JP2008050458A - Method and apparatus for producing solid fuel and solid fuel produced by the method - Google Patents

Method and apparatus for producing solid fuel and solid fuel produced by the method Download PDF

Info

Publication number
JP2008050458A
JP2008050458A JP2006227663A JP2006227663A JP2008050458A JP 2008050458 A JP2008050458 A JP 2008050458A JP 2006227663 A JP2006227663 A JP 2006227663A JP 2006227663 A JP2006227663 A JP 2006227663A JP 2008050458 A JP2008050458 A JP 2008050458A
Authority
JP
Japan
Prior art keywords
lump
solid fuel
forming step
shell
sewage sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006227663A
Other languages
Japanese (ja)
Other versions
JP4872533B2 (en
Inventor
Takashi Noto
隆 能登
Maki Yamada
眞樹 山田
Takeyoshi Matsui
威喜 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2006227663A priority Critical patent/JP4872533B2/en
Priority to CN2007800186808A priority patent/CN101448922B/en
Priority to PCT/JP2007/064589 priority patent/WO2008023527A1/en
Publication of JP2008050458A publication Critical patent/JP2008050458A/en
Application granted granted Critical
Publication of JP4872533B2 publication Critical patent/JP4872533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/42Solid fuels essentially based on materials of non-mineral origin on animal substances or products obtained therefrom, e.g. manure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a solid fuel with simplified work process and suppressing the generation of odor in the solid fuel production process as far as possible and provide a solid fuel produced by the method. <P>SOLUTION: The method for producing a solid fuel by drying sewage sludge or animal feces comprises a block forming step to form the sewage sludge or animal feces to a block of a prescribed size, a surface-forming step to increase the surface density of the block formed by the block forming step to be higher than the density of the inner part, and a crust-forming step to form a crust on the surface of the block by the heat-treatment of the surface-formed block. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、下水汚泥または畜糞を原料とする固形燃料の製造方法および装置、該方法により製造された固形燃料に関する。   The present invention relates to a method and an apparatus for producing a solid fuel using sewage sludge or livestock dung as a raw material, and a solid fuel produced by the method.

下水汚泥を原料とする固形燃料の製造方法としては、例えば以下のようなものが提案されている。
含水率が0〜50%となるまで乾燥させた下水汚泥を、概ね、520K〜770Kで炭化処理する炭化工程と、前記炭化処理によって得られた汚泥炭化物に対して、廃油および廃油残渣の少なくとも一方を混合して造粒処理する混合造粒工程と、を含むことを特徴とする固形燃料の製造方法(特許文献1参照)。
As a method for producing a solid fuel using sewage sludge as a raw material, for example, the following is proposed.
A carbonization step of carbonizing sewage sludge dried to a water content of 0 to 50% at about 520K to 770K, and at least one of waste oil and waste oil residue with respect to the sludge carbide obtained by the carbonization. And a mixing granulation step of mixing and granulating the mixture (see Patent Document 1).

他の固形燃料製造方法として、下水脱水ケーキと廃プラスチック粉砕物及び/又は古紙破砕物とを混合し、成形後に乾燥させることを特徴とする汚泥処理方法がある(特許文献2参照)。
特開2006-152097号公報 特開2006-15174号公報
As another solid fuel production method, there is a sludge treatment method characterized by mixing a sewage dewatered cake, a waste plastic pulverized product and / or a waste paper crushed product, and drying after molding (see Patent Document 2).
JP 2006-152097 A JP 2006-15174 A

特許文献1、2を含むその他の一般的な固形燃料製造方法においては、固形燃料製造方法の各工程において発生する強い臭気に対する対策が十分とは言えない。
また、特に特許文献1の方法では、炭化工程の後に廃油および廃油残渣の少なくとも一方を混合して造粒処理する混合造粒工程を行うことになるが、炭化処理後の汚泥は粉状になって浮遊することから、その処理環境が非常に悪く、造粒工程における作業が煩雑であるという問題がある。
In other general solid fuel production methods including Patent Documents 1 and 2, measures against strong odor generated in each step of the solid fuel production method are not sufficient.
In particular, in the method of Patent Document 1, a mixed granulation process is performed in which at least one of waste oil and waste oil residue is mixed and granulated after the carbonization process, but the sludge after the carbonization process is powdered. Therefore, there is a problem that the processing environment is very bad and the work in the granulation process is complicated.

本発明は係る課題を解決するためになされたものであり、固形燃料の製造工程において臭気の発生をできるだけ抑制し、また作業工程を簡略化できる固形燃料の製造方法および製造装置、該方法によって製造された固形燃料を得ることを目的としている。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A solid fuel manufacturing method and manufacturing apparatus capable of suppressing the generation of odors in the solid fuel manufacturing process as much as possible and simplifying the work process, and the manufacturing method. The purpose is to obtain a solid fuel.

上記の課題を解決するために、発明者は固形分を含む汚泥粒子の乾燥過程における粒径変化の測定、内部構造の観察、熱処理温度が臭気に及ぼす影響についての考察を行った。   In order to solve the above-mentioned problems, the inventor conducted the measurement of the particle size change in the drying process of the sludge particles containing the solid content, the observation of the internal structure, and the influence of the heat treatment temperature on the odor.

1)乾燥過程における粒径変化の測定
初期粒径d0=7mmの粒子について、所定温度の気流によって熱処理を行い、乾燥過程における粒径の変化を測定した。
なお、下水汚泥の乾燥実験用粒子は次のようにして作成した。まず、下水汚泥をある所定の大きさの塊状体にちぎり、次に、塊状体の表面の密度が内部の密度よりも高くなるように、塊状体の汚泥を、板面上を転動させながら、球形あるいはそれに準じる形状に成形する。この成形中、少し加圧するように押し固めると、凸凹面が少ない滑らかな表面を有する塊状体となる。
1) Measurement of change in particle diameter during drying process Particles having an initial particle diameter d 0 = 7 mm were heat-treated with an air flow at a predetermined temperature, and the change in particle diameter during the drying process was measured.
In addition, the particle | grains for drying experiment of a sewage sludge were created as follows. First, sewage sludge is torn into a lump of a certain size, and then the lump of lump is rolled on the plate surface so that the density of the surface of the lump is higher than the internal density. , Molded into a spherical shape or similar shape. During this molding, if the squeezing is performed so as to apply a little pressure, a lump having a smooth surface with few uneven surfaces is obtained.

熱処理温度Ta=473K、343Kの場合の無次元時間tに対する粒径d(mm)の変化を含水比C(%)の履歴とともに図2に示す。ここで、含水比C(%)とは、水分を除いた乾燥質量に対する粒子中に含まれる水分量の比を意味する。   FIG. 2 shows the change of the particle diameter d (mm) with respect to the dimensionless time t when the heat treatment temperature Ta = 473K and 343K, together with the history of the water content ratio C (%). Here, the water content ratio C (%) means the ratio of the amount of moisture contained in the particles to the dry mass excluding moisture.

図2から分かるように、Ta=343Kの場合のほうがTa=473Kのときよりも粒径が減少し、Ta=343Kの場合では初期粒径に対して84%、Ta=473Kの場合では初期粒径に対して90%の粒径になった。熱処理温度Taが高いほど粒子半径方向の温度分布が大きいと仮定すると、Ta=473Kの場合は表面が内部よりも早く加熱されて乾燥し、硬い固体壁となる殻を形成するために体積収縮がおこりにくくなると考えられる。それに対して、Ta=343Kの場合は、外部のみではなく、全体的に乾燥が進行するため表面がまだ完全に硬くなる前に内部の水分が蒸発し、収縮が起きるものと思われる。   As can be seen from FIG. 2, the particle size is smaller when Ta = 343K than when Ta = 473K. When Ta = 343K, the initial particle size is 84%, and when Ta = 473K, the initial particle size. The particle diameter was 90% of the diameter. Assuming that the temperature distribution in the particle radial direction is larger as the heat treatment temperature Ta is higher, in the case of Ta = 473K, the surface is heated faster than the inside and dried, and volume shrinkage occurs to form a shell that becomes a hard solid wall. It is thought that it becomes difficult to occur. On the other hand, in the case of Ta = 343K, not only the exterior but the entire drying progresses, so that the moisture in the interior evaporates before the surface becomes completely hard, and it seems that shrinkage occurs.

