JP2008050431A - Tire - Google Patents

Tire Download PDF

Info

Publication number
JP2008050431A
JP2008050431A JP2006226508A JP2006226508A JP2008050431A JP 2008050431 A JP2008050431 A JP 2008050431A JP 2006226508 A JP2006226508 A JP 2006226508A JP 2006226508 A JP2006226508 A JP 2006226508A JP 2008050431 A JP2008050431 A JP 2008050431A
Authority
JP
Japan
Prior art keywords
tire
weight
rubber
rubber composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006226508A
Other languages
Japanese (ja)
Other versions
JP5073244B2 (en
Inventor
Michio Hirayama
道夫 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2006226508A priority Critical patent/JP5073244B2/en
Publication of JP2008050431A publication Critical patent/JP2008050431A/en
Application granted granted Critical
Publication of JP5073244B2 publication Critical patent/JP5073244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02T10/862

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive tire having excellent durability, capable of suppressing the reduction of complex modulus of elasticity by temperature increase, and capable of improving steering stability in wide range of speeds. <P>SOLUTION: The tire is obtained by using a rubber composition containing 0.5-40 pts.wt. wood flour and 0.5-20 pts.wt. curable resin based on 100 pts.wt. rubber component. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、タイヤに関する。   The present invention relates to a tire.

近年、自動車の装備や性能の著しい充実に加え、道路網が拡充発展したことで、タイヤについても常に安定した操縦安定性、とくに、高速走行時における高い安定性が要求されてきている。操縦安定性を向上させるには、トレッド部またはビード部を高剛性化すればよいことが知られている。   In recent years, in addition to the remarkable enhancement of equipment and performance of automobiles, the road network has been expanded and developed, so that tires have always been required to have stable handling stability, particularly high stability during high-speed driving. In order to improve the steering stability, it is known that the rigidity of the tread portion or the bead portion may be increased.

たとえば、ビード部を高剛性化させる手法としては、ビード部を補強するビードエイペックス配合に多量のカーボンブラックおよびフェノール系熱硬化性樹脂を用いる方法が知られている。しかし、カーボンブラックを充填するにしたがい、ムーニー粘度が増大し加工性が悪化したり、フェノール系熱硬化性樹脂を用いると、高温使用時で軟化したりするという問題があった。   For example, as a technique for increasing the rigidity of the bead part, a method is known in which a large amount of carbon black and a phenol-based thermosetting resin are used in a bead apex blend for reinforcing the bead part. However, as the carbon black is filled, the Mooney viscosity increases and the processability deteriorates, and when a phenol-based thermosetting resin is used, there is a problem of softening at the time of use at a high temperature.

また、ビード部を高剛性化させる手法としては、紙繊維を充填する方法も知られている。しかし、紙繊維をゴム中に分散させるためには、混練り時間を長く確保する必要があり、コストが高くなってしまったり、生産性が悪化したりするという問題があった。   As a method for increasing the rigidity of the bead portion, a method of filling paper fibers is also known. However, in order to disperse the paper fiber in the rubber, it is necessary to ensure a long kneading time, which causes a problem that the cost is increased and the productivity is deteriorated.

特許文献1には、ゴム成分および紙成分を主成分とする添加剤を所定量含有する硬質ゴム組成物が開示されている。しかし、該文献で開示されているのは、パイプ、パッキン、容器などに使用されるものであり、タイヤに適用するという意図はなく、さらに、紙成分を主成分とする添加剤を多量に充填しているため、分散性を確保するためには、練り時間を長くしなければならないため、加工性に劣るという問題があった。   Patent Document 1 discloses a hard rubber composition containing a predetermined amount of an additive mainly composed of a rubber component and a paper component. However, what is disclosed in this document is used for pipes, packings, containers, etc., and is not intended to be applied to tires, and is filled with a large amount of additives mainly composed of paper components. For this reason, in order to ensure dispersibility, the kneading time has to be lengthened, so that there is a problem that the processability is poor.

特開2001−26679号公報JP 2001-26679 A

本発明は、耐久性に優れ、温度上昇による複素弾性率の低下を抑制することができ、広い速度範囲における操縦安定性を向上させることができ、さらに、安価なタイヤを提供することを目的とする。   An object of the present invention is to provide an inexpensive tire that is excellent in durability, can suppress a decrease in complex elastic modulus due to a temperature rise, can improve steering stability in a wide speed range, and is inexpensive. To do.

本発明は、ゴム成分100重量部に対して、木粉を0.5〜40重量部、および硬化性樹脂を0.5〜20重量部含有するゴム組成物を用いたタイヤに関する。   The present invention relates to a tire using a rubber composition containing 0.5 to 40 parts by weight of wood powder and 0.5 to 20 parts by weight of a curable resin with respect to 100 parts by weight of a rubber component.

