−156253号公報(第3頁)JP 2001-156253 A (page 3) 特開平9−314747号公報(第6頁〜第7頁)JP-A-9-314747 (pages 6 to 7)

複合セラミックスシートは、ヒートスプレッダまたはリードフレームに接着した場合、セラミックスの多面体間の樹脂組成体によりヒートスプレッダまたはリードフレームとの接着性は向上するものの、ベース板またはヒートシンクと接着させる際に通常加熱しながらプレス処理を行なうため、複合セラミックスシート中のセラミックス多面体の位置ずれが生じる場合がある。セラミック多面体の位置がずれると、所望の放熱性が得られなくなるという課題があった。   When a composite ceramic sheet is bonded to a heat spreader or lead frame, the resin composition between the polyhedrons of the ceramic improves adhesion to the heat spreader or lead frame. Since the treatment is performed, the positional deviation of the ceramic polyhedron in the composite ceramic sheet may occur. When the position of the ceramic polyhedron is shifted, there is a problem that desired heat dissipation cannot be obtained.

本発明は、かかる課題を解決するためになされたものであり、優れた熱伝導性を有する放熱性基板、および、これを用いたパワーモジュールを得ることを目的とする。   This invention is made | formed in order to solve this subject, and it aims at obtaining the heat dissipation board | substrate which has the outstanding thermal conductivity, and a power module using the same.

本発明に係る放熱性基板は、絶縁性の薄体片を樹脂組成体の内部に具備する熱伝導シートと、熱伝導シートの一方の面に接して設けられたヒートシンクと、熱伝導シートの他方の面に接して設けられたベース板とを備え、ヒートシンクの熱伝導シートに接する面およびベース板の熱伝導シートに接する面の少なくとも一方に、薄体片が収まる凹部を有するものである。   The heat dissipating substrate according to the present invention includes a heat conductive sheet having an insulating thin piece inside a resin composition, a heat sink provided in contact with one surface of the heat conductive sheet, and the other of the heat conductive sheets. And a base plate provided in contact with the surface of the heat sink, and has a recess for accommodating the thin piece on at least one of the surface contacting the heat conductive sheet of the heat sink and the surface contacting the heat conductive sheet of the base plate.

また、本発明に係る放熱性基板の製造方法は、絶縁性の薄体を粘着シートに貼付する工程と、粘着シートに貼付された状態で薄体を分割し薄体片とする工程と、凹部を有するベース板に第一の樹脂シートを配置し接着する工程と、粘着シートに貼付された薄体片をベース板の凹部の内側の所定の位置に配置し接着する工程と、粘着シートを粘着シートに貼付された薄体片から剥がす工程と、第二の樹脂シートとヒートシンクとを薄体片上に配置する工程と、第一および第二の樹脂シートを圧力をかけながら高温で硬化させる工程とを備えたものである。   In addition, the method for manufacturing a heat dissipation substrate according to the present invention includes a step of attaching an insulating thin body to an adhesive sheet, a step of dividing the thin body into a thin piece in a state of being attached to the adhesive sheet, and a recess Placing and adhering the first resin sheet to the base plate having adhesive, arranging the thin piece adhered to the adhesive sheet at a predetermined position inside the recess of the base plate, and adhering the adhesive sheet A step of peeling from the thin piece affixed to the sheet, a step of placing the second resin sheet and the heat sink on the thin piece, and a step of curing the first and second resin sheets at a high temperature while applying pressure. It is equipped with.

また、本発明に係るパワーモジュールは、本発明の放熱性基板と、放熱性基板の一方の面のヒートシンク上に配置されたパワー半導体素子と、放熱性基板の他方の面のベース板上に配置されたヒートスプレッダとを備えたものである。   Moreover, the power module according to the present invention is disposed on the heat dissipating substrate of the present invention, the power semiconductor element disposed on the heat sink on one surface of the heat dissipating substrate, and the base plate on the other surface of the heat dissipating substrate. The heat spreader is provided.

薄体片の位置ずれを防止して薄体片を所望の位置に配置することができ、優れた熱伝導性を有した放熱性基板を提供できる。   The thin piece can be disposed at a desired position by preventing the thin piece from being displaced, and a heat dissipating substrate having excellent thermal conductivity can be provided.

実施の形態1.
図1は本発明の実施の形態1における放熱性基板の概略構成を示す上面からの透視図である。また、図2は本発明の実施の形態1における放熱性基板1の概略構成を示す断面図であり、図1のa−b線断面における放熱性基板1の断面図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view from above showing a schematic configuration of a heat dissipating substrate according to Embodiment 1 of the present invention. 2 is a cross-sectional view showing a schematic configuration of the heat dissipating substrate 1 according to Embodiment 1 of the present invention, and is a cross-sectional view of the heat dissipating substrate 1 taken along the line ab in FIG.

図1および図2に示すように、本実施の形態における放熱性基板は薄体片31を樹脂組成体21の内部に具備する熱伝導シート2を備えており、熱伝導シート2がベース板4とヒートシンク5との間に設けられている。ベース板4には複数の薄体片31を収める凹部41が形成されており、凹部41の外周部は凸部40となっている。凸部40はべース板4表面の凹部41を除く全ての領域に及んでいる。熱伝導シート2には薄体片31の上面および下面にも樹脂組成体21が連続して設けられ樹脂層22を形成している。なお、樹脂層22は薄体片31の熱伝導性を損なわないために薄体片31に比べて非常に薄く設けるが説明をわかりやすくするために図2では厚く記載している。
ベース板4およびヒートシンク5は銅等の導電性金属材料で構成されており、ヒートシンク5は放熱の機能とともに電極としての電気伝導機能も備えている。
As shown in FIG. 1 and FIG. 2, the heat dissipating substrate in the present embodiment includes a heat conductive sheet 2 including a thin piece 31 inside a resin composition 21, and the heat conductive sheet 2 is a base plate 4. And the heat sink 5. The base plate 4 is formed with a concave portion 41 for accommodating a plurality of thin body pieces 31, and the outer peripheral portion of the concave portion 41 is a convex portion 40. The convex portion 40 extends to all regions except the concave portion 41 on the surface of the base plate 4. A resin composition 21 is continuously provided on the upper and lower surfaces of the thin piece 31 in the heat conductive sheet 2 to form a resin layer 22. Note that the resin layer 22 is provided much thinner than the thin piece 31 so as not to impair the thermal conductivity of the thin piece 31, but is shown thick in FIG. 2 for easy understanding.
The base plate 4 and the heat sink 5 are made of a conductive metal material such as copper, and the heat sink 5 has an electric conduction function as an electrode as well as a heat radiation function.

次に、本実施の形態に関わる放熱性基板の製造方法を図3を用いて順を追って説明する。まず、図3(a)に示すように、絶縁性の薄体30を粘着シート11に貼付する。次に、図3(b)に示すように図3(a)の薄体30を粘着シート11に貼付した状態で分割し薄体片31とする。続いて、あらかじめ凹部41に樹脂シート25を接着しておいたベース板4に粘着シート11に貼付された薄体片31を対向させ、薄体片31をベース板4の凹部41の内側の所定の位置に配置し接着する。薄体片31から粘着シート11を剥離後、図3(d)に示すように薄体片31の上部に別の樹脂シート26とヒートシンク5を配置する。図3(d)に示した構造をベース板4およびヒートシンク5間に圧力をかけながら加熱することにより樹脂シート25、26を溶融、硬化させ、図3(e)に示す放熱性基板を得る。   Next, the manufacturing method of the heat dissipating substrate according to the present embodiment will be described step by step with reference to FIG. First, as shown in FIG. 3A, the insulating thin body 30 is attached to the adhesive sheet 11. Next, as shown in FIG. 3B, the thin body 30 of FIG. Subsequently, the thin piece 31 affixed to the pressure-sensitive adhesive sheet 11 is opposed to the base plate 4 in which the resin sheet 25 is bonded to the concave portion 41 in advance, and the thin piece 31 is placed on the inner side of the concave portion 41 of the base plate 4. Place and glue at the position of. After peeling the adhesive sheet 11 from the thin piece 31, another resin sheet 26 and the heat sink 5 are disposed on the thin piece 31 as shown in FIG. The resin sheet 25, 26 is melted and cured by heating the structure shown in FIG. 3D while applying pressure between the base plate 4 and the heat sink 5 to obtain a heat dissipation substrate shown in FIG.

本実施の形態に係わる放熱性基板の熱伝導シート2は、図1及び図2に示すように複数の薄体片31を具備したものでもよいが、たとえば放熱性基板の面積が小さなものでは必ずしも薄体片31を複数とする必要はなく、薄体片31は単数でもよい。   The heat conductive sheet 2 of the heat dissipating substrate according to the present embodiment may be provided with a plurality of thin body pieces 31 as shown in FIGS. 1 and 2, but for example, it is not always necessary that the heat dissipating substrate has a small area. The thin piece 31 does not need to be plural, and the thin piece 31 may be single.

また、本実施の形態に係わる放熱性基板の熱伝導シート2の中にある絶縁性の薄体片31としては、熱伝導性を有するセラミックスシートが用いられる。セラミックス材料としては、10W/mK以上の高い熱伝導率を有する材料であれば特に限定されるものではないが、アルミナ、窒化ホウ素、窒化アルミニウム等の30W/mK以上の熱伝導率を有する材料を用いることが好ましい。また、薄体片31としては、例えば窒化アルミニウムの表面に酸化膜であるアルミナがコーティングされたものなど、複数の材料からなるものでも良い。   Moreover, as the insulating thin piece 31 in the heat conductive sheet 2 of the heat dissipating substrate according to the present embodiment, a ceramic sheet having heat conductivity is used. The ceramic material is not particularly limited as long as it is a material having a high thermal conductivity of 10 W / mK or higher, but a material having a thermal conductivity of 30 W / mK or higher, such as alumina, boron nitride, aluminum nitride or the like. It is preferable to use it. Further, the thin piece 31 may be made of a plurality of materials such as a surface of aluminum nitride coated with alumina as an oxide film.