2)内部構造の観察(乾燥途中における粒子断面の観察)
汚泥粒子を乾燥させた場合に乾燥過程における内部の様子を明らかにするために、乾燥途中の粒子を切断した断面を撮影し、観察した。Ta=473KおよびTa=343Kの場合について、それぞれ図3(a)〜(c)、図4(a)〜(c)に示す。
各図の(a)は、初期状態の粒子断面を示す。この場合、白い繊維状の物質を含む固形分が完全に水分と溶け合っているのがわかる。乾燥過程については、Ta=473Kの場合は、まず表面が乾燥して外殻を形成し、その後内部に亀裂が生じ、それが発達して空隙へと成長すると考えられる。それに対して、Ta=343Kの場合は、Ta=473Kのときのような殻ははっきりと確認できず、全体的に乾燥していく。含水比Cが43%の段階(各図中の(b))では、熱処理温度による違いが明らかであり、Ta=473Kの場合内部はまだ湿っているが、Ta=343Kの場合は内部もやや乾燥して白い繊維状の物質が析出しているのが分かる。
2) Observation of internal structure (observation of particle cross section during drying)
In order to clarify the internal state in the drying process when the sludge particles were dried, a cross section of the particles being dried was photographed and observed. The cases of Ta = 473K and Ta = 343K are shown in FIGS. 3 (a) to 3 (c) and FIGS. 4 (a) to 4 (c), respectively.
(A) of each figure shows the particle | grain cross section of an initial state. In this case, it can be seen that the solid content including the white fibrous substance is completely dissolved in moisture. Regarding the drying process, when Ta = 473K, the surface is first dried to form an outer shell, and then a crack is formed inside, which develops and grows into a void. On the other hand, in the case of Ta = 343K, the shell as in the case of Ta = 473K cannot be clearly confirmed, and the whole is dried. At the stage where the moisture content C is 43% ((b) in each figure), the difference due to the heat treatment temperature is obvious, and when Ta = 473K, the inside is still wet, but when Ta = 343K, the inside is slightly It can be seen that a white fibrous substance is deposited after drying.

上記、乾燥過程における粒径変化の測定及び内部構造の観察により、熱処理温度によって汚泥粒子の乾燥特性に次のような違いが生じると考えられる。
高温乾燥の場合は、体積が収縮する間もなく先に表面が乾燥して外殻を形成する。内部はその外殻を通じて乾燥が進行するが、外殻が硬いため体積の収縮が妨げられる。
From the above measurement of the particle size change during the drying process and observation of the internal structure, it is considered that the following differences occur in the drying characteristics of the sludge particles depending on the heat treatment temperature.
In the case of high-temperature drying, the surface is first dried to form an outer shell immediately before the volume shrinks. The interior is dried through its outer shell, but the outer shell is hard and prevents volume shrinkage.

汚泥粒子における殻形成は、粒子表面からの水分の蒸発速度と内部の水分の拡散速度との兼ね合いによって起こることが考えられる。すなわち、熱処理温度が高い場合は蒸発速度が大きく、粒子表面近くの温度勾配および含水比勾配が急となるため、内部の含水比が高いうちに体積が収縮する間もなく表面が乾燥し殻を形成する。低温乾燥時よりも粒径変化が小さいのは、殻が硬く体積の収縮を妨げるためであると思われる。また、乾燥過程において溶質である固形分は水分と同様に内部から表面へ拡散するが、高温乾燥の場合は表面付近が早く乾燥して硬化し、内部の固形分が拡散しにくくなるため、全体的に疎なポーラス状粒子になると考えられる(図3(c)参照)。   It is considered that shell formation in the sludge particles occurs due to a balance between the evaporation rate of moisture from the particle surface and the diffusion rate of moisture inside. That is, when the heat treatment temperature is high, the evaporation rate is large, and the temperature gradient and moisture content gradient near the particle surface become steep, so that the surface dries and forms a shell even before the volume shrinks while the internal moisture content is high. . The change in particle size is smaller than that during low temperature drying because the shell is hard and prevents volume shrinkage. Also, the solid content that is a solute in the drying process diffuses from the inside to the surface like moisture, but in the case of high-temperature drying, the vicinity of the surface dries quickly and hardens, and the internal solid content becomes difficult to diffuse, so the whole It is thought that it becomes a sparse porous particle (see FIG. 3C).

一方、低温乾燥の場合、表面は早く乾燥するが、殻は形成されずに、全体的に乾燥するため大幅な体積収縮が生じ、固形分の揮発も起こりやすい。
熱処理温度が低い場合は、粒子内の温度勾配および含水比勾配が小さいため、固形分が表面に移動し、硬い殻は形成せず、乾燥の進行に伴い大幅な体積収縮が生じるものと考えられる(図4(c)参照)。343Kの条件では、完全に乾燥しきるまで殻は形成されず、熱処理時、水分および揮発分は、圧力抵抗の低い表面から外部に放出されるため、表面が凸凹になる。
On the other hand, in the case of low-temperature drying, the surface dries quickly, but no shell is formed, and the whole is dried, resulting in significant volume shrinkage, and volatilization of the solid content easily occurs.
When the heat treatment temperature is low, the temperature gradient and moisture content gradient in the particles are small, so the solids move to the surface, hard shells do not form, and it is thought that significant volume shrinkage occurs as drying progresses (See FIG. 4 (c)). Under the condition of 343K, the shell is not formed until it is completely dried, and during the heat treatment, moisture and volatile matter are released to the outside from the surface having a low pressure resistance, so that the surface becomes uneven.

なお、初期粒子径d0=5mm、3mmの粒子に関しては、いずれの条件についてもd0=7mmの場合とほぼ同様の特性を示すが、殻および外皮の厚みがd0=7mmのものと同様であった。 Note that the particles having initial particle diameters d 0 = 5 mm and 3 mm show almost the same characteristics as in the case of d 0 = 7 mm for all conditions, but the same as the case where the thickness of the shell and the outer skin is d 0 = 7 mm. Met.

上記の実験によって、汚泥粒子の熱処理条件が高温(473K)の場合と、低温(343K)の場合で、顕著な差異があることが分かったので、発明者はさらに種々の熱処理温度条件について同様の実験を行い、以下のような結果を得た。
汚泥塊状体の表面を滑らかに成形した後、443K〜513Kの高温場で熱処理するとき、例えば、高温気流を当てながら熱処理すると、硬い殻が形成され、殻の表面は滑らかで、繊維状の物質が規則正しく配列された状態になる。この現象は、汚泥粒子を、外部加熱された高温の転動面内壁を転がしながら熱処理したときも同様であった。
From the above experiment, it was found that there is a significant difference between the case where the heat treatment conditions of the sludge particles are high temperature (473 K) and the case where the temperature is low temperature (343 K). The experiment was conducted and the following results were obtained.
When the surface of the sludge mass is formed smoothly and then heat-treated in a high temperature field of 443K to 513K, for example, when heat-treated while applying a high-temperature air current, a hard shell is formed, and the surface of the shell is smooth and fibrous. Are arranged regularly. This phenomenon was the same when the sludge particles were heat-treated while rolling the externally heated high temperature rolling surface inner wall.