本発明によれば、ゴム成分、木粉および硬化性樹脂を所定量含有することで、耐久性に優れ、温度上昇による複素弾性率の低下を抑制することができ、広い速度範囲における操縦安定性を向上させることができ、さらに、安価なタイヤを提供することができる。   According to the present invention, the rubber component, the wood powder, and the curable resin are contained in predetermined amounts, so that the durability is excellent, the decrease in the complex elastic modulus due to the temperature rise can be suppressed, and the steering stability in a wide speed range In addition, an inexpensive tire can be provided.

本発明のタイヤは、ゴム組成物を含有する。   The tire of the present invention contains a rubber composition.

前記ゴム組成物は、ゴム成分、木粉および硬化性樹脂を含有する。   The rubber composition contains a rubber component, wood powder, and a curable resin.

ゴム成分としては、とくに制限はなく、たとえば、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)、イソモノオレフィンとパラアルキルスチレンとの共重合体のハロゲン化物などがあげられ、これらのゴム成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、NRは、強度に優れ、SBRは、剛性を向上させることができるという理由から、NRおよび/またはSBRが好ましく、NRおよびSBRがより好ましい。   The rubber component is not particularly limited. For example, natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR), halogenated butyl rubber (X-IIR) Chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), ethylene propylene diene rubber (EPDM), halides of copolymers of isomonoolefin and paraalkyl styrene, and the like. You may use, and may use it in combination of 2 or more type. Among them, NR and SBR are preferable, and NR and SBR are more preferable because NR is excellent in strength and SBR can improve rigidity.

木粉としては、とくに制限はなく、たとえば、栂、松、杉、ヒノキ、ラワンなどの一般的な天然木材から得られるものがあげられ、これらの木粉は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The wood flour is not particularly limited, and examples thereof include those obtained from common natural wood such as persimmon, pine, cedar, hinoki and lawan. These wood flours may be used alone. You may use combining more than a seed.

木粉としては、繊維状であることが好ましい。また、タイヤのラジアル方向の剛性を維持したまま、タイヤの周方向の剛性を向上させることで、操縦安定性および乗り心地を高次元にバランスよく向上させることができるという理由から、タイヤの周方向に配向させることが好ましい。   The wood flour is preferably fibrous. In addition, by improving the rigidity in the circumferential direction of the tire while maintaining the rigidity in the radial direction of the tire, it is possible to improve steering stability and riding comfort in a highly balanced manner. It is preferable to orient.

木粉の成形方法としては、粗粉砕、中粉砕、微粉砕の各段階で異なるが、とくに制限はなく、上記天然木材や建築廃材などを、ロールミル、インパクトミルなどの破砕機を用いて粉砕する方法などがあげられる。   The method of forming the wood powder is different in each stage of coarse pulverization, medium pulverization, and fine pulverization, but there is no particular limitation, and the natural wood and building waste materials are pulverized using a crusher such as a roll mill or an impact mill. Methods.

木粉の平均繊維径(D)は0.5μm以上が好ましく、1μm以上がより好ましい。木粉のDが0.5μm未満では、充分な補強効果が得られない傾向がある。また、木粉のDは100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。木粉のDが100μmをこえると、ゴム組成物中における木粉の分散不良やゴム組成物の物性の不均一が引き起こされる傾向がある。   The average fiber diameter (D) of the wood flour is preferably 0.5 μm or more, and more preferably 1 μm or more. When D of wood powder is less than 0.5 μm, there is a tendency that a sufficient reinforcing effect cannot be obtained. Further, D of the wood flour is preferably 100 μm or less, more preferably 80 μm or less, and further preferably 60 μm or less. When D of wood powder exceeds 100 micrometers, there exists a tendency for the poor dispersion | distribution of wood powder in a rubber composition, and the nonuniformity of the physical property of a rubber composition.

繊維状の木粉を使用する場合、木粉の平均繊維長(L)は10μm以上が好ましく、50μm以上がより好ましい。木粉のLが10μm未満では、充分な補強効果が得られない傾向がある。また、木粉のLは1000μm以下が好ましく、900μm以下がより好ましい。木粉のLが1000μmをこえると、ゴム組成物中における木粉の分散不良やゴム組成物の物性の不均一が引き起こされる傾向がある。   When using fibrous wood flour, the average fiber length (L) of wood flour is preferably 10 μm or more, and more preferably 50 μm or more. If the L of wood flour is less than 10 μm, there is a tendency that a sufficient reinforcing effect cannot be obtained. Further, the L of the wood flour is preferably 1000 μm or less, and more preferably 900 μm or less. If the L of wood powder exceeds 1000 μm, poor dispersion of wood powder in the rubber composition and non-uniform physical properties of the rubber composition tend to be caused.

