JP2008060535A - Radiating substrate for electronic device - Google Patents

Radiating substrate for electronic device Download PDF

Info

Publication number
JP2008060535A
JP2008060535A JP2007152629A JP2007152629A JP2008060535A JP 2008060535 A JP2008060535 A JP 2008060535A JP 2007152629 A JP2007152629 A JP 2007152629A JP 2007152629 A JP2007152629 A JP 2007152629A JP 2008060535 A JP2008060535 A JP 2008060535A
Authority
JP
Japan
Prior art keywords
heat dissipation
electronic device
metal layer
dissipation substrate
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007152629A
Other languages
Japanese (ja)
Inventor
Fu Hua Chu
フゥ ホア チュー
David Shau Chew Wang
デイヴィッド シャウ チュー ワン
Jyh Ming Yu
ジー ミン ユィ
En Tien Yang
エン ティエン ヤン
Kuo Hsun Chen
クォ スゥン チェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytronics Technology Corp
Original Assignee
Polytronics Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Technology Corp filed Critical Polytronics Technology Corp
Publication of JP2008060535A publication Critical patent/JP2008060535A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09309Core having two or more power planes; Capacitive laminate of two power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12472Microscopic interfacial wave or roughness

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiating substrate having a mechanical structure which has an excellent radiation, a high voltage resistance, a dielectric insulation, and a flexibility. <P>SOLUTION: The radiating substrate 20 for an electronic device includes a first metal layer 21, a second metal layer 22, and a heat-conductive polymer dielectric insulating layer 23. An LED is mounted on the surface of the first metal layer 21. The heat-conductive polymer dielectric insulating layer 23 is laminated between the first metal layer 21 and second metal layer 22 so as to contact with the first metal layer 21 and second metal layer 22 directly, and there is at least one fine rough surface having a surface roughness (Rz) larger than 7.0 between them. There are many nodular protrusions on the fine rough surface, and the particle diameter of the nodular protrusion mainly is 0.1 to 100 μm. The heat conductivity of the radiating substrate 20 is more than 1 W/m×K, and its thickness is thinner than 0.5 mm, and the substrate contains (1) a polymer which has a melting point higher than 150°C and contains fluorine of 30 to 60 vol% and (2) a heat conductive filler, of 40 to 70 vol%, dispersed in the polymer containing fluorine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は放熱基板、さらに詳しく述べると、電子装置用の放熱基板に関する。   The present invention relates to a heat dissipation substrate, and more particularly to a heat dissipation substrate for an electronic device.

近年、白色LEDは、世界中で広く注目を集める、非常に人気のある新製品となっている。白色LEDは、小型で、低消費電力、長期耐用性、および応答速度の速さに優れていることから、従来の白熱灯が抱えている問題が解決される可能性がある。したがって、ディスプレイ用のバックライトソース、ミニプロジェクター、照明、および車両のランプ用の光源におけるLEDの用途は、市場において、次第に重要になりつつある。   In recent years, white LEDs have become a very popular new product that has gained widespread attention all over the world. The white LED is small in size, has low power consumption, long-term durability, and excellent response speed, so that the problems of conventional incandescent lamps may be solved. Therefore, the use of LEDs in backlight sources for displays, mini projectors, lighting, and light sources for vehicle lamps is becoming increasingly important in the market.

目下、欧州、米国、日本および他の国々では、エネルギーの節約および環境保護に関する合意があり、今世紀における照明用の新しい光源として、白色LEDが積極的に開発されている。現在、多くの国々がエネルギーを輸入しており、照明業界において白色LEDの開発は価値がある。専門家の評価によれば、もし、日本における白色灯照明器具のすべてを白色LEDに置き換えると、毎年、発電所2ヶ所分に相当する電力を節約することができ、間接的に削減される燃料消費量は10億リットルにもなるであろう。さらには、発電により排出される二酸化炭素もまた削減され、それによって温室効果ガスも削減される。したがって、欧州諸国、米国、および日本では、白色LEDの開発に多くの人材を投入している。10年以内に、従来の照明装置から白色LEDへと、代替される可能性が予想される。   Currently, Europe, the United States, Japan and other countries have agreements on energy saving and environmental protection, and white LEDs are being actively developed as new light sources for lighting in this century. Currently, many countries are importing energy, and the development of white LEDs in the lighting industry is valuable. According to expert evaluation, if all white light luminaires in Japan are replaced with white LEDs, it can save electricity equivalent to two power plants every year, and indirectly reduce fuel Consumption will be as much as 1 billion liters. Furthermore, carbon dioxide emitted by power generation is also reduced, thereby reducing greenhouse gases. Therefore, many European countries, the United States, and Japan have invested many people in developing white LEDs. Within 10 years, the possibility of replacing conventional lighting devices with white LEDs is expected.

しかしながら、照明用のハイパワーLEDに関しては、LEDの入力電力のうち、わずか15〜20%しか光に変換されず、入力電力の残りは熱へと変換される。もし、そのときに周囲へ放熱することができなければ、LED装置の温度が非常に高くなり、光強度および耐用年数に悪影響を与えるであろう。したがって、LED装置の熱管理は大変注目を集めている。   However, for high power LEDs for illumination, only 15-20% of the input power of the LED is converted to light, and the remainder of the input power is converted to heat. If heat cannot be dissipated to the surroundings at that time, the temperature of the LED device will be very high, which will adversely affect the light intensity and the service life. Therefore, thermal management of LED devices has attracted a great deal of attention.

一般に、従来型のシングルLEDに関しては、従来型のシングルLEDの動作電流は約20〜40mAであり、それによって生じる熱は少量であるから、放熱の問題は深刻な問題ではない。したがって、熱放散係数が約0.3W/m・Kである一般的なFR4プリント基板(PCB)でも、熱を放散させるのに十分である。しかしながら、バックライトディスプレイや明るい照明に用いる場合には、回路基板に数多くのLED装置が実装される。より大きい電流(>1A)が必要になることにより、結果的にLED装置から非常に大きな発熱があり、回路基板はLED装置にとっての担体としての役割だけでなく、放熱のためのヒートシンクとしての役割を担わなくてはならない。一般的なFR4PCBでは、放熱の要件を満足させることはできない。   In general, for a conventional single LED, the operating current of the conventional single LED is about 20-40 mA, and the heat generated thereby is small, so the problem of heat dissipation is not a serious problem. Therefore, even a general FR4 printed circuit board (PCB) having a heat dissipation coefficient of about 0.3 W / m · K is sufficient to dissipate heat. However, when used for a backlight display or bright illumination, many LED devices are mounted on a circuit board. The need for higher current (> 1A) results in very large heat generation from the LED device, and the circuit board serves not only as a carrier for the LED device but also as a heat sink for heat dissipation. You have to bear A general FR4PCB cannot satisfy the heat dissipation requirement.