本実施の形態に係わる放熱性基板の熱伝導シート2における薄体片31間の間隔は、0.1mm以上、3mm以下であることが好ましい。薄体片31と樹脂組成体21を比較すると薄体片31の方が熱伝導率が高いので、上面から見たときの薄体片31の面積比率が高いほど放熱性基板の熱伝導率が高くなる。したがって、薄体片31間の間隔が狭い方が放熱性基板の熱伝導率が高くなるため好ましいが、薄体片31間の間隔が狭すぎると薄体片31の間に樹脂組成体21が入り込むことが困難となり熱伝導シート2の中に空隙が残るので、絶縁耐圧が低下する。このため、薄体片31の間隔は0.1mm以上であることが好ましい。反対に、薄体片31間の間隔が3mmを越えると放熱性基板の熱抵抗が高くなる。   It is preferable that the space | interval between the thin body pieces 31 in the heat conductive sheet 2 of the thermal radiation board | substrate concerning this Embodiment is 0.1 mm or more and 3 mm or less. When the thin piece 31 and the resin composition 21 are compared, the thin piece 31 has a higher thermal conductivity. Therefore, the higher the area ratio of the thin piece 31 when viewed from the top, the higher the thermal conductivity of the heat dissipation substrate. Get higher. Therefore, it is preferable that the distance between the thin pieces 31 is narrow because the thermal conductivity of the heat dissipation substrate is high. However, if the distance between the thin pieces 31 is too small, the resin composition 21 is interposed between the thin pieces 31. It becomes difficult to enter, and voids remain in the heat conductive sheet 2, so that the withstand voltage is reduced. For this reason, it is preferable that the space | interval of the thin body piece 31 is 0.1 mm or more. On the contrary, if the interval between the thin pieces 31 exceeds 3 mm, the heat resistance of the heat dissipating substrate increases.

本実施の形態に係わる放熱性基板の熱伝導シート2の薄体片31の厚さは0.1mm〜2mm程度が良い。薄体片31が薄い方が放熱性基板の熱抵抗が小さくなるため、薄体片31の厚さは0.1mm〜0.8mm程度がより好ましい。また、薄体片31の面方向の大きさは、放熱性基板のクラック防止と絶縁耐圧および熱伝導性の確保の観点から、3mm角以上30mm角以下であることが望ましい。薄体片31が複数の場合、薄体片31の面方向の大きさが小さい方が応力を緩和することができクラック防止には有利であるが、薄体片31の面方向の大きさが3mm角以下の場合、熱伝導シート2中の樹脂組成体21の占める体積割合が多くなることにより放熱性基板1の熱抵抗が大きくなり、また、樹脂組成体21と薄体片31との界面の密度が増加することより絶縁破壊の発生確率が高まり絶縁耐圧が低下する。また、剛性の高いセラミックスシートである薄体片31の面方向の大きさが30mm角以上と大きくなると、製造工程中や使用時の衝撃や応力などによって薄体片31にクラックが生じる可能性が高くなる。   The thickness of the thin piece 31 of the heat conductive sheet 2 of the heat dissipation substrate according to the present embodiment is preferably about 0.1 mm to 2 mm. The thinner the thin piece 31 is, the smaller the thermal resistance of the heat dissipating substrate is. Therefore, the thickness of the thin piece 31 is more preferably about 0.1 mm to 0.8 mm. In addition, the size of the thin piece 31 in the surface direction is desirably 3 mm square or more and 30 mm square or less from the viewpoint of preventing cracking of the heat-radiating substrate and ensuring withstand voltage and thermal conductivity. In the case where there are a plurality of thin pieces 31, the smaller the size of the thin piece 31 in the surface direction is to reduce the stress, which is advantageous for preventing cracks. In the case of 3 mm square or less, the heat resistance of the heat-dissipating substrate 1 is increased by increasing the volume ratio of the resin composition 21 in the heat conductive sheet 2, and the interface between the resin composition 21 and the thin piece 31 is increased. Increasing the density increases the probability of dielectric breakdown and lowers the withstand voltage. Further, if the size of the thin piece 31 that is a highly rigid ceramic sheet is increased to 30 mm square or more, cracks may occur in the thin piece 31 during the manufacturing process or due to impact or stress during use. Get higher.

本実施の形態に係わる放熱性基板の熱伝導シート2の樹脂組成体21は主に樹脂組成物で構成され、例えばエポキシ樹脂、フェノール樹脂、シリコーンゴム等の熱硬化性樹脂や、ポリエチレン、ポリイミド、アクリル系の熱可塑性樹脂等が用いられる。また、前記樹脂組成物に、さらに、熱伝導性の良いアルミナ、窒化ホウ素、窒化アルミニウム等の無機フィラーを充填したものであっても良い。無機フィラーを充填した樹脂組成体21は、その熱伝導性が向上し、セラミックス材料の薄体片31との熱応力も低減できるため好ましい。上記フィラーの径は1〜100μmであることが好ましく、樹脂層22となる樹脂の最終的な厚さ以下の径のものを用いる。
また、薄体片31の上面および下面に形成される樹脂層22の厚さは、熱伝導シート2の熱伝導性増加のためには薄い方が良いが、接着性の向上のためには厚い方が良い。そのため、樹脂層22の厚さは、薄体片31の上下合わせて薄体片31の厚さの1/7〜1/20程度が良い。
The resin composition 21 of the heat conductive sheet 2 of the heat dissipating substrate according to the present embodiment is mainly composed of a resin composition, for example, a thermosetting resin such as epoxy resin, phenol resin, silicone rubber, polyethylene, polyimide, An acrylic thermoplastic resin or the like is used. Further, the resin composition may be further filled with an inorganic filler such as alumina, boron nitride, or aluminum nitride having good thermal conductivity. The resin composition 21 filled with the inorganic filler is preferable because its thermal conductivity is improved and thermal stress with the thin piece 31 of the ceramic material can be reduced. The filler preferably has a diameter of 1 to 100 μm, and has a diameter equal to or smaller than the final thickness of the resin to be the resin layer 22.
Further, the thickness of the resin layer 22 formed on the upper surface and the lower surface of the thin piece 31 is preferably thin for increasing the thermal conductivity of the thermal conductive sheet 2, but thick for improving the adhesiveness. Better. Therefore, the thickness of the resin layer 22 is preferably about 1/7 to 1/20 of the thickness of the thin body piece 31 when the thin body piece 31 is vertically aligned.

本実施の形態に係わる放熱性基板のベース板4の凹部41の深さは、薄体片31の厚さの20%〜80%であることが望ましい。凹部41の深さが薄体片31の厚さの20%以下の場合、プレス処理中の樹脂のながれを抑制できず薄体片31の位置ずれが生じる。反対に、凹部41の深さが薄体片31の厚さの80%以上の場合、製造時に樹脂組成体21に空隙が残り絶縁耐圧の低下が懸念される。   The depth of the concave portion 41 of the base plate 4 of the heat dissipating substrate according to the present embodiment is desirably 20% to 80% of the thickness of the thin body piece 31. When the depth of the recess 41 is 20% or less of the thickness of the thin piece 31, the flow of the resin during the pressing process cannot be suppressed, and the thin piece 31 is displaced. On the other hand, when the depth of the concave portion 41 is 80% or more of the thickness of the thin piece 31, there is a concern that a void remains in the resin composition 21 during manufacturing and the dielectric breakdown voltage decreases.

本実施の形態に係わる放熱性基板のベース板4の凹部41の面積は薄体片31の総面積の104%以上、144%以下であることが望ましい。凹部41の面積が薄体片31の総面積の104%以下の場合、凹部41の側面と薄体片31の間隔、及び、薄体片31が複数の場合は隣接する薄体片31間の間隔が狭くなるため、樹脂が入り込み難くなるので樹脂組成体21に空隙が発生しやすく、熱伝導性確保の点で望ましくない。また、凹部41の面積が薄体片31の総面積の144%を超える場合、隣接する薄体片31の間隔、及び、ベース板4の凹部41の側面と薄体片31の間隔が広くなるため、樹脂が流れてしまい位置ずれが生じやすくなる。このため、凹部41の面積は薄体片31の総面積の104%から144%であることが望ましい。   The area of the recess 41 of the base plate 4 of the heat dissipation substrate according to the present embodiment is desirably 104% or more and 144% or less of the total area of the thin piece 31. When the area of the recess 41 is 104% or less of the total area of the thin piece 31, the distance between the side surface of the recess 41 and the thin piece 31, and between the adjacent thin pieces 31 when there are a plurality of thin pieces 31. Since the interval becomes narrow, it becomes difficult for the resin to enter, so that a void is easily generated in the resin composition 21, which is not desirable in terms of ensuring thermal conductivity. Moreover, when the area of the recessed part 41 exceeds 144% of the total area of the thin body piece 31, the space | interval of the adjacent thin body piece 31 and the space | interval of the side surface of the recessed part 41 of the base board 4, and the thin body piece 31 become large. For this reason, the resin flows and the positional deviation is likely to occur. For this reason, it is desirable that the area of the recess 41 is 104% to 144% of the total area of the thin piece 31.

本実施の形態に係わる放熱性基板のベース板4に設ける凹部41は、機械加工を行なって得るのが寸法面内均一性の点から望ましいが、その他にも研磨、エッチングによって形成することも可能である。   The recess 41 provided in the base plate 4 of the heat dissipation substrate according to the present embodiment is preferably obtained by machining from the viewpoint of uniformity in the dimensional surface, but can also be formed by polishing or etching. It is.