繊維状の木粉を使用する場合、木粉の平均アスペクト比(L/D)は10以上が好ましく、20以上がより好ましい。木粉の平均アスペクト比が10未満では、充分な補強効果が得られない傾向がある。また、木粉の平均アスペクト比は2000以下が好ましく、1800以下がより好ましい。木粉の平均アスペクト比が2000をこえると、ゴム組成物中における木粉の分散不良やゴム組成物の物性の不均一が引き起こされる傾向がある。   When using fibrous wood flour, the average aspect ratio (L / D) of the wood flour is preferably 10 or more, and more preferably 20 or more. When the average aspect ratio of the wood flour is less than 10, there is a tendency that a sufficient reinforcing effect cannot be obtained. The average aspect ratio of the wood flour is preferably 2000 or less, and more preferably 1800 or less. When the average aspect ratio of the wood powder exceeds 2000, there is a tendency that poor dispersion of the wood powder in the rubber composition and non-uniform physical properties of the rubber composition are caused.

木粉の含水率は10重量%以下が好ましく、8重量%以下がより好ましい。木粉の含水率が10重量%をこえると、脱水処理時間が長くなるため生産性が低下する傾向がある。また、脱水処理をしないと、正確な木粉の計量ができなくなる傾向がある。   The moisture content of the wood flour is preferably 10% by weight or less, and more preferably 8% by weight or less. If the moisture content of the wood flour exceeds 10% by weight, the dehydration time becomes longer and the productivity tends to decrease. In addition, if the dehydration treatment is not performed, there is a tendency that accurate measurement of wood flour cannot be performed.

木粉の含有量は、ゴム成分100重量部に対して0.5重量部以上、好ましくは1重量部以上である。木粉の含有量が0.5重量部未満では、木粉を添加することによる効果が小さい。また、木粉の含有量は40重量部以下、好ましくは35重量部以下である。木粉の含有量が40重量部をこえると、強度が低下する。   The content of wood flour is 0.5 parts by weight or more, preferably 1 part by weight or more with respect to 100 parts by weight of the rubber component. When the content of the wood powder is less than 0.5 parts by weight, the effect of adding the wood powder is small. Further, the content of the wood flour is 40 parts by weight or less, preferably 35 parts by weight or less. When the content of the wood flour exceeds 40 parts by weight, the strength decreases.

硬化性樹脂としては、たとえば、アルキルフェノール樹脂、オイル変性フェノール樹脂、カシュー変性フェノール樹脂などのフェノール系熱硬化性樹脂などがあげられ、これらの硬化性樹脂は単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、高強度であるという理由から、カシュー変性フェノール樹脂がより好ましい。   Examples of the curable resin include phenol-based thermosetting resins such as alkylphenol resins, oil-modified phenol resins, and cashew-modified phenol resins. These curable resins may be used alone or in combination of two or more. You may use it in combination. Among these, cashew-modified phenol resin is more preferable because of its high strength.

硬化性樹脂の含有量は、ゴム成分100重量部に対して0.5重量部以上が好ましく、1重量部以上がより好ましい。硬化性樹脂の含有量が0.5重量部未満では、硬化性樹脂を添加することによる効果が小さい傾向がある。また、硬化性樹脂の含有量は20重量部以下が好ましく、15重量部以下がより好ましい。硬化性樹脂の含有量が20重量部をこえると、加工性が悪化し、コストが増大する傾向がある。   The content of the curable resin is preferably 0.5 parts by weight or more and more preferably 1 part by weight or more with respect to 100 parts by weight of the rubber component. If content of curable resin is less than 0.5 weight part, there exists a tendency for the effect by adding curable resin to be small. Moreover, 20 weight part or less is preferable and, as for content of curable resin, 15 weight part or less is more preferable. When the content of the curable resin exceeds 20 parts by weight, the workability tends to deteriorate and the cost tends to increase.

前記ゴム組成物は、他にも、補強用充填剤を含有することができる。   In addition, the rubber composition may contain a reinforcing filler.

補強用充填剤としては、とくに制限はなく、たとえば、カーボンブラック、シリカ、炭酸カルシウム、水酸化アルミニウム、クレー、タルク、アルミナなどがあげられ、これらの補強用充填剤は、とくに制限はなく、単独で用いても、2種以上を組み合わせて用いてもよいが、とくにカーボンブラックおよび/またはシリカが好ましい。   The reinforcing filler is not particularly limited, and examples thereof include carbon black, silica, calcium carbonate, aluminum hydroxide, clay, talc, and alumina. These reinforcing fillers are not particularly limited and may be used alone. May be used in combination of two or more, but carbon black and / or silica is particularly preferable.