本発明は、より優れた放熱性、耐高電圧性、および誘電体絶縁を備え、さらには、ハイパワーLED、例えば携帯電話機に適用できるように、金属層が熱伝導性ポリマー誘電体絶縁層とよく接着している柔軟性のある機械構造を備えた放熱基板の提供を主な目的としている。   The present invention has better heat dissipation, high voltage resistance, and dielectric insulation, and further, the metal layer is made of a thermally conductive polymer dielectric insulation layer so that it can be applied to high power LEDs, for example, mobile phones. The main purpose is to provide a heat dissipation board with a flexible mechanical structure that is well bonded.

本発明によれば、電子装置用放熱基板は、第1金属層、第2金属層、および熱伝導性ポリマー誘電体絶縁層を含む。第1金属層の表面には、LED装置などの電子装置が装着されている。熱伝導性ポリマー誘電体絶縁層は、第1金属層および第2金属層と直接接触し、それらの間に積層される。熱伝導性ポリマー誘電体絶縁層と第1および第2金属層との接合面には、JIS B0601 1994に従った、7.0よりも大きい表面粗さ(Rz)を有する少なくとも1つの微小凹凸(micro−rough)表面を含む。微小凹凸表面は、粒径が主に0.1〜100μmの範囲の結節状の突起を数多く有する。熱伝導性ポリマー誘電体絶縁層は、1W/m・Kより大きい熱伝導率を有し、厚さは0.5mmよりも薄い。熱伝導性ポリマー誘電体絶縁層は、(1)150℃よりも高い融点を持つ、30〜60容量%のフッ素含有ポリマーと、(2)前記フッ素含有ポリマー中に分散させた40〜70容量%の熱伝導性充填材と、を含む。   According to the present invention, the heat dissipation substrate for an electronic device includes a first metal layer, a second metal layer, and a thermally conductive polymer dielectric insulating layer. An electronic device such as an LED device is mounted on the surface of the first metal layer. The thermally conductive polymer dielectric insulation layer is in direct contact with and laminated between the first metal layer and the second metal layer. The bonding surface between the thermally conductive polymer dielectric insulating layer and the first and second metal layers has at least one minute unevenness (surface roughness (Rz) greater than 7.0 according to JIS B0601 1994). micro-round) surface. The micro uneven surface has many nodular protrusions having a particle size mainly in the range of 0.1 to 100 μm. The thermally conductive polymer dielectric insulating layer has a thermal conductivity greater than 1 W / m · K and a thickness of less than 0.5 mm. The thermally conductive polymer dielectric insulating layer comprises (1) 30-60% by volume fluorine-containing polymer having a melting point higher than 150 ° C., and (2) 40-70% by volume dispersed in the fluorine-containing polymer. A thermally conductive filler.

本発明にかかる放熱基板は、熱伝導性ポリマー誘電体絶縁層、第1金属層および第2金属層を含む。熱伝導性ポリマー誘電体絶縁層は、(1)150℃よりも高い融点を持つ、30〜60容量%のフッ素含有ポリマーと、(2)前記フッ素含有ポリマー中に分散させた40〜70容量%の熱伝導性充填材と、を含む。第1金属層は、熱伝導性ポリマー誘電体絶縁層の表面の一方と直接接触しており、7.0よりも大きい表面粗さ(Rz)を有する0.1〜100μmの距離だけ表面から突き出た小さなコブから実質的になる微小凹凸表面を有している。第2金属層は、熱伝導性ポリマー誘電体絶縁層のもう一方の面と直接接触しており、7.0よりも大きい表面粗さ(Rz)を有する0.1〜100μmの距離だけ表面から突き出た小さなコブから実質的になる微小凹凸表面を有している。放熱基板は、1.0W/m・Kよりも大きい熱伝導率を有し、基板全体の厚さは0.5mmよりも薄い。   The heat dissipation substrate according to the present invention includes a thermally conductive polymer dielectric insulating layer, a first metal layer, and a second metal layer. The thermally conductive polymer dielectric insulating layer comprises (1) 30-60% by volume fluorine-containing polymer having a melting point higher than 150 ° C., and (2) 40-70% by volume dispersed in the fluorine-containing polymer. A thermally conductive filler. The first metal layer is in direct contact with one of the surfaces of the thermally conductive polymer dielectric insulation layer and protrudes from the surface by a distance of 0.1-100 μm having a surface roughness (Rz) greater than 7.0. It has a micro uneven surface which consists essentially of small bumps. The second metal layer is in direct contact with the other side of the thermally conductive polymer dielectric insulation layer and has a surface roughness (Rz) greater than 7.0 from the surface by a distance of 0.1-100 μm. It has a micro uneven surface substantially consisting of protruding small bumps. The heat dissipation substrate has a thermal conductivity greater than 1.0 W / m · K, and the overall thickness of the substrate is less than 0.5 mm.

フッ素含有ポリマーは、ポリフッ化ビニリデン(PVDF)またはポリエチレンテトラフルオロエチレン(PETFE)から選択されるのが好ましく、融点は150℃よりも高く、220℃以上であることが好ましい。伝導性の充填材は、窒化物および酸化物などの熱伝導性のセラミック材料から選択する。フッ素含有ポリマーとの結合を強化するために、充填材をシランカップリング剤で前処理しても差し支えない。   The fluorine-containing polymer is preferably selected from polyvinylidene fluoride (PVDF) or polyethylene tetrafluoroethylene (PETFE), and the melting point is higher than 150 ° C. and preferably 220 ° C. or higher. The conductive filler is selected from thermally conductive ceramic materials such as nitrides and oxides. In order to strengthen the bond with the fluorine-containing polymer, the filler may be pretreated with a silane coupling agent.