本実施の形態に係わる放熱性基板の製造方法において薄体30を分割し配置する方法としては、あらかじめ薄体30を薄体片31に分割しておき、一旦所望の間隔を有するパレットに薄体片31を並べ、パレット上に並んだ薄体片31を吸引して樹脂シート25上に移しかえる方法をとることもできる。また、薄体30であるセラミックシートを粘着シート11であるダイシングシートに接着して所望の大きさにカットし、ダイシングシートを拡張して薄体片31の間隔を所望の間隔まで広げた状態で樹脂シート25上に薄体片31を貼り付ける方法をとることもできる。   As a method of dividing and arranging the thin body 30 in the method for manufacturing a heat dissipation substrate according to the present embodiment, the thin body 30 is divided into thin pieces 31 in advance, and the thin body is once placed on a pallet having a desired interval. A method of arranging the pieces 31 and sucking the thin pieces 31 arranged on the pallet and transferring them onto the resin sheet 25 can also be used. In addition, the ceramic sheet as the thin body 30 is bonded to the dicing sheet as the adhesive sheet 11 and cut to a desired size, and the dicing sheet is expanded to widen the distance between the thin pieces 31 to the desired distance. A method of sticking the thin piece 31 on the resin sheet 25 can also be adopted.

本発明の実施の形態1によれば、ベース板4に設けられた凹部41の効果により、熱伝導シート2の中の絶縁性の薄体片31を所定の位置に配置する際に、加熱プレス工程中に薄体片31が樹脂と共に流動し薄体片31の位置ずれが発生することを防止でき、また、樹脂組成体21中の空隙の発生を抑制できる。従って、熱伝導性、可とう性、および絶縁性に優れた放熱性基板を得ることができる。   According to Embodiment 1 of the present invention, when the insulating thin piece 31 in the heat conductive sheet 2 is disposed at a predetermined position due to the effect of the recess 41 provided in the base plate 4, a heating press is used. It is possible to prevent the thin piece 31 from flowing together with the resin during the process and to prevent the thin piece 31 from being displaced, and to suppress the generation of voids in the resin composition 21. Therefore, it is possible to obtain a heat dissipating substrate excellent in thermal conductivity, flexibility, and insulation.

なお、本実施の形態において、放熱性基板1のベース板4の表面に設けられた凹部41は、図1のように複数の薄体片31全てを収められるものを示したが、図4および図5に示すように、ベース板4の表面に設けられた凹部41は、複数の薄体片31全てではなく複数の薄体片31のグループを収められるものとしても良い。また、図6に示すように、凹部41は個々の薄体片31を独立して収められるものとしても良い。   In the present embodiment, the recess 41 provided on the surface of the base plate 4 of the heat dissipating substrate 1 has been shown to accommodate all of the plurality of thin pieces 31 as shown in FIG. As shown in FIG. 5, the concave portion 41 provided on the surface of the base plate 4 may accommodate a group of the plurality of thin body pieces 31 instead of all of the plurality of thin body pieces 31. Moreover, as shown in FIG. 6, the recessed part 41 is good also as what can accommodate each thin piece 31 independently.

また、図7に示すように、薄体片31を収める凹部51は、ヒートシンク5の表面に設けても良く、また、ベース板4およびヒートシンク5の両方の表面に設けてもよい。   Further, as shown in FIG. 7, the recess 51 for accommodating the thin piece 31 may be provided on the surface of the heat sink 5, or may be provided on both surfaces of the base plate 4 and the heat sink 5.

実施の形態2.
図8は本発明の実施の形態2における放熱性基板の概略構成を示す上面からの透視図である。本実施の形態における放熱性基板は薄体片31を樹脂組成体の内部に具備する熱伝導シート2を備えており、熱伝導シート2がベース板4とヒートシンク5との間に設けられている。図8に示すように、ベース板4には複数の薄体片31を収める凹部41が形成されており、凹部41の外周部は離散的に形成された複数の凸部40となっている。これ以外の構成および製造方法は、実施の形態1に示したものと同様であるので、説明を省略する。
Embodiment 2. FIG.
FIG. 8 is a perspective view from above showing a schematic configuration of the heat dissipating substrate in the second embodiment of the present invention. The heat dissipating substrate in the present embodiment includes a heat conductive sheet 2 provided with a thin piece 31 inside the resin composition, and the heat conductive sheet 2 is provided between the base plate 4 and the heat sink 5. . As shown in FIG. 8, the base plate 4 is formed with recesses 41 for accommodating a plurality of thin body pieces 31, and the outer periphery of the recesses 41 is a plurality of discrete protrusions 40. Other configurations and manufacturing methods are the same as those shown in the first embodiment, and thus description thereof is omitted.

本発明の実施の形態2によれば、ベース板4に離散的に設けられた凸部40の効果により、熱伝導シート2の中の絶縁性の薄体片31を所定の位置に配置する際に薄体片31の位置ずれを防止でき、更に、プレス処理時の圧力を逃がす効果が生じるため、樹脂組成体21中の空隙の発生をより有効に抑制できる。従って、熱伝導性、可とう性、および絶縁性に優れた放熱性基板を得ることができる。   According to the second embodiment of the present invention, when the insulating thin piece 31 in the heat conductive sheet 2 is arranged at a predetermined position due to the effect of the convex portions 40 provided discretely on the base plate 4. In addition, the displacement of the thin piece 31 can be prevented, and further, the effect of releasing the pressure during the press treatment is produced, so that the generation of voids in the resin composition 21 can be more effectively suppressed. Therefore, it is possible to obtain a heat dissipating substrate excellent in thermal conductivity, flexibility, and insulation.

なお、本実施の形態において、放熱性基板1のベース板4の表面に設けられた凸部40は薄体片31全体の外周部に設けたものを示したが、凸部40は各々の薄体片31の外周部に対応して設けてもよい。また、凸部40は複数の薄体片31のグループの外周部に設けても良い。   In the present embodiment, the projections 40 provided on the surface of the base plate 4 of the heat dissipation substrate 1 are provided on the outer peripheral portion of the entire thin body piece 31. You may provide corresponding to the outer peripheral part of the body piece 31. FIG. Moreover, you may provide the convex part 40 in the outer peripheral part of the group of the some thin body piece 31. FIG.

実施の形態3.
図9は、本発明の実施の形態3における放熱性基板の概略構成を示す断面図である。
図9に示すように、本実施の形態の放熱性基板は、熱伝導性を有する薄体片31が樹脂組成体21により接着された熱伝導シート2を備えており、熱伝導シート2がベース板4とヒートシンク5の間に設けられている。ベース板4には薄体片31が収まるように凹部41が形成されており、凹部41の底面の周辺部に凹部41の底面よりもう一段深さが大きい溝42が設けられていることの他は実施の形態1に示したものと同様であるので説明を省略する。
Embodiment 3 FIG.
FIG. 9 is a cross-sectional view showing a schematic configuration of the heat dissipating substrate according to Embodiment 3 of the present invention.
As shown in FIG. 9, the heat dissipation substrate of the present embodiment includes a heat conductive sheet 2 in which a thin piece 31 having heat conductivity is bonded by a resin composition 21, and the heat conductive sheet 2 is a base. It is provided between the plate 4 and the heat sink 5. A recess 41 is formed in the base plate 4 so that the thin piece 31 can be accommodated, and a groove 42 having a depth that is one step deeper than the bottom surface of the recess 41 is provided in the periphery of the bottom surface of the recess 41. Since this is the same as that shown in the first embodiment, description thereof is omitted.

本実施の形態においても、熱伝導シート2の中の絶縁性の薄体片31を所定の位置に配置する際に加熱プレス工程中に薄体片31が樹脂と共に流動し薄体片31の位置ずれが発生することを防止でき、更に、ベース板4の凹部41の底部に設けられた溝42によりプレス処理時の圧力を逃がす効果が生じるため、樹脂組成体21中の空隙の発生をより有効に抑制できる。したがって、熱伝導性、可とう性、および絶縁性に優れた放熱性基板を得ることができる。   Also in the present embodiment, when the insulating thin piece 31 in the heat conductive sheet 2 is arranged at a predetermined position, the thin piece 31 flows together with the resin during the heating press step, and the position of the thin piece 31 is reached. Generation of gaps in the resin composition 21 can be prevented more effectively because the occurrence of deviation can be prevented, and the effect of releasing the pressure during the pressing process is produced by the groove 42 provided at the bottom of the recess 41 of the base plate 4. Can be suppressed. Therefore, it is possible to obtain a heat dissipating substrate that is excellent in thermal conductivity, flexibility, and insulation.

実施の形態4.
図10は、本発明の実施の形態4における放熱性基板1の概略構成を示す断面図である。
図10に示すように、本実施の形態の放熱性基板は、熱伝導性を有する薄体片31が樹脂組成体21により接着された熱伝導シート2を備えており、熱伝導シート2がベース板4とヒートシンク5の間に設けられている。ベース板4には薄体片31が収まるように凹部41が形成されており、凹部41の底面に凹部41の周辺ほど凹部41の深さが増加する傾斜面を形成することの他は実施の形態1に示したものと同様であるので説明を省略する。
Embodiment 4 FIG.
FIG. 10 is a cross-sectional view illustrating a schematic configuration of the heat dissipation substrate 1 according to the fourth embodiment of the present invention.
As shown in FIG. 10, the heat dissipation substrate of the present embodiment includes a heat conductive sheet 2 in which a thin piece 31 having heat conductivity is bonded by a resin composition 21, and the heat conductive sheet 2 is a base. It is provided between the plate 4 and the heat sink 5. A recess 41 is formed in the base plate 4 so that the thin piece 31 can be accommodated, and the bottom surface of the recess 41 is formed with an inclined surface in which the depth of the recess 41 increases toward the periphery of the recess 41. Since it is the same as that shown in Embodiment 1, the description thereof is omitted.

本実施の形態においても、熱伝導シート2の中の絶縁性の薄体片31を所定の位置に配置する際に加熱プレス工程中に薄体片31が樹脂と共に流動し薄体片31の位置ずれが発生することを防止でき、更に、ベース板4の凹部41の底部に設けられた傾斜面により、プレス処理時の圧力を逃がす効果が生じるため、樹脂組成体21中の空隙の発生をより有効に抑制できる。従って、熱伝導性、可とう性、および絶縁性に優れた放熱性基板を得ることができる。   Also in the present embodiment, when the insulating thin piece 31 in the heat conductive sheet 2 is arranged at a predetermined position, the thin piece 31 flows together with the resin during the heating press step, and the position of the thin piece 31 is reached. The occurrence of deviation can be prevented, and the inclined surface provided at the bottom of the concave portion 41 of the base plate 4 has an effect of releasing the pressure during the pressing process, so that more voids are generated in the resin composition 21. It can be effectively suppressed. Therefore, it is possible to obtain a heat dissipating substrate excellent in thermal conductivity, flexibility, and insulation.