カーボンブラックとしては、とくに制限はなく、たとえば、SAF、ISAF、IISAF、HAF、FEF、GPFなどの通常タイヤ工業で使用されるものを使用することができる。   There is no restriction | limiting in particular as carbon black, For example, what is normally used in tire industry, such as SAF, ISAF, IISAF, HAF, FEF, GPF, can be used.

シリカとしては、乾式法または湿式法により調製されたものがあげられるが、とくに制限はない。   Silica includes those prepared by a dry method or a wet method, but is not particularly limited.

前記ゴム組成物に補強用充填剤を含有する場合、補強用充填剤の含有量は、ゴム成分100重量部に対して30重量部以上が好ましく、40重量部以上がより好ましい。補強用充填剤の含有量が30重量部未満では、耐久性が低下する傾向がある。また、補強用充填剤の含有量は140重量部以下が好ましく、120重量部以下がより好ましい。補強用充填剤の含有量が140重量部をこえると、加工性が悪化する傾向がある。   When the rubber composition contains a reinforcing filler, the content of the reinforcing filler is preferably 30 parts by weight or more and more preferably 40 parts by weight or more with respect to 100 parts by weight of the rubber component. When the content of the reinforcing filler is less than 30 parts by weight, the durability tends to decrease. The reinforcing filler content is preferably 140 parts by weight or less, and more preferably 120 parts by weight or less. When the content of the reinforcing filler exceeds 140 parts by weight, the workability tends to deteriorate.

前記ゴム組成物には、前記ゴム成分、木粉、硬化性樹脂および補強用充填剤以外にも、通常タイヤ工業で使用される配合剤、たとえば、オイル、ワックス、各種老化防止剤、粘着付与樹脂、ステアリン酸、酸化亜鉛、硫黄などの加硫剤、各種加硫促進剤などを必要に応じて適宜含有してもよい。   In addition to the rubber component, wood powder, curable resin and reinforcing filler, the rubber composition includes compounding agents usually used in the tire industry, such as oil, wax, various anti-aging agents, and tackifying resins. Further, vulcanizing agents such as stearic acid, zinc oxide and sulfur, various vulcanization accelerators and the like may be appropriately contained as required.

前記ゴム組成物の70℃における複素弾性率(E*)は10MPa以上が好ましく、12MPa以上がより好ましい。70℃におけるE*が10MPa未満では、操縦安定性が悪化する傾向がある。また、70℃におけるE*は300MPa以下が好ましく、280MPa以下がより好ましい。70℃におけるE*が300MPaをこえると、乗り心地が悪化する傾向がある。 The rubber composition has a complex elastic modulus (E * ) at 70 ° C. of preferably 10 MPa or more, and more preferably 12 MPa or more. When E * at 70 ° C. is less than 10 MPa, steering stability tends to deteriorate. Further, E * at 70 ° C. is preferably 300 MPa or less, and more preferably 280 MPa or less. When E * at 70 ° C. exceeds 300 MPa, riding comfort tends to deteriorate.

前記ゴム組成物の100℃におけるE*は10MPa以上が好ましく、12MPa以上がより好ましい。100℃におけるE*が10MPa未満では、操縦安定性が悪化する傾向がある。また、100℃におけるE*は300MPa以下が好ましく、280MPa以下がより好ましい。100℃におけるE*が300MPaをこえると、乗り心地が悪化する傾向がある。 E * at 100 ° C. of the rubber composition is preferably 10 MPa or more, and more preferably 12 MPa or more. When E * at 100 ° C. is less than 10 MPa, steering stability tends to deteriorate. Further, E * at 100 ° C. is preferably 300 MPa or less, and more preferably 280 MPa or less. When E * at 100 ° C. exceeds 300 MPa, riding comfort tends to deteriorate.

本発明のタイヤは、通常の方法で製造できる。すなわち、前記配合剤を必要に応じて適宜配合した前記ゴム組成物を、未加硫の状態でタイヤの各部材の形状に成形し、貼り合わせて未加硫タイヤを形成し、該未加硫タイヤを加熱加圧することにより製造することができる。   The tire of the present invention can be produced by a usual method. That is, the rubber composition in which the compounding agent is appropriately blended as necessary is formed into the shape of each member of a tire in an unvulcanized state and bonded to form an unvulcanized tire, and the unvulcanized tire The tire can be manufactured by heating and pressing.