フッ素含有ポリマーは、汚れがこびりつかず、非付着特性があることがよく知られている。フッ素含有ポリマーを金属表面へ接着させる最も一般的な方法は、それらの間に結合層(tie−layer)を塗布することである。しかしながら、フッ素含有ポリマーに一般的に用いられる結合層は、熱伝導性材料としては良いものではない。結合層の薄い層でさえ、その系の熱伝導率を大幅に低下させてしまう可能性がある。フッ素含有ポリマーを金属基板へ接着し、同時に良好な熱伝導性を維持することは、大きな課題である。本発明は、良好な柔軟性、良好な熱伝導性、および電圧に耐えうる良好な性能を成し遂げるため、結合層を使わずに、高度に充填された熱伝導性フッ素ポリマーと接着させるための小さなコブを有する金属箔の適用について教示する。   It is well known that fluorine-containing polymers are non-sticky and have non-stick properties. The most common method of adhering fluorine-containing polymers to metal surfaces is to apply a tie-layer between them. However, bond layers commonly used for fluorine-containing polymers are not good thermal conductive materials. Even a thin layer of bonding layer can significantly reduce the thermal conductivity of the system. Adhering a fluorine-containing polymer to a metal substrate while maintaining good thermal conductivity is a major challenge. The present invention achieves good flexibility, good thermal conductivity, and good performance to withstand voltage, so it is small for bonding with highly filled thermally conductive fluoropolymers without the use of a tie layer. Teaching the application of a metal foil with a bump.

放熱基板は、0〜20ミリラドで照射することによって、熱伝導性ポリマー誘電体絶縁層を架橋および硬化することが可能であり、好ましい熱伝導性と絶縁効果を有する。さらに、もし、第1金属層および第2金属層の厚さがそれぞれ0.1mmおよび0.2mmより薄くなるように設計され、熱伝導性ポリマー誘電体絶縁層の厚さが0.5mm(好ましくは0.3mm)よりも薄くなるように設計されているならば、その放熱基板は、1cm幅の試験基板を直径5mmの柱状になるように折り曲げる曲げ試験に合格し、表面には裂け目や亀裂がなく、折りたたみ製品に適用できるであろう。   The heat dissipation substrate can crosslink and cure the thermally conductive polymer dielectric insulation layer by irradiating with 0-20 millirad, and has preferable thermal conductivity and insulation effect. Furthermore, if the thickness of the first metal layer and the second metal layer is designed to be less than 0.1 mm and 0.2 mm, respectively, the thickness of the thermally conductive polymer dielectric insulating layer is preferably 0.5 mm (preferably If it is designed to be thinner than 0.3 mm), the heat dissipation board passes a bending test in which a test board having a width of 1 cm is bent into a column having a diameter of 5 mm, and a crack or crack is formed on the surface. Will be applicable to folding products.

さらには、フッ素含有ポリマー材料は、通常、融点が高く(例えば、PVDFの融点は165℃、PETFEの融点は260℃である)、難燃性で高温耐性があるという利点がある。したがって、フッ素含有ポリマーは安全用途としての価値がある。   Furthermore, the fluorine-containing polymer material usually has a high melting point (for example, PVDF has a melting point of 165 ° C. and PETFE has a melting point of 260 ° C.), and has an advantage of being flame retardant and resistant to high temperatures. Fluorine-containing polymers are therefore valuable for safety applications.

発明を実施するための最良の手段BEST MODE FOR CARRYING OUT THE INVENTION

図1を参照すると、LED装置10が放熱基板20に装着されている。放熱基板20は、第1金属層21、第2金属層22および第1金属層21と第2金属層22の間に積層された熱伝導性ポリマー誘電体絶縁層23を含む。LED装置10は第1金属層21の表面に配置され、第1金属層21と第2金属層22の間の接合面と熱伝導性ポリマー誘電体絶縁層23が直接接触しており、ここで少なくとも接合面の一方が微小凹凸表面である。微小凹凸表面は、粒径が主に0.1〜100μmの範囲の結節状の突起を数多く有し、それによって、それらの間の引張り強度を増大させている。   Referring to FIG. 1, the LED device 10 is mounted on the heat dissipation substrate 20. The heat dissipation substrate 20 includes a first metal layer 21, a second metal layer 22, and a thermally conductive polymer dielectric insulating layer 23 laminated between the first metal layer 21 and the second metal layer 22. The LED device 10 is disposed on the surface of the first metal layer 21, and the bonding surface between the first metal layer 21 and the second metal layer 22 and the thermally conductive polymer dielectric insulating layer 23 are in direct contact, where At least one of the bonding surfaces is a micro uneven surface. The micro uneven surface has many nodular protrusions having a particle size mainly in the range of 0.1 to 100 μm, thereby increasing the tensile strength between them.

放熱基板20の製造方法を以下に述べる。バッチ式のブレンダー(HAAKE−600P)の供給温度を原料の融点(Tm)よりも20℃高く設定し、あらかじめ混合した熱伝導性ポリマー誘電体絶縁層23の原料を加え、原料をスチールカップに入れて計量スプーンで均一に攪拌する。最初はバッチ式ブレンダーの回転速度を40rpmとし、3分後に回転速度を70rpmへと上げる。原料を15分間混合し、次に取り出し、それにより放熱用複合材料を作製する。   A method for manufacturing the heat dissipation substrate 20 will be described below. The supply temperature of the batch type blender (HAAKE-600P) is set to 20 ° C. higher than the melting point (Tm) of the raw material, the raw material of the thermally conductive polymer dielectric insulating layer 23 mixed in advance is added, and the raw material is put in a steel cup. Stir uniformly with a measuring spoon. Initially, the rotational speed of the batch blender is 40 rpm, and after 3 minutes, the rotational speed is increased to 70 rpm. The raw materials are mixed for 15 minutes and then removed, thereby producing a heat dissipation composite material.

放熱用複合材料を縦方向に均整を取りつつ型に入れる。型は、外層に鋼板が用いられ、厚さは中程度、例えば、0.15mmである。テフロン(登録商標)の離型布を型の上側と下側にそれぞれ置く。最初に、放熱用複合材料をあらかじめ5分間加熱し、次に、150kg/cmの圧力および混合時と同じ温度の下で、15分間圧力をかける。すると、厚さ0.15mmの放熱シートが形成される。 The heat dissipation composite material is placed in a mold while being leveled in the vertical direction. In the mold, a steel plate is used for the outer layer, and the thickness is medium, for example, 0.15 mm. Place Teflon (registered trademark) release cloth on the upper and lower sides of the mold. First, the heat-dissipating composite material is preheated for 5 minutes, and then pressure is applied for 15 minutes under a pressure of 150 kg / cm 2 and the same temperature as during mixing. Then, a heat dissipation sheet having a thickness of 0.15 mm is formed.