なお、実施の形態3および実施の形態4において放熱性基板1中の薄体片31が単数である例を図示したが、放熱性基板中の薄体片31は複数であっても良い。   In addition, although the example in which the thin piece 31 in the heat dissipation substrate 1 is single in Embodiment 3 and Embodiment 4, the thin piece 31 in the heat dissipation substrate may be plural.

実施の形態5.
図11は、本発明の実施の形態5における放熱性基板の概略構成を示す断面図である。また、図12は、本発明の実施の形態5の放熱性基板の、薄体片31とヒートシンク5の重なりの関係の一部を、放熱性基板の上面から透視したものである。
図11に示すように、本実施の形態の放熱性基板は熱伝導性を有する複数の薄体片31が樹脂組成体21により接着された熱伝導シート2を備えており、熱伝導シート2がベース板4と複数のヒートシンク5の間に設けられている。ベース板4には薄体片31が収まるように凹部41が形成されている。薄体片31は、ヒートシンク5と完全に重畳しているか、あるいは、複数のヒートシンク5と重畳しており、上面から見た図12(a)、(b)に示す通り、薄体片31の表面上の重心311を通る同平面上の任意の直線を引いた全ての場合に、この直線で分けられた両側においてその薄体片31の少なくとも一部がヒートシンク5と重畳されるように薄体片31とヒートシンク5が配設されている。
Embodiment 5. FIG.
FIG. 11 is a cross-sectional view showing a schematic configuration of the heat dissipation substrate in the fifth embodiment of the present invention. FIG. 12 is a perspective view of a part of the overlapping relationship between the thin piece 31 and the heat sink 5 of the heat dissipating substrate according to the fifth embodiment of the present invention from the top surface of the heat dissipating substrate.
As shown in FIG. 11, the heat dissipation substrate of the present embodiment includes a heat conductive sheet 2 in which a plurality of thin body pieces 31 having heat conductivity are bonded by a resin composition 21, and the heat conductive sheet 2 is It is provided between the base plate 4 and the plurality of heat sinks 5. A recess 41 is formed in the base plate 4 so that the thin piece 31 can be accommodated. The thin piece 31 is completely overlapped with the heat sink 5 or is overlapped with the plurality of heat sinks 5, and as shown in FIGS. In all cases where an arbitrary straight line on the same plane passing through the center of gravity 311 on the surface is drawn, at least a part of the thin piece 31 is overlapped with the heat sink 5 on both sides divided by the straight line. A piece 31 and a heat sink 5 are provided.

本実施の形態によると、プレス加工時に薄体片31にかかる圧力に大きく偏りが発生しないため、プレス加工時に薄体片31の浮き上がりを防止でき薄体片31の位置ずれを防止できる。   According to the present embodiment, the pressure applied to the thin piece 31 during press working does not greatly deviate, so that the thin piece 31 can be prevented from being lifted during press working, and the positional deviation of the thin piece 31 can be prevented.

図13は、本発明の実施の形態と比較するための、薄体片31とヒートシンク5の重なりの関係を放熱性基板の上面から見た透視図である。図13(a)、(b)に示すように、薄体片31の表面上の重心311を通る同平面上にある直線を引き、この直線で分けられた少なくとも片側において前記ヒートシンク5と薄体片31が重畳していないように薄体片31とヒートシンク5が配設される場合は、プレス加工時に薄体片31にかかる圧力に大きく偏りが発生するため、放熱性基板の製造工程におけるプレス加工時に薄体片31の位置ずれが発生する可能性がある。   FIG. 13 is a perspective view of the overlapping relationship between the thin piece 31 and the heat sink 5 as seen from the top surface of the heat dissipation substrate, for comparison with the embodiment of the present invention. As shown in FIGS. 13A and 13B, a straight line on the same plane passing through the center of gravity 311 on the surface of the thin piece 31 is drawn, and the heat sink 5 and the thin body are at least on one side divided by the straight line. When the thin piece 31 and the heat sink 5 are disposed so that the pieces 31 do not overlap with each other, the pressure applied to the thin piece 31 is greatly biased during the pressing process. There is a possibility that displacement of the thin piece 31 occurs during processing.

実施の形態6.
図14は、本発明の実施の形態6におけるパワーモジュール7の概略構成を示す断面図であり、実施の形態1の放熱性基板1を用いたものである。
本実施の形態のパワーモジュール7は、発熱体となるパワー半導体素子6が放熱性基板1のヒートシンク5上に搭載され、パワー半導体素子6上部の電極12と放熱性基板1のヒートシンク5はリードフレーム8と接続されており、上記構成部材がモールド樹脂9で封止されている。また、放熱性基板1のベース板4はヒートスプレッダ10に接着されている。ここで、ヒートスプレッダ10とは金属製の放熱構造を有するものである。放熱性基板1はベース板4とヒートシンク5の間に熱伝導シート2を備えたものであり、放熱性基板2は薄体片31を樹脂組成体21の内部に備えている。また、ベース板4の熱伝導シート2に接する面には凹部41が設けられている。
Embodiment 6 FIG.
FIG. 14 is a cross-sectional view showing a schematic configuration of the power module 7 according to Embodiment 6 of the present invention, in which the heat dissipation substrate 1 of Embodiment 1 is used.
In the power module 7 of the present embodiment, a power semiconductor element 6 serving as a heating element is mounted on a heat sink 5 of the heat dissipation substrate 1, and the electrode 12 on the power semiconductor element 6 and the heat sink 5 of the heat dissipation substrate 1 are connected to a lead frame. 8, and the constituent members are sealed with a mold resin 9. The base plate 4 of the heat dissipation substrate 1 is bonded to the heat spreader 10. Here, the heat spreader 10 has a metal heat dissipation structure. The heat dissipating substrate 1 includes a heat conductive sheet 2 between a base plate 4 and a heat sink 5, and the heat dissipating substrate 2 includes a thin piece 31 inside a resin composition 21. Further, a recess 41 is provided on the surface of the base plate 4 that contacts the heat conductive sheet 2.

本実施の形態において、使用中に動作が不安定になることを抑制したパワーモジュール7を得ることができる。   In the present embodiment, it is possible to obtain the power module 7 in which the operation is prevented from becoming unstable during use.

なお、本実施の形態におけるパワーモジュールでは、放熱性基板1に実施の形態1のものを示したが、放熱性基板1としては実施の形態2ないし5のいずれかのものを用いても良い。   In the power module in the present embodiment, the heat radiating substrate 1 is the one in the first embodiment, but the heat radiating substrate 1 may be any one in the second to fifth embodiments.

以上、本発明の実施の形態について薄体片31の形状は正方形であることを前提に説明してきたが、本発明はこれに限定されることなく、薄体片31の形状は、長方形、三角形、六角形、または、不定形であっても良い。   As described above, the embodiment of the present invention has been described on the assumption that the shape of the thin piece 31 is a square. However, the present invention is not limited to this, and the shape of the thin piece 31 may be a rectangle or a triangle. , Hexagonal or indeterminate.

次に、本発明における放熱性基板の製造方法と、それによって得られる放熱性基板について具体的に説明する。   Next, the manufacturing method of the heat dissipation substrate in the present invention and the heat dissipation substrate obtained thereby will be specifically described.

実施例1〜5.
実施の形態1に関わる放熱性基板の一例として、薄体片が複数の放熱性基板およびその作製方法について述べる。放熱性基板を構成するベース板、薄体片、ヒートシンクは表面処理を行ったものを用いた。ベース板、ヒートシンクには銅を用いた。ベース板、ヒートシンク表面は酸処理を行い、その後シランカップリング処理および110℃、5分の加熱処理を行なった。ベース板に形成された30×33.3mmの凹部に厚さ約100μmの樹脂シートを置き、その上に、薄体片として3mm角、厚さ0.350mmの窒化アルミニウム板を0.3mmの間隔で縦9列、横10列ずつ並べた。薄体片と凹部端の間隔は0.3mmとした。薄体片の表面処理としてはベース板と同様にシランカップリング処理を行なった。
Examples 1-5.
As an example of the heat dissipating substrate according to the first embodiment, a thin heat dissipating substrate having a plurality of thin pieces and a manufacturing method thereof will be described. The base plate, thin piece, and heat sink constituting the heat dissipating substrate were subjected to surface treatment. Copper was used for the base plate and the heat sink. The base plate and heat sink surface were subjected to an acid treatment, and then a silane coupling treatment and a heat treatment at 110 ° C. for 5 minutes. A resin sheet with a thickness of about 100 μm is placed in a 30 × 33.3 mm recess formed on the base plate, and a 3 mm square aluminum nitride plate with a thickness of 0.350 mm is placed as a thin piece on the resin sheet at a distance of 0.3 mm. Were arranged in 9 rows and 10 rows. The distance between the thin piece and the concave end was 0.3 mm. As the surface treatment of the thin piece, silane coupling treatment was performed in the same manner as the base plate.

薄体片を並べる方法としては、一旦所望の間隔を有するパレットに薄体片を並べ、パレット上に並んだ薄体片を吸引して樹脂シート上に移しかえる方法を用いた。樹脂組成体はエポキシ樹脂を用い、フィラーとしてアルミナを含有したものを用いた。   As a method of arranging the thin pieces, a method was used in which the thin pieces were once arranged on a pallet having a desired interval, and the thin pieces arranged on the pallet were sucked and transferred onto the resin sheet. The resin composition used an epoxy resin and contained alumina as a filler.