他方、熱処理温度を443Kよりも低くすると、塊状体表面から凸凹を無くして滑らかにし、塊状体の表面の密度を内部より高くした汚泥塊状体を用いても、熱処理後の表面は凸凹になる。より具体的には、373Kや343Kの条件では、形状の整った球状の汚泥塊状体を用いたとしても、熱処理後は表面が凸凹になり、表面に亀裂が入ったりする。また、343Kの条件では、前述したように、塊状体の収縮が大きく、完全に乾燥しきるまで硬い殻は形成されない。
熱処理温度が低い場合には、熱処理後の粒子表面は粗く、繊維状の物質が乱雑に絡み合っていることが確認できた。これは、熱処理過程において、水分あるいは揮発分は、圧力抵抗の低い表面から外部に放出し、滑らかな表面を崩していくためであると考えられる。
On the other hand, when the heat treatment temperature is lower than 443 K, the surface after the heat treatment becomes uneven even when a sludge mass that is smooth by eliminating irregularities from the surface of the mass and the density of the surface of the mass is higher than the inside is used. More specifically, under the conditions of 373K and 343K, even if a spherical sludge lump having a well-shaped shape is used, the surface becomes uneven after the heat treatment, and the surface is cracked. On the other hand, under the condition of 343K, as described above, the mass of the mass is greatly contracted, and a hard shell is not formed until it is completely dried.
When the heat treatment temperature was low, the particle surface after the heat treatment was rough, and it was confirmed that the fibrous substance was entangled randomly. This is considered to be because moisture or volatile components are released from the surface with low pressure resistance to the outside during the heat treatment process, and the smooth surface is destroyed.

以上の結果から、汚泥塊状体を、443K〜513K、好ましくは、453K以上で熱処理すると、塊状体の粒径減少が小さく、熱処理前の形状を保持し続け、熱処理後、表面に滑らかで硬い殻を形成されるとの知見を得た。   From the above results, when the sludge mass is heat-treated at 443K to 513K, preferably 453K or more, the particle size reduction of the mass is small and the shape before the heat treatment is kept, and after the heat treatment, the surface is smooth and hard shell The knowledge that it will be formed.

次に、汚泥塊状体の表面状態が乾燥過程において塊状体に及ぼす影響についても確認した。その結果、凸凹面が少ない滑らかな塊状体の汚泥を、443K〜513Kで熱処理すると、凸凹面がある塊状体汚泥よりも、さらに硬い殻が形成される傾向にあることが分かった。
表面の凸凹を無くすと、凸凹有りの塊状体よりも、高温気流から汚泥内部への熱移動量が小さくなり、粒子表面の温度勾配が、凸凹有りに比べてさらに大きくなり、より短時間に体積収縮する間もなく表面に殻を形成する。内部温度が低く、内部からの水分および揮発分の発生量が少ない間に殻を形成させることができると、塊状体の表層全体に渡って、とても緻密で硬い殻が形成される。
Next, the effect of the surface state of the sludge mass on the mass during the drying process was also confirmed. As a result, it was found that when the sludge of a smooth lump having few uneven surfaces is heat-treated at 443K to 513K, a harder shell tends to be formed than lump sludge having uneven surfaces.
Eliminating irregularities on the surface reduces the amount of heat transferred from the high-temperature airflow into the sludge, and the temperature gradient on the particle surface is larger than irregularities, resulting in a shorter volume. A shell forms on the surface soon after shrinking. If the shell can be formed while the internal temperature is low and the amount of moisture and volatile components generated from the inside is small, a very dense and hard shell is formed over the entire surface of the lump.

次に、汚泥塊状体の殻の厚みについて考察した。
高温気流に晒した時間に応じて、その殻の厚みも変化する。時間が長ければ長いほど殻の厚みは増す。例えば、初期粒子径d0=7mmの汚泥粒子を用いた453K〜493Kの条件では、殻の厚みは0.1mm〜1mmであった。乾燥後の汚泥塊状体が、粉状に崩れない程度の硬さを維持するためには、殻の厚みは0.1mm以上必要であることがわかった。
また、乾燥後の汚泥塊状体が粉状に崩れないようにするための厚みは、初期粒子径が大きくなるほど、大きな厚みが必要で、初期粒子径20mmでは、0.2mm程度、30mmでは0.25mm程度必要であるという知見を得た。初期粒子径30mmの汚泥粒子を用いた453K〜493Kの条件では、完全に乾燥した後、殻の厚みを測定したところ、最大3.2mmとなった。
Next, the thickness of the sludge block was considered.
Depending on the time of exposure to the hot air stream, the thickness of the shell also changes. The longer the time, the thicker the shell. For example, the shell thickness was 0.1 mm to 1 mm under the conditions of 453K to 493K using sludge particles having an initial particle diameter d 0 = 7 mm. It was found that the thickness of the shell needs to be 0.1 mm or more in order to maintain the hardness of the sludge mass after drying so as not to break into powder.
Moreover, as the initial particle diameter increases, the thickness required to prevent the sludge mass after drying from breaking into a powder is required to be large. The initial particle diameter is about 0.2 mm at 20 mm, and is 0. The knowledge that about 25 mm is required was obtained. Under the conditions of 453K to 493K using sludge particles having an initial particle diameter of 30 mm, the shell thickness was measured after complete drying, and the maximum thickness was 3.2 mm.

加熱方法について考察したところ、以下の知見が得られた。凸凹面が少ない滑らかな塊状体の汚泥を、443K〜513Kで、外部加熱された高温の転動面内壁を転がしながら熱処理したとき、高温気流による熱処理の場合よりも、より短時間で緻密な殻ができることがわかった。外部加熱された高温の転動面内壁を転がす方法の場合には、固体どうしの接触によって熱が伝わるため、熱処理工程において、塊状体表面を押し固める作用が働くからと考えられる。   When the heating method was considered, the following knowledge was obtained. When the sludge of a smooth lump with few uneven surfaces is heat-treated at 443K to 513K while rolling the inner wall of a hot rolling surface heated externally, a dense shell is obtained in a shorter time than in the case of heat treatment using a high-temperature air flow. I found out that In the case of the method of rolling an externally heated high-temperature inner surface of the rolling surface, heat is transmitted by contact between solids, and therefore, it is considered that an action of pressing and hardening the lump body surface works in the heat treatment step.

なお、上記においては下水汚泥を例に挙げたが、畜糞についても同様の実験を行い、同様の結果を得ている。
なお、下水汚泥、畜糞の質によっては、光沢を持つ硬い殻を形成されることがあることを確認した。
In addition, although the sewage sludge was mentioned as an example in the above, the same experiment was performed also about livestock dung and the same result was obtained.
In addition, depending on the quality of sewage sludge and livestock excrement, it was confirmed that a hard shell with luster might be formed.

3)熱処理温度が臭気に及ぼす影響について
次に、熱処理温度と臭気係数の関係について明らかにするために臭気実験を行った。このときの実験条件を表1に示す。
3) Effect of heat treatment temperature on odor Next, an odor experiment was conducted to clarify the relationship between the heat treatment temperature and the odor coefficient. Table 1 shows the experimental conditions at this time.

また、実験結果を図5のグラフに示す。図5のグラフにおいては、縦軸が臭気係数、横軸が熱処理温度(℃)を示している。
なお、「臭気係数」とは、本実験で独自に定義したものであり、人間の嗅覚によって以下に示すような方法で臭気試験を行うことによって得られたものである。以下、この臭気実験を概説する。
The experimental results are shown in the graph of FIG. In the graph of FIG. 5, the vertical axis indicates the odor coefficient, and the horizontal axis indicates the heat treatment temperature (° C.).
The “odor coefficient” is uniquely defined in this experiment, and is obtained by performing an odor test by a human olfaction method as shown below. Hereinafter, this odor experiment will be outlined.

