JP2008050020A - Synthetic resin insulating container - Google Patents

Synthetic resin insulating container Download PDF

Info

Publication number
JP2008050020A
JP2008050020A JP2006226198A JP2006226198A JP2008050020A JP 2008050020 A JP2008050020 A JP 2008050020A JP 2006226198 A JP2006226198 A JP 2006226198A JP 2006226198 A JP2006226198 A JP 2006226198A JP 2008050020 A JP2008050020 A JP 2008050020A
Authority
JP
Japan
Prior art keywords
container
synthetic resin
outer container
inner container
dlc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006226198A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Akihiro Nozue
章浩 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006226198A priority Critical patent/JP2008050020A/en
Publication of JP2008050020A publication Critical patent/JP2008050020A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic resin insulating container having a double structure which reduces heat loss at a joining section between an inner container and an outer container, and eliminates the breakage of the container due to wear between a gas-permeable porous body and an inner and outer wall surfaces to prevent a deterioration in gas barrier property. <P>SOLUTION: An insulating tank 21 is composed of the insulating container 22 and a lid 23. The insulating container 22 is composed of the synthetic resin inner container 24 and the synthetic resin outer container 25, the inner container 24 is placed in the outer container 25 via a gap 26. The outer surface of the synthetic resin inner container 24 and the inner surface of the synthetic resin outer container 25 excluding the joining section between the inner container 24 and the outer container 25 are coated with a DLC coat layer 34 by plasma CVD. The gap 26 is filled with the gas-permeable porous body 27 and is reduced in pressure, and the mouth of the inner container 24 and that of the outer container 25 are welded together. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、断熱温水タンクや魔法瓶、保温弁当箱などの断熱容器のなかでも設計自由度の高い合成樹脂製断熱容器に関するものである。   The present invention relates to a heat insulating container made of synthetic resin having a high degree of design freedom among heat insulating containers such as a heat insulating hot water tank, a thermos bottle, and a heat insulation lunch box.

従来、断熱温水タンクや魔法瓶、保温弁当箱などの断熱容器は主にステンレス製の二重構造体の真空容器が使用されているが、金属接合部での熱リークが大きい問題があり、また、残留ガスの対流を抑制するには高真空度が必要となり真空引きに時間がかかった。   Conventionally, heat insulation containers such as heat insulation hot water tanks, thermos bottles, heat insulation lunch boxes, etc. have mainly used stainless steel double structure vacuum containers, but there is a problem of large heat leaks at metal joints, In order to suppress the convection of the residual gas, a high degree of vacuum was required, and it took time to evacuate.

また、プレス加工での深絞りが困難で、設計自由度に限界があるため円形のものが主体となり、さらに金属では携帯用には重くて適さない問題があった。   In addition, it is difficult to perform deep drawing in press working, and there is a limit to the degree of freedom in design, so that circular shapes are mainly used, and metal is heavy and not suitable for portable use.

また、設計自由度が高く、熱伝導率の比較的低い合成樹脂製の二重構造体で真空容器を構成しても、空気中の酸素や窒素のガス透過量が大きく、水蒸気透過量も大きいため、時間とともに真空度が低下し断熱性能の長期信頼性に問題があった。   In addition, even if the vacuum vessel is composed of a synthetic resin double structure with a high degree of design freedom and a relatively low thermal conductivity, the oxygen and nitrogen gas permeation in the air is large and the water vapor permeation is large. Therefore, the degree of vacuum decreased with time, and there was a problem in long-term reliability of heat insulation performance.

設計自由度を高め、断熱性能を維持する容器としては、特許文献1のような合成樹脂製真空容器が紹介されている。   As a container that increases the degree of freedom in design and maintains heat insulation performance, a synthetic resin vacuum container such as Patent Document 1 has been introduced.

この合成樹脂製真空容器は、型成形によりガスバリア性を有する二重の容器本体からなり、その外瓶と内瓶との間に所要真空度の空間を有する真空容器であって、外瓶の耐圧底部に大径の空気排出口を開口し、その排出口を塞ぐ栓蓋をそれらの間に残存する導電性の高周波誘導用のショートリングを介して永久固着し、少なくとも内瓶の外面に合成樹脂膜を設け、さらに両瓶にアルミ蒸着の反射膜を設けた合成樹脂製真空容器である。   This synthetic resin vacuum container is a vacuum container having a required vacuum degree between the outer bottle and the inner bottle, which consists of a double container body having gas barrier properties by molding, and has a pressure resistance of the outer bottle. A large-diameter air outlet is opened at the bottom, and the stopper lid that closes the outlet is permanently fixed through the conductive high-frequency induction short ring remaining between them, and at least the outer surface of the inner bottle is made of synthetic resin This is a synthetic resin vacuum vessel provided with a film and further provided with a reflective film formed by vapor deposition of aluminum on both bottles.

このような真空容器は残留ガスの対流による熱伝達を抑制するために1Pa以下の高真空度に保つ必要があり、容器の断熱性能は初期の残留ガス量だけでなく実用時において内外瓶壁面から透過してくるガスの影響を著しく受けることになる。   Such a vacuum container needs to maintain a high vacuum of 1 Pa or less in order to suppress heat transfer due to convection of residual gas, and the heat insulation performance of the container is not only from the initial residual gas amount but also from the inner and outer bottle walls in practical use. It will be significantly affected by the permeating gas.

よって、排出口を塞ぐ詮蓋を高周波により溶着する作業時の真空度条件の制約が厳しくなり、また、高透明度のアクリル合成樹脂膜やアルミ蒸着による反射膜を設けたとしても、アルミ蒸着では密着性の問題から1μm以上の厚みを確保することは難しく、ピンホールも多いため長期においてガスバリア性を維持することは困難で、合成樹脂製断熱容器を長時間使用していると徐々に断熱性能が低下する問題がある。   Therefore, the restrictions on the degree of vacuum during the work of welding the lid that closes the discharge port with high frequency becomes strict, and even if a highly transparent acrylic synthetic resin film or a reflective film by aluminum deposition is provided, adhesion with aluminum deposition It is difficult to secure a thickness of 1 μm or more due to the problem of the property, and since there are many pinholes, it is difficult to maintain the gas barrier property for a long period of time. There is a problem that decreases.

この問題を解決し、断熱性能を維持する方法としては、特許文献2に示されるように、内容器を外容器内に空隙を隔てて口部で連結してなる二重壁構造の容器で、前記内容器と外容器との間の空隙に通気性多孔材料を0.1〜0.4g/cmの充填密度で充填して減圧に保持してなり、さらに断熱層には合成ゼオライトや天然ゼオライト、塩化カルシウム、炭酸カルシウム、無水燐酸等の吸水性の吸着剤が充填されている断熱容器の紹介がある。 As a method for solving this problem and maintaining the heat insulation performance, as shown in Patent Document 2, a container having a double wall structure in which an inner container is connected to an outer container with a gap in the mouth, The gap between the inner container and the outer container is filled with a breathable porous material at a packing density of 0.1 to 0.4 g / cm 3 and kept under reduced pressure. There is an introduction of heat insulating containers filled with water-absorbing adsorbents such as zeolite, calcium chloride, calcium carbonate, and anhydrous phosphoric acid.

通気性多孔材料としては、パーライトや合成シリカ、珪藻土、シラスバルーン、珪酸カルシウム等があり、これらの通気性多孔材料で空隙が埋められると間隙が小さくなりガスの対流が抑制されるため1Pa以下の高真空度を確保する必要がなくなり、真空容器を製造するのが非常に楽になるばかりか、内容器が外容器に通気性多孔材料で固定されるようになり衝撃や振動に強く、継時変化による断熱性能の低下も抑制される。   Examples of the air-permeable porous material include pearlite, synthetic silica, diatomaceous earth, shirasu balloon, calcium silicate, and the like. When the air gap is filled with these air-permeable porous materials, the gap becomes small and gas convection is suppressed. It is no longer necessary to secure a high degree of vacuum, making it very easy to manufacture vacuum containers, and the inner container is fixed to the outer container with a breathable porous material, which is resistant to shock and vibration, and changes over time The deterioration of the heat insulation performance due to is also suppressed.

しかし、ジャーポットのように熱水等を貯湯するタンクでは条件が厳しく、壁面を透過して水分が内部に進入してくるため真空度が悪くなり通気性多孔質体が挿入されていても、また、吸着剤が充填されていても時間とともに断熱性能が悪くなる。   However, in a tank that stores hot water etc. like a jar pot, the conditions are severe, even if moisture penetrates through the wall and moisture enters the inside, the degree of vacuum becomes worse and a breathable porous body is inserted, Even if the adsorbent is filled, the heat insulation performance deteriorates with time.

さらに、図6は特許文献3に示された従来例の合成樹脂製断熱容器を示すものである。図6を参考に従来例の合成樹脂製断熱容器を説明する。   Further, FIG. 6 shows a conventional synthetic resin heat insulating container shown in Patent Document 3. A conventional synthetic resin insulated container will be described with reference to FIG.