所望の間隔に並べた薄体片の上に、さらに厚さ100μmの樹脂シートとヒートシンクを配置し、100kg/cmの圧力、100℃,5分および180℃,30分の条件で真空プレスすることによって放熱性基板を得た。真空プレス後の樹脂層の厚さは上下それぞれ15μmであった。このとき、ベース板の凹部の面積は薄体片の総面積の123%であった。
ここで、実施例1における放熱性基板のベース板の凹部の深さは0.075mm、薄体片の厚さに対する凹部の深さの割合は21%とした。以下、実施例2〜5における凹部の深さ(薄体片の厚さに対する凹部の深さの割合)は、それぞれ0.1mm(29%)、0.15mm(43%)、0.2mm(57%)、0.25mm(71%)とした。
A resin sheet having a thickness of 100 μm and a heat sink are further arranged on thin pieces arranged at a desired interval, and vacuum pressing is performed under the conditions of 100 kg / cm 2 pressure, 100 ° C., 5 minutes and 180 ° C., 30 minutes. Thus, a heat dissipating substrate was obtained. The thickness of the resin layer after the vacuum pressing was 15 μm in each of the upper and lower sides. At this time, the area of the recess of the base plate was 123% of the total area of the thin piece.
Here, the depth of the recess of the base plate of the heat dissipation substrate in Example 1 was 0.075 mm, and the ratio of the depth of the recess to the thickness of the thin piece was 21%. Hereinafter, the depths of the recesses in Examples 2 to 5 (ratio of the depth of the recesses to the thickness of the thin piece) were 0.1 mm (29%), 0.15 mm (43%), and 0.2 mm (respectively). 57%) and 0.25 mm (71%).

実施例1〜5による放熱性基板の場合、薄体片の位置ずれ、および、樹脂組成体の空隙が発生しなかった。凹部の効果により、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。なお、実施例1〜5の放熱性基板の熱伝導率については、高分子材料にセラミックス多面体を配置した複合セラミックスシートの約1.3倍と高いものが得られた。   In the case of the heat dissipating substrates according to Examples 1 to 5, the position shift of the thin piece and the void of the resin composition did not occur. Due to the effect of the recesses, it was possible to prevent the displacement of the thin piece due to the resin flow during pressing, and it was possible to obtain a heat dissipating substrate in which the insulating thin piece was arranged inside the recess. In addition, about the thermal conductivity of the heat dissipation board | substrate of Examples 1-5, the thing about 1.3 times as high as the composite ceramic sheet which has arrange | positioned the ceramic polyhedron to the polymeric material was obtained.

実施例6.
実施の形態1に関わる放熱性基板の一例として、放熱性基板は、薄体片間の間隔および薄体片と凹部端の間隔を0.5mm、薄体片の総面積に対するベース板の凹部の面積を140%とした。上記以外の条件は実施例2と同じとした。
Example 6
As an example of the heat dissipating substrate according to the first embodiment, the heat dissipating substrate has a space between thin pieces and a distance between the thin piece and the end of the recessed portion of 0.5 mm, and the recesses of the base plate with respect to the total area of the thin pieces. The area was 140%. Conditions other than the above were the same as in Example 2.

実施例6による放熱性基板の場合、薄体片の位置ずれ、および、樹脂組成体の空隙が発生しなかった。凹部の効果により、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。   In the case of the heat dissipating substrate according to Example 6, the displacement of the thin piece and the void of the resin composition did not occur. Due to the effect of the recesses, it was possible to prevent the displacement of the thin piece due to the resin flow during pressing, and it was possible to obtain a heat dissipating substrate in which the insulating thin piece was arranged inside the recess.

実施例7〜8.
実施の形態1に関わる放熱性基板の一例として、薄体片が1個の場合の放熱性基板について述べる。
放熱性基板を構成するベース板、薄体片、ヒートシンクに表面処理を行い、凹部を形成したベース板に樹脂シートを置き、その上に薄体片として30mm角、厚さ0.350mmの窒化アルミニウム板を1枚置いた。その上に100μm厚さの樹脂シートを乗せて、凹部を有するヒートシンクを所定の位置に置き、真空プレスを行い放熱性基板を得た。凹部の深さは0.1mmで形成したので、この時薄体片の厚さに対する凹部の深さの割合は29%であった。樹脂組成体はエポキシ樹脂を用い、フィラーとしてアルミナを含有したものを用いた。実施例7の場合、薄体片と凹部端までの距離を0.3mmとし、ベース板の凹部の面積は薄体片31の面積の104%であった。実施例8の場合、薄体片と凹部端までの距離を0.5mmとし、ベース板の凹部の面積は薄体片の面積の107%であった。
Examples 7-8.
As an example of the heat dissipating substrate according to the first embodiment, a heat dissipating substrate in the case of one thin piece will be described.
Surface treatment is applied to the base plate, thin piece, and heat sink that make up the heat-dissipating substrate, and a resin sheet is placed on the base plate on which the recesses are formed, and a 30 mm square and 0.350 mm thick aluminum nitride piece is formed thereon. A plate was placed. A resin sheet having a thickness of 100 μm was placed thereon, a heat sink having a concave portion was placed at a predetermined position, and vacuum pressing was performed to obtain a heat dissipation substrate. Since the depth of the recess was formed at 0.1 mm, the ratio of the depth of the recess to the thickness of the thin piece at this time was 29%. The resin composition used an epoxy resin and contained alumina as a filler. In the case of Example 7, the distance between the thin piece and the end of the concave portion was 0.3 mm, and the area of the concave portion of the base plate was 104% of the area of the thin piece 31. In the case of Example 8, the distance between the thin piece and the end of the concave portion was 0.5 mm, and the area of the concave portion of the base plate was 107% of the area of the thin piece.

実施例7〜8による放熱性基板の場合、薄体片の位置ずれ、および、樹脂組成体の空隙が発生しなかった。凹部の効果により、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。   In the case of the heat dissipating substrates according to Examples 7 to 8, there was no displacement of the thin piece and no voids in the resin composition. Due to the effect of the recesses, it was possible to prevent the displacement of the thin piece due to the resin flow during pressing, and it was possible to obtain a heat dissipating substrate in which the insulating thin piece was arranged inside the recess.

実施例9〜12.
実施の形態1に関わる放熱性基板の一例として、本実施例に係わる放熱性基板においては、薄体片の厚さおよび凹部の深さ以外の構成は実施例1と同様としたので、これらの説明は省略する。実施例9〜12の放熱性基板では薄体片の厚さを0.635mmとした。凹部41の深さについては、実施例9の場合は凹部の深さを0.15mmとしたので薄体片の厚さに対する凹部の深さの割合は24%であった。実施例10の場合は凹部の深さを0.20mmとしたので薄体片の厚さに対する凹部の深さの割合は31%であった。実施例11の場合は凹部の深さを0.30mmとしたので薄体片の厚さに対する凹部の深さの割合は47%であった。実施例12の場合は凹部の深さを0.35mmとしたので薄体片の厚さに対する凹部の深さの割合は55%であった。
Examples 9-12.
As an example of the heat dissipating substrate according to the first embodiment, in the heat dissipating substrate according to the present example, the configuration other than the thickness of the thin piece and the depth of the recess is the same as that of the first example. Description is omitted. In the heat dissipating substrates of Examples 9 to 12, the thickness of the thin piece was 0.635 mm. About the depth of the recessed part 41, since the depth of the recessed part was 0.15 mm in the case of Example 9, the ratio of the depth of the recessed part with respect to the thickness of a thin piece was 24%. In the case of Example 10, since the depth of the recess was 0.20 mm, the ratio of the depth of the recess to the thickness of the thin piece was 31%. In the case of Example 11, since the depth of the recess was 0.30 mm, the ratio of the depth of the recess to the thickness of the thin piece was 47%. In the case of Example 12, since the depth of the recess was 0.35 mm, the ratio of the depth of the recess to the thickness of the thin piece was 55%.

実施例9〜12による放熱性基板の場合、薄体片の位置ずれ、および、樹脂組成体の空隙が発生しなかった。凹部の効果により、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。   In the case of the heat dissipating substrates according to Examples 9 to 12, the positional deviation of the thin piece and the voids of the resin composition did not occur. Due to the effect of the recesses, it was possible to prevent the displacement of the thin piece due to the resin flow during pressing, and it was possible to obtain a heat dissipating substrate in which the insulating thin piece was arranged inside the recess.

実施例13.
実施の形態3に関わる放熱性基板の一例として、薄体片が1個の場合の実施例について述べる。放熱性基板を構成するベース板、薄体片、ヒートシンクの表面処理を行い、周辺部に溝を備えた凹部を形成したベース板に厚さ100μmの樹脂シートを置き、その上に薄体片として30mm角、厚さ0.350mmの窒化アルミニウムを1枚置いた。その上に厚さ100μmの樹脂シートを乗せて、ヒートシンクを所定の位置に置き、真空プレスを行い放熱性基板を得た。ベース板の凹部の面積は薄体片の総面積の104%、凹部の深さは0.1mmとし、凹部の周辺に設けた溝の深さは0.2mmとした。その他の構成は実施例1の放熱性基板と同様とした。
Example 13
As an example of the heat dissipating substrate according to the third embodiment, an example in the case of one thin piece will be described. Surface treatment of the base plate, thin piece, and heat sink constituting the heat-dissipating substrate is performed, and a resin sheet having a thickness of 100 μm is placed on the base plate in which a recess having a groove is formed in the peripheral portion, and the thin piece is formed thereon. One piece of aluminum nitride having a 30 mm square and a thickness of 0.350 mm was placed. A resin sheet having a thickness of 100 μm was placed thereon, a heat sink was placed at a predetermined position, and vacuum pressing was performed to obtain a heat radiating substrate. The area of the recess of the base plate was 104% of the total area of the thin piece, the depth of the recess was 0.1 mm, and the depth of the groove provided around the recess was 0.2 mm. Other configurations were the same as those of the heat dissipation substrate of Example 1.

凹部の深さを場所によって変えることで樹脂とベース板との接着力を向上でき、凹部の効果で樹脂量をコントロールし、プレス時の樹脂流れによる薄体片の位置ずれと樹脂組成体の空隙発生とを防止でき、凹部の内部に薄体片を配置した放熱性基板を得ることができた。   The adhesive strength between the resin and the base plate can be improved by changing the depth of the recess depending on the location, the amount of resin can be controlled by the effect of the recess, the displacement of the thin piece due to the resin flow during pressing, and the gap of the resin composition Generation | occurrence | production can be prevented and the heat dissipation board | substrate which has arrange | positioned the thin piece inside the recessed part was able to be obtained.