この試験は試験者と被験者の二人一組で行った。まず乾燥温度等をパラメータにして作成した乾燥粒子のサンプルを、それぞれ番号が付けられた容器に分ける。試験者はその中から無作為にサンプルを選び、被験者にはその番号を知らせずに手渡す。被験者は嗅覚によってサンプルの臭気を確認し、少しでも悪臭が感じられた場合は1、全く悪臭が感じられなかった場合のみ0と試験者に告げる。この作業を全てのサンプルについて行い、これを一回の臭気試験とした。この試験を繰り返し行い、それぞれの条件ごとに平均値を求め、その値を「臭気係数」と定義した。再現性の高い結果を得るため、各条件における臭気係数の値が安定するまで行った。試験回数が30回以上になると、その条件でも臭気係数の値は安定を示した。   This test was conducted by a pair of tester and subject. First, dry particle samples prepared using the drying temperature as a parameter are divided into numbered containers. The examiner chooses a sample at random, and gives it to the subject without giving the number. The subject confirms the odor of the sample by olfaction, and tells the tester that 1 if any odor is felt, 0 if no odor is felt at all. This operation was performed for all samples, and this was regarded as a single odor test. This test was repeated, an average value was obtained for each condition, and the value was defined as “odor coefficient”. In order to obtain a highly reproducible result, it was performed until the value of the odor coefficient in each condition was stabilized. When the number of tests was 30 times or more, the value of the odor coefficient was stable even under the conditions.

図5から臭気係数は熱処理温度が443K以上になると急激に減少し、熱処理温度が473Kではほぼ0になる。このことから、汚泥の乾燥粒子の臭気は熱処理温度に依存するものであり、熱処理温度473Kで乾燥させることによって乾燥粒子の臭気を大きく低減させることが可能であることを確認した。   From FIG. 5, the odor coefficient decreases rapidly when the heat treatment temperature is 443K or more, and becomes almost zero when the heat treatment temperature is 473K. From this, it was confirmed that the odor of the sludge dry particles depends on the heat treatment temperature, and that the odor of the dry particles can be greatly reduced by drying at a heat treatment temperature of 473K.

臭気が低減する理由としては、上述したように、473Kでの乾燥によれば、汚泥粒子の表面に硬い殻が形成され、この形成された殻に臭気が吸着等されることが一つの要因であると考えられる。
すなわち、汚泥粒子の表面を443K以上で熱処理すると、表面から水分が蒸発するだけでなく、表面の固形分の性状が変質し、臭気成分を吸着しやすい物質となる。この殻の成分は特定できていないが、臭気の吸着作用に関して、活性炭の吸着作用に類似する機能を有していると考えている。
この臭気を抑える機能は、熱処理温度が513Kまでは、熱処理温度を高くするほど向上する。
As described above, the reason why the odor is reduced is that, as described above, according to drying at 473K, a hard shell is formed on the surface of the sludge particles, and the odor is adsorbed on the formed shell. It is believed that there is.
That is, when the surface of the sludge particles is heat-treated at 443 K or more, not only the water evaporates from the surface but also the property of the solid content on the surface changes and becomes a substance that easily adsorbs odor components. Although the component of this shell has not been specified, it is considered that it has a function similar to the adsorption action of activated carbon with respect to the adsorption action of odor.
The function of suppressing this odor improves as the heat treatment temperature is increased up to a heat treatment temperature of 513K.

513Kを超えると、乾燥時に発生する臭気の吸着効果は得られるが、新たに、たんぱく質がこげたような別の臭いが発生する。この温度での熱処理は、513K以下で形成する殻とは別の殻の性状をもたらし、乾燥後温度が低下した後も別種の悪臭を発生させる。したがって、汚泥乾燥物から発生する強い悪臭を抑えるという観点から、513Kより高温で熱処理することは好ましくない。   If it exceeds 513K, the effect of adsorbing the odor generated at the time of drying is obtained, but another odor such as a protein burnt is newly generated. The heat treatment at this temperature brings about the properties of a shell different from the shell formed at 513 K or less, and generates another type of malodor even after the temperature decreases after drying. Therefore, it is not preferable to perform heat treatment at a temperature higher than 513 K from the viewpoint of suppressing a strong odor generated from the sludge dried product.

また、熱処理温度443K付近は脂肪酸、有機酸等の物質の沸点に相当するが、473Kで乾燥した場合には、揮発した脂肪酸、有機酸の物質、例えば、酪酸、吉草酸、そして、それらと構造式が類似する物質は、臭気の無いあるいは臭気の弱い物質へと分解される。   The heat treatment temperature of about 443K corresponds to the boiling point of substances such as fatty acids and organic acids, but when dried at 473K, volatile fatty acid and organic acid substances such as butyric acid, valeric acid, and their structures. Substances with similar formulas are broken down into substances with no odor or weak odor.

以上の結果から、下水汚泥および畜糞を対象とする場合、乾燥によって十分に安定した臭気低減効果を得るためには、熱処理温度としては、443K〜513Kであることが必要であり、好ましくは453K〜493Kである。   From the above results, when targeting sewage sludge and livestock dung, the heat treatment temperature needs to be 443K to 513K, preferably 453K to obtain a sufficiently stable odor reduction effect by drying. 493K.

なお、上記の実験において臭気低減効果を得た汚泥粒子は、凸凹面が少ない滑らかな塊状体を用いている。表面に凸凹やちぎられた切断面あるいは亀裂がある粒子は、熱処理中にそこから悪臭成分が放出するため、例え上記のような殻形成が可能な温度領域であったとしても、臭気低減効果は得にくい。したがって、臭気低減効果を得るためには、塊状体の表面の密度を内部の密度より大きくするなどして、表面を滑らかな状態にする必要がある。
443K〜513Kで熱処理したときに、粒子表面に繊維状の物質が規則正しく配列した緻密な硬い殻が臭いを抑制する効果を有するが、この殻は、凸凹面が少ない滑らかな塊状体になるように表面成形工程を加えられた汚泥を熱処理することによってより確実に形成される。表面がすべすべして均一に押し固められた“泥団子”状態になるように表面成形された“凸凹面が少ない滑らかな塊状体”を、443K〜513K、好ましくは453K〜493Kで熱処理するとき、汚泥乾燥時に発生する悪臭を最も抑制する効果を有する。
In addition, the sludge particle | grains which acquired the odor reduction effect in said experiment use the smooth lump which has few uneven surfaces. Particles with uneven or torn cut surfaces or cracks on the surface release malodorous components from it during heat treatment, so even if it is in the temperature range where shell formation is possible, the odor reduction effect is Hard to get. Therefore, in order to obtain the effect of reducing odor, it is necessary to make the surface smooth by increasing the density of the surface of the massive body than the internal density.
When heat-treated at 443K to 513K, a dense hard shell in which fibrous substances are regularly arranged on the particle surface has an effect of suppressing odor, but this shell has a smooth lump with few uneven surfaces. It is more reliably formed by heat-treating the sludge subjected to the surface molding process. When heat-treating a “smooth lump with few uneven surfaces” formed so as to be in a “mud dumpling” state where the surface is smooth and uniformly pressed, at 443K to 513K, preferably 453K to 493K, It has the effect of most suppressing bad odors that occur during sludge drying.

本発明は、上述した実験に基づく知見を基になされたものであり、具体的には、以下の構成を有するものである。   The present invention has been made based on the knowledge based on the above-described experiment, and specifically has the following configuration.

(1)本発明に係る固形燃料の製造方法は、下水汚泥または畜糞を乾燥させて固形燃料を製造する方法であって、下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成工程と、塊状体形成工程で形成された塊状体の表面の密度を内部の密度よりも高くする表面成形工程と、表面成形された塊状体を熱処理することにより該塊状体の表面に殻を形成する殻形成工程を含むことを特徴とするものである。 (1) The method for producing a solid fuel according to the present invention is a method for producing a solid fuel by drying sewage sludge or animal dung, and a lump forming step for converting the sewage sludge or animal dung into a lump of a predetermined size. And a surface molding step in which the density of the surface of the block formed in the block forming step is higher than the internal density, and a shell is formed on the surface of the block by heat-treating the surface formed block. It includes a shell forming step.