断熱容器1は、容器本体2と蓋3とからなり、容器本体2は、内容器4と外容器5とからなり、内容器4の外方にそれよりも寸法の大きな外容器5を被せてそれぞれの口元を一体に接合した二重壁構造になっている。内容器4と外容器5の間の空隙には、低熱伝導率ガスを封入してなる断熱層6が形成されている。   The heat insulating container 1 is composed of a container main body 2 and a lid 3, and the container main body 2 is composed of an inner container 4 and an outer container 5, and an outer container 5 having a larger dimension is put on the outer side of the inner container 4. It has a double wall structure with each mouth joined together. In the gap between the inner container 4 and the outer container 5, a heat insulating layer 6 formed by sealing a low thermal conductivity gas is formed.

内容器4と外容器5とは、耐熱性のABS樹脂、ポリプロピレン、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリエチレンナフタレートなどの合成樹脂材料からなっている。   The inner container 4 and the outer container 5 are made of a synthetic resin material such as heat-resistant ABS resin, polypropylene, polycarbonate, polyacetal, polyethylene terephthalate, and polyethylene naphthalate.

外容器5は有底円筒形をなし、その開口側の上端部は拡径して段部8が形成されている。この外容器5の底部中央には排気孔10が形成され、該排気孔10は封止板11によって閉塞されている。内容器4は有底円筒形をなしており、その上部は外容器5の内周に接するように拡径部9が形成され、さらに拡径部9の上端にはフランジ12が形成されている。   The outer container 5 has a bottomed cylindrical shape, and the upper end portion on the opening side is enlarged in diameter to form a stepped portion 8. An exhaust hole 10 is formed at the center of the bottom of the outer container 5, and the exhaust hole 10 is closed by a sealing plate 11. The inner container 4 has a bottomed cylindrical shape, and an upper portion of the inner container 4 is formed so as to contact the inner periphery of the outer container 5, and a flange 12 is formed at the upper end of the expanded diameter portion 9. .

この内容器4のフランジ12は外容器5の段部8内に挿入可能な径寸法とされている。この内容器4のフランジ12は外容器5の段部8内に挿入され、該フランジ12下面と段部8上面は、超音波溶着法、高周波誘導加熱溶着法などの加熱溶着法によって溶着接合された接合部15が形成されている。   The flange 12 of the inner container 4 has a diameter that can be inserted into the step portion 8 of the outer container 5. The flange 12 of the inner container 4 is inserted into the step portion 8 of the outer container 5, and the lower surface of the flange 12 and the upper surface of the step portion 8 are welded and joined by a heat welding method such as an ultrasonic welding method or a high frequency induction heating welding method. A junction 15 is formed.

内容器4の外周面のうち、外容器5内周面と接する接合部16を除く胴部と底部外面、および外容器5の内面のうち、上記接合部16を除く胴部と底部の内面には、銅、銀、アルミニウム、ニッケル、クロムなどの金属からなるメッキ層14が形成されている。   Out of the outer peripheral surface of the inner container 4, the body portion and the bottom outer surface excluding the joint portion 16 in contact with the inner peripheral surface of the outer container 5, and the inner surface of the outer container 5 except for the joint portion 16, Is formed with a plating layer 14 made of a metal such as copper, silver, aluminum, nickel, or chromium.

これらメッキ層14の厚さは2〜15μm程度とされ、好ましくは10μm程度とされる。このメッキ層14の厚さが2μmより小さいと、このメッキ層14によるガスバリア性向上の効果が十分に得られなくなり、断熱層6内の低熱伝導率のガスが失われて長期間にわたって優れた断熱性能を維持し得なくなる。一方、メッキ層14の厚さが15μmより大きいと、このメッキ層14を介しての内容器4側から外容器5側への熱伝導が増加し、断熱性能を悪化させることになる。   The thickness of the plating layer 14 is about 2 to 15 μm, preferably about 10 μm. If the thickness of the plating layer 14 is smaller than 2 μm, the effect of improving the gas barrier property by the plating layer 14 cannot be sufficiently obtained, and the gas with low thermal conductivity in the heat insulating layer 6 is lost and excellent heat insulation is achieved over a long period of time. The performance cannot be maintained. On the other hand, if the thickness of the plating layer 14 is larger than 15 μm, heat conduction from the inner container 4 side to the outer container 5 side through the plating layer 14 increases, and the heat insulating performance is deteriorated.

断熱層6内に封入されるガスとしては、熱伝導率が小さく不活性なガスである、キセノン、クリプトン、アルゴンの各ガスやそれらの混合ガスが用いられる。これらキセノンガス、クリプトンガス及びアルゴンガスは、熱伝導率が小さく、しかもその使用により環境保全上の問題もなく、特に好適である。   As the gas sealed in the heat insulating layer 6, xenon, krypton, argon, or a mixed gas thereof, which is an inert gas with low thermal conductivity, is used. These xenon gas, krypton gas, and argon gas are particularly suitable because of their low thermal conductivity and no problem in environmental conservation due to their use.

この低熱伝導率ガスを封入した断熱層6の厚み7は3〜10mm程度とされる。断熱層6の厚み7が10mmを越えると、ガスの熱伝導による伝熱ロスは小さくなるが、対流伝熱ロスが生じるようになる。断熱層6の厚み7を3〜10mmとすることにより、ガスの対流を防止することができ、断熱性能が向上する。
特公昭63−43087号公報 特開平2−265513号公報 特許第3009832号公報
The thickness 7 of the heat insulating layer 6 enclosing this low thermal conductivity gas is about 3 to 10 mm. When the thickness 7 of the heat insulating layer 6 exceeds 10 mm, the heat transfer loss due to the heat conduction of the gas becomes small, but a convective heat transfer loss occurs. By setting the thickness 7 of the heat insulating layer 6 to 3 to 10 mm, gas convection can be prevented and the heat insulating performance is improved.
Japanese Examined Patent Publication No. 63-43087 JP-A-2-265513 Japanese Patent No. 3009832

しかしながら特許文献3の従来の合成樹脂製断熱容器は、内外容器間の空間部へのガスバリア性を高めるために、内容器の外面および外容器の内面に約10μmの厚みで、銅、銀、アルミニウム、ニッケル、クロムなどの金属からなるメッキ層が形成されており、特に内容器4と外容器5との熱伝導性が極めて高い金属メッキ層が連続しやすい口元接合部分での短絡による熱ロスは大となる。   However, the conventional synthetic resin heat insulating container of Patent Document 3 has a thickness of about 10 μm on the outer surface of the inner container and the inner surface of the outer container in order to improve the gas barrier property to the space between the inner and outer containers, and is made of copper, silver, aluminum. A plating layer made of a metal such as nickel or chromium is formed, and in particular, heat loss due to a short circuit at the mouth joint portion where the metal plating layer with extremely high thermal conductivity between the inner container 4 and the outer container 5 tends to be continuous is Become big.

また、内容器と外容器との空隙にキセノン、クリプトン、アルゴン等の低熱伝導性ガスを封入した断熱層を形成することで、高真空度を必要とせず封入ガスと空気との置換による断熱性能の変化は少ないが、対流による熱伝達が大きいため初期の断熱性能は真空断熱に比べると悪い。   In addition, by forming a heat insulation layer filled with low thermal conductivity gas such as xenon, krypton, argon, etc. in the gap between the inner container and outer container, heat insulation performance by replacing the enclosed gas and air without requiring high vacuum Although there is little change, the heat insulation performance by convection is large, so the initial heat insulation performance is worse than that of vacuum heat insulation.

また、対流による熱伝達を抑えるため、パーライト、合成シリカ、珪藻土、シラスバルーン、珪酸カルシウム、ガラス繊維等の通気性のある多孔質材料を充填する方法も考えられるが、充填材は固定されていないために、外部の振動や衝撃ごとに充填材が空隙内で躍動し、内容器外面と外容器内面に形成した摩擦係数の比較的高い金属メッキ層の面で摺動するため、金属メッキ面を荒らし、磨耗させ、最終的には金属メッキ面が破壊されガスバリア性が低下するという問題があった。   In addition, in order to suppress heat transfer by convection, a method of filling a porous material having air permeability such as pearlite, synthetic silica, diatomaceous earth, shirasu balloon, calcium silicate, glass fiber, etc. can be considered, but the filler is not fixed. For this reason, the filler swells in the gap for each external vibration or impact, and slides on the surface of the metal plating layer having a relatively high coefficient of friction formed on the outer surface of the inner container and the inner surface of the outer container. There was a problem that the metal barrier surface was destroyed and the gas barrier property was lowered due to roughening and abrasion.

本発明は、上記事情に鑑みてなされたものであり、優れた断熱性能を持つとともに、長期信頼性を有し容積効率に優れた合成樹脂製の断熱容器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a heat insulating container made of a synthetic resin having excellent heat insulating performance, long-term reliability, and excellent volume efficiency.

上記目的を達成するために、本発明の合成樹脂製断熱容器は、合成樹脂製の内容器を合成樹脂製の外容器内に空隙を保って配し、内容器と外容器との接合部を除く前記合成樹脂製の内外容器面にプラズマCVDでDLCコート層を設け、もしくは、内容器と外容器との接合部を除く前記合成樹脂製の内容器外面と外容器内面とにプラズマCVDでDLCコート層を設け、前記空隙に通気性多孔質体を充填し、かつ前記空隙内を減圧とし、内容器と外容器のそれぞれの口元同士を溶着接合してなることを特徴とする。   In order to achieve the above object, the synthetic resin heat insulating container of the present invention is arranged by placing a synthetic resin inner container with a gap in a synthetic resin outer container, and a joint between the inner container and the outer container. A DLC coating layer is provided by plasma CVD on the surface of the inner and outer containers made of synthetic resin, or DLC is formed by plasma CVD on the outer surface of the inner and outer containers made of synthetic resin excluding the joint portion between the inner container and the outer container. A coating layer is provided, the void is filled with a breathable porous body, the inside of the void is decompressed, and the respective mouths of the inner container and the outer container are welded and joined.