第1金属層21および第2金属層22を放熱シートの上下に配置し、次に、再び圧力をかけ、あらかじめ5分間加熱し、その後、150kg/cmの圧力および混合時と同じ温度の下で、15分間圧力をかけると、熱伝導性ポリマー誘電体絶縁層23が中間に存在し、第1金属層21と第2金属層22がそれぞれポリマー誘電体絶縁層23の上側と下側に付着している、放熱基板20が形成される。 The first metal layer 21 and the second metal layer 22 are arranged on the upper and lower sides of the heat-dissipating sheet. Next, the pressure is applied again and heated in advance for 5 minutes, and then the pressure is 150 kg / cm 2 and the same temperature as that during mixing When the pressure is applied for 15 minutes, the thermally conductive polymer dielectric insulating layer 23 exists in the middle, and the first metal layer 21 and the second metal layer 22 adhere to the upper and lower sides of the polymer dielectric insulating layer 23, respectively. The heat dissipation substrate 20 is formed.

金属層の粗さの違いによる引張りおよび耐電圧試験の実験結果を表1に示す。熱伝導性ポリマー誘電体絶縁層23には、原料物質として融点165℃のポリフッ化ビニリデン(PVDF)を用い、熱伝導性充填材AlおよびAlNをPVDF中に分散させる。ここで、これら2種類の充填材の容量%はそれぞれ60%および45%である。この実施の態様では、熱伝導性ポリマー誘電体絶縁層23の厚さは0.3mmよりも薄い。付着性試験は、接着面の剥離強度試験のためのJIS規格C6481に基づいて行う。

Figure 2008060535
Table 1 shows the experimental results of the tensile and withstand voltage tests according to the difference in the roughness of the metal layer. For the heat conductive polymer dielectric insulating layer 23, polyvinylidene fluoride (PVDF) having a melting point of 165 ° C. is used as a raw material, and heat conductive fillers Al 2 O 3 and AlN are dispersed in PVDF. Here, the volume% of these two kinds of fillers is 60% and 45%, respectively. In this embodiment, the thickness of the thermally conductive polymer dielectric insulation layer 23 is less than 0.3 mm. The adhesion test is performed based on JIS standard C6481 for the peel strength test of the adhesive surface.
Figure 2008060535

表1に示すとおり、比較例の表面粗さ(Rz)は3.0〜4.5の範囲にあり、実施例1〜7に比べて低い。比較例の付着は7.5N/cmであり、実施例1〜7よりもはるかに低い。粗さが増大すると、熱伝導性ポリマー誘電体絶縁層と第1および第2金属層との剥離強度が増大しうるということは明白である。さらには、実施件のすべてが、5kVあるいは少なくとも3kVよりも高い耐電圧試験に合格可能であり、熱伝導率は1.0W/m・Kよりも大きい値である。   As shown in Table 1, the surface roughness (Rz) of the comparative example is in the range of 3.0 to 4.5 and is lower than those of Examples 1 to 7. The adhesion of the comparative example is 7.5 N / cm, much lower than Examples 1-7. It is clear that as the roughness increases, the peel strength between the thermally conductive polymer dielectric insulation layer and the first and second metal layers can increase. Furthermore, all of the implementations can pass a withstand voltage test higher than 5 kV or at least 3 kV, and the thermal conductivity is greater than 1.0 W / m · K.

表2に異なる種類の高分子ポリマーの比較実験表を示す。

Figure 2008060535
Table 2 shows a comparative experiment table for different types of high molecular polymers.
Figure 2008060535

実施例1および2は重合体の原料物質として、それぞれPVDFおよびPETFE(Tefzel(商標))を用いており、熱伝導性充填材はAlである。比較例1および2は、フッ素を含まないHDPEおよびEPOXY(エポキシ樹脂)から選択される。実施例および比較例において、ポリマーおよび熱伝導性充填材の容量百分率は、それぞれ40%および60%であり、7.0〜9.0の同じ粗さ(Rz)の銅箔を第1金属層および第2金属層として用いる。 Examples 1 and 2 use PVDF and PETFE (Tefzel (trademark)) as polymer raw materials, respectively, and the thermally conductive filler is Al 2 O 3 . Comparative Examples 1 and 2 are selected from HDPE and EPOXY (epoxy resin) that do not contain fluorine. In the examples and comparative examples, the volume percentages of the polymer and the thermally conductive filler are 40% and 60%, respectively, and a copper foil having the same roughness (Rz) of 7.0 to 9.0 is used as the first metal layer. And used as the second metal layer.

エポキシ樹脂の比較例には、液状エポキシ樹脂、ノボラック樹脂、ジシアンジアミド、尿素触媒、およびAlが含まれる。液状エポキシ樹脂は、ダウ・ケミカル社(アメリカ合衆国、ミシガン州)製のDER331モデルを選択し、ノボラック樹脂はダウ・ケミカル社製のDEN438モデルを選択し、ジシアンジアミドはデグサ・ファイン・ケミカルズ社(ドイツ、デュッセルドルフ)製のDyhard100Sを選択し、尿素触媒はデグサ・ファイン・ケミカルズ社製のDyhardUR300を選択する。Alの粒径は5〜45μmであり、電気化学工業株式会社製である。 Comparative examples of epoxy resins include liquid epoxy resins, novolac resins, dicyandiamide, urea catalysts, and Al 2 O 3 . For the liquid epoxy resin, the DER331 model manufactured by Dow Chemical Company (Michigan, USA) is selected. For the novolak resin, the DEN438 model manufactured by Dow Chemical Company is selected. ) Dyhard UR300 manufactured by Degussa Fine Chemicals is selected as the urea catalyst. The particle diameter of Al 2 O 3 is 5 to 45 μm and is manufactured by Denki Kagaku Kogyo Co., Ltd.