本発明のタイヤを製造する際に、前記ゴム組成物を用いる部材としては、トレッド、ビードエイペックス、サイドウォール、クリンチなど、とくに制限はないが、高剛性の配合にするのに好適であるという理由から、ビードエイペックスが好ましい。   When manufacturing the tire of the present invention, the member using the rubber composition is not particularly limited, such as a tread, a bead apex, a sidewall, a clinch, etc., but is suitable for making a highly rigid compound. For reasons, bead apex is preferred.

実施例にもとづいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。   The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、実施例および比較例で使用した各種薬品をまとめて説明する。
天然ゴム:RSS♯3(タイ製)
スチレンブタジエンゴム(SBR):住友化学(株)製のSBR1502
カーボンブラック:三菱化学(株)製のダイアブラックH(N330)
シリカ:デグッサ・ヒュルス(株)製のウルトラジルVN3
シランカップリング剤:デグッサ・ヒュルス(株)製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
木粉:(株)カジノ製のセルロシンNo.100(材質:栂、形状:繊維状、平均繊維径:25μm、平均繊維長:500μm、平均アスペクト比:20、含水率:5重量%)
紙繊維:三共精粉(株)製のミルファイブ♯100(平均繊維径:10μm、平均繊維長:1000μm、平均アスペクト比:100)
硬化性樹脂:住友デュレズ(株)製のスミライトレジンPR12686(カシューオイル変性フェノール樹脂)
アロマオイル:出光興産(株)製のダイアナプロセスPS32
ワックス:大内新興化学工業(株)製のサンノックワックス
老化防止剤:精工化学(株)製のオゾノン6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
粘着付与樹脂:日本触媒(株)製のSP1068
ステアリン酸:日本油脂(株)製の桐
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
硫黄:鶴見化学工業(株)製の硫黄
加硫促進剤NS:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤H:大内新興化学工業(株)製のノクセラーH(ヘキサメチレンテトラミン)
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
Natural rubber: RSS # 3 (made in Thailand)
Styrene butadiene rubber (SBR): SBR1502 manufactured by Sumitomo Chemical Co., Ltd.
Carbon black: Dia Black H (N330) manufactured by Mitsubishi Chemical Corporation
Silica: Ultrazil VN3 manufactured by Degussa Huls
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa Huls Co., Ltd.
Wood flour: Cellulosin No. manufactured by Casino Co., Ltd. 100 (material: wrinkle, shape: fibrous, average fiber diameter: 25 μm, average fiber length: 500 μm, average aspect ratio: 20, moisture content: 5% by weight)
Paper fiber: Mill Five # 100 (average fiber diameter: 10 μm, average fiber length: 1000 μm, average aspect ratio: 100) manufactured by Sankyo Seiko Co., Ltd.
Curable resin: Sumitrite resin PR12686 (cashew oil modified phenolic resin) manufactured by Sumitomo Durez Co., Ltd.
Aroma oil: Diana Process PS32 manufactured by Idemitsu Kosan Co., Ltd.
Wax: Sannoc Wax anti-aging agent manufactured by Ouchi Shinsei Chemical Co., Ltd .: Ozonon 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Seiko Chemical Co., Ltd.
Tackifying resin: SP1068 manufactured by Nippon Shokubai Co., Ltd.
Stearic acid: Tungsten zinc oxide manufactured by Nippon Oil & Fats Co., Ltd .: Ginseng R manufactured by Toho Zinc Co., Ltd.
Sulfur: Sulfur vulcanization accelerator NS manufactured by Tsurumi Chemical Co., Ltd. NS: Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator H: Noxeller H (hexamethylenetetramine) manufactured by Ouchi Shinsei Chemical Co., Ltd.

実施例1〜7および比較例1〜8
表1および2に示す配合処方にしたがい、1.7Lのバンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を150℃の条件下で4分間混練りし、混練り物を得た。次に、2軸ロールを用いて、得られた混練り物に硫黄および加硫促進剤を添加し、80℃の条件下で4分間混練りし、未加硫ゴム組成物を得た。さらに、得られた未加硫ゴム組成物を150℃および25kgfの条件下で35分間プレス加硫し、実施例1〜7および比較例1〜8の加硫ゴム組成物を作製した。なお、実施例1〜6および比較例1〜6(表1)は、ビードエイペックス用ゴム組成物であり、実施例7および比較例7〜8(表2)はベーストレッド用ゴム組成物である。
Examples 1-7 and Comparative Examples 1-8
In accordance with the formulation shown in Tables 1 and 2, using a 1.7 L Banbury mixer, chemicals other than sulfur and a vulcanization accelerator were kneaded for 4 minutes at 150 ° C. to obtain a kneaded product. Next, using a biaxial roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded for 4 minutes at 80 ° C. to obtain an unvulcanized rubber composition. Furthermore, the obtained unvulcanized rubber composition was press vulcanized for 35 minutes under the conditions of 150 ° C. and 25 kgf to prepare vulcanized rubber compositions of Examples 1 to 7 and Comparative Examples 1 to 8. Examples 1 to 6 and Comparative Examples 1 to 6 (Table 1) are bead apex rubber compositions, and Example 7 and Comparative Examples 7 to 8 (Table 2) are base tread rubber compositions. is there.