(2)また、下水汚泥または畜糞を乾燥させて固形燃料を製造する方法であって、
下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成工程と、塊状体形成工程で形成された塊状体を容器内で転動させて該塊状体の表面を滑らかに成形する表面成形工程と、表面成形された塊状体を熱処理することにより塊状体の表面に殻を形成する殻形成工程を含むことを特徴とするものである。
なお、表面成形工程は成形物の表面に亀裂がないようにする態様であることが好ましい。
(2) A method for producing solid fuel by drying sewage sludge or livestock dung,
A lump forming step for turning sewage sludge or livestock dung into a lump of a predetermined size, and surface forming for smoothly shaping the lump's surface by rolling the lump formed in the lump forming step in a container And a shell forming step of forming a shell on the surface of the lump by heat-treating the lump formed on the surface.
In addition, it is preferable that a surface shaping | molding process is an aspect which makes a crack of the surface of a molded object.

(3)また、下水汚泥または畜糞を乾燥させて固形燃料を製造する方法であって、
下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成工程と、塊状体形成工程で形成された塊状体の表面を加圧して該塊状体の表面を滑らかに成形する表面成形工程と、表面成形された塊状体を熱処理することにより塊状体の表面に殻を形成する殻形成工程を含むことを特徴とするものである。
(3) Also, a method for producing solid fuel by drying sewage sludge or livestock dung,
A lump forming step for forming sewage sludge or livestock dung into a lump of a predetermined size, and a surface forming step for smoothly shaping the surface of the lump by pressing the surface of the lump formed in the lump forming step And a shell forming step of forming a shell on the surface of the massive body by heat-treating the surface-molded massive body.

(4)また、上記(1)〜(3)に記載のものにおいて、殻形成工程の熱処理は、塊状体に熱風を当てる又は塊状体を加熱体の上を転動させる態様であることを特徴とするものである。 (4) Moreover, in the thing as described in said (1)-(3), the heat processing of a shell formation process is an aspect which applies hot air to a lump or rolls a lump on a heating body. It is what.

(5)また、上記(1)〜(4)に記載のものにおいて、殻形成工程の熱処理温度を443K〜513Kに設定したことを特徴とするものである。 (5) Further, in the above (1) to (4), the heat treatment temperature in the shell forming step is set to 443K to 513K.

(6)また、上記(1)〜(5)に記載のものにおいて、塊状体形成工程の前に下水汚泥または畜糞の含水率を60%〜80%に調整する含水率調整工程を含むことを特徴とするものである。 (6) Moreover, in the thing as described in said (1)-(5), including the moisture content adjustment process of adjusting the moisture content of a sewage sludge or livestock dung to 60%-80% before a lump formation process. It is a feature.

(7)本発明に係る固形燃料の製造装置は、下水汚泥または畜糞を乾燥させて固形燃料を製造する装置であって、下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成装置と、塊状体形成装置で形成された塊状体の表面の密度を内部の密度よりも高くする表面成形装置と、表面成形された塊状体を熱処理することにより該塊状体の表面に殻を形成する加熱装置を含むことを特徴とするものである。 (7) The solid fuel production apparatus according to the present invention is an apparatus for producing solid fuel by drying sewage sludge or livestock dung, and a lump forming apparatus for converting the sewage sludge or livestock dung into a lump of a predetermined size. And a surface molding device that makes the density of the surface of the block formed by the block forming device higher than the internal density, and heat-treating the surface-formed block to form a shell on the surface of the block It is characterized by including a heating device.

(8)また、上記(7)に記載の塊状体形成装置は、多孔板と、該多孔板に下水汚泥または畜糞を押し込む押込み装置と、多孔板を通過した下水汚泥または畜糞を所定の長さに切断する切断機構を備えてなることを特徴とするものである。 (8) Moreover, the lump forming apparatus according to the above (7) includes a perforated plate, a pushing device that pushes sewage sludge or animal dung into the perforated plate, and a predetermined length of sewage sludge or animal dung that has passed through the perforated plate. And a cutting mechanism for cutting.

(9)また、上記(7)又は(8)に記載の表面成形装置は、塊状体を収容する容器と、該容器内で回転する回転板とを備え、前記塊状体を容器内に収容した状態で回転板を回転させることで該塊状体を容器内で転動させるようにしたことを特徴とするものである。 (9) Moreover, the surface shaping | molding apparatus as described in said (7) or (8) is equipped with the container which accommodates a lump, and the rotating plate which rotates in this container, The lump was accommodated in the container. The lump is rolled in the container by rotating the rotating plate in the state.

(10)また、上記(7)又は(8)に記載の表面成形装置は、塊状体を収容する容器と、該容器を回転させる回転機構を備え、前記塊状体を容器内に収容した状態で前記容器を回転させることで該塊状体を容器内で転動させるようにしたことを特徴とするものである。 (10) Further, the surface molding apparatus according to the above (7) or (8) includes a container for storing the lump and a rotating mechanism for rotating the container, and the lump is stored in the container. The lump is rolled in the container by rotating the container.

(11)また、上記(7)又は(8)に記載の表面成形装置は、対向するロールを備え、該ロール間に塊状体を通過させることによって前記塊状体の表面を加圧するようにしたことを特徴とするものである。 (11) Moreover, the surface molding apparatus as described in said (7) or (8) is provided with the roll which opposes, and it was made to pressurize the surface of the said lump by letting a lump pass between this roll It is characterized by.

(12)本発明に係る固形燃料は、上記(1)〜(6)の何れかの方法によって製造されたことを特徴とするものである。 (12) The solid fuel according to the present invention is manufactured by any one of the methods (1) to (6).

本発明においては、下水汚泥または畜糞を所定の大きさの塊状体にすると共に塊の表面の密度を内部の密度よりも高くし、その塊状体を熱処理することにより周囲に殻を形成するようにしたので、製造工程全般を通じて臭気を抑制できる。
また、乾燥工程の前に成形しているので、乾燥後に造粒工程が不要となり、工程の簡略化ができる。
さらに、乾燥工程の後に造粒するという工程がないので、乾燥後のものが粉状になって浮遊することによる処理環境の悪化の問題も生じない。
In the present invention, the sewage sludge or livestock excrement is made into a lump of a predetermined size, the density of the lump surface is made higher than the internal density, and a shell is formed around the lump by heat treatment. Therefore, odor can be suppressed throughout the manufacturing process.
Moreover, since it shape | molds before a drying process, a granulation process becomes unnecessary after drying and a process can be simplified.
Further, since there is no step of granulating after the drying step, there is no problem of deterioration of the processing environment due to the powdered product being dried and floating.

[実施の形態1]
図1は本発明の一実施の形態に係る固形燃料の製造方法を模式的に示した説明図である。
本実施の形態に係る固形燃料の製造方法は、下水汚泥を所定の大きさの塊状体にする塊状体形成工程(図1(a))と、塊状体形成工程で形成された塊状体の表面の密度を内部の密度よりも高くする表面成形工程(図1(b))と、表面成形された塊状体を熱処理することにより該塊状体の表面に殻を形成する殻形成工程(図1(c))を含むものである。殻形成工程が終了すると、乾燥工程を経て、固形燃料となる。
以下、各工程および各工程に関わるものについて詳細に説明する。
[Embodiment 1]
FIG. 1 is an explanatory view schematically showing a method for producing a solid fuel according to an embodiment of the present invention.
The solid fuel manufacturing method according to the present embodiment includes a lump forming step (FIG. 1A) for converting sewage sludge to a lump having a predetermined size, and a surface of the lump formed in the lump forming step. The surface forming step (FIG. 1B) for increasing the density of the material to be higher than the internal density, and the shell forming step for forming a shell on the surface of the lump by heat-treating the surface-formed lump (FIG. 1 ( c)). When the shell forming step is completed, the solid fuel is obtained through a drying step.
Hereafter, each process and what is related to each process will be described in detail.

<原料>
本実施の形態で用いた原料は下水汚泥である。
原料となる下水汚泥の含水率は、60%〜80%であることを前提としている。したがって、下水汚泥の含水率が80%よりも大きい場合には、塊状体にする際に容器周囲に付着して塊状体を形成することができない。
なお、含水率は68%〜73%であることが好ましい。含水率がこの範囲内であると、塊状体の表面密度を内部より高くする表面成形工程が円滑に進む。
<Raw material>
The raw material used in the present embodiment is sewage sludge.
It is assumed that the water content of the sewage sludge as a raw material is 60% to 80%. Therefore, when the moisture content of the sewage sludge is larger than 80%, it is not possible to form a lump by adhering around the container when the lump is formed.
In addition, it is preferable that a moisture content is 68%-73%. When the moisture content is within this range, the surface molding process for increasing the surface density of the mass from the inside smoothly proceeds.