実施例14.
実施の形態4に関わる放熱性基板の一例として、薄体片が1個の場合の実施例について述べる。放熱性基板を構成するベース板、薄体片、ヒートシンクの表面処理を行い、凹部の底面部に凹部の中央から周辺に向けて凹部の深さが増加する傾斜有する凹部を形成したベース板に厚さ100μmの樹脂シートを置き、その上に薄体片として30mm角、厚さ0.350mmの窒化アルミニウムを1枚置いた。その上に厚さ100μmの樹脂シートを乗せて、ヒートシンクを所定の位置に置き、真空プレスを行い放熱性基板を得た。ベース板の凹部の面積は薄体片の総面積の104%、凹部の深さは浅い箇所で0.1mmとした。その他の構成は実施例1の放熱性基板と同様とした。
Example 14 FIG.
As an example of the heat dissipating substrate according to the fourth embodiment, an example in the case of one thin piece will be described. Thickness is applied to the base plate that forms the base plate, the thin piece, and the heat sink that constitute the heat-dissipating substrate, and the bottom surface of the recess has an inclined recess that increases in depth from the center to the periphery of the recess. A resin sheet having a thickness of 100 μm was placed, and a piece of aluminum nitride having a thickness of 30 mm square and a thickness of 0.350 mm was placed thereon as a thin piece. A resin sheet having a thickness of 100 μm was placed thereon, a heat sink was placed at a predetermined position, and vacuum pressing was performed to obtain a heat radiating substrate. The area of the concave portion of the base plate was 104% of the total area of the thin piece, and the depth of the concave portion was 0.1 mm at a shallow portion. Other configurations were the same as those of the heat dissipation substrate of Example 1.

ベース板の凹部底面に傾斜をつけることにより、凹部の効果で樹脂量をコントロールし圧力を逃がすことができたので、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、ベース板の凹部の内部の所定の位置に薄体片を配置した放熱性基板を得ることができた。   By inclining the bottom surface of the concave portion of the base plate, the amount of resin can be controlled by the effect of the concave portion and the pressure can be relieved, so that the displacement of the thin piece due to the resin flow during pressing can be prevented. It was possible to obtain a heat dissipating substrate in which a thin piece was disposed at a predetermined position in the interior of the substrate.

実施例15.
実施の形態1に関わる放熱性基板の一例として、凹部がヒートシンクに設けられた場合の実施例について述べる。実施例1と同様に、放熱性基板を構成するベース板、薄体片、ヒートシンクの表面処理を行い、凹部のないベース板に厚さ100μmの樹脂シートを置き、その上に10×30mm角で、厚さ0.350mmの窒化アルミニウムを2枚置いた。その上に厚さ100μmの樹脂シートを乗せて、10.6×30.6mmの凹部を有するヒートシンクを所定の位置に置き、真空プレスを行い放熱性基板を得た。ヒートシンクの凹部の面積は薄体片の総面積の108%、凹部の深さは0.1mmで形成した。樹脂組成体はエポキシ樹脂を用い、フィラーとしてアルミナを含有したものを用いた。
Example 15.
As an example of the heat dissipating substrate according to the first embodiment, an example in which a concave portion is provided in a heat sink will be described. As in Example 1, surface treatment of the base plate, thin piece, and heat sink constituting the heat-dissipating substrate was performed, and a resin sheet having a thickness of 100 μm was placed on the base plate without a recess, and a 10 × 30 mm square was placed thereon. Two pieces of aluminum nitride having a thickness of 0.350 mm were placed. A resin sheet having a thickness of 100 μm was placed thereon, a heat sink having a 10.6 × 30.6 mm recess was placed at a predetermined position, and vacuum pressing was performed to obtain a heat dissipation substrate. The area of the recess of the heat sink was 108% of the total area of the thin piece, and the depth of the recess was 0.1 mm. The resin composition used an epoxy resin and contained alumina as a filler.

実施例15による放熱性基板の場合、薄体片の位置ずれ、および、樹脂組成体の空隙が発生しなかった。凹部の効果により、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。   In the case of the heat dissipating substrate according to Example 15, the displacement of the thin piece and the void of the resin composition did not occur. Due to the effect of the recesses, it was possible to prevent the displacement of the thin piece due to the resin flow during pressing, and it was possible to obtain a heat dissipating substrate in which the insulating thin piece was arranged inside the recess.

実施例16.
実施の形態1に関わる放熱性基板の一例として、凹部が各薄体片に対応して設けられた場合の実施例について述べる。放熱性基板を構成するベース板、薄体片、ヒートシンクの表面処理を行い、0.3mm間隔で3.6mm角の凹部(縦9列、横10列)を形成したベース板に厚さ100μmの樹脂シートを置き、それぞれの凹部に薄体片として3mm角、厚さ0.35mmの窒化アルミニウムを置いた。その上に厚さ100μmの樹脂シートを乗せて、ヒートシンクを所定の位置に置き、真空プレスを行ない放熱性基板を得た。各凹部の面積はそれぞれの薄体片の面積の144%、凹部の深さは0.1mmとした。樹脂組成体は、エポキシ樹脂を用い、フィラーとしてアルミナを含有したものを用いた。
Example 16
As an example of the heat dissipating substrate according to the first embodiment, an example in which a recess is provided corresponding to each thin piece will be described. The base plate, thin piece, and heat sink that make up the heat-dissipating substrate are subjected to surface treatment, and a 3.6 mm square recess (9 rows by 10 rows) is formed at intervals of 0.3 mm. A resin sheet was placed, and 3 mm square and 0.35 mm thick aluminum nitride was placed as a thin piece in each recess. A resin sheet having a thickness of 100 μm was placed thereon, a heat sink was placed at a predetermined position, and vacuum pressing was performed to obtain a heat dissipation substrate. The area of each recess was 144% of the area of each thin piece, and the depth of the recess was 0.1 mm. The resin composition used was an epoxy resin containing alumina as a filler.

実施例16による放熱性基板の場合、薄体片の位置ずれ、および、樹脂組成体の空隙が発生しなかった。各薄体片に対応して設けられた凹部の効果により、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。   In the case of the heat dissipating substrate according to Example 16, the displacement of the thin piece and the void of the resin composition did not occur. Due to the effect of the concave portion provided corresponding to each thin piece, the displacement of the thin piece due to the resin flow during pressing can be prevented, and a heat dissipating substrate having an insulating thin piece disposed inside the concave portion is obtained. I was able to.

実施例17.
実施の形態5に関わる放熱性基板の一例として、薄体片が複数のヒートシンクと重畳している放熱性基板の実施例について述べる。
実施例2と同様に、放熱性基板を構成するベース板、薄体片、ヒートシンクの表面処理を行い、ベース板に形成された凹部に約100μmの厚さの樹脂シートを置き、その上に薄体片として3mm角、厚さ0.350mmの窒化アルミニウム板を0.3mmの間隔で縦9列、横10列に並べた。その上に100μm厚さの樹脂シートをのせて、ヒートシンクを所定の位置に置き、真空プレスを行い放熱性基板を得た。この際、ヒートシンクとヒートシンクの間に必ず1枚の薄体片があるようにヒートシンクの位置を決めた。ヒートシンク間に必ず1枚の薄体片を存在させることにより、均等に真空プレスの圧力がかかり、薄体片が傾斜するのを防止することができる。樹脂組成体はエポキシ樹脂を用い、フィラーとしてアルミナを含有したものを用いた。
Example 17.
As an example of the heat dissipation substrate according to the fifth embodiment, an example of a heat dissipation substrate in which a thin piece overlaps a plurality of heat sinks will be described.
As in Example 2, surface treatment of the base plate, thin piece, and heat sink constituting the heat-dissipating substrate was performed, a resin sheet having a thickness of about 100 μm was placed in the recess formed in the base plate, and a thin sheet was placed thereon. As body pieces, aluminum nitride plates having a size of 3 mm square and a thickness of 0.350 mm were arranged in 9 rows and 10 rows at intervals of 0.3 mm. A resin sheet having a thickness of 100 μm was placed thereon, a heat sink was placed at a predetermined position, and vacuum pressing was performed to obtain a heat radiating substrate. At this time, the position of the heat sink was determined so that there was always one thin piece between the heat sink and the heat sink. By always having one thin piece between the heat sinks, it is possible to uniformly apply the pressure of the vacuum press and prevent the thin piece from being inclined. The resin composition used an epoxy resin and contained alumina as a filler.

実施例17による放熱性基板の場合、薄体片の位置ずれ、および、樹脂組成体の空隙が発生しなかった。凹部およびヒートシンクと薄体片の配置の効果により、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。   In the case of the heat dissipating substrate according to Example 17, the positional deviation of the thin piece and the void of the resin composition did not occur. Due to the effect of the arrangement of the recess and heat sink and thin piece, it is possible to prevent the displacement of the thin piece due to the resin flow during pressing, and it is possible to obtain a heat dissipation substrate with an insulating thin piece arranged inside the concave portion It was.

実施例18.
実施の形態6に関わるパワーモジュールの一例として、実施例1の放熱性基板を用いて作製したパワーモジュールの実施例について述べる。実施例2の放熱性基板のヒートシンク上にパワー半導体素子を設置し、放熱性基板のヒートシンクとパワー半導体素子上部の電極にリードフレームを接続後に樹脂でモールドし、また、放熱性基板のベース板にヒートスプレッダを接着し、パワーモジュールを得た。
Example 18
As an example of the power module according to the sixth embodiment, an example of a power module manufactured using the heat dissipating substrate of Example 1 will be described. The power semiconductor element is installed on the heat sink of the heat dissipating substrate of Example 2, the lead frame is connected to the heat sink of the heat dissipating substrate and the upper electrode of the power semiconductor element, and then molded with resin. A heat spreader was bonded to obtain a power module.