(加工性)
実施例1〜6および比較例1〜6のゴム組成物において、前記未加硫ゴム組成物から所定のサイズの試験片を作成し、JIS K 6300「未加硫ゴムの試験方法」に準じて、(株)島津製作所製のムーニー粘度試験機を用い、1分間の予熱によって熱せられた130℃の温度条件にて、小ローターを回転させ、4分間経過した時点での未加硫ゴム組成物のムーニー粘度を測定し、下記計算式により、比較例1の加工性指数を100とし、実施例1〜6および比較例2〜5のムーニー粘度を指数表示した。
(加工性指数)=(比較例1のムーニー粘度)/(各配合のムーニー粘度)×100
(Processability)
In the rubber compositions of Examples 1 to 6 and Comparative Examples 1 to 6, a test piece having a predetermined size was prepared from the unvulcanized rubber composition, and according to JIS K 6300 “Testing method for unvulcanized rubber”. Using a Mooney viscosity tester manufactured by Shimadzu Corporation, rotating a small rotor under a temperature condition of 130 ° C. heated by preheating for 1 minute, an unvulcanized rubber composition after 4 minutes The Mooney viscosity was measured and the Mooney viscosity of Examples 1 to 6 and Comparative Examples 2 to 5 was displayed as an index by setting the workability index of Comparative Example 1 to 100 by the following formula.
(Processability index) = (Mooney viscosity of Comparative Example 1) / (Mooney viscosity of each formulation) × 100

(複素弾性率)
得られた加硫ゴム組成物を4mm×30mm×1.5mmのサイズの加硫ゴム試験片に成形し、(株)岩本製作所製の粘弾性スペクトロメーターを用いて、初期歪10%、動歪±1%および周波数10Hzの条件下で、70℃および100℃における各配合の加硫ゴム試験片の複素弾性率(E*)を測定した。そして、その結果から、E*の低下率(70℃におけるE*/100℃におけるE*)を算出した。なお、E*の低下率が小さいほど、温度上昇によるE*の低下を抑制でき、好ましいことを示す。
(Complex modulus)
The obtained vulcanized rubber composition was molded into a vulcanized rubber test piece having a size of 4 mm × 30 mm × 1.5 mm, and an initial strain of 10% and dynamic strain were measured using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho Co., Ltd. The complex elastic modulus (E * ) of each vulcanized rubber specimen at 70 ° C. and 100 ° C. was measured under the conditions of ± 1% and a frequency of 10 Hz. And the results were calculated (E * in E * / 100 ° C. at 70 ° C.) reduction rate of E *. In addition, it shows that the fall rate of E * by temperature rise can be suppressed, so that the fall rate of E * is so small.

(中低速時の操縦安定性)
前記未加硫ゴム組成物を、実施例1〜6および比較例1〜6ではビードエイペックスの形状に、実施例7および比較例7〜8ではベーストレッドの形状に成形し、他のタイヤ部材とともに貼りあわせ、未加硫タイヤを形成した。さらに、該未加硫タイヤを150℃および25kgfの条件下で35分間プレス加硫することにより、実施例1〜7および比較例1〜8の試験用タイヤ(サイズ:195/65R15)を製造した。
(Maneuvering stability at medium and low speeds)
The unvulcanized rubber composition was molded into a bead apex shape in Examples 1 to 6 and Comparative Examples 1 to 6, and a base tread shape in Examples 7 and 7 to 8, and other tire members were formed. Along with this, an unvulcanized tire was formed. Further, the test tires (size: 195 / 65R15) of Examples 1 to 7 and Comparative Examples 1 to 8 were manufactured by press vulcanizing the unvulcanized tire for 35 minutes under the conditions of 150 ° C. and 25 kgf. .

製造したタイヤを車に装着させ、ドライアスファルトのテストコースにて、40〜100km/hで走行させ、テストドライバーによるハンドル応答性、剛性感およびグリップ性のフィーリング試験にて、操縦安定性の評価を行った。なお、評価は、5点満点(5:非常に良好、4:良好、3:普通、2:やや劣る、1:劣る)で行い、比較例1を100とし、指数表示した。また、数値が大きいほど、中低速時の操縦安定性に優れることを示す。   The manufactured tires are mounted on a car, run at 40-100 km / h on a dry asphalt test course, and steering stability is evaluated by a feeling test of steering wheel response, rigidity and grip by a test driver. Went. The evaluation was made on a 5-point scale (5: very good, 4: good, 3: normal, 2: slightly inferior, 1: inferior), and Comparative Example 1 was taken as 100, which was displayed as an index. Moreover, it shows that it is excellent in the handling stability at the time of medium and low speed, so that a numerical value is large.