表面成形工程の稼働率をあげるために、その工程に入る前の塊状体汚泥の含水率が80%よりも高い場合は、乾燥空気あるいは常温気流等の吹き付け、減圧乾燥による予備乾燥処理工程を付加する場合がある。このとき、塊状体が318K以下、好ましくは308K以下の状態を保ちながら乾燥することが望ましい。塊状体の予備乾燥温度が318K以上に上昇すると、この予備乾燥工程において悪臭が発生するからである。   In order to increase the operation rate of the surface molding process, when the moisture content of the lump sludge before entering the process is higher than 80%, a pre-drying process step by blowing dry air or room temperature airflow or drying under reduced pressure is added. There is a case. At this time, it is desirable to dry the lumps while maintaining the state of 318K or less, preferably 308K or less. This is because if the pre-drying temperature of the mass is increased to 318 K or higher, malodor is generated in this pre-drying step.

また、下水汚泥の含水率が60%よりも低い場合には、塊状体を形成することはできるものの、個々の塊状体が固いため、凸凹面が少ない滑らかな表面成形をすることが難しい。この場合において、凸凹をなくすため、押し固める力を大きくすると、塊状体に亀裂が入ったり割れたりする。
したがって、塊状体形成工程の前、あるいは塊状体形成工程の後に予備的な乾燥、あるいは加水を行って含水率を上記の範囲にするのが好ましい。
In addition, when the water content of the sewage sludge is lower than 60%, a lump can be formed, but since each lump is hard, it is difficult to form a smooth surface with few uneven surfaces. In this case, if the pressing force is increased in order to eliminate unevenness, the lump is cracked or broken.
Therefore, it is preferable to carry out preliminary drying or addition before the lump forming step or after the lump forming step to bring the water content into the above range.

なお、固形燃料の原料としては、下水汚泥の他に、畜糞、し尿汚泥、食品加工残渣汚泥、製紙汚泥などの含水有機性汚泥も原料にすることができる。   In addition to sewage sludge, water-containing organic sludge such as livestock manure, human waste sludge, food processing residue sludge, and papermaking sludge can be used as a raw material for the solid fuel.

<塊状体形成工程>
塊状体形成工程は、下水汚泥を所定の大きさの塊状体にする工程である。
下水汚泥を塊状体にする具体的な方法は、図1(a)に示すように、下水汚泥1をスクリューポンプ又はモーノポンプ等によって多孔板(ダイス)3に加圧・押込みすることによって、下水汚泥1を線状体5にし、これを切断機構7によって一定の長さに切断することで、円筒状の塊状体9とする。
もっとも、塊状体9にする方法は、上記の方法に限定されるものではない。
<Block formation process>
The lump forming step is a step of turning the sewage sludge into a lump having a predetermined size.
As shown in FIG. 1 (a), a specific method for making sewage sludge into a mass is to press and push the sewage sludge 1 into a perforated plate (die) 3 with a screw pump or a Mono pump, etc. 1 is a linear body 5, and this is cut into a fixed length by a cutting mechanism 7, thereby forming a cylindrical block 9.
But the method of making it into the lump 9 is not limited to said method.

<表面成形工程>
表面成形工程は、塊状体形成工程で形成された塊状体9の表面の密度を内部の密度よりも高くする工程である(図1(b))。
表面成形工程の具体的な態様としては、図1(b)に示されるような方法が考えられる。図1(b)(i)に示す例は、円筒状の容器11の底部に回転する円板13を設け、塊状体9を容器内に入れて円板13を回転させることによって、塊状体9を円板上で転動させることで、塊状体の表面の密度を内部の密度よりも高くし、塊状体の表面が亀裂のない滑らかな状態にするというものである。
<Surface molding process>
The surface molding step is a step of making the density of the surface of the block 9 formed in the block formation step higher than the internal density (FIG. 1 (b)).
As a specific aspect of the surface forming step, a method as shown in FIG. In the example shown in FIGS. 1B and 1I, a rotating disk 13 is provided at the bottom of a cylindrical container 11, and the lump 9 is placed in the container and the disk 13 is rotated to rotate the lump 9. Is rolled on a disk so that the density of the surface of the massive body is made higher than the internal density, and the surface of the massive body is made smooth without cracks.

また、図1(b)(ii)に示す例は、傾斜配置した円筒体15を、円筒軸を中心として回転させ、この円筒体15内に上方から塊状体9を装入することにより、塊状体9が円筒内で転動して、図1(b)(i)の場合と同様に、塊状体9の表面の密度を内部の密度よりも高くし、塊状体の表面が亀裂のない滑らかな状態にするというものである。   Further, in the example shown in FIGS. 1B and 1I, the cylindrical body 15 that is inclined is rotated around the cylindrical axis, and the bulk body 9 is inserted into the cylindrical body 15 from above, thereby forming the bulk body. As the body 9 rolls in the cylinder, the density of the surface of the massive body 9 is made higher than the internal density as in the case of FIGS. 1B and 1I, and the surface of the massive body is smooth without cracks. It is to make a state.

また、図1(b)(iii)に示す例は、塊状体9の表面を加圧することで塊状体9の表面の密度を内部の密度よりも高くするというものである。具体的には、図1(b)(iii)に示すように、塊状体9を、対向配置された一対のロール17の間を通過させることで、塊状体9の表面の密度を内部の密度よりも高くし、塊状体9の表面が亀裂のない滑らかな状態にする。一般に、ロールには、表面を加圧する機能に加えて、球状あるいは球体に近い塊状になるように、表面にくぼみを設けている。   In addition, the example shown in FIGS. 1B and iii is to pressurize the surface of the mass 9 so that the density of the surface of the mass 9 is higher than the internal density. Specifically, as shown in FIGS. 1B and iii, the mass 9 is passed between a pair of opposed rolls 17 so that the density of the surface of the mass 9 is reduced to the internal density. The surface of the mass 9 is made smooth without cracks. In general, in addition to the function of pressurizing the surface, the roll is provided with a depression on the surface so as to be spherical or a mass close to a sphere.

<殻形成工程>
殻形成工程は、表面成形された塊状体18を熱処理することにより、塊状体18の表面に殻を形成する工程である。
殻形成工程の具体的な態様としては、図1(c)に示される方法がある。例えば、図1(c)(i)に示されるように、傾斜した円筒体19を、円筒軸を中心に回転させ、その中に高温ガス21を通過させ、この円筒体19に表面成形された塊状体18を装入することで、塊状体18の表面に殻22が形成される。また、図1(c)(ii)に示されるように、加熱された内面を有する円筒体23を、円筒軸を中心に回転させ、その中に表面成形された塊状体18を通過させることで、塊状体18の表面に殻22を形成する。
<Shell formation process>
The shell forming step is a step of forming a shell on the surface of the block 18 by heat-treating the surface-molded block 18.
As a specific aspect of the shell forming step, there is a method shown in FIG. For example, as shown in FIG. 1 (c) (i), an inclined cylindrical body 19 is rotated around a cylindrical axis, and a high temperature gas 21 is passed through it, and the cylindrical body 19 is surface-molded. By inserting the lump 18, a shell 22 is formed on the surface of the lump 18. Further, as shown in FIGS. 1 (c) (ii), the cylindrical body 23 having the heated inner surface is rotated around the cylindrical axis, and the massive body 18 formed by surface molding is passed through the cylindrical body 23. Then, a shell 22 is formed on the surface of the lump 18.