実施例2の放熱性基板を用いて作製した本実施の形態のパワーモジュールに対して、「−40℃での30分間保持と125℃での30分間保持」を1サイクルとして、300サイクルを施したヒートサイクル試験を施したところ、放熱性基板におけるベース板と樹脂層、ヒートシンクと樹脂層、熱伝導シート内の薄体片と樹脂層の剥離は認められず放熱性を維持することができ、高容量化が可能となった。   For the power module of the present embodiment manufactured using the heat-dissipating substrate of Example 2, 300 cycles were performed with “holding at −40 ° C. for 30 minutes and holding at 125 ° C. for 30 minutes” as one cycle. When the heat cycle test was performed, the base plate and the resin layer in the heat radiating substrate, the heat sink and the resin layer, the peeling of the thin piece and the resin layer in the heat conductive sheet were not recognized, and the heat dissipation can be maintained. High capacity can be achieved.

比較例1〜4.
実施の形態1に係る放熱性基板の比較例として、薄体片の厚さを0.635mmとし、ヒートシンク表面に設けられた凹部の深さが0.05mm、薄体片の厚さに対する凹部の深さの割合が14%である比較例1の放熱性基板を作製した。また、比較例2として、凹部の深さが0.05mm、薄体片の厚さが0.635mm、薄体片の厚さに対する凹部の深さの割合が8%の放熱性基板を、比較例3として、凹部の深さが0.075mm、薄体片の厚さが0.635mm、薄体片の厚さに対する凹部の深さの割合が12%の放熱性基板を、比較例4として、凹部の深さが0.10mm、薄体片の厚さが0.635mm、薄体片の厚さに対する凹部の深さの割合が16%の放熱性基板を、それぞれ作製した。上記以外は実施例1と同じとした。
Comparative Examples 1-4.
As a comparative example of the heat dissipation substrate according to the first embodiment, the thickness of the thin piece is 0.635 mm, the depth of the concave portion provided on the surface of the heat sink is 0.05 mm, and the thickness of the concave portion with respect to the thickness of the thin piece is The heat dissipation board | substrate of the comparative example 1 whose depth ratio is 14% was produced. Further, as Comparative Example 2, a heat radiating substrate having a recess depth of 0.05 mm, a thin piece thickness of 0.635 mm, and a ratio of the concave portion depth to the thin piece thickness of 8% was compared. As Example 3, a heat-radiating substrate having a recess depth of 0.075 mm, a thin piece thickness of 0.635 mm, and a ratio of the concave portion depth to the thin piece thickness of 12% is referred to as Comparative Example 4. A heat-dissipating substrate having a recess depth of 0.10 mm, a thin piece thickness of 0.635 mm, and a ratio of the concave portion depth to the thin piece thickness of 16% was produced. The rest was the same as in Example 1.

比較例1〜4による放熱性基板の場合、樹脂組成体の空隙は発生しなかったが、薄体片の位置ずれが発生した。   In the case of the heat dissipating substrates according to Comparative Examples 1 to 4, no gaps in the resin composition occurred, but the thin piece was displaced.

比較例5.
比較例として、放熱性基板の凹部の深さを0.3mmとする以外は実施例1と同じ放熱性基板を作製した。このとき薄体片の厚さに対する凹部の深さの割合は86%であった。
Comparative Example 5
As a comparative example, the same heat dissipating substrate as in Example 1 was produced except that the depth of the concave portion of the heat dissipating substrate was 0.3 mm. At this time, the ratio of the depth of the recess to the thickness of the thin piece was 86%.

比較例5による放熱性基板の場合、薄体片の位置ずれは発生しなかったが、樹脂組成体に空隙が発生した。   In the case of the heat dissipating substrate according to Comparative Example 5, the thin piece was not displaced, but voids were generated in the resin composition.

表1に実施例1ないし実施例12および比較例1ないし比較例5の結果をまとめた。表1に示されるように、薄体片の厚さに対する凹部の深さの割合が20%以下の場合には薄体片の位置ずれが発生し、80%以上の場合には樹脂組成体に空隙が発生したが、薄体片の厚さに対する凹部の深さの割合が20〜80%のものでは、プレス時の樹脂流れによる薄体片の位置ずれを防止でき、凹部の内部に絶縁性の薄体片を配置した放熱性基板を得ることができた。   Table 1 summarizes the results of Examples 1 to 12 and Comparative Examples 1 to 5. As shown in Table 1, when the ratio of the depth of the recess to the thickness of the thin piece is 20% or less, the thin piece is displaced, and when it is 80% or more, the resin composition has When the ratio of the depth of the concave portion to the thickness of the thin piece is 20 to 80%, the thin piece can be prevented from being displaced due to the resin flow during pressing, and the inside of the concave portion is insulative. The heat dissipation board | substrate which has arrange | positioned the thin-body piece of this was able to be obtained.

本発明の実施の形態1における放熱性基板の概略構成を示す上面からの透視図である。It is a perspective view from the upper surface which shows schematic structure of the heat dissipation board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における放熱性基板の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat dissipation board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における放熱性基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the heat dissipation board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における放熱性基板の概略構成を示す上面からの透視図である。It is a perspective view from the upper surface which shows schematic structure of the heat dissipation board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における放熱性基板の概略構成を示す上面からの透視図である。It is a perspective view from the upper surface which shows schematic structure of the heat dissipation board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における放熱性基板の概略構成を示す上面からの透視図である。It is a perspective view from the upper surface which shows schematic structure of the heat dissipation board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における放熱性基板の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat dissipation board | substrate in Embodiment 1 of this invention. 本発明の実施の形態2における放熱性基板の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat dissipation board | substrate in Embodiment 2 of this invention. 本発明の実施の形態3における放熱性基板の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat dissipation board | substrate in Embodiment 3 of this invention. 本発明の実施の形態4における放熱性基板の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat dissipation board | substrate in Embodiment 4 of this invention. 本発明の実施の形態5における放熱性基板の一部の概略構成を示す断面図である。It is sectional drawing which shows the one part schematic structure of the heat dissipation board | substrate in Embodiment 5 of this invention. 本発明の実施の形態5における放熱性基板の一部の概略構成を示す上面からの透視図である。It is a perspective view from the upper surface which shows the schematic structure of a part of heat dissipation board | substrate in Embodiment 5 of this invention. 本発明の実施の形態5との比較のための放熱性基板の一部の概略構成を示す上面からの透視図である。It is a perspective view from the upper surface which shows schematic structure of a part of heat dissipation board | substrate for the comparison with Embodiment 5 of this invention. 本発明の実施の形態6におけるパワーモジュールの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the power module in Embodiment 6 of this invention.

符号の説明Explanation of symbols

1 放熱性基板、2 熱伝導シート、21 樹脂組成体、22 樹脂層、25,26 樹脂シート、30 薄体、31 薄体片、311 薄体片表面の重心点、4 ベース板、40 凸部、41 凹部、42 溝、5ヒートシンク 、51 凹部、6 パワー半導体素子、7 パワーモジュール、8 リードフレーム、9 モールド樹脂、10 ヒートスプレッダ、11 粘着シート、12 電極   DESCRIPTION OF SYMBOLS 1 Heat dissipation board, 2 Thermal conductive sheet, 21 Resin composition, 22 Resin layer, 25, 26 Resin sheet, 30 Thin body, 31 Thin piece, 311 Center of gravity of thin piece surface, 4 Base plate, 40 Convex part , 41 recess, 42 groove, 5 heat sink, 51 recess, 6 power semiconductor element, 7 power module, 8 lead frame, 9 mold resin, 10 heat spreader, 11 adhesive sheet, 12 electrode

Claims (12)