エポキシ樹脂は以下の工程に従って調製する。まず、外掛百分率で50部(phr)のDER331と50部のDEN438を、レジンケトル(resin kettle)に入れ、80℃で均一の溶液になるまで混ぜ合わせる。次に、外掛百分率で10部のDyhard100Sと3部のDyhardUR300をレジンケトルに加え、さらに80℃で20分間混ぜ合わせる。続いて、外掛百分率で570部のAl充填材をレジンケトルに加え、充填材が樹脂中に完全に分散するまで混ぜ合わせ、樹脂懸濁液を形成する。樹脂懸濁液中のガスを30分間真空にて除去する。次に、樹脂懸濁液を銅箔の表面に置き、もう一方の銅箔を樹脂懸濁液の表面に乗せ、それによって銅箔/樹脂懸濁液/銅箔という複合構造を形成する。銅箔/樹脂懸濁液/銅箔の複合構造を厚さ3mmの金属フレームの上に置く。ゴム製のローラーを用いて銅箔の表面を平らにする。メタルフレームを伴う複合構造を130℃の温度で加熱炉に入れ、1時間、予備硬化させる。次に、メタルフレームを伴う複合構造を、真空度1330Pa(10torr)、圧力4.9×10Pa(50kg/cm)の真空加熱プレス機に入れ、150℃で1時間、さらに硬化させる。複合構造を圧力4.9×10Pa(50kg/cm)で50℃以下に冷却し、加熱プレス機から取り出す。 The epoxy resin is prepared according to the following steps. First, 50 parts (phr) of DER331 and 50 parts of DEN438 are put in a resin kettle and mixed at 80 ° C. until a uniform solution is obtained. Next, 10 parts of Dyhard 100S and 3 parts of Dyhard UR300 are added to the resin kettle as a percentage of outer shell and further mixed at 80 ° C. for 20 minutes. Subsequently, 570 parts of Al 2 O 3 filler in an outer percentage is added to the resin kettle and mixed until the filler is completely dispersed in the resin to form a resin suspension. The gas in the resin suspension is removed in vacuo for 30 minutes. Next, the resin suspension is placed on the surface of the copper foil, and the other copper foil is placed on the surface of the resin suspension, thereby forming a composite structure of copper foil / resin suspension / copper foil. The composite structure of copper foil / resin suspension / copper foil is placed on a metal frame having a thickness of 3 mm. Use a rubber roller to flatten the surface of the copper foil. The composite structure with the metal frame is placed in a heating furnace at a temperature of 130 ° C. and precured for 1 hour. Next, the composite structure with the metal frame is placed in a vacuum heating press with a vacuum of 1330 Pa (10 torr) and a pressure of 4.9 × 10 6 Pa (50 kg / cm 2 ), and further cured at 150 ° C. for 1 hour. The composite structure is cooled to 50 ° C. or lower at a pressure of 4.9 × 10 6 Pa (50 kg / cm 2 ) and taken out from the hot press.

PVDFおよびPETFEの実施例およびHDPEおよびエポキシ樹脂の比較例を用いたテスト用基板について、以下の試験を行った。   The following tests were conducted on test substrates using examples of PVDF and PETFE and comparative examples of HDPE and epoxy resin.

1.柔軟性:1cm幅のテスト標本を、直径金属棒の外周に沿って180°折り曲げる。テスト標本の表面に裂け目や亀裂を生じないことを要する。   1. Flexibility: A 1 cm wide test specimen is folded 180 ° along the outer circumference of a diameter metal rod. It is necessary that the surface of the test specimen does not crack or crack.

2.剥離強度試験:180°のT型剥離強度測定を、テスト標本(1.0cm×12cm)に対して行う。   2. Peel strength test: T-type peel strength measurement at 180 ° is performed on a test specimen (1.0 cm × 12 cm).

これは、標本の片端の金属箔の上方および下方を固定し、引張り試験機で、3cm/分の一定の引張り速度で試料を試験するものである。 In this method, the upper and lower portions of the metal foil at one end of the specimen are fixed and the sample is tested with a tensile tester at a constant tensile speed of 3 cm / min.

3.絶縁耐力(絶縁耐電圧)試験:菊水電子工業株式会社製TOS5101モデル耐電圧試験装置を用いた耐電圧試験であり、直径2.54cm(1インチ)の標本の上下の電極に、30秒間、1kVの電圧をかけ、標本の絶縁層の耐電圧を上回る電圧になるまで、毎回0.5kVずつ電圧を上げる連続試験を行う。   3. Dielectric strength (insulation withstand voltage) test: a withstand voltage test using a TOS5101 model withstand voltage test apparatus manufactured by Kikusui Electronics Corporation, 1 kV for 30 seconds on the upper and lower electrodes of a sample having a diameter of 2.54 cm (1 inch) A continuous test is performed in which the voltage is increased by 0.5 kV each time until the voltage exceeds the withstand voltage of the insulating layer of the sample.

表2に示すとおり、フッ素含有ポリマーであるPVDFおよびPETFEを用いた実施例1および実施例2は、優れた柔軟性を有し、これら2例は5kVよりも高い電圧に耐えうるので、耐電圧試験も合格である。一方、ポリマーとしてHDPEを用いた比較例1では、柔軟性試験には合格であるが、HDPE系は、実施例1および2よりも明らかに低い、2kVに満たない電圧にしか耐えられないので、耐電圧試験は不合格である。ポリマーにエポキシ樹脂を用いた比較例2では、耐電圧試験には合格であるが、柔軟性の点で不合格である。   As shown in Table 2, Examples 1 and 2 using PVDF and PETFE, which are fluorine-containing polymers, have excellent flexibility, and these two examples can withstand voltages higher than 5 kV. The test is also passed. On the other hand, Comparative Example 1 using HDPE as the polymer passed the flexibility test, but the HDPE system can withstand only voltages lower than 2 kV, which is clearly lower than Examples 1 and 2. The withstand voltage test is rejected. In Comparative Example 2 in which an epoxy resin is used as the polymer, the dielectric strength test is acceptable, but it is unacceptable in terms of flexibility.

さらには、PVDFおよびPETFEなどのフッ素含有原料は、容易には引火せず、燃焼を促進せず(燃焼試験基準UL94V−0に適合)、HDPEまたはエポキシ樹脂よりもはるかに安全用途に適している。   Furthermore, fluorine-containing raw materials such as PVDF and PETFE do not ignite easily, do not promote combustion (conforms to the combustion test standard UL94V-0) and are much more suitable for safety applications than HDPE or epoxy resins. .

フッ素含有ポリマーおよび熱伝導性充填材の容量百分率は、ある程度の順応性があり、なおかつ同様の特性を保持する。フッ素含有ポリマーの容量百分率は、30〜60%が好ましく、熱伝導性充填材の容量百分率は40〜70%であり、45〜65%がさらに好ましい。   The volume percentages of the fluorine-containing polymer and the thermally conductive filler are somewhat compliant and still retain similar properties. The volume percentage of the fluorine-containing polymer is preferably 30 to 60%, the volume percentage of the thermally conductive filler is 40 to 70%, and more preferably 45 to 65%.