熱処理温度としては、443K〜513Kが好ましい。443K未満であると、殻の形成が不十分になる。他方、513Kを越えると、熱処理中に汚泥または畜糞から焦げ臭いに悪臭がでる。また、さらに高温になると、汚泥または畜糞から炭化水素あるいは水素が揮発しやすくなり、炭化が進みやすい構造となって乾燥後の塊状体の有するカロリーが減少する。   The heat treatment temperature is preferably 443K to 513K. If it is less than 443K, the formation of the shell becomes insufficient. On the other hand, when it exceeds 513K, a bad smell is produced from the sludge or livestock dung during the heat treatment. Further, when the temperature is further increased, hydrocarbons or hydrogen are liable to volatilize from sludge or livestock dung, and the carbonization of the lump after drying is reduced due to a structure that facilitates carbonization.

<乾燥工程>
乾燥工程は、殻形が形成された塊状体を乾燥して固形燃料とする工程である。
乾燥工程における温度は特に限定されるものではない。殻形成工程の温度のまま、例えば473K前後でもよいし、あるいは常温で減圧乾燥でもよい。いずれの温度であっても、殻が形成されていることから、乾燥工程では、悪臭が外気発散するのが抑制される。もっとも、乾燥工程での温度をあまり高くすると炭化して固形燃料のカロリーが減少するという問題があることから、殻形成工程の温度よりも低くするのが好ましい。
なお、乾燥工程に用いる乾燥機としては、例えば塊状体を搬送するベルトコンベアを備えた温風乾燥室からなる態様のものでよい。
<Drying process>
A drying process is a process of drying the lump body in which the shell shape was formed into solid fuel.
The temperature in the drying process is not particularly limited. The temperature at the shell forming step may be, for example, around 473K, or it may be dried at room temperature under reduced pressure. Since the shell is formed at any temperature, it is possible to suppress the odor from being emitted from the outside air in the drying process. However, if the temperature in the drying step is too high, carbonization causes a problem that the calories of the solid fuel are reduced. Therefore, the temperature is preferably lower than the temperature in the shell formation step.
In addition, as a dryer used for a drying process, the thing of the aspect which consists of a warm air drying chamber provided with the belt conveyor which conveys a block, for example may be sufficient.

以上のように、本実施の形態においては、汚泥を塊状体に形成し、さらに塊状体の表面成形を行い、この表面成形された塊状体の表面に殻を形成するようにしたので、固形燃料製造工程を通じて悪臭の発散を可及的に抑制できる。また、乾燥工程の後に造粒する工程がなくなるので、工程の簡略化ができ生産効率が向上する。   As described above, in the present embodiment, sludge is formed into a lump, and further, the surface of the lump is formed and a shell is formed on the surface of the lump that has been surface-molded. Odor emission can be suppressed as much as possible throughout the manufacturing process. Moreover, since there is no granulation process after the drying process, the process can be simplified and the production efficiency is improved.

本発明の一実施の形態に係る固形燃料の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the solid fuel which concerns on one embodiment of this invention. 固形分を含む汚泥粒子の乾燥過程における粒径変化の測定結果を示すグラフである。It is a graph which shows the measurement result of the particle size change in the drying process of the sludge particle | grains containing solid content. 固形分を含む汚泥粒子の乾燥過程の断面の写真である。It is a photograph of the cross section of the drying process of the sludge particle | grains containing solid content. 固形分を含む汚泥粒子の乾燥過程の断面の写真である。It is a photograph of the cross section of the drying process of the sludge particle | grains containing solid content. 熱処理温度と臭気係数の関係を示すグラフである。It is a graph which shows the relationship between heat processing temperature and an odor coefficient.

符号の説明Explanation of symbols

1 下水汚泥
3 多孔板
7 切断機構
9 塊状体
11 容器
13 円板
15 円筒体
17 ロール
18 表面成形された塊状体
19 円筒体
21 高温ガス
22 殻
23 円筒体
DESCRIPTION OF SYMBOLS 1 Sewage sludge 3 Perforated plate 7 Cutting mechanism 9 Lump 11 Container 13 Disk 15 Cylinder 17 Roll 18 Surface-formed lump 19 Cylinder 21 Hot gas 22 Shell 23 Cylinder

Claims (12)

下水汚泥または畜糞を乾燥させて固形燃料を製造する方法であって、
下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成工程と、塊状体形成工程で形成された塊状体の表面の密度を内部の密度よりも高くする表面成形工程と、表面成形された塊状体を熱処理することにより該塊状体の表面に殻を形成する殻形成工程を含むことを特徴とする固形燃料の製造方法。
A method of producing solid fuel by drying sewage sludge or livestock dung,
A lump forming step for converting sewage sludge or livestock dung into a lump of a predetermined size, a surface forming step for making the surface density of the lump formed in the lump forming step higher than the internal density, and surface forming. A method for producing a solid fuel, comprising: a shell forming step of forming a shell on the surface of the lump by heat-treating the lump.
下水汚泥または畜糞を乾燥させて固形燃料を製造する方法であって、
下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成工程と、塊状体形成工程で形成された塊状体を容器内で転動させて該塊状体の表面を滑らかに成形する表面成形工程と、表面成形された塊状体を熱処理することにより塊状体の表面に殻を形成する殻形成工程を含むことを特徴とする固形燃料の製造方法。
A method of producing solid fuel by drying sewage sludge or livestock dung,
A lump forming step for turning sewage sludge or livestock dung into a lump of a predetermined size, and surface forming for smoothly shaping the lump's surface by rolling the lump formed in the lump forming step in a container And a shell forming step of forming a shell on the surface of the lump by heat-treating the lump formed on the surface.
下水汚泥または畜糞を乾燥させて固形燃料を製造する方法であって、
下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成工程と、塊状体形成工程で形成された塊状体の表面を加圧して該塊状体の表面を滑らかに成形する表面成形工程と、表面成形された塊状体を熱処理することにより塊状体の表面に殻を形成する殻形成工程を含むことを特徴とする固形燃料の製造方法。
A method of producing solid fuel by drying sewage sludge or livestock dung,
A lump forming step for forming sewage sludge or livestock dung into a lump of a predetermined size, and a surface forming step for smoothly shaping the surface of the lump by pressing the surface of the lump formed in the lump forming step A method for producing a solid fuel, comprising: a shell forming step of forming a shell on the surface of the lump by heat-treating the lump formed on the surface.
殻形成工程の熱処理は、塊状体に熱風を当てる又は塊状体を加熱体の上を転動させる態様であることを特徴とする請求項1〜3のいずれか一項に記載の固形燃料の製造方法。 The heat treatment in the shell forming step is a mode in which hot air is applied to the lump or the lump is rolled on the heating element. The solid fuel production according to any one of claims 1 to 3, Method. 殻形成工程の熱処理温度を443K〜513Kに設定したことを特徴とする請求項1〜4のいずれか一項に記載の固形燃料の製造方法。 The method for producing a solid fuel according to any one of claims 1 to 4, wherein a heat treatment temperature in the shell forming step is set to 443K to 513K. 塊状体形成工程の前に下水汚泥または畜糞の含水率を60%〜80%に調整する含水率調整工程を含むことを特徴とする請求項1〜5のいずれか一項に記載の固形燃料の製造方法。 The solid fuel according to any one of claims 1 to 5, further comprising a moisture content adjusting step of adjusting the moisture content of sewage sludge or livestock dung to 60% to 80% before the lump forming step. Production method. 下水汚泥または畜糞を乾燥させて固形燃料を製造する装置であって、
下水汚泥または畜糞を所定の大きさの塊状体にする塊状体形成装置と、塊状体形成装置で形成された塊状体の表面の密度を内部の密度よりも高くする表面成形装置と、表面成形された塊状体を熱処理することにより該塊状体の表面に殻を形成する加熱装置を含むことを特徴とする固形燃料の製造装置。
An apparatus for producing solid fuel by drying sewage sludge or livestock dung,
A lump forming apparatus that converts sewage sludge or livestock excrement into a lump of a predetermined size, a surface forming apparatus that makes the density of the surface of the lump formed by the lump forming apparatus higher than the internal density, and surface forming. An apparatus for producing a solid fuel, comprising: a heating device that forms a shell on the surface of the lump by heat-treating the lump.
塊状体形成装置は、多孔板と、該多孔板に下水汚泥または畜糞を押し込む押込み装置と、多孔板を通過した下水汚泥または畜糞を所定の長さに切断する切断機構を備えてなることを特徴とする請求項7記載の固形燃料の製造装置。 The lump forming apparatus includes a perforated plate, a pushing device that pushes sewage sludge or livestock dung into the perforated plate, and a cutting mechanism that cuts the sewage sludge or livestock dung that has passed through the perforated plate into a predetermined length. An apparatus for producing a solid fuel according to claim 7. 表面成形装置は、塊状体を収容する容器と、該容器内で回転する回転板とを備え、塊状体を容器内に収容した状態で回転板を回転させることで塊状体を容器内で転動させるようにしたことを特徴とする請求項7又は8に記載の固形燃料の製造装置。 The surface molding apparatus includes a container for storing a lump and a rotating plate that rotates in the container, and the lump is rolled in the container by rotating the rotating plate while the lump is received in the container. The solid fuel production apparatus according to claim 7 or 8, wherein the solid fuel production apparatus according to claim 7 or 8 is used. 表面成形装置は、塊状体を収容する容器と、該容器を回転させる回転機構を備え、前記塊状体を容器内に収容した状態で容器を回転させることにより塊状体を容器内で転動させるようにしたことを特徴とする請求項7又は8に記載の固形燃料の製造装置。 The surface molding apparatus includes a container for storing the lump and a rotating mechanism for rotating the container, and rotates the lump in the container by rotating the container while the lump is accommodated in the container. The solid fuel manufacturing apparatus according to claim 7 or 8, wherein 表面成形装置は、対向するロールを備え、該ロール間に塊状体を通過させることによって前記塊状体の表面を加圧するようにしたことを特徴とする請求項7又は8に記載の固形燃料の製造装置。 9. The production of a solid fuel according to claim 7 or 8, wherein the surface molding apparatus includes opposing rolls, and presses the surface of the lump by passing the lump between the rolls. apparatus. 請求項1〜6の何れかの方法によって製造されたことを特徴とする固形燃料。 A solid fuel produced by the method according to claim 1.
JP2006227663A 2006-08-24 2006-08-24 Solid fuel production method and apparatus, and solid fuel produced by the method Active JP4872533B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006227663A JP4872533B2 (en) 2006-08-24 2006-08-24 Solid fuel production method and apparatus, and solid fuel produced by the method
CN2007800186808A CN101448922B (en) 2006-08-24 2007-07-25 Process for producing solid fuel, apparatus therefor and solid fuel produced by the process
PCT/JP2007/064589 WO2008023527A1 (en) 2006-08-24 2007-07-25 Process for producing solid fuel, apparatus therefor and solid fuel produced by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227663A JP4872533B2 (en) 2006-08-24 2006-08-24 Solid fuel production method and apparatus, and solid fuel produced by the method