ここで、プラズマCVDは、Plasma Enhanced Chemical Vapor Deposition(プラズマ化学気相成長法)であり、DLCは、Diamond Like Carbon(ダイヤモンド・ライク・カーボン)である。また、DLCコート層がフッ素を含むDLCコート層であってもよい。   Here, plasma CVD is Plasma Enhanced Chemical Vapor Deposition, and DLC is Diamond Like Carbon (Diamond Like Carbon). Further, the DLC coating layer may be a DLC coating layer containing fluorine.

これによって、内容器と外容器との空隙に通気性多孔質体を充填し減圧した断熱層を形成したので、空隙が小さくなり、高真空度を確保しなくとも対流による熱伝達性能は低く維持され、内容器と外容器との接合部を除く内容器と外容器の表面にプラズマCVDにより熱伝導率の低いDLCコート層またはフッ素を含むDLCコート層を設けたので、断熱性能がよくなる。また、従来の金属メッキ層に比べるとDLCコートは重金属等の毒性もなく、水や食品に接触する壁面に利用しても問題はなく、プラズマCVDは蒸着工法に比べて形成された層の密着性、緻密性が高く、強度も高く、ガスバリア性の高い層となる。特に、通気性多孔質体と接する内容器外側と外容器内側面では、表面硬度が高く、摩擦係数の低いプラズマCVDによるDLCコート層が保護膜として働き、外部からの振動により充填材が躍動を繰り返してもDLCコート面が磨耗され破壊されることはない。   As a result, a space between the inner container and the outer container is filled with an air-permeable porous body to form a heat-insulating layer that has been depressurized. This reduces the gap and maintains low heat transfer performance due to convection without securing a high degree of vacuum. In addition, since the DLC coat layer having a low thermal conductivity or the DLC coat layer containing fluorine is provided by plasma CVD on the surfaces of the inner container and the outer container excluding the joint portion between the inner container and the outer container, the heat insulation performance is improved. Compared to conventional metal plating layers, DLC coating has no toxicity such as heavy metals, and there is no problem even if it is used as a wall surface that comes into contact with water or food. It becomes a layer with high property and denseness, high strength, and high gas barrier properties. In particular, the DLC coating layer by plasma CVD with high surface hardness and low coefficient of friction acts as a protective film on the outer side of the inner container and the inner side of the outer container in contact with the breathable porous body, and the filler is vibrated by vibration from the outside. Even if it repeats, a DLC coat surface is not worn and destroyed.

本発明の合成樹脂製断熱容器は、合成樹脂製の内容器を合成樹脂製の外容器内に空隙を保って配し、これら内容器と外容器とのそれぞれの口元を接合して一体化するとともに、内容器と外容器との空隙に通気性多孔質体を充填し減圧した断熱層を形成してなる二重壁構造の合成樹脂製断熱容器で、内容器と外容器との接合部を除く内容器と外容器の表面にプラズマCVDによりDLCコート層、またはフッ素を含むDLCコート層を設け、かつ内容器の口元と外容器の口元とのそれぞれの合成樹脂同士を溶着接合してなるもので、内容器と外容器との空隙に通気性多孔質体を充填し減圧した断熱層を形成したので、空隙が小さく高真空度を維持しなくとも対流による熱伝達は低く、高断熱性能が長期間において確保できる。   In the synthetic resin heat insulating container of the present invention, an inner container made of synthetic resin is arranged in a synthetic resin outer container while maintaining a gap, and the mouths of these inner container and outer container are joined and integrated. In addition, a synthetic resin heat insulation container with a double wall structure in which a space between the inner container and the outer container is filled with a breathable porous body and a reduced heat insulation layer is formed, and a joint portion between the inner container and the outer container is formed. A DLC coating layer or a DLC coating layer containing fluorine is provided on the surfaces of the inner container and the outer container by plasma CVD, and the synthetic resins of the inner container mouth and the outer container mouth are welded and joined together. Since the heat-insulating layer was formed by filling the air gap between the inner container and the outer container with a breathable porous body and reducing the pressure, heat transfer due to convection is low even if the air gap is small and high vacuum is not maintained, and high heat insulating performance is achieved. It can be secured for a long time.

また、耐水性のあるプラズマCVDによりDLCコート層、またはフッ素を含むDLCコート層は、カーボンを主体とする化合物であり、蒸着により形成された層に比べて、密着性と緻密性と強度を有し、ガスバリア性が高いだけでなく、水や食品と接触して使用されても問題がないので、魔法瓶や弁当箱等の食品容器に使用されても問題はない。   In addition, a DLC coat layer containing water resistant plasma CVD or a DLC coat layer containing fluorine is a compound mainly composed of carbon, and has adhesion, denseness, and strength as compared with a layer formed by vapor deposition. In addition to high gas barrier properties, there is no problem even if it is used in contact with water or food, so there is no problem even if it is used in a food container such as a thermos or a lunch box.

また、内容器と外容器との接合部を除く内容器外面と外容器内面とにプラズマCVDにより熱伝導率の低いDLCコート層またはフッ素を含むDLCコート層を設けたので、コート層の短絡による熱リークは小さく抑えられ、断熱性能の低下は抑制される。さらに、プラズマCVDによるDLCは表面硬度が高く、低い摩擦係数を有するので、耐摩耗性が良く、外部振動により充填材が躍動を繰り返してもDLCコート面を荒らし磨耗させ破壊させることはなく、長期にわたって断熱性能は維持できる。よって、優れた断熱性能を持つとともに、長期信頼性を有し、設計自由度が高く容積効率に優れた合成樹脂製の断熱容器を提供するものである。   In addition, since a DLC coat layer having low thermal conductivity or a DLC coat layer containing fluorine is provided by plasma CVD on the outer surface of the inner container and the inner surface of the outer container excluding the joint portion between the inner container and the outer container, a short circuit of the coat layer The heat leak is kept small, and the deterioration of the heat insulation performance is suppressed. Furthermore, DLC by plasma CVD has a high surface hardness and a low coefficient of friction, so it has good wear resistance, and even if the filler repeatedly vibrates due to external vibration, the DLC coated surface will not be roughened and worn and destroyed, Thermal insulation performance can be maintained over the entire range. Therefore, the present invention provides a heat insulating container made of a synthetic resin having excellent heat insulating performance, long-term reliability, high design freedom and excellent volumetric efficiency.

請求項1に記載の発明は、合成樹脂製の内容器を合成樹脂製の外容器内に空隙を保って配し、内容器と外容器との接合部を除く前記合成樹脂製の内外容器面にプラズマCVDでDLCコート層を設け、前記空隙に通気性多孔質体を充填し、かつ前記空隙内を減圧とし、内容器と外容器のそれぞれの口元同士を溶着接合してなるもので、内容器と外容器との空隙に通気性多孔質体を充填し減圧した断熱層を形成したので、空隙が小さく高真空度を確保しなくとも対流による熱伝達性能は低く維持され、高断熱性能が確保でき、内容器と外容器との接合部を除く内容器と外容器の表面にプラズマCVDにより熱伝導率の低いDLCコート層を設けたので、金属のメッキ層に比べて断熱性能がよくなり、プラズマCVDによるDLCは従来の蒸着に比べて密着性があり、緻密性があり、金属めっきに比べて重金属による食品衛生面での問題も無く、水や食品と接触する容器の壁面にも使用が可能となる。   According to the first aspect of the present invention, the synthetic resin inner container is disposed in a synthetic resin outer container while maintaining a gap, and the synthetic resin inner and outer container surfaces excluding the joint portion between the inner container and the outer container are provided. A DLC coating layer is provided by plasma CVD, the air gap is filled with a gas-permeable porous body, the inside of the air gap is reduced in pressure, and the mouths of the inner container and the outer container are welded to each other. Since the heat-insulating layer is formed by filling the air gap between the container and the outer container with a breathable porous body and reducing the pressure, the heat transfer performance by convection is kept low even if the air gap is small and a high degree of vacuum is not secured. Since the DLC coating layer with low thermal conductivity is provided by plasma CVD on the surface of the inner container and the outer container excluding the joint part between the inner container and the outer container, the heat insulation performance is improved compared to the metal plating layer. DLC by plasma CVD can be used for conventional deposition Base and has adhesiveness, has denseness, problems in food hygiene by heavy metals as compared with the metal plating even without, it is possible to use the wall of the container in contact with water or food.