先に述べた材料に加えて、熱伝導性高分子ポリマーは、硬化部位モノマーのターポリマー(cure site monomer terpolymer)と共に、ポリ(テトラフルオロエチレン)(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)、パーフルオロアルコキシ変性テトラフルオロエチレン(perfluoroalkoxy modified tetrafluoroethlenes)(PFA)、ポリ(クロロトリ−フルオロテトラフルオロエチレン)(PCTFE)、フッ化ビニリデン−テトラフルオロエチレン共重合体(VF−2−TFE)、ポリ(フッ化ビニリデン)、テトラフルオロエチレン−パーフルオロジオキソール共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン・ターポリマーおよびテトラフルオロエチレン−パーフルオロメチルビニルエーテルからなる群より選択することが可能である。   In addition to the previously mentioned materials, the thermally conductive polymer polymer, together with a cure site monomer terpolymer, poly (tetrafluoroethylene) (PTFE), tetrafluoroethylene-hexafluoropropylene (FEP). ), Ethylene-tetrafluoroethylene copolymer (ETFE), perfluoroalkoxy modified tetrafluoroethlenes (PFA), poly (chlorotri-fluorotetrafluoroethylene) (PCTFE), vinylidene fluoride-tetrafluoroethylene Copolymer (VF-2-TFE), poly (vinylidene fluoride), tetrafluoroethylene-perfluorodioxole copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and Tetrafluoroethylene - can be selected from the group consisting of perfluoromethyl vinyl ether.

熱伝導性充填材は、窒化物および酸化物であって良く、ここで窒化物には窒化ジルコニウム(ZrN)、窒化ホウ素(BN)、窒化アルミニウム(AlN)および窒化ケイ素(SiN)が含まれ、酸化物には酸化アルミニウム(Al)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、およびニ酸化チタン(TiO)が含まれる。
さらには、ハイパワーLEDなどの発光ダイオードに利用する目的で、LED装置10を装着する第1金属層21に銅を用い、その上にLED装置10の当該回路を組み立てることが可能である。下部の第2金属層22は、銅、アルミニウム、もしくはその合金を用いることができる。
The thermally conductive filler may be a nitride and an oxide, where the nitride includes zirconium nitride (ZrN), boron nitride (BN), aluminum nitride (AlN) and silicon nitride (SiN); Oxides include aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), and titanium dioxide (TiO 2 ).
Furthermore, for the purpose of using for a light emitting diode such as a high power LED, it is possible to use copper for the first metal layer 21 on which the LED device 10 is mounted and to assemble the circuit of the LED device 10 thereon. The lower second metal layer 22 can be made of copper, aluminum, or an alloy thereof.

本発明にかかる放熱基板は、優れた熱伝導性、優れた耐電圧性、優れた引張り強度、および柔軟性を有し、したがって、照明用のLEDモジュールに利用して、熱を放散することが可能である。さらには、放熱基板は、小型の持ち運び可能な装置、例えば、効率的な放熱が要求されるノートブックもしくは携帯電話にも利用することが可能である。   The heat dissipation board according to the present invention has excellent thermal conductivity, excellent voltage resistance, excellent tensile strength, and flexibility, and therefore can be used for LED modules for lighting to dissipate heat. Is possible. Furthermore, the heat dissipation board can be used for a small portable device such as a notebook or a mobile phone that requires efficient heat dissipation.

本発明にかかる先に述べた実施の態様は、単なる具体例であることを意図する。当業者によって、数々の代替される実施の態様が、添付の特許請求の範囲の要旨を逸脱しない範囲で考案されよう。   The above-described embodiments of the present invention are intended to be examples only. Numerous alternative embodiments will be devised by those skilled in the art without departing from the scope of the appended claims.

図1は本発明のある実施の態様に従った放熱基板を表す。FIG. 1 represents a heat dissipation substrate according to an embodiment of the present invention.

符号の説明Explanation of symbols

10 LED装置
20 放熱基板
21 第1金属層
22 第2金属層
23 熱伝導性ポリマー誘電体絶縁層
DESCRIPTION OF SYMBOLS 10 LED apparatus 20 Heat dissipation board 21 1st metal layer 22 2nd metal layer 23 Thermally conductive polymer dielectric insulating layer

Claims (17)