Publications (2)

Publication Number Publication Date
JP2008050458A true JP2008050458A (en) 2008-03-06
JP4872533B2 JP4872533B2 (en) 2012-02-08

Family

ID=39106618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227663A Active JP4872533B2 (en) 2006-08-24 2006-08-24 Solid fuel production method and apparatus, and solid fuel produced by the method

Country Status (3)

Country Link
JP (1) JP4872533B2 (en)
CN (1) CN101448922B (en)
WO (1) WO2008023527A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005932A (en) * 2010-06-23 2012-01-12 Jfe Engineering Corp Forming nozzle for adhesive material, and band type drying device
KR101206897B1 (en) * 2009-08-12 2012-11-30 이강진 The pellet manufacture equipment
JP2013124361A (en) * 2011-12-16 2013-06-24 Hitachi Zosen Corp Method for determining quality of deodorized biosolid fuel product
US10167436B2 (en) * 2015-10-13 2019-01-01 Sanivation LLC Methods and apparatuses for processing human waste into fuel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105816091A (en) * 2016-04-20 2016-08-03 淄博正邦知识产权企划有限公司 Method for carrying out non-pollution treatment on toilet excrement and pollution-free environment-friendly toilet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127902A (en) * 1978-03-28 1979-10-04 Yoshikawa Kogyo Kk Production of small pellet by coke particulates
JPH11217576A (en) * 1998-02-04 1999-08-10 Nippon Alum Co Ltd Co-fuel for cement calcination and its production
JP2000265186A (en) * 1999-03-16 2000-09-26 Taiheiyo Cement Corp Production of solid fuel and apparatus therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282781A (en) * 1999-07-29 2001-02-07 中国科学院广州能源研究所 Process for preparing briquettes with sludge
JP2006152097A (en) * 2004-11-29 2006-06-15 Tsukishima Kikai Co Ltd Method for producing solid fuel and manufacturing facility
CN100390255C (en) * 2006-03-03 2008-05-28 清华大学 Sludge fuel stick and its prepn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127902A (en) * 1978-03-28 1979-10-04 Yoshikawa Kogyo Kk Production of small pellet by coke particulates
JPH11217576A (en) * 1998-02-04 1999-08-10 Nippon Alum Co Ltd Co-fuel for cement calcination and its production
JP2000265186A (en) * 1999-03-16 2000-09-26 Taiheiyo Cement Corp Production of solid fuel and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101206897B1 (en) * 2009-08-12 2012-11-30 이강진 The pellet manufacture equipment
JP2012005932A (en) * 2010-06-23 2012-01-12 Jfe Engineering Corp Forming nozzle for adhesive material, and band type drying device
JP2013124361A (en) * 2011-12-16 2013-06-24 Hitachi Zosen Corp Method for determining quality of deodorized biosolid fuel product
US10167436B2 (en) * 2015-10-13 2019-01-01 Sanivation LLC Methods and apparatuses for processing human waste into fuel

Also Published As

Publication number Publication date
JP4872533B2 (en) 2012-02-08
WO2008023527A1 (en) 2008-02-28
CN101448922A (en) 2009-06-03
CN101448922B (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4872533B2 (en) Solid fuel production method and apparatus, and solid fuel produced by the method
Daud et al. The effects of carbonization temperature on pore development in palm-shell-based activated carbon
CN105073637B (en) Produce the method for graphite and the particle for graphite production
KR101098785B1 (en) Method for manufacturing solid fuel
JPH10101453A (en) Production of porous carbon material product and hard porous carbon material product
JPS59164611A (en) Manufacture of molded activated carbon using wood as principal starting material
JP2014506835A (en) Waste treatment system and method
JP5086875B2 (en) Method and system for drying organic sludge
JP2006213547A (en) Wood-based granular activated carbon and its manufacturing method
JP2006152097A (en) Method for producing solid fuel and manufacturing facility
JP4988290B2 (en) Method for producing solid fuel
JP5416888B2 (en) Biosolid fuel and method for producing biosolid fuel
JPH04277072A (en) Method and apparatus for treating garbage
JP2008081332A (en) Method for producing carbonized product, and carbonized product
RU2534801C1 (en) Method of obtaining activated coal
CN114306055A (en) Making smokeless moxibustion stick, incense stick and mosquito-repellent incense with inorganic substance
Damayanti et al. The effect of adding rice straw charcoal to the processing of bio-pellet from cacao pod husk
JP2006088044A (en) Sludge carbonized matter and carbonization method of sludge
JP2009197204A (en) Method for producing solid fuel using organic waste liquid and production system thereof
JP6022259B2 (en) Solid fuel and method for producing the same
KR100327973B1 (en) The drying method &amp;the same apparatus of sludge
JP3060389U (en) Porous carbon material products formed from fusarium
Fennir et al. Strength of pellets and briquettes made from libyan olive oil solid residues
US1334492A (en) Method and apparatus for treating peat and the like
JP2004345905A (en) Method for manufacturing husk activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350