絶縁性の薄体片を樹脂組成体の内部に具備する熱伝導シートと、
前記熱伝導シートの一方の面に接して設けられたヒートシンクと、
前記熱伝導シートの他方の面に接して設けられたベース板とを備え、
前記ヒートシンクの前記熱伝導シートに接する面および前記ベース板の前記熱伝導シートに接する面の少なくとも一方に前記薄体片が収まる凹部を有することを特徴とする放熱性基板。
A heat conductive sheet comprising an insulating thin piece inside the resin composition; and
A heat sink provided in contact with one surface of the heat conductive sheet;
A base plate provided in contact with the other surface of the heat conductive sheet,
A heat dissipating substrate, comprising: a concave portion in which the thin piece is accommodated in at least one of a surface of the heat sink that contacts the heat conductive sheet and a surface of the base plate that contacts the heat conductive sheet.
熱伝導シートに複数の薄体片を有し、ヒートシンクまたはベース板の前記熱伝導シートに接する面に、前記薄体片が複数集まったグループが収まる凹部を有することを特徴とする請求項1に記載の放熱性基板。 The heat conductive sheet has a plurality of thin body pieces, and a concave portion in which a group of the thin body pieces is collected is provided on a surface of the heat sink or base plate that contacts the heat conductive sheet. The heat dissipation board of description. 熱伝導シートに複数の薄体片を有し、ヒートシンクまたはベース板の前記熱伝導シートに接する面に、各々の前記薄体片に対応した独立した凹部を備えたことを特徴とする請求項1に記載の放熱性基板。 2. The heat conductive sheet has a plurality of thin pieces, and an independent recess corresponding to each thin piece is provided on a surface of the heat sink or base plate that contacts the heat conductive sheet. The heat-dissipating board described in 1. ヒートシンクまたはベース板の熱伝導シートに接する面に設けられた凹部の外周部に位置する凸部は少なくとも一部が切り離されていることを特徴とする請求項1ないし請求項3のいずれかに記載の放熱性基板。 The convex part located in the outer peripheral part of the recessed part provided in the surface which contact | connects the heat conductive sheet of a heat sink or a base board is cut off at least partially, The Claim 1 thru | or 3 characterized by the above-mentioned. Heat dissipation board. ヒートシンクまたはベース板の熱伝導シートに接する面に設けられた凹部の周辺部に前記凹部より深さが大きい溝を備えたことを特徴とする請求項1に記載の放熱性基板。 The heat-radiating substrate according to claim 1, wherein a groove having a depth larger than that of the concave portion is provided in a peripheral portion of the concave portion provided on a surface of the heat sink or the base plate that contacts the heat conductive sheet. ヒートシンクまたはベース板の熱伝導シートに接する面に設けられた凹部の底面に前記凹部の中央から周辺に向けて前記凹部の深さが増加する傾斜を有することを特徴とする請求項1に記載の放熱性基板。 The bottom surface of the concave portion provided on the surface of the heat sink or the base plate that contacts the heat conductive sheet has an inclination in which the depth of the concave portion increases from the center to the periphery of the concave portion. Heat dissipation board. ヒートシンクまたはベース板の熱伝導シートに接する面に設けられた凹部の深さが前記薄体片の厚さの20%以上80%以下であることを特徴とする請求項1に記載の放熱性基板。 2. The heat dissipating substrate according to claim 1, wherein a depth of a concave portion provided on a surface of the heat sink or the base plate contacting the heat conductive sheet is 20% or more and 80% or less of the thickness of the thin piece. . ヒートシンクまたはベース板の熱伝導シートに接する面に設けられた凹部の面積が前記薄体片の総面積の104%以上144%以下であることを特徴とする請求項1に記載の放熱性基板。 2. The heat dissipating substrate according to claim 1, wherein an area of a recess provided on a surface of the heat sink or the base plate in contact with the heat conductive sheet is 104% to 144% of the total area of the thin piece. 熱伝導シートの複数の薄体片は0.1mm以上、2mm以下の厚さのセラミックス板からなることを特徴とする請求項1に記載の放熱性基板。 The heat-radiating substrate according to claim 1, wherein the plurality of thin pieces of the heat conductive sheet are made of a ceramic plate having a thickness of 0.1 mm or more and 2 mm or less. 熱伝導シートの薄体片の表面上の重心を通る同平面上の任意の全ての直線で分けられた両側において、前記薄体片の少なくとも一部はヒートシンクと重畳されていることを特徴とする請求項1ないし請求項4のいずれかに記載の放熱性基板。 At least a part of the thin piece is superimposed on a heat sink on both sides separated by any straight line on the same plane passing through the center of gravity on the surface of the thin piece of the heat conductive sheet. The heat-radiating substrate according to any one of claims 1 to 4. 絶縁性の薄体を粘着シートに貼付する工程と、
前記粘着シートに貼付された状態で前記薄体を分割し薄体片とする工程と、
凹部を有するベース板に第一の樹脂シートを配置し接着する工程と、
前記粘着シートに貼付された前記薄体片を前記ベース板の前記凹部の内側の所定の位置に配置し接着する工程と、
前記粘着シートを前記粘着シートに貼付された前記薄体片から剥がす工程と、
第二の樹脂シートとヒートシンクとを前記薄体片上に配置する工程と、
前記第一および第二の樹脂シートを圧力をかけながら高温で硬化させる工程とを備えたことを特徴とする放熱性基板の製造方法。
A process of attaching an insulating thin body to an adhesive sheet;
Dividing the thin body into a thin piece in a state of being stuck to the adhesive sheet;
Arranging and bonding the first resin sheet to the base plate having the recesses;
Arranging and bonding the thin piece affixed to the adhesive sheet at a predetermined position inside the concave portion of the base plate;
Peeling the pressure-sensitive adhesive sheet from the thin piece affixed to the pressure-sensitive adhesive sheet;
Disposing a second resin sheet and a heat sink on the thin piece;
And a step of curing the first and second resin sheets at a high temperature while applying pressure.
請求項1ないし請求項10のいずれかに記載の放熱性基板と、前記放熱性基板の一方の面のヒートシンク上に配置されたパワー半導体素子と、前記放熱性基板の他方の面のベース板上に配置されたヒートスプレッダとを備えたことを特徴とするパワーモジュール。 The heat dissipating substrate according to claim 1, a power semiconductor element disposed on a heat sink on one surface of the heat dissipating substrate, and a base plate on the other surface of the heat dissipating substrate. A power module comprising: a heat spreader disposed in the housing.
JP2006240199A 2006-09-05 2006-09-05 Heat radiating substrate, method for manufacturing the same, and power module using the same Pending JP2008066374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240199A JP2008066374A (en) 2006-09-05 2006-09-05 Heat radiating substrate, method for manufacturing the same, and power module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240199A JP2008066374A (en) 2006-09-05 2006-09-05 Heat radiating substrate, method for manufacturing the same, and power module using the same

Publications (1)

Publication Number Publication Date
JP2008066374A true JP2008066374A (en) 2008-03-21

Family

ID=39288834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240199A Pending JP2008066374A (en) 2006-09-05 2006-09-05 Heat radiating substrate, method for manufacturing the same, and power module using the same

Country Status (1)

Country Link
JP (1) JP2008066374A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252886A (en) * 2008-04-03 2009-10-29 Denso Corp Electronic device
JP2011176974A (en) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp Inverter device, compressor, and refrigerant cycle device
JP2012084708A (en) * 2010-10-13 2012-04-26 Mitsubishi Electric Corp Semiconductor device
JP2012158695A (en) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd Heat conductive sheet and heat dissipation plate
JP2013065648A (en) * 2011-09-16 2013-04-11 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
WO2013099545A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Electric power semiconductor device and method for producing same
JP2014036046A (en) * 2012-08-07 2014-02-24 Denso Corp Mold package, and method of manufacturing the same
JP2014192010A (en) * 2013-03-27 2014-10-06 Kobelco Contstruction Machinery Ltd Battery cooling structure
JP2016096263A (en) * 2014-11-14 2016-05-26 三菱電機株式会社 Power semiconductor device and method of manufacturing the same, and insulation substrate part
KR20190089630A (en) * 2018-01-23 2019-07-31 엘지이노텍 주식회사 Thermo electric element
KR20190139174A (en) 2018-01-23 2019-12-17 엘지이노텍 주식회사 Thermo electric element
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module
KR20210155196A (en) * 2020-06-15 2021-12-22 에스티씨 주식회사 Cooling module with improved insulation efficiency

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252886A (en) * 2008-04-03 2009-10-29 Denso Corp Electronic device
JP2011176974A (en) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp Inverter device, compressor, and refrigerant cycle device
JP2012084708A (en) * 2010-10-13 2012-04-26 Mitsubishi Electric Corp Semiconductor device
JP2012158695A (en) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd Heat conductive sheet and heat dissipation plate
JP2013065648A (en) * 2011-09-16 2013-04-11 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
WO2013099545A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Electric power semiconductor device and method for producing same
JPWO2013099545A1 (en) * 2011-12-26 2015-04-30 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
US9236324B2 (en) 2011-12-26 2016-01-12 Mitsubishi Electric Corporation Electric power semiconductor device and method for producing same
JP2014036046A (en) * 2012-08-07 2014-02-24 Denso Corp Mold package, and method of manufacturing the same
JP2014192010A (en) * 2013-03-27 2014-10-06 Kobelco Contstruction Machinery Ltd Battery cooling structure
JP2016096263A (en) * 2014-11-14 2016-05-26 三菱電機株式会社 Power semiconductor device and method of manufacturing the same, and insulation substrate part
KR20190089630A (en) * 2018-01-23 2019-07-31 엘지이노텍 주식회사 Thermo electric element
KR102055428B1 (en) * 2018-01-23 2019-12-12 엘지이노텍 주식회사 Thermo electric element
KR20190139174A (en) 2018-01-23 2019-12-17 엘지이노텍 주식회사 Thermo electric element
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module
KR102275612B1 (en) * 2018-01-23 2021-07-09 엘지이노텍 주식회사 Thermo electric element
US11730056B2 (en) 2018-01-23 2023-08-15 Lg Innotek Co., Ltd. Thermoelectric module
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module
KR20210087916A (en) 2019-12-05 2021-07-13 엘지이노텍 주식회사 Thermo electric element
KR102580350B1 (en) * 2019-12-05 2023-09-19 엘지이노텍 주식회사 Thermo electric element
KR20230141663A (en) 2019-12-05 2023-10-10 엘지이노텍 주식회사 Thermo electric element
KR20210155196A (en) * 2020-06-15 2021-12-22 에스티씨 주식회사 Cooling module with improved insulation efficiency
KR102428948B1 (en) 2020-06-15 2022-08-04 에스티씨 주식회사 Cooling module with improved insulation efficiency

Similar Documents

Publication Publication Date Title
JP2008066374A (en) Heat radiating substrate, method for manufacturing the same, and power module using the same
KR102055587B1 (en) Heat-Sink Substrate For High-Power Semiconductor, High-Power Semiconductor Module Comprising The Same, And Manufacturing Process Thereof
JP2006303240A (en) Heat dissipating sheet, heat dissipating body, manufacturing method for the sheet, and heat transfer method
WO2018121162A1 (en) Chip packaging structure and manufacturing method therefor
JP6862896B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2003168769A (en) Power semiconductor device
JP2014216459A (en) Semiconductor device
JP2009246258A (en) Semiconductor device, and manufacturing method thereof
US20190109064A1 (en) Chip package
JP2012119597A (en) Semiconductor device and manufacturing method of the same
WO2016076015A1 (en) Power semiconductor module
JP2011040488A (en) Light-emitting element-mounting substrate and light-emitting device
JP5126201B2 (en) Semiconductor module and manufacturing method thereof
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
JP6246057B2 (en) Semiconductor device
JP2011052240A (en) Method for manufacturing structure provided with thermal-sprayed insulation film
CN114097076A (en) Semiconductor package, electronic device, and method for manufacturing semiconductor package
JP6116416B2 (en) Power module manufacturing method
JP2015082652A (en) Polymer sheet and semiconductor module
JP2018065921A (en) Thermosetting adhesive sheet and semiconductor module
US10856403B2 (en) Power electronics module and a method of producing a power electronics module
JP5680011B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
CN110944448A (en) Circuit board
CN110734706A (en) Heat dissipation film, manufacturing method thereof and electronic equipment
JP6639890B2 (en) Wiring board laminate and manufacturing method thereof