(1)150℃よりも高い融点を持つ、30〜60容量%のフッ素含有ポリマーと、
(2)前記フッ素含有ポリマー中に分散させた40〜70容量%の熱伝導性充填材と、
を含む熱伝導性ポリマー誘電体絶縁層、
前記熱伝導性ポリマー誘電体絶縁層の一方の表面と直接接触しており、7.0よりも大きい表面粗さ(Rz)の0.1〜100μmの距離だけ表面から突き出た小さなコブから実質的になる微小凹凸表面を有している第1金属層、および
前記熱伝導性ポリマー誘電体絶縁層のもう一方の面と直接接触しており、7.0よりも大きい表面粗さ(Rz)の0.1〜100μmの距離だけ表面から突き出た小さなコブから実質的になる微小凹凸表面を有している第2金属層、
を備えた、1.0W/m・Kよりも大きい熱伝導率を有する電子装置用放熱基板。
(1) 30-60% by volume fluorine-containing polymer having a melting point higher than 150 ° C .;
(2) 40-70% by volume thermally conductive filler dispersed in the fluorine-containing polymer;
Thermally conductive polymer dielectric insulation layer, including
From a small bump that is in direct contact with one surface of the thermally conductive polymer dielectric insulation layer and protrudes from the surface by a distance of 0.1-100 μm with a surface roughness (Rz) greater than 7.0. A first metal layer having a micro asperity surface, and in direct contact with the other surface of the thermally conductive polymer dielectric insulation layer, having a surface roughness (Rz) greater than 7.0 A second metal layer having a micro uneven surface substantially consisting of small bumps protruding from the surface by a distance of 0.1 to 100 μm;
An electronic device heat dissipation board having a thermal conductivity greater than 1.0 W / m · K.
前記第1金属層の厚さが0.1mm以下であることを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the thickness of the first metal layer is 0.1 mm or less. 前記第2金属層の厚さが0.2mm以下であることを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the thickness of the second metal layer is 0.2 mm or less. 前記フッ素含有ポリマーの融点が220℃よりも高いことを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the melting point of the fluorine-containing polymer is higher than 220 ° C. 前記熱伝導性充填材の容量百分率が45〜65%であることを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the heat conductive filler has a capacity percentage of 45 to 65%. 前記熱伝導性ポリマー誘電体絶縁層と前記第1および第2金属層との引張り強度が8N/cmよりも大きいことを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein a tensile strength between the thermally conductive polymer dielectric insulating layer and the first and second metal layers is greater than 8 N / cm. 1cm幅の前記放熱基板を直径5mmの金属棒の外周に沿って180°折り曲げたときに、その表面に裂け目や亀裂を生じないことを特徴とする請求項1記載の電子装置用放熱基板。   2. The heat dissipation board for an electronic device according to claim 1, wherein when the heat dissipation board having a width of 1 cm is bent by 180 ° along the outer periphery of a metal rod having a diameter of 5 mm, no tear or crack is formed on the surface. 耐電圧性が3kVよりも大きいことを特徴とする請求項1記載の電子装置用放熱基板。   2. The heat dissipation substrate for an electronic device according to claim 1, wherein the withstand voltage is larger than 3 kV. 前記フッ素含有ポリマーが、ポリフッ化ビニリデンおよびポリエチレンテトラフルオロエチレンからなる群より選択されることを特徴とする請求項1記載の電子装置用放熱基板。   2. The heat dissipation substrate for an electronic device according to claim 1, wherein the fluorine-containing polymer is selected from the group consisting of polyvinylidene fluoride and polyethylene tetrafluoroethylene. 前記フッ素含有ポリマーが、硬化部位モノマーのターポリマーと共に、ポリ(テトラフルオロエチレン)、テトラフルオロエチレン−ヘキサフルオロ−プロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、パーフルオロアルコキシ変性テトラフルオロエチレン、ポリ(クロロトリ−フルオロテトラフルオロエチレン)、フッ化ビニリデン−テトラフルオロエチレン共重合体、ポリ(フッ化ビニリデン)、テトラフルオロエチレン−パーフルオロジオキソール共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン・ターポリマーおよびテトラフルオロエチレン−パーフルオロメチルビニルエーテルからなる群より選択されることを特徴とする請求項1記載の電子装置用放熱基板。   The fluorine-containing polymer is a poly (tetrafluoroethylene), a tetrafluoroethylene-hexafluoro-propylene copolymer, an ethylene-tetrafluoroethylene copolymer, a perfluoroalkoxy-modified tetrafluoroethylene, together with a terpolymer of a curing site monomer. Poly (chlorotri-fluorotetrafluoroethylene), vinylidene fluoride-tetrafluoroethylene copolymer, poly (vinylidene fluoride), tetrafluoroethylene-perfluorodioxole copolymer, vinylidene fluoride-hexafluoropropylene copolymer Selected from the group consisting of a polymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer and tetrafluoroethylene-perfluoromethyl vinyl ether Electronic device for heat radiation substrate Motomeko 1 wherein. 前記熱伝導性充填材が窒化物または酸化物であることを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the thermally conductive filler is a nitride or an oxide. 前記窒化物が、窒化ジルコニウム、窒化ホウ素、窒化アルミニウム、および窒化ケイ素からなる群より選択されることを特徴とする請求項11記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 11, wherein the nitride is selected from the group consisting of zirconium nitride, boron nitride, aluminum nitride, and silicon nitride. 前記酸化物が、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、およびニ酸化チタンからなる群より選択されることを特徴とする請求項11記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 11, wherein the oxide is selected from the group consisting of aluminum oxide, magnesium oxide, zinc oxide, and titanium dioxide. 前記熱伝導性ポリマー誘電体絶縁層を架橋および硬化するために、前記放熱基板が0〜20ミリラドで照射されることを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the heat dissipation substrate is irradiated with 0 to 20 millirads in order to crosslink and cure the thermally conductive polymer dielectric insulating layer. 前記電子装置が発光ダイオード装置であることを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the electronic device is a light emitting diode device. 前記第1金属層が銅を含むことを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the first metal layer contains copper. 前記第2金属層がアルミニウムを含むことを特徴とする請求項1記載の電子装置用放熱基板。   The heat dissipation substrate for an electronic device according to claim 1, wherein the second metal layer contains aluminum.
JP2007152629A 2006-08-30 2007-06-08 Radiating substrate for electronic device Withdrawn JP2008060535A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095131947A TWI302372B (en) 2006-08-30 2006-08-30 Heat dissipation substrate for electronic device

Publications (1)

Publication Number Publication Date
JP2008060535A true JP2008060535A (en) 2008-03-13

Family

ID=39152025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152629A Withdrawn JP2008060535A (en) 2006-08-30 2007-06-08 Radiating substrate for electronic device

Country Status (3)

Country Link
US (1) US20080057333A1 (en)
JP (1) JP2008060535A (en)
TW (1) TWI302372B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029638A (en) * 2009-07-22 2011-02-10 Semikron Elektronik Gmbh & Co Kg Power semiconductor module having sandwich structure including power semiconductor element
JP2013090924A (en) * 2011-10-24 2013-05-16 Nitin Mahajan Endoscope with led assembly
KR101267252B1 (en) * 2011-08-19 2013-05-23 유한회사 한국 타코닉 High heat dissipative bendable metal copper clad laminate
US8803183B2 (en) 2010-10-13 2014-08-12 Ho Cheng Industrial Co., Ltd. LED heat-conducting substrate and its thermal module
KR101824038B1 (en) * 2011-07-22 2018-01-31 엘지이노텍 주식회사 display apparatus
WO2019135516A1 (en) * 2018-01-04 2019-07-11 엘지이노텍 주식회사 Heat-radiating substrate
JP7443837B2 (en) 2020-03-09 2024-03-06 株式会社豊田中央研究所 Composite dielectric material