請求項2に記載の発明は、合成樹脂製の内容器を合成樹脂製の外容器内に空隙を保って配し、内容器と外容器との接合部を除く前記合成樹脂製の内容器外面と外容器内面とにプラズマCVDでDLCコート層を設け、前記空隙に通気性多孔質体を充填し、かつ前記空隙内を減圧とし、内容器と外容器のそれぞれの口元同士を溶着接合してなるもので、内容器と外容器との空隙に通気性多孔質体を充填し減圧した断熱層を形成したので、空隙が小さく高真空度を確保しなくとも対流による熱伝達性能は低く維持され、高断熱性能が確保でき、充填材と接触する内容器外面と外容器内面とに、表面硬度が高く、摩擦係数が低いDLCコート層を設けたので、耐摩耗性が良く、外部の振動で充填材が振動を繰り返してもDLCコート面を荒らし磨耗させ破壊させることはないので、長期にわたって断熱性能が維持されるものである。   According to a second aspect of the present invention, the synthetic resin inner container is disposed in a synthetic resin outer container while maintaining a gap, and the outer surface of the inner wall made of the synthetic resin excluding a joint portion between the inner container and the outer container. A DLC coating layer is provided by plasma CVD on the inner surface of the outer container, the air-permeable porous body is filled in the gap, and the inside of the gap is decompressed, and the respective mouths of the inner container and the outer container are welded to each other. Since the heat-insulating layer is formed by filling the air gap between the inner container and the outer container with a breathable porous body and reducing the pressure, the heat transfer performance by convection is kept low even if the air gap is small and high vacuum is not secured. The DLC coating layer with high surface hardness and low friction coefficient is provided on the outer surface of the inner container and the inner surface of the outer container that can ensure high heat insulation performance. Even if the filler repeatedly vibrates, the DLC coated surface is roughened and worn. Since not be allowed destroyed, in which heat insulating performance is maintained over time.

請求項3に記載の発明は、請求項1または2に記載の発明におけるプラズマCVDにより設けられたDLCコート層がフッ素を含むDLCコート層であるもので、プラズマCVD工程においてカーボン以外にフッ素を含むガスを所定量注入することにより形成されたフッ素を含むDLCコート層は、DLCコート層の緻密性と柔軟性を高め、作業時や使用時の割れを防止するもので長期断熱性能の信頼性をさらに高めた合成樹脂製の断熱容器を提供するものである。   In the invention according to claim 3, the DLC coat layer provided by plasma CVD in the invention according to claim 1 or 2 is a DLC coat layer containing fluorine, and fluorine is contained in addition to carbon in the plasma CVD process. The DLC coating layer containing fluorine formed by injecting a predetermined amount of gas improves the denseness and flexibility of the DLC coating layer and prevents cracking during work and use. Further, the present invention provides a further enhanced heat insulating container made of synthetic resin.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における合成樹脂製断熱容器の概略断面図で、図2は本実施の形態1における合成樹脂製断熱容器の接合部を示す要部拡大断面図である。また、図3は本実施の形態1における合成樹脂製断熱容器の内容器外側と外容器内側へのプラズマCVDによるDLCコートを施すプラズマイオン注入成膜装置の模式的縦断面図で、図4は本実施の形態1における高電圧パルスを印加した場合の被処理品付近のプラズマシースの変化を示す図で、図5は本実施の形態1における合成樹脂製断熱容器の接合工程を示す概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a synthetic resin heat insulating container according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part showing a joint portion of the synthetic resin heat insulating container according to Embodiment 1. FIG. 3 is a schematic longitudinal sectional view of a plasma ion implantation film forming apparatus for performing DLC coating by plasma CVD on the inner and outer containers of the synthetic resin heat insulating container according to the first embodiment. FIG. 5 is a diagram showing a change in the plasma sheath in the vicinity of the product to be processed when a high voltage pulse is applied in the first embodiment, and FIG. 5 is a schematic cross-sectional view showing the bonding process of the synthetic resin heat insulating container in the first embodiment It is.

図1において、断熱タンク21は、断熱容器22と蓋23とからなり、断熱容器22は内容器24と外容器25とからなり、内容器24の外方に内容器24よりも寸法の大きな外容器25を被せてそれぞれの口元を一体に接合した二重壁構造になっている。   In FIG. 1, the heat insulation tank 21 is composed of a heat insulation container 22 and a lid 23, and the heat insulation container 22 is composed of an inner container 24 and an outer container 25. A double wall structure is formed by covering the container 25 and integrally joining the respective mouths.

内容器24と外容器25との間の空隙26には、通気性多孔質体27を充填し減圧した断熱層28を形成してなる二重壁構造を有し、内容器24と外容器25とは、耐熱性のABS樹脂、ポリプロピレン、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリエチレンナフタレート、変性PPE、変性PPSなどの合成樹脂材料からなっている。   The space 26 between the inner container 24 and the outer container 25 has a double wall structure in which a heat-insulating layer 28 filled with a permeable porous body 27 and decompressed is formed. Is made of a synthetic resin material such as heat-resistant ABS resin, polypropylene, polycarbonate, polyacetal, polyethylene terephthalate, polyethylene naphthalate, modified PPE, or modified PPS.

また、内容器24の上部は外容器25のフランジ29に接するように拡径部30が形成されている。この内容器24の拡径部30は外容器25のフランジ29外周と同寸法となり、この内容器24拡径部30の外容器25フランジ29に接する面は接合部31となり、赤外線レーザ溶接により接合されている。   Further, an enlarged diameter portion 30 is formed at the upper portion of the inner container 24 so as to contact the flange 29 of the outer container 25. The enlarged diameter portion 30 of the inner container 24 has the same size as the outer periphery of the flange 29 of the outer container 25, and the surface of the inner diameter of the inner container 24 that contacts the outer container 25 flange 29 becomes a joint portion 31, which is joined by infrared laser welding. Has been.

図2は接合前の内容器24の拡径部30と外容器25のフランジ29との要部拡大断面図であるが、内容器24の拡径部30の外容器25フランジ29と接する面にレーザを集光する突起部32が全周に設けられてある。   FIG. 2 is an enlarged cross-sectional view of the main part of the enlarged diameter portion 30 of the inner container 24 and the flange 29 of the outer container 25 before joining, but the surface of the enlarged diameter portion 30 of the inner container 24 is in contact with the flange 29 of the outer container 25. Protrusions 32 for condensing the laser are provided on the entire circumference.

また、内容器24の外面のうち外容器25フランジ29面との接合部31を除く外面、および外容器25の内面のうち接合部31を除く内面には、プラズマCVDにより設けられたフッ素を含むDLCコート層34が形成してある。   The outer surface of the inner container 24 excluding the joint portion 31 with the surface of the flange 25 of the outer container 25 and the inner surface of the outer container 25 except for the joint portion 31 include fluorine provided by plasma CVD. A DLC coating layer 34 is formed.

これらのプラズマCVDにより設けられたフッ素を含むDLCコート層34の厚さは0.1〜20μmの範囲内とされ、好ましくは2μm程度とされる。このフッ素を含むDLCコート層34の厚さが0.1μmより小さいと、ピンホール等が発現し、このDLCコート層34によるガスバリア性向上の効果が十分に得られなくなり、断熱層28内に空気や水分が透過して入り真空度が失われて長期間にわたって優れた断熱性能を維持し得なくなる。一方、DLCコート層34の厚さが20μmより大きいと、このDLCコート層34が短絡する部分から内容器24側から外容器25側への熱伝導が増加し、断熱性能を悪化させることになる。   The thickness of the DLC coating layer 34 containing fluorine provided by plasma CVD is in the range of 0.1 to 20 μm, preferably about 2 μm. If the thickness of the DLC coating layer 34 containing fluorine is smaller than 0.1 μm, pinholes and the like are developed, and the effect of improving the gas barrier property by the DLC coating layer 34 cannot be sufficiently obtained, and air is not contained in the heat insulating layer 28. Moisture permeates and enters, and the degree of vacuum is lost, making it impossible to maintain excellent heat insulation performance over a long period of time. On the other hand, when the thickness of the DLC coat layer 34 is larger than 20 μm, heat conduction from the portion where the DLC coat layer 34 is short-circuited to the outer container 25 side from the inner container 24 side increases, and the heat insulation performance is deteriorated. .

外容器25の底部中央には水分を吸収するゼオライト、酸化カルシウム、塩化カルシウム等の吸着剤35を設置してある。   In the center of the bottom of the outer container 25, an adsorbent 35 such as zeolite, calcium oxide or calcium chloride that absorbs moisture is installed.

断熱層28内に封入される通気性多孔質体27としては、パーライト、合成シリカ、珪藻土、シラスバルーン、珪酸カルシウム、ガラス繊維等の多孔質材料を充填するが、本発明の実施の形態1では、平均一次粒子径が100nm以下の乾式シリカと、平均繊維径10μm以下の無機繊維材料とを含む複合粉末成形体を用いる。   The breathable porous body 27 enclosed in the heat insulating layer 28 is filled with a porous material such as pearlite, synthetic silica, diatomaceous earth, shirasu balloon, calcium silicate, glass fiber, etc. In the first embodiment of the present invention. A composite powder molded body containing dry silica having an average primary particle diameter of 100 nm or less and an inorganic fiber material having an average fiber diameter of 10 μm or less is used.