(高速時の操縦安定性)
速度を200km/hまで上昇させたこと以外は、中低速時の操縦安定性と同様の方法で、テストドライバーによるレーンチェンジ性、ハンドル応答性および剛性感のフィーリング試験にて、操縦安定性の評価を行った。なお、評価は、5点満点(5:非常に良好、4:良好、3:普通、2:やや劣る、1:劣る)で行い、3人のドライバーの平均値を算出し、比較例1を100とし、指数表示した。また、数値が大きいほど、高速時の操縦安定性に優れることを示す。
(Maneuvering stability at high speed)
Except for increasing the speed to 200 km / h, the driving stability of the lane changeability, steering response and rigidity feeling by the test driver is the same as the driving stability at medium and low speeds. Evaluation was performed. The evaluation was made on a 5-point scale (5: very good, 4: good, 3: normal, 2: slightly inferior, 1: inferior), and the average value of the three drivers was calculated. The index was expressed as 100. Moreover, it shows that it is excellent in the steering stability at high speed, so that a numerical value is large.

(耐久性)
製造した試験用タイヤを80℃のオーブンに1週間入れた後、内圧200kPaおよび荷重340kgf(約3334.278N)の条件下で、時速80km/hで30000km走行させた。この際、タイヤが損傷せずに完走できれば合格(○)、タイヤが損傷し、完走できなければ不合格(×)とした。
(durability)
The produced test tire was placed in an oven at 80 ° C. for one week, and then was run at 30000 km at an speed of 80 km / h under conditions of an internal pressure of 200 kPa and a load of 340 kgf (about 3334.278 N). At this time, if the tire could be completed without being damaged, it was judged as acceptable (◯), and if the tire was damaged and could not be completed, it was judged as unacceptable (x).

ビードエイペックス用ゴム組成物についての上記試験の評価結果を表1に示す。   Table 1 shows the evaluation results of the above tests for the bead apex rubber composition.

Figure 2008050431
Figure 2008050431

比較例1は、木粉を含有せず、硬化性樹脂を含有する従来の配合のビードエイペックス用ゴム組成物である。   Comparative Example 1 is a conventional rubber composition for bead apex that does not contain wood flour and contains a curable resin.

木粉および硬化性樹脂を所定量含有する実施例1〜6では、耐久性に優れ、温度上昇による複素弾性率の低下を抑制することができ、広い速度範囲における操縦安定性を向上させることができた。なお、安価な木粉を使用しているため、より安価にタイヤを製造することができた。   In Examples 1 to 6 containing a predetermined amount of wood flour and curable resin, the durability is excellent, the decrease in the complex elastic modulus due to the temperature rise can be suppressed, and the steering stability in a wide speed range can be improved. did it. In addition, since cheap wood powder was used, the tire could be manufactured more inexpensively.

比較例2では、木粉の含有量が多すぎるため、耐久性が悪化した。   In Comparative Example 2, the durability deteriorated because the content of the wood powder was too much.

比較例3では、硬化性樹脂の含有量が多すぎるため、耐久性が悪化した。   In Comparative Example 3, the durability deteriorated because the content of the curable resin was too large.

比較例4および5では、硬化性樹脂を含有しないため、耐久性が悪化し、操縦安定性が低下した。とくに、比較例4では、木粉も含有しないため、操縦安定性が著しく低下した。   In Comparative Examples 4 and 5, since no curable resin was contained, durability was deteriorated and steering stability was lowered. In particular, in Comparative Example 4, since the wood powder was not contained, the steering stability was remarkably lowered.

ベーストレッド用ゴム組成物についての上記試験の評価結果を表2に示す。   Table 2 shows the evaluation results of the above test on the rubber composition for base tread.

Figure 2008050431
Figure 2008050431

比較例7は、木粉および硬化性樹脂を含有しない従来の配合のベーストレッド用ゴム組成物である。   Comparative Example 7 is a conventional rubber composition for base treads that does not contain wood flour and curable resin.