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032702A1 (en) * 2008-08-11 2010-02-11 E. I. Du Pont De Nemours And Company Light-Emitting Diode Housing Comprising Fluoropolymer
GB2464668A (en) * 2008-10-20 2010-04-28 Sensitive Electronic Co Ltd Thin light emitting diode circuit substrate and lamp strip
TWI419382B (en) * 2009-10-28 2013-12-11 Physics Hsu Resonant light emitting diode light source device
US10290788B2 (en) * 2009-11-24 2019-05-14 Luminus Devices, Inc. Systems and methods for managing heat from an LED
CN102640311A (en) * 2009-11-26 2012-08-15 日东电工株式会社 Substrate for LED mounting
TW201214809A (en) 2010-01-29 2012-04-01 Nitto Denko Corp Light-emitting diode device
JP5759192B2 (en) * 2010-01-29 2015-08-05 日東電工株式会社 Backlight and liquid crystal display device
TW201203477A (en) 2010-01-29 2012-01-16 Nitto Denko Corp Power module
EP2654075B1 (en) 2010-03-31 2016-09-28 EV Group E. Thallner GmbH Method for permanently connecting two metal surfaces
KR101920445B1 (en) * 2010-05-25 2018-11-20 삼성전자주식회사 Light emitting devices
JP5684511B2 (en) * 2010-08-11 2015-03-11 三菱樹脂株式会社 Metal foil laminate, LED mounting substrate and light source device
WO2012061183A2 (en) 2010-11-03 2012-05-10 3M Innovative Properties Company Flexible led device for thermal management and method of making
KR20130143061A (en) 2010-11-03 2013-12-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Flexible led device with wire bond free die
WO2012061184A1 (en) 2010-11-03 2012-05-10 3M Innovative Properties Company Flexible led device and method of making
DE102010051959A1 (en) 2010-11-19 2012-05-24 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
US9236547B2 (en) 2011-08-17 2016-01-12 3M Innovative Properties Company Two part flexible light emitting semiconductor device
JP2014531109A (en) 2011-08-29 2014-11-20 コーニンクレッカ フィリップス エヌ ヴェ A flexible lighting assembly, a luminaire, and a method of manufacturing a flexible layer.
JP5932480B2 (en) 2012-05-02 2016-06-08 デュポン株式会社 Polyester composition filled with graphite
US9385102B2 (en) * 2012-09-28 2016-07-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming supporting layer over semiconductor die in thin fan-out wafer level chip scale package
WO2014091417A1 (en) 2012-12-12 2014-06-19 Koninklijke Philips N.V. Carrier structure and method of manufacturing the same
TWI548429B (en) 2014-11-07 2016-09-11 財團法人工業技術研究院 Medical composite material method for fabricating the same and applications thereof
TWI522231B (en) 2014-12-01 2016-02-21 財團法人工業技術研究院 Metal/polymer composite material and method for fabricating the same
CN106304759B (en) * 2015-05-29 2018-12-11 旭景光电股份有限公司 Ultra-thin equal backing
CN105161595B (en) * 2015-08-07 2018-06-19 佛山市雄飞光电有限公司 Large-power light-emitting diodes
WO2020045260A1 (en) 2018-08-28 2020-03-05 ダイキン工業株式会社 Resin composition and molded article
TWI725518B (en) * 2019-08-22 2021-04-21 聚鼎科技股份有限公司 Thermally conductive board
US11312109B2 (en) * 2020-09-01 2022-04-26 Mitsubishi Chemical Composites America, Inc. Composite panel having noncombustible polymer matrix core
TWI766401B (en) * 2020-10-26 2022-06-01 南亞塑膠工業股份有限公司 Fluoride-based resin prepreg material and printed circuit board using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518737A (en) * 1978-12-26 1985-05-21 Rogers Corporation Dielectric material and method of making the dielectric material
US4689475A (en) * 1985-10-15 1987-08-25 Raychem Corporation Electrical devices containing conductive polymers
US5155655A (en) * 1989-08-23 1992-10-13 Zycon Corporation Capacitor laminate for use in capacitive printed circuit boards and methods of manufacture
US6175084B1 (en) * 1995-04-12 2001-01-16 Denki Kagaku Kogyo Kabushiki Kaisha Metal-base multilayer circuit substrate having a heat conductive adhesive layer
EP0744884A3 (en) * 1995-05-23 1997-09-24 Hitachi Chemical Co Ltd Process for producing multilayer printed circuit board
US6274224B1 (en) * 1999-02-01 2001-08-14 3M Innovative Properties Company Passive electrical article, circuit articles thereof, and circuit articles comprising a passive electrical article
JP2000273196A (en) * 1999-03-24 2000-10-03 Polymatech Co Ltd Heat-conductive resin substrate and semiconductor package
US20030058650A1 (en) * 2001-09-25 2003-03-27 Kelvin Shih Light emitting diode with integrated heat dissipater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029638A (en) * 2009-07-22 2011-02-10 Semikron Elektronik Gmbh & Co Kg Power semiconductor module having sandwich structure including power semiconductor element
US8803183B2 (en) 2010-10-13 2014-08-12 Ho Cheng Industrial Co., Ltd. LED heat-conducting substrate and its thermal module
KR101824038B1 (en) * 2011-07-22 2018-01-31 엘지이노텍 주식회사 display apparatus
KR101267252B1 (en) * 2011-08-19 2013-05-23 유한회사 한국 타코닉 High heat dissipative bendable metal copper clad laminate
JP2013090924A (en) * 2011-10-24 2013-05-16 Nitin Mahajan Endoscope with led assembly
WO2019135516A1 (en) * 2018-01-04 2019-07-11 엘지이노텍 주식회사 Heat-radiating substrate
JP7443837B2 (en) 2020-03-09 2024-03-06 株式会社豊田中央研究所 Composite dielectric material

Also Published As

Publication number Publication date
TWI302372B (en) 2008-10-21
TW200812025A (en) 2008-03-01
US20080057333A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP2008060535A (en) Radiating substrate for electronic device
CN101140915B (en) Heat radiation substrate
TWI441574B (en) Metal base circuit board
JP5475625B2 (en) LED mounting board
TWI446065B (en) Metal base circuit substrate
TWI468482B (en) Adhesive
US20130163253A1 (en) White reflective flexible printed circuit board
TW200814373A (en) LED light source unit
JP2011228602A (en) Led light-emitting device and manufacturing method thereof
JP6477483B2 (en) Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
JP5442491B2 (en) Thermally conductive metal-insulating resin substrate and manufacturing method thereof
JP5385685B2 (en) Cover-lay film, light-emitting element mounting substrate, and light source device
JP2012229317A (en) Transparent thermoconductive composition
JP2011222334A (en) Heat conductive sealing member and device
KR102155811B1 (en) The manufacturing method for heat radiation adhesive and heat radiation tape with excellent in-plane thermal conductivity comprising the same
JP2015043417A (en) Power module metal wiring board, power module, power module board, and method for manufacturing power module metal wiring board
JP2008042120A (en) Heat conducting substrate, manufacturing method thereof, and electronic apparatus employing the same
JP2010189614A (en) Resin composition, support material with insulative layer, prepreg, laminated board for light-emitting element, circuit board for light emitting element, and light emitting device
TWI339088B (en) Heat dissipation substrate and heat dissipation material thereof
JP2010274540A (en) White film, metal laminate, substrate for mounting led, and light source device
CN101316499B (en) Cooling substrates and cooling material
CN102469685A (en) Heat-conducting double-faced soft and hard combined base plate and manufacturing method thereof
KR20150025319A (en) A composition of epoxy resin, method for manufacturing the composition, adhesion sheet, circuit board and method for manufacturing the circuit board
JP5077679B2 (en) Manufacturing method of bonded substrate
TW201108882A (en) Thermal conductivity copper-clad substrate

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907