一般的なシリカ粉末と繊維材料とでは混合撹拌して圧縮成形しても成形体とはなりにくいが、平均一次粒子径が100nm以下の乾式シリカと平均繊維径10μm以下の無機繊維材料と混合・圧縮成形することにより、強固な成形体を得ることができる。この理由は、粒子径の小さい粉末同士であるため分子間力が働き粉末同士が付着する、あるいは乾式であるため表面官能基が少なく相互反発が少ないため粉末同士が付着しやすい、あるいはシリカと無機繊維という親和性のよい組合せであるため相互に付着しやすい、さらに無機繊維の繊維径が小さいため比表面積が大きくなるすなわち表面エネルギーが大きくなり粉末と結びつきやすくなる、あるいはそれらの複合的な相互作用によるものと考える。   Although it is difficult to form a molded body by mixing and stirring with a general silica powder and a fiber material, the mixture is mixed with dry silica having an average primary particle diameter of 100 nm or less and an inorganic fiber material having an average fiber diameter of 10 μm or less. A strong molded body can be obtained by compression molding. The reason for this is that powders with small particle diameters work together because the intermolecular force works and powders adhere to each other, or because they are dry, the surface functional groups are few and the mutual repulsion is small, so the powders are easy to stick together, or silica and inorganic It is a good combination of fibers, so it is easy to adhere to each other, and since the fiber diameter of inorganic fibers is small, the specific surface area increases, that is, the surface energy increases and it becomes easy to bind to the powder, or their complex interaction I think that.

本発明の実施の形態1では、乾式シリカと無機繊維材料を混合するステップと、これを型枠に入れ0.5N/mm以上の圧力で加圧成形し複合粉末成形体を得るステップと、前記複合粉末成形体をガスバリア性を有する外容器25と内容器24の間に挿入し、1Pa以下の減圧状態で赤外線レーザ溶接により開口部を密封するステップで構成されている。 In Embodiment 1 of the present invention, a step of mixing dry silica and an inorganic fiber material, a step of putting this in a mold and press-molding with a pressure of 0.5 N / mm 2 or more to obtain a composite powder molded body, The composite powder molded body is inserted between an outer container 25 and an inner container 24 having gas barrier properties, and the opening is sealed by infrared laser welding in a reduced pressure state of 1 Pa or less.

断熱容器22の上方に取り付けられた蓋23は断熱容器22の開口端にヒンジ結合されて開閉可能とされ、かつ良好な断熱性能を有するものであることが望ましい。蓋23の断熱構造は特に限定されることはないが、断熱容器22と同じ断熱構造としたものが良い。   It is desirable that the lid 23 attached above the heat insulating container 22 is hinged to the opening end of the heat insulating container 22 so that it can be opened and closed and has good heat insulating performance. The heat insulating structure of the lid 23 is not particularly limited, but the same heat insulating structure as the heat insulating container 22 is preferable.

次に、この断熱容器22の製造方法について説明する。   Next, the manufacturing method of this heat insulation container 22 is demonstrated.

まず、射出成形法などの適宜な方法によって、内容器24と外容器25とを製造する。その内容器24には、図2に示すように拡径部30の下面に、断面が角形の突起32を全周にわたって設けておく。この突起32の形状はこれに限定されることなく、断面がV字状や半円形としても良い。   First, the inner container 24 and the outer container 25 are manufactured by an appropriate method such as an injection molding method. As shown in FIG. 2, the inner container 24 is provided with a protrusion 32 having a square cross section on the entire lower surface of the enlarged diameter portion 30. The shape of the protrusion 32 is not limited to this, and the cross section may be V-shaped or semicircular.

次いで、内容器24と外容器25との接合部33となる内容器24の拡径部30の外周下部面の突起32の接合部33付近と、外容器25のフランジ29の接合部33付近を、固定部材を密着させて覆い、或いは剥離容易な接着剤や粘着テープを用いて覆うことによりマスキングし、それ以外の内容器24の外面と外容器5の内面の露出部分についてCVD法によりDLCコート層34を形成する。   Next, the vicinity of the joint 33 of the protrusion 32 on the outer peripheral lower surface of the enlarged diameter portion 30 of the inner container 24 that becomes the joint 33 of the inner container 24 and the outer container 25 and the vicinity of the joint 33 of the flange 29 of the outer container 25. Then, the fixing member is closely covered or masked by covering with an easily peelable adhesive or adhesive tape, and other exposed portions of the outer surface of the inner container 24 and the inner surface of the outer container 5 are DLC coated by the CVD method. Layer 34 is formed.

次に、このCVD法によるフッ素を含むDLCコート層34の形成方法について詳しく説明する。   Next, a method for forming the DLC coat layer 34 containing fluorine by this CVD method will be described in detail.

図3は本発明の実施の形態1における断熱容器22の製造に用いる三次元イオン注入方式によるプラズマイオン注入成膜装置の模式的縦断面図である。   FIG. 3 is a schematic longitudinal sectional view of a plasma ion implantation film forming apparatus using a three-dimensional ion implantation method used for manufacturing the heat insulating container 22 according to Embodiment 1 of the present invention.

図3のプラズマイオン注入成膜装置51は、三次元被処理物を所望の材料で被覆するために用いられる。本実施の形態1では、被処理物としてPPS(ポリフェニレンサルファイド)樹脂により射出成型された内容器24外面及び外容器25の内面にコートをする場合を説明する。   The plasma ion implantation film forming apparatus 51 of FIG. 3 is used to coat a three-dimensional object to be processed with a desired material. In the first embodiment, a case will be described in which the outer surface of the inner container 24 and the inner surface of the outer container 25 which are injection-molded with a PPS (polyphenylene sulfide) resin as a workpiece are coated.

このプラズマイオン注入成膜装置51は、内部のガスを排気する真空排気系53と、ガスを導入するガス導入系54とが接続されているチャンバ52が備えられている。また、本実施の形態1では、ガス導入系54により、チャンバ52内にメタン(CH)および四フッ化炭素(CF)を導入する。 This plasma ion implantation film forming apparatus 51 includes a chamber 52 to which an evacuation system 53 for exhausting an internal gas and a gas introduction system 54 for introducing a gas are connected. In the first embodiment, methane (CH 4 ) and carbon tetrafluoride (CF 4 ) are introduced into the chamber 52 by the gas introduction system 54.

本実施の形態1では、チャンバ52内に内容器24外面と外容器25内面とが上方に向けて配置され、この内容器24内面と外容器25外面とは金属等の治具50を介して導体55に接続されている。導体55は、高絶縁フィードスルー56を通してチャンバ52の外部に引き出され、重畳装置57に接続されている。重畳装置57には、RF高周波電源58および高電圧パルス電源59が接続されている。高電圧パルス電源59の電圧値は例えば10kVであり、パルス幅は例えば2μsである。また、チャンバ52内にアーク方式の金属プラズマ源60が接続されている。   In the first embodiment, the inner surface of the inner container 24 and the inner surface of the outer container 25 are disposed upward in the chamber 52, and the inner surface of the inner container 24 and the outer surface of the outer container 25 are interposed via a jig 50 made of metal or the like. The conductor 55 is connected. The conductor 55 is drawn out of the chamber 52 through the highly insulated feedthrough 56 and connected to the superimposing device 57. An RF high frequency power source 58 and a high voltage pulse power source 59 are connected to the superimposing device 57. The voltage value of the high voltage pulse power supply 59 is, for example, 10 kV, and the pulse width is, for example, 2 μs. An arc-type metal plasma source 60 is connected in the chamber 52.

RF高周波電源58は、チャンバ52内でのプラズマの生成のためにRF電力を発生する。本実施の形態1では、RF高周波電源58はパルス状のRF電力を発生する。RF電力の出力周波数は13.56MHzであり、出力電力は例えば0.5kW〜1.5kWで可変であり、パルス幅は例えば20μsで可変である。   The RF high frequency power source 58 generates RF power for generating plasma in the chamber 52. In the first embodiment, the RF high frequency power supply 58 generates pulsed RF power. The output frequency of the RF power is 13.56 MHz, the output power is variable, for example, from 0.5 kW to 1.5 kW, and the pulse width is variable, for example, 20 μs.

高電圧パルス電源59は、イオン注入および成膜のために負の高電圧パルスを発生する。高電圧パルスの電圧値は0〜−50kVで可変であり、パルス幅は2μsで可変である。   The high voltage pulse power supply 59 generates a negative high voltage pulse for ion implantation and film formation. The voltage value of the high voltage pulse is variable from 0 to −50 kV, and the pulse width is variable from 2 μs.

重畳装置57は、RF高周波電源58により発生されたRF電力および高電圧パルス電源59により発生された高電圧パルスを交互に遅延したタイミングまたは重複するタイミングで導体55を通じ治具50に印加する。それにより、被処理物として絶縁性の容器を用いた場合でも、後述するように内容器24外面と外容器25内面を被覆することができる。   The superimposing device 57 applies the RF power generated by the RF high frequency power supply 58 and the high voltage pulse generated by the high voltage pulse power supply 59 to the jig 50 through the conductor 55 at the timing of alternately delaying or overlapping. Thereby, even when an insulating container is used as the object to be processed, the outer surface of the inner container 24 and the inner surface of the outer container 25 can be covered as described later.

次に、図3のプラズマイオン注入成膜装置を用いて内容器24外面と外容器25内面の表面をDLC薄膜で被覆する原理を図4を参照しながら説明する。図4は高電圧パルスを印加した場合の内容器24外面と外容器25内面付近のプラズマシースの変化を示す図である。   Next, the principle of coating the outer surface of the inner container 24 and the inner surface of the outer container 25 with a DLC thin film using the plasma ion implantation film forming apparatus of FIG. 3 will be described with reference to FIG. FIG. 4 is a diagram showing changes in the plasma sheath near the outer surface of the inner container 24 and the inner surface of the outer container 25 when a high voltage pulse is applied.

チャンバ52内に導入されるガスとしては、炭化水素ガスが用いられる。ここでは、ガス導入系54から導入されるガスとしてメタンおよび四フッ化炭素を用いる場合を説明する。   A hydrocarbon gas is used as the gas introduced into the chamber 52. Here, a case where methane and carbon tetrafluoride are used as the gas introduced from the gas introduction system 54 will be described.

まず、チャンバ52内に内容器24外面と外容器25内面を治具50を介して導体55に接続した状態で配置し、真空排気系53によってチャンバ52内を排気した後、ガス導入系54によりチャンバ52内にメタンおよび四フッ化炭素を導入し、チャンバ52内を所定のガス圧にする。この状態で、RF高周波電源58から重畳装置57および導体55を通してパルス状のRF電力を内容器24外面と外容器25内面に印加する。それにより、内容器24外面と外容器25内面の周囲に正のイオンおよび電子を含む一様なプラズマが内容器24外面と外容器25内面の形状に沿って発生する。   First, the inner surface of the inner container 24 and the inner surface of the outer container 25 are arranged in the chamber 52 in a state of being connected to the conductor 55 via the jig 50, and the inside of the chamber 52 is evacuated by the vacuum exhaust system 53, and then the gas introduction system 54 Methane and carbon tetrafluoride are introduced into the chamber 52, and the inside of the chamber 52 is brought to a predetermined gas pressure. In this state, pulsed RF power is applied from the RF high frequency power source 58 to the outer surface of the inner container 24 and the inner surface of the outer container 25 through the superimposing device 57 and the conductor 55. Thereby, uniform plasma containing positive ions and electrons is generated around the outer surface of the inner container 24 and the inner surface of the outer container 25 along the shapes of the outer surface of the inner container 24 and the inner surface of the outer container 25.

その後、高電圧パルス電源59から重畳装置57および導体55を通して負の高電圧パルスを内容器24外面と外容器25内面に印加する。それにより、プラズマ中の正のイオンが内容器24外面と外容器25内面に誘引される。   Thereafter, a negative high voltage pulse is applied from the high voltage pulse power source 59 to the outer surface of the inner container 24 and the inner surface of the outer container 25 through the superimposing device 57 and the conductor 55. As a result, positive ions in the plasma are attracted to the outer surface of the inner container 24 and the inner surface of the outer container 25.

内容器24外面と外容器25内面に高電圧パルスを印加しない場合は、図4の(1)に示すように、プラズマは一様な状態になっている。内容器24外面と外容器25内面に高電圧パルスを印加すると、図4の(2)に示すように、プラズマ中の電子は内容器24外面と外容器25内面付近から遠ざかり、正のイオンは質量が大きいのでほとんど動かない。それにより、内容器24外面と外容器25内面周囲には、正のイオンのみが残り、プラズマシースが形成される。   When a high voltage pulse is not applied to the outer surface of the inner container 24 and the inner surface of the outer container 25, the plasma is in a uniform state as shown in (1) of FIG. When a high voltage pulse is applied to the outer surface of the inner container 24 and the inner surface of the outer container 25, as shown in (2) of FIG. 4, the electrons in the plasma move away from the outer surface of the inner container 24 and the vicinity of the inner surface of the outer container 25, and positive ions are Almost no movement due to large mass. Thereby, only positive ions remain around the outer surface of the inner container 24 and the inner surface of the outer container 25, and a plasma sheath is formed.

また、図4の(3)に示すように、高電圧パルスの印加開始から数μs程度経過して、電界が強くなると、正のイオンはプラズマシースのシース電圧により内容器24外面と外容器25内面の表面の方向に加速される。正のイオンが内容器24外面と外容器25内面に衝突すると、内容器24外面と外容器25内面付近の電荷のバランスが崩れるので、図4の(4)に示すように、さらに電子はイオンと逆方向に加速され、プラズマシースの厚みは増加する。このようにして、内容器24外面と外容器25内面にイオンが注入されるとともに、内容器24外面と外容器25内面の表面に膜が形成される。   As shown in (3) of FIG. 4, when an electric field is strengthened after several μs has elapsed from the start of application of the high voltage pulse, positive ions are caused by the sheath voltage of the plasma sheath to cause the outer surface of the inner container 24 and the outer container 25 to be positive. Accelerated in the direction of the inner surface. When positive ions collide with the outer surface of the inner container 24 and the inner surface of the outer container 25, the balance of charges near the outer surface of the inner container 24 and the inner surface of the outer container 25 is lost, and as shown in FIG. And the thickness of the plasma sheath increases. In this way, ions are implanted into the outer surface of the inner container 24 and the inner surface of the outer container 25, and films are formed on the outer surface of the inner container 24 and the inner surface of the outer container 25.

本実施の形態では、チャンバ52内にガスとしてメタンおよび四フッ化炭素を導入するので、プラズマ中には、炭化水素の正イオン、水素の正イオン、炭素の正イオンおよびフッ素の正イオンが含まれる。それにより、内容器24外面と外容器25内面の表面にDLC薄膜が形成される。   In this embodiment, since methane and carbon tetrafluoride are introduced as gases into the chamber 52, the plasma contains hydrocarbon positive ions, hydrogen positive ions, carbon positive ions, and fluorine positive ions. It is. As a result, DLC thin films are formed on the outer surface of the inner container 24 and the inner surface of the outer container 25.

このプラズマイオン注入成膜装置51によれば、被処理物である内容器24外面と外容器25内面をプラズマ生成用アンテナとして用いることにより、内容器24外面と外容器25内面の形状に沿ったプラズマを生成することができる。その結果、必然的に内容器24外面と外容器25内面の周囲におけるプラズマの密度が高くなり、イオンの誘引注入の効率が向上し、高い密着性を有するDLC薄膜の形成が可能となる。   According to this plasma ion implantation film-forming apparatus 51, the outer surface of the inner container 24 and the inner surface of the outer container 25, which are the objects to be processed, are used as the antenna for generating plasma, thereby conforming to the shapes of the outer surface of the inner container 24 and the inner surface of the outer container 25 Plasma can be generated. As a result, the density of the plasma around the outer surface of the inner container 24 and the inner surface of the outer container 25 is inevitably increased, the efficiency of attracting ions is improved, and a DLC thin film having high adhesion can be formed.

ここで、合成樹脂からなる内容器24外面と外容器25内面は絶縁性および柔軟性を有する。一方、一般的なDLCは、高い硬度を有し、低摩擦性およびガスバリア性に優れるという特性を有するが、その反面、剥離しやすく、厚膜を形成することが困難である。特に、柔軟性を有する合成樹脂の表面にDLC薄膜を形成した場合、合成樹脂の変形によりDLC薄膜が容易に剥離する。   Here, the outer surface of the inner container 24 and the inner surface of the outer container 25 made of synthetic resin have insulation and flexibility. On the other hand, general DLC has high hardness and low friction and gas barrier properties, but on the other hand, it is easy to peel off and it is difficult to form a thick film. In particular, when a DLC thin film is formed on the surface of a synthetic resin having flexibility, the DLC thin film is easily peeled by deformation of the synthetic resin.

空気や水蒸気を長期にわたって確実にシールすることができる断熱容器22を製造するためには、合成樹脂からなる内容器24外面と外容器25内面の表面に高硬度、耐摩耗性および高ガスバリア性を有しかつ高密着性および柔軟性を有するDLC薄膜を所定の厚さに形成する必要がある。   In order to manufacture the heat insulating container 22 that can reliably seal air and water vapor over a long period of time, the outer surface of the inner container 24 made of synthetic resin and the inner surface of the outer container 25 have high hardness, wear resistance, and high gas barrier properties. It is necessary to form a DLC thin film having a predetermined thickness with high adhesion and flexibility.

次に、図5を参照して、真空溶接機76の構成と、フッ素を含むDLCコート層34を形成した内容器24と外容器25との組み立て工程を説明する。   Next, with reference to FIG. 5, the structure of the vacuum welder 76 and the assembly process of the inner container 24 and the outer container 25 in which the DLC coat layer 34 containing fluorine is formed will be described.

真空溶接機70は真空ポンプ71を有する真空チャンバ72と、赤外線レーザを発するダイオード73が内蔵されたプレス機74とからなり、プレス機74は上金型75と下金型76とからなり。上金型75は内容器24を固定するもので、内容器24の拡径部30全周に対応してレーザダイオード73が並べられている。下金型76は外容器25のフランジ部29を固定できるようになっている。   The vacuum welding machine 70 includes a vacuum chamber 72 having a vacuum pump 71 and a press machine 74 having a built-in diode 73 that emits an infrared laser. The press machine 74 includes an upper mold 75 and a lower mold 76. The upper die 75 fixes the inner container 24, and laser diodes 73 are arranged corresponding to the entire circumference of the enlarged diameter portion 30 of the inner container 24. The lower mold 76 can fix the flange portion 29 of the outer container 25.

まず、外容器25を下金型76にセットし、先で説明した方法で形成され所定の寸法に切断した10mm厚の複合粉末成形体77を外容器25の底と前後左右の内面に仮置きし、底の複合粉末成形体77の上面には吸収剤35をセットする。   First, the outer container 25 is set in the lower mold 76, and a 10 mm thick composite powder molded body 77 formed by the method described above and cut to a predetermined size is temporarily placed on the bottom of the outer container 25 and the front, rear, left and right inner surfaces. Then, the absorbent 35 is set on the upper surface of the bottom composite powder molded body 77.

次に、内容器24を取り付けた上金型75を下金型76上方にセットし、上金型を内容器24拡径部の下面と外容器25のフランジ上面とが接する手前まで下降させておき、チャンバ72の開口部を閉じ真空引きを開始する。真空度が1Pa以下になったことを真空度計78で確認して再度上金型を下降させ内容器24拡径部30の下面と外容器25のフランジの上面とを圧着させる。   Next, the upper mold 75 attached with the inner container 24 is set above the lower mold 76, and the upper mold is lowered to a position just before the lower surface of the enlarged diameter portion of the inner container 24 and the upper surface of the flange of the outer container 25 are in contact with each other. Then, the opening of the chamber 72 is closed and evacuation is started. After confirming that the degree of vacuum is 1 Pa or less with the vacuum gauge 78, the upper mold is lowered again, and the lower surface of the enlarged diameter portion 30 of the inner container 24 and the upper surface of the flange of the outer container 25 are pressure-bonded.

次に、圧着させると同時にレーザダイオードを駆動させ、外容器フランジ部上面にある突起部を溶着させて内容器と外容器とを接合させる。   Next, simultaneously with the pressure bonding, the laser diode is driven, and the protrusion on the upper surface of the outer container flange portion is welded to join the inner container and the outer container.

このとき、外容器のPPS樹脂にはレーザ光を吸収し適度に発熱させるために吸収色素を混ぜたものを使用する。   At this time, the PPS resin used in the outer container is a mixture of absorbing dyes in order to absorb the laser light and generate heat appropriately.

このとき、主として突起32を加熱溶融せしめ、必要に応じて内容器24を押圧して溶融した突起32を押し広げ、内容器24のフランジ29部の下面と外容器55の拡径部29上面とを溶着し、内容器24と外容器25とを一体に接合する。   At this time, the protrusions 32 are mainly heated and melted, and the inner container 24 is pressed and spread as necessary to expand the protrusions 32, and the lower surface of the flange 29 portion of the inner container 24 and the upper surface of the enlarged diameter portion 29 of the outer container 55 And the inner container 24 and the outer container 25 are joined together.

このような溶着を行う方法としては、今回偉赤外線レーザ溶着法を用いたが、超音波溶着法、振動溶着法などが好適である。このように、拡径部30に設けた突起32とそれに当接したフランジの突起32間の溶着によって、内容器24と外容器25とを一体に接合することにより、内容器24と外容器25自体を熱変形させることなく、しかも確実な溶着接合が可能となる。   As a method for performing such welding, the Wei infrared laser welding method is used this time, but an ultrasonic welding method, a vibration welding method and the like are preferable. In this way, the inner container 24 and the outer container 25 are integrally joined by welding between the protrusion 32 provided on the enlarged diameter portion 30 and the flange protrusion 32 in contact with the protrusion 32. It is possible to perform reliable welding without causing thermal deformation of itself.

次に、以上のように構成された断熱タンク21の中に、お湯を保存したときの熱の移動について説明する。   Next, the movement of heat when hot water is stored in the heat insulating tank 21 configured as described above will be described.

断熱タンク内の熱は、内容器24壁面と、減圧状態の空隙にある通気性多孔質体27と、外容器25の壁面を通過して外気に移動するA経路と、内容器24の拡径部30を経て移動するB経路と、内容器24壁面からDLCコート34層を短絡して外容器25の壁面に移動するC経路とが考えられる。   The heat in the heat insulation tank includes the inner container 24 wall surface, the air-permeable porous body 27 in the space in the decompressed state, the A path that passes through the wall surface of the outer container 25 and moves to the outside air, and the inner container 24 has an enlarged diameter. A B path that moves through the portion 30 and a C path that short-circuits the DLC coat 34 layer from the wall surface of the inner container 24 and moves to the wall surface of the outer container 25 are conceivable.

まず、A経路では減圧状態にある通気性多孔質体27の断熱性能が重要となる。本発明の実施の形態1においては、ガスの対流を防止する通気性多孔質体27があり、また透湿度が低く、ガスバリア性の高い1μmのDLCコート処理が内容器24と外容器25とに施されているので、空隙26へのガスの導入による初期真空度の低下は抑えられる。また、多少の水分の浸入は吸着剤により捕捉されるため、初期真空度は長期において確保できるものである。   First, in the A path, the heat insulating performance of the breathable porous body 27 in a reduced pressure state is important. In Embodiment 1 of the present invention, there is a breathable porous body 27 that prevents gas convection, and a 1 μm DLC coating process with low moisture permeability and high gas barrier properties is applied to the inner container 24 and the outer container 25. As a result, a decrease in the initial vacuum due to the introduction of gas into the gap 26 can be suppressed. In addition, since some moisture intrusion is trapped by the adsorbent, the initial vacuum can be ensured over a long period of time.

次に、B経路については、ステンレス等の金属に比べて、樹脂は1/50近くの熱伝導率であり断熱性能は高く、本発明の実施の形態1では大きな熱の移動とはならない。   Next, with respect to the B path, the resin has a thermal conductivity close to 1/50 as compared with a metal such as stainless steel, and the heat insulation performance is high. In the first embodiment of the present invention, the heat transfer is not large.

また、Cの経路については、従来の金属メッキに比べて、DLCコート層は1/10以下の熱伝導率であり、また、CVDによるDLCコートは蒸着に比べて緻密であり、必要とする透湿性およびガスバリア性を確保するには厚みも薄くできるので、従来に比べると熱移動は大幅に小さくなる。   As for the C path, the DLC coat layer has a thermal conductivity of 1/10 or less compared to the conventional metal plating, and the DLC coat by CVD is denser than the vapor deposition and requires the necessary transparency. Since the thickness can be reduced in order to ensure wettability and gas barrier properties, heat transfer is significantly reduced compared to the conventional case.

さらに、DLCコート層の摩擦係数は金属メッキ層に比べると非常に低いものであり、多孔質材料.の充填材は固定されていないために、外部の振動や衝撃ごとに充填材が空隙内で躍動し、壁面を荒らし、磨耗させ、最終的には金属メッキ面が破壊し、ガスバリア性が低下するという問題も解決できるものである。   Furthermore, the coefficient of friction of the DLC coating layer is very low compared to the metal plating layer, and the porous material. Because the filler is not fixed, the filler swells in the air gap due to external vibrations and shocks, roughens and wears the wall surface, eventually destroys the metal plating surface and lowers the gas barrier property. This problem can also be solved.

本発明の実施の形態1では、合成樹脂製の内容器外面と外容器内面とにプラズマCVDでフッ素を含むDLCコート層を設けたが、内容器と外容器の外面と内面を全ての面にフッ素を含むDLCコート層を設けてもより信頼性を高めることができるものであり、内容器外面と外容器内面に限定するものではない。   In Embodiment 1 of the present invention, the DLC coating layer containing fluorine is provided by plasma CVD on the outer surface and inner surface of the inner container made of synthetic resin, but the outer surface and inner surface of the inner container and the outer container are on all surfaces. Even if a DLC coating layer containing fluorine is provided, the reliability can be further improved, and the present invention is not limited to the outer surface of the inner container and the inner surface of the outer container.

また、フッ素を含むDLCコート層を使用したが、柔軟性では劣るものの、フッ素を含まないDLCコート層でも、透湿度は低く、ガスバリア性もよく、摩擦係数も低いものであり、フッ素を含むものに限定するものではない。   Moreover, although the DLC coat layer containing fluorine was used, although it was inferior in flexibility, even the DLC coat layer not containing fluorine has low moisture permeability, good gas barrier properties, low friction coefficient, and contains fluorine It is not limited to.

以上のように、本発明にかかる合成樹脂製断熱容器は、従来の様に断熱温水タンクや魔法瓶、保温弁当箱などの断熱容器として使用されるばかりか、設計自由度のメリットと高いガスバリア性能を活かし、小さなスペースでも収納できる為自動車のエンジン周りの環境の厳しい蓄熱タンクや保温カバーとして、耐久消費財である耐用年数の長い冷蔵庫などの箱体にも利用できる。   As described above, the synthetic resin heat insulation container according to the present invention is not only used as a heat insulation container such as a heat insulation hot water tank, a thermos bottle, and a heat insulation lunch box as in the prior art, but also has a merit of design freedom and a high gas barrier performance. Utilizing it, it can be stored in a small space, so it can be used as a heat storage tank and a heat insulation cover around the engine of a car, which is a durable consumer goods such as a refrigerator with a long service life.

本発明の実施の形態1における合成樹脂製断熱容器の概略断面図Schematic sectional view of a synthetic resin heat insulating container according to Embodiment 1 of the present invention. 本発明の実施の形態1における合成樹脂製断熱容器の接合部を示す要部拡大断面図The principal part expanded sectional view which shows the junction part of the synthetic resin heat insulation container in Embodiment 1 of this invention 本発明の実施の形態1における合成樹脂製断熱容器の内容器外側と外容器内側へのプラズマCVDによるDLCコートを施すプラズマイオン注入成膜装置の模式的縦断面図1 is a schematic longitudinal sectional view of a plasma ion implantation film forming apparatus that performs DLC coating by plasma CVD on an inner container outer side and an outer container inner side of a synthetic resin heat insulating container in Embodiment 1 of the present invention. 本発明の実施の形態1における高電圧パルスを印加した場合の内容器外面と外容器内面付近のプラズマシースの変化を示す概略図Schematic which shows the change of the plasma sheath of inner container outer surface at the time of applying the high voltage pulse in Embodiment 1 of this invention, and outer container inner surface vicinity 本発明の実施の形態1における合成樹脂製断熱容器の接合工程を示す概略断面図Schematic sectional view showing the joining process of the synthetic resin heat insulating container in the first embodiment of the present invention 従来の合成樹脂製断熱容器の概略断面図Schematic cross-sectional view of a conventional synthetic resin insulated container

符号の説明Explanation of symbols

22 断熱容器
24 内容器
25 外容器
26 空隙
27 通気性多孔質体
34 DLCコート層
22 Heat insulation container 24 Inner container 25 Outer container 26 Void 27 Breathable porous body 34 DLC coating layer

Claims (3)

合成樹脂製の内容器を合成樹脂製の外容器内に空隙を保って配し、内容器と外容器との接合部を除く前記合成樹脂製の内外容器面にプラズマCVDでDLCコート層を設け、前記空隙に通気性多孔質体を充填し、かつ前記空隙内を減圧とし、内容器と外容器のそれぞれの口元同士を溶着接合してなることを特徴とする合成樹脂製断熱容器。   A synthetic resin inner container is placed in a synthetic resin outer container while maintaining a gap, and a DLC coating layer is provided by plasma CVD on the surface of the synthetic resin inner and outer containers excluding the joint between the inner container and the outer container. A synthetic resin heat insulating container, wherein the air gap is filled with a breathable porous body, the inside of the air gap is reduced in pressure, and the mouths of the inner container and the outer container are welded to each other. 合成樹脂製の内容器を合成樹脂製の外容器内に空隙を保って配し、内容器と外容器との接合部を除く前記合成樹脂製の内容器外面と外容器内面とにプラズマCVDでDLCコート層を設け、前記空隙に通気性多孔質体を充填し、かつ前記空隙内を減圧とし、内容器と外容器のそれぞれの口元同士を溶着接合してなることを特徴とする合成樹脂製断熱容器。   An inner container made of synthetic resin is placed in a synthetic resin outer container with a gap, and plasma CVD is applied to the outer surface of the inner and outer containers made of synthetic resin excluding the joint between the inner container and the outer container. A synthetic resin, characterized in that a DLC coating layer is provided, the gap is filled with a porous porous body, the inside of the gap is decompressed, and the mouths of the inner and outer containers are welded to each other. Insulated container. プラズマCVDにより設けられたDLCコート層がフッ素を含むDLCコート層であることを特徴とする請求項1または2に記載の合成樹脂製断熱容器。   The heat insulating container made of synthetic resin according to claim 1 or 2, wherein the DLC coat layer provided by plasma CVD is a DLC coat layer containing fluorine.
JP2006226198A 2006-08-23 2006-08-23 Synthetic resin insulating container Pending JP2008050020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226198A JP2008050020A (en) 2006-08-23 2006-08-23 Synthetic resin insulating container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226198A JP2008050020A (en) 2006-08-23 2006-08-23 Synthetic resin insulating container

Publications (1)

Publication Number Publication Date
JP2008050020A true JP2008050020A (en) 2008-03-06

Family

ID=39234434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226198A Pending JP2008050020A (en) 2006-08-23 2006-08-23 Synthetic resin insulating container

Country Status (1)

Country Link
JP (1) JP2008050020A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024189A1 (en) * 2008-08-29 2010-03-04 東洋製罐株式会社 Laser-welded sealed package and sealing method therefor
KR100994888B1 (en) 2009-02-12 2010-11-16 박왈서 Keeping warm PE water tank with durability to high temperature
CN106697616A (en) * 2015-08-05 2017-05-24 南通鸿志化工有限公司 Storage device for triisopropyl borate
CN107814034A (en) * 2017-11-29 2018-03-20 杭州鲁尔新材料科技有限公司 A kind of long timeliness medicine cold chain heat insulation box of low cost
JP2018079972A (en) * 2016-11-18 2018-05-24 トヨタ自動車株式会社 Vacuum insulating container
CN109297306A (en) * 2017-07-25 2019-02-01 丰田自动车株式会社 Heating furnace with double thermal-insulated wall constructions
CN109367957A (en) * 2018-07-30 2019-02-22 苏州市炫之彩包装有限公司 A kind of steamed crab packing box
WO2019146471A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Coating film, coating liquid for vacuum container, and vacuum insulation container
CN110497634A (en) * 2018-05-17 2019-11-26 沛恩集团(控股)股份有限公司 Ice bucket preparation method
CN114026375A (en) * 2019-06-17 2022-02-08 松下知识产权经营株式会社 Constant temperature container

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024189A1 (en) * 2008-08-29 2010-03-04 東洋製罐株式会社 Laser-welded sealed package and sealing method therefor
US8349420B2 (en) 2008-08-29 2013-01-08 Toyo Seikan Kaisha, Ltd. Packing body sealed by laser welding and method of sealing the same
JP5516406B2 (en) * 2008-08-29 2014-06-11 東洋製罐株式会社 Laser welding sealed package and sealing method thereof
KR100994888B1 (en) 2009-02-12 2010-11-16 박왈서 Keeping warm PE water tank with durability to high temperature
CN106697616A (en) * 2015-08-05 2017-05-24 南通鸿志化工有限公司 Storage device for triisopropyl borate
JP2018079972A (en) * 2016-11-18 2018-05-24 トヨタ自動車株式会社 Vacuum insulating container
CN109297306A (en) * 2017-07-25 2019-02-01 丰田自动车株式会社 Heating furnace with double thermal-insulated wall constructions
CN109297306B (en) * 2017-07-25 2020-06-26 丰田自动车株式会社 Heating furnace with double heat insulation wall structure
CN107814034A (en) * 2017-11-29 2018-03-20 杭州鲁尔新材料科技有限公司 A kind of long timeliness medicine cold chain heat insulation box of low cost
CN107814034B (en) * 2017-11-29 2024-02-02 杭州鲁尔新材料科技有限公司 Low-cost long-time-effect medicine cold chain insulation can
WO2019146471A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Coating film, coating liquid for vacuum container, and vacuum insulation container
CN110497634A (en) * 2018-05-17 2019-11-26 沛恩集团(控股)股份有限公司 Ice bucket preparation method
CN109367957A (en) * 2018-07-30 2019-02-22 苏州市炫之彩包装有限公司 A kind of steamed crab packing box
CN114026375A (en) * 2019-06-17 2022-02-08 松下知识产权经营株式会社 Constant temperature container
CN114026375B (en) * 2019-06-17 2023-07-18 松下知识产权经营株式会社 Constant temperature container

Similar Documents

Publication Publication Date Title
JP2008050020A (en) Synthetic resin insulating container
US5769262A (en) Thermally-insulated double-walled synthetic-resin container
US5678725A (en) Thermally insulated container
US6179155B1 (en) Insulated vessel and method of production therefor
EP1905976B1 (en) Insulated container and method of manufacturing the same
JP2009063064A (en) Vacuum heat insulating material and refrigerator using the same
WO1998005573A1 (en) Heat insulating container of synthetic resin and heat insulating cover of synthetic resin
JP7285416B2 (en) Refrigerator door and refrigerator
JP2004505177A (en) Plasma coating deposition method, apparatus for performing the method, and coating obtained by such a method
US20180252464A1 (en) Vacuum heat insulator; and heat-insulating container, heat-insulating wall, and refrigerator using same
JP2008051124A (en) Vacuum heat insulating member and its manufacturing method
JPWO2002085717A1 (en) Gas-barrier synthetic resin container, apparatus for producing the same, and article-containing gas-barrier synthetic resin container
KR100221279B1 (en) Vessle and cap of synthetic resin
JPH1081372A (en) Synthetic resin heat insulated container and synthetic resin heat insulation lid
JP2001295986A (en) Vacuum heat insulating material and its manufacturing method
JP2928145B2 (en) Insulated container and its manufacturing method
JP2013104491A (en) Method for manufacturing vacuum heat insulating material
JP2971799B2 (en) Method of manufacturing heat insulating double wall container made of synthetic resin and method of manufacturing heat insulating double wall lid made of synthetic resin
JPH08282742A (en) Heat-insulating container made of synthetic resin and production thereof
JPH04276222A (en) Synthetic resin vacuum insulation vessel and manufacture thereof
JP4826042B2 (en) Film forming apparatus and film forming method for cup-shaped container
JPH11201378A (en) Cartridge, and vacuum heat insulation body equipped therewith
JP4274049B2 (en) Barrier container with easy peel function
JP2006027712A (en) Barrier container
JPH1151287A (en) Vacuum heat insulating member