木粉および硬化性樹脂を所定量含有する実施例7では、耐久性に優れ、温度上昇による複素弾性率の低下を抑制することができ、広い速度範囲における操縦安定性を向上させることができた。なお、安価な木粉を使用しているため、より安価にタイヤを製造することができた。   In Example 7 containing a predetermined amount of wood flour and curable resin, the durability was excellent, the decrease in the complex elastic modulus due to the temperature increase could be suppressed, and the steering stability in a wide speed range could be improved. . In addition, since cheap wood powder was used, the tire could be manufactured more inexpensively.

比較例8では、木粉を含有しないため、温度上昇による複素弾性率の低下を抑制することができなかった。   In Comparative Example 8, since wood powder was not contained, it was not possible to suppress a decrease in complex elastic modulus due to a temperature rise.

Claims (1)

ゴム成分100重量部に対して、
木粉を0.5〜40重量部、および
硬化性樹脂を0.5〜20重量部含有するゴム組成物を用いたタイヤ。
For 100 parts by weight of rubber component,
A tire using a rubber composition containing 0.5 to 40 parts by weight of wood powder and 0.5 to 20 parts by weight of a curable resin.
JP2006226508A 2006-08-23 2006-08-23 tire Expired - Fee Related JP5073244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226508A JP5073244B2 (en) 2006-08-23 2006-08-23 tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226508A JP5073244B2 (en) 2006-08-23 2006-08-23 tire

Publications (2)

Publication Number Publication Date
JP2008050431A true JP2008050431A (en) 2008-03-06
JP5073244B2 JP5073244B2 (en) 2012-11-14

Family

ID=39234778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226508A Expired - Fee Related JP5073244B2 (en) 2006-08-23 2006-08-23 tire

Country Status (1)

Country Link
JP (1) JP5073244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174511A (en) * 2014-03-14 2015-10-05 住友ゴム工業株式会社 Pneumatic tire for all-terrain vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278941A (en) * 1996-04-11 1997-10-28 Sumitomo Bakelite Co Ltd Rubber composition for tire
JPH10219030A (en) * 1997-02-07 1998-08-18 Yokohama Rubber Co Ltd:The Rubber composition for studless tire
JP2002020537A (en) * 2000-07-11 2002-01-23 Jsr Corp Rubber composition
JP2004231796A (en) * 2003-01-30 2004-08-19 Hyogo Prefecture New composite material using flat cellulose particles or micro-fibrous cellulose

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278941A (en) * 1996-04-11 1997-10-28 Sumitomo Bakelite Co Ltd Rubber composition for tire
JPH10219030A (en) * 1997-02-07 1998-08-18 Yokohama Rubber Co Ltd:The Rubber composition for studless tire
JP2002020537A (en) * 2000-07-11 2002-01-23 Jsr Corp Rubber composition
JP2004231796A (en) * 2003-01-30 2004-08-19 Hyogo Prefecture New composite material using flat cellulose particles or micro-fibrous cellulose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174511A (en) * 2014-03-14 2015-10-05 住友ゴム工業株式会社 Pneumatic tire for all-terrain vehicle

Also Published As

Publication number Publication date
JP5073244B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5382495B2 (en) Rubber composition and pneumatic tire using the same
US20050234182A1 (en) Rubber composition for tread
US20080308208A1 (en) Rubber composition for carcass ply or band and pneumatic tire using the same
JP2008050570A (en) Rubber composition and tire having tread and/or sidewall using the same
JP2010126672A (en) Rubber composition for tire tread
JP2008303326A (en) Rubber composition for side wall and pneumatic tire using the same
JP2009035643A (en) Rubber composition for bead apex, and pneumatic tire having bead apex by using the same
JP2011195804A (en) Rubber composition for tire and pneumatic tire
JP6888286B2 (en) Pneumatic tires
JP5582921B2 (en) Rubber composition for studless tire and studless tire
JP7340919B2 (en) Rubber composition for tire tread and pneumatic tire
JP7159566B2 (en) Rubber composition for tire
JP6473302B2 (en) tire
JP4747054B2 (en) Pneumatic radial tire
JP6824813B2 (en) Pneumatic tires
US7165585B2 (en) Rubber composition for tire and pneumatic tire using the same
JP2006188571A (en) Rubber composition and tire formed out of the same
US11453251B2 (en) Pneumatic tire
JP5415813B2 (en) Rubber composition and pneumatic tire using the same
JP2009013218A (en) Rubber composition for tread and pneumatic tire using the same
JP2009035674A (en) Rubber composition for base tread, and tire having base tread produced by using the same
JP5073244B2 (en) tire
JP2009114367A (en) Rubber composition for tire tread and pneumatic tire having tread using it
JP4113878B2 (en) Rubber composition and pneumatic tire comprising the same
JP5483367B2 (en) Rubber composition for inner liner and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R150 Certificate of patent or registration of utility model

Ref document number: 5073244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees