WO2019146471A1 - Coating film, coating liquid for vacuum container, and vacuum insulation container - Google Patents

Coating film, coating liquid for vacuum container, and vacuum insulation container Download PDF

Info

Publication number
WO2019146471A1
WO2019146471A1 PCT/JP2019/001166 JP2019001166W WO2019146471A1 WO 2019146471 A1 WO2019146471 A1 WO 2019146471A1 JP 2019001166 W JP2019001166 W JP 2019001166W WO 2019146471 A1 WO2019146471 A1 WO 2019146471A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
outer cylinder
inner cylinder
cylinder
hollow portion
Prior art date
Application number
PCT/JP2019/001166
Other languages
French (fr)
Japanese (ja)
Inventor
湯淺 明子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019567016A priority Critical patent/JPWO2019146471A1/en
Priority to CN201980009185.3A priority patent/CN111629979A/en
Publication of WO2019146471A1 publication Critical patent/WO2019146471A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5

Definitions

  • the present disclosure relates to vacuum containers such as vacuum insulation containers.
  • a vacuum insulation is provided with an inner cylinder and an outer cylinder as a vacuum vessel, and a hollow portion whose pressure is reduced than atmospheric pressure is formed between the outer cylinder and the inner cylinder.
  • the container is known.
  • An adsorbent is disposed in the hollow portion.
  • Patent Document 2 As a method for producing a copper ion-exchanged ZSM-5 type zeolite used for a gas adsorption device, for example, the technology disclosed in Patent Document 2 is known.
  • the present disclosure provides, in a vacuum vessel, a coating of a vacuum vessel, a coating liquid, and a vacuum heat insulation vessel capable of improving the adsorption performance of the gas adsorbent.
  • the coating of the present disclosure is a coating of a vacuum vessel.
  • the vacuum vessel includes a bottomed cylindrical outer cylinder, a bottomed cylindrical inner cylinder disposed inside the outer cylinder, and a coating.
  • a hollow portion whose pressure is lower than atmospheric pressure is formed between the outer surface of the inner cylinder and the inner surface of the outer cylinder.
  • the inner cylinder and the outer cylinder are joined so as to seal the hollow portion.
  • the coating is formed on at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder in the hollow portion.
  • the coating contains copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent.
  • the coating contains a copper ion-exchanged ZSM-5 type zeolite, which is a gas adsorbent having high gas adsorption performance.
  • a copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent having high gas adsorption performance.
  • the coating liquid of the present disclosure contains at least the above-described gas adsorbent and a binder, and is used to apply and form the above-mentioned film.
  • the vacuum insulation container of the present disclosure includes the above-described coating.
  • a coating of a vacuum container, a coating liquid, and a vacuum heat insulation container capable of improving the adsorption performance of the gas adsorbent in the vacuum container.
  • FIG. 1 is a cross-sectional view of a vacuum insulation container according to an embodiment of the present disclosure.
  • FIG. 2A is a partial cross-sectional view showing a method of forming a film according to an embodiment of the present disclosure.
  • FIG. 2B is a partial cross-sectional view showing the method of forming a film of the embodiment of the present disclosure.
  • the coating of an example of the aspects of the present disclosure is a coating of a vacuum vessel.
  • the vacuum vessel includes a bottomed cylindrical outer cylinder, a bottomed cylindrical inner cylinder disposed inside the outer cylinder, and a coating.
  • a hollow portion whose pressure is lower than atmospheric pressure is formed between the outer surface of the inner cylinder and the inner surface of the outer cylinder.
  • the inner cylinder and the outer cylinder are joined so as to seal the hollow portion.
  • the coating is formed on at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder in the hollow portion.
  • the coating contains copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent.
  • the coating contains a copper ion-exchanged ZSM-5 type zeolite, which is a gas adsorbent having high gas adsorption performance.
  • a copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent having high gas adsorption performance.
  • the coating may have a foamed structure.
  • the surface of the gas adsorbent contained in the film can be exposed widely in the hollow portion, and the abundant adsorption amount of the gas adsorbent can be easily ensured.
  • the copper ion-exchanged ZSM-5 type zeolite may be set to a particle size of 300 ⁇ m or less.
  • the gas adsorbent can be easily disposed in the hollow portion even when the volume of the hollow portion is limited. In addition, even if the gas adsorbent desorbed from the film moves in the hollow portion, it is possible to make it difficult for the gas adsorbent to generate an abnormal noise caused by hitting the outer cylinder or the inner cylinder.
  • the coating may also contain an inorganic binder.
  • the gas adsorption activity of the copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent, can be further prevented from being damaged by the binder contained in the film.
  • the weight of the inorganic binder in the coating may be set to a value in the range of more than 0 wt% and 20 wt% or less of the weight of the coating.
  • the weight of the inorganic binder By setting the weight of the inorganic binder to a value in the above range, the adsorption performance of the copper ion-exchanged ZSM-5 type zeolite contained in the gas adsorbent is further prevented from being inhibited by a large amount of the inorganic binder Meanwhile, in the film, the gas adsorbent can be well retained by the inorganic binder.
  • the nitrogen adsorption amount of the gas adsorbent may be set to a value of 10 ml / g or more at normal temperature and normal pressure.
  • the coating liquid which concerns on 1 aspect of this indication is for apply
  • the coating liquid is applied to and dried on at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder in the hollow portion. It can be formed relatively easily.
  • the coating liquid may contain a thermal decomposition type foaming agent.
  • vacuum insulation container of the present disclosure includes any of the films described above.
  • an inner cylinder and an outer cylinder are provided, and a hollow portion whose pressure is reduced below atmospheric pressure is formed between the outer cylinder and the inner cylinder, and the gas adsorbent is disposed in the hollow portion.
  • the vacuum container it is possible to stably improve the adsorption performance of the gas adsorbent.
  • FIG. 1 is a cross-sectional view of a vacuum insulation container 1 (hereinafter simply referred to as a container 1) according to an embodiment of the present disclosure.
  • the container 1 is formed in a bottle shape as a whole.
  • the vacuum as used in this specification refers to the state pressure-reduced rather than atmospheric pressure.
  • the container 1 includes an inner cylinder 2, an outer cylinder 3 and coatings 4 and 5.
  • the outer cylinder 3 and the inner cylinder 2 are formed in a bottomed cylindrical shape.
  • the outer cylinder 3 and the inner cylinder 2 are made of a gas impermeable material.
  • the outer cylinder 3 and the inner cylinder 2 are made of, for example, a metal material. Examples of the metal material include aluminum, iron, stainless steel and copper.
  • the outer cylinder 3 and the inner cylinder 2 are formed in a cylindrical shape.
  • the inner cylinder 2 has a side portion 2a, a bottom portion 2b, a neck portion 2c and a shoulder portion 2d.
  • the side portion 2 a and the neck portion 2 c are formed in a cylindrical shape extending in the axial direction of the inner cylinder 2.
  • the bottom 2 b is formed in a circular shape as viewed from the axial direction of the inner cylinder 2 (upward or downward in FIG. 1), as an example.
  • the side portion 2 a extends in the axial direction of the inner cylinder 2 from the peripheral edge of the bottom portion 2 b.
  • the neck portion 2c has an inner diameter smaller than the inner diameter of the side portion 2a.
  • the neck portion 2c extends in the axial direction of the inner cylinder 2 via the shoulder portion 2d from the side of the side portion 2a opposite to the side of the bottom portion 2b.
  • an opening that allows the outside to communicate with the inside of the inner cylinder 2 is provided on the side of the neck portion 2c opposite to the bottom portion 2b.
  • the neck portion 2c and the side portion 2a are connected by a shoulder portion 2d.
  • the shoulder portion 2 d is formed in an annular shape as viewed from the cylinder axial direction of the inner cylinder 2.
  • the outer cylinder 3 has a side portion 3a, a bottom 3b, a neck 3c and a shoulder 3d.
  • the side portion 3 a and the neck portion 3 c are formed in a cylindrical shape extending in the axial direction of the outer cylinder 3.
  • the bottom 3 b is formed in a circular shape as viewed from the axial direction of the outer cylinder 3 as an example.
  • the side portion 3 a extends in the axial direction of the outer cylinder 3 from the peripheral edge of the bottom 3 b.
  • the neck 3c has an inner diameter smaller than the inner diameter of the side 3a.
  • the neck portion 3c extends in the axial direction of the outer cylinder 3 via the shoulder portion 3d from the side of the side portion 3a opposite to the bottom 3b side.
  • an opening for communicating the inside and the outside of the container 1 is provided on the opposite side of the neck portion 3c to the bottom portion 3b.
  • the neck portion 3c and the side portion 3a are connected by a shoulder portion 3d.
  • the shoulder portion 3 d is formed in an annular shape as viewed from the cylinder axial direction of the outer cylinder 3.
  • the inner diameter of the side 3a is larger than the inner diameter of the side 2a.
  • the inner diameter of the neck portion 3c is larger than the inner diameter of the neck portion 2c.
  • the diameter of the bottom 3b is larger than the diameter of the bottom 2b.
  • the inner cylinder 2 is disposed inside the outer cylinder 3 while forming a hollow portion S1 between the outer surface of the inner cylinder 2 and the inner surface of the outer cylinder 3.
  • the inner cylinder 2 is disposed inside the outer cylinder 3 in a state in which the axial direction of the inner cylinder 2 matches the axial direction of the outer cylinder 3.
  • the volume of the inner cylinder 2 is set to, for example, a value in the range of 400 ml or more and 600 ml or less, and is 500 ml here.
  • the opening periphery of the opening of the inner cylinder 2 is integrally connected to the opening periphery of the opening of the outer cylinder 3.
  • the inner cylinder 2 is joined to the outer cylinder 3 so as to seal the hollow portion S1.
  • the contact portion between the outer cylinder 3 and the inner cylinder 2 is limited to the opening peripheral edge of each opening.
  • the vacuum heat insulating effect between the outer cylinder 3 and the inner cylinder 2 can be exhibited while suppressing the formation of the heat bridge between the outer cylinder 3 and the inner cylinder 2 to the minimum.
  • the outer cylinder 3 and the inner cylinder 2 may be thermally coupled to each other in the region other than the opening peripheral edge of each opening, as long as the formation of the heat bridge is within the allowable range.
  • the opening of the inner cylinder 2 is closed by a cap 6.
  • the cap 6 is disposed, for example, in close contact with a partial region inside the opening of the inner cylinder 2 and a partial region outside the opening of the outer cylinder 3. Thereby, the inside S2 of the inner cylinder 2 is kept airtight.
  • the hollow portion S1 is depressurized below atmospheric pressure.
  • the internal pressure of the hollow portion S1 is set to, for example, a value of 1 ⁇ 10 ⁇ 3 Pa or less.
  • the internal pressure of the hollow portion S1 is more preferably, for example, 1 ⁇ 10 ⁇ 4 Pa or less.
  • the internal pressure can be set to a value of 1 ⁇ 10 ⁇ 4 Pa or less by sufficiently depressurizing the hollow portion S1.
  • the volume of the hollow portion S1 is, for example, set to a value in the range of 10 ml or more and 20 ml or less, and is 15 ml here.
  • the neck portions 2c and 3c are not essential and may be omitted.
  • the outer cylinder 3 and the inner cylinder 2 may be formed in the shape of a rectangular cylinder extending in the axial direction of each cylinder, or may be formed in shapes different from each other.
  • the coatings 4 and 5 are formed on at least one (here, both) of the inner surface of the outer cylinder 3 and the outer surface of the inner cylinder 2 in the hollow portion S1.
  • the coatings 4 and 5 contain copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent.
  • the coating 4 is formed on the surface of the side 3 a and the bottom 3 b of the inner surface of the outer cylinder 3.
  • the coating 5 is formed on the surface of the side portion 2 a and the bottom portion 2 b of the outer surface of the inner cylinder 2.
  • the coatings 4 and 5 have a foam structure. Thereby, the surface area of the films 4 and 5 is widely secured.
  • the container 1 is provided with a coating structure 10 with such coatings 4 and 5.
  • foam structure shall mean the structure shape
  • the film thickness dimension of the films 4 and 5 is set to, for example, a value in the range of 1 ⁇ m to 500 ⁇ m.
  • a value in the range of 1 ⁇ m to 400 ⁇ m is preferable, and a value in the range of 100 ⁇ m to 300 ⁇ m is more preferable.
  • the gas adsorbent adsorbs the gas in the hollow portion S1.
  • This gas contains, by way of example, at least one of nitrogen, oxygen, hydrogen and carbon dioxide.
  • Gas adsorbents also adsorb relatively low molecular weight hydrocarbon gases such as methane and ethane.
  • the copper ion-exchanged ZSM-5 type zeolite is set to a particle size of 300 ⁇ m or less.
  • the copper ion-exchanged ZSM-5 type zeolite has a plurality of pores, and the pore diameter is set to a value in the range of 5 ⁇ or more and 9 ⁇ or less.
  • the diameter of the pores of the copper ion-exchanged ZSM-5 type zeolite is set to the value in the above-mentioned range.
  • the value of the pore diameter of the copper ion-exchanged ZSM-5 type zeolite is, for example, more preferably 6 ⁇ or more and less than 8 ⁇ , and still more preferably 5 ⁇ or more and 6 ⁇ or less. In another example, the value of the pore diameter of the copper ion-exchanged ZSM-5 type zeolite is more preferably, for example, a value in the range of less than 8 ⁇ .
  • the gas adsorbent is shaped so that the density is set to a value in the range of more than 0 g / ml and 2 g / ml or less.
  • the density of the gas adsorbent is, for example, more preferably in the range of 0.5 g / ml to 1.7 g / ml, and in the range of 0.9 g / ml to 1.4 g / ml, More preferred.
  • the porosity of copper ion-exchanged ZSM-5 type zeolite in the gas adsorbent is approximately 40 It becomes a value in the range of% or more and 60% or less.
  • the nitrogen adsorption amount of the gas adsorbent is set to a value of 10 ml / g or more at normal temperature (20 ⁇ 15 ° C.) and normal pressure (atmospheric pressure).
  • the value of the nitrogen adsorption amount is more preferably 2 ml / g or more at normal temperature and an equilibrium pressure of 10 Pa.
  • the coatings 4 and 5 may further contain gas adsorption components other than copper ion-exchanged ZSM-5 type zeolite. Further, at least one of a plurality of recesses and / or through holes may be formed on the surface of the coatings 4 and 5. Thereby, the surface area of the coatings 4 and 5 can be further increased.
  • the gas adsorbent contains an inorganic binder.
  • the inorganic binder include those containing at least one of silica and alumina, and water-dispersed silica sol, water-dispersed alumina sol, colloidal silica, water glass and the like can be used.
  • the weight of the inorganic binder in the coating 4 is set to a value in the range of more than 0 wt% and not more than 20 wt% of the weight of the coating 4.
  • the weight of the inorganic binder in the film 4 is more preferably in the range of more than 0 wt% and 10 wt% or less of the weight of the film 4.
  • the weight of the inorganic binder in the film 5 is also the same.
  • the gas adsorbent is disposed in the hollow portion S1 in an activated state. Specifically, the gas adsorbent is disposed in the hollow portion S1 in a state where the adsorbed gas is sufficiently released.
  • a method of activating the gas adsorbent for example, a method of heating the gas adsorbent under a reduced pressure atmosphere can be mentioned.
  • the gas adsorbent is disposed in the hollow portion S1 whose inside is depressurized in an activated state at the time of manufacturing the container 1.
  • a value of 10 mPa or less is preferable, for example, and a value of 1 mPa or less is more preferable.
  • a heating temperature of a gas adsorbent the value of 300 degreeC or more is preferable, and the value of the range of 400 degreeC or more and 700 degrees C or less is more preferable.
  • the activated copper ion-exchanged ZSM-5 type zeolite adsorbs the gas present in the hollow portion S1 well at normal temperature. Thereby, the copper ion-exchanged ZSM-5 type zeolite can exhibit the adsorption performance without releasing the gas even when the hollow portion S1 is set to high vacuum.
  • At least 60% or more of the copper sites of the copper ion-exchanged ZSM-5 type zeolite are copper monovalent sites.
  • the copper monovalent site is more preferably 70% or more, still more preferably 80% or more, and still more preferably 90% or more of the copper sites of the copper ion-exchanged ZSM-5 type zeolite .
  • a known method can be used as a copper ion exchange method of ZSM-5 type zeolite.
  • a method of immersing ZSM-5 type zeolite in an aqueous solution of copper soluble salt such as aqueous solution of copper chloride and aqueous solution of copper ammate is mentioned.
  • Patent Document 2 Japanese Patent No. 5719995 (Patent Document 2) can be referred to for a method for producing a copper ion-exchanged ZSM-5 type zeolite and the like.
  • 2A and 2B are cross-sectional views showing a method of forming the coatings 4 and 5.
  • the method of forming the films 4 and 5 includes an adjusting step of adjusting the coating liquid, an applying step of applying the adjusted coating liquid to the target surface of the container 1, and a drying step of drying the applied coating liquid. .
  • the coating liquid 14 is for coating and forming the films 4 and 5 and includes at least the above-described gas adsorbent and a binder.
  • the coating liquid 14 in addition to the gas adsorbent and the binder, the coating liquid 14 further containing a thermal decomposition-type foaming agent is prepared.
  • the binder the above-mentioned inorganic binder can be used. A well-known thing can be used as a thermal decomposition type foaming agent.
  • the coating liquid 14 may be adjusted to include other components such as a viscosity modifier.
  • the operator applies the coating liquid 14 to the target surface of the container 1 (in FIG. 2A, the inner surface of the bottom 3 b of the outer cylinder 3). At this time, the operator adjusts the number of times of application and the amount of application of the coating liquid 14 in accordance with the final (after drying) film thickness dimension of the films 4 and 5.
  • the operator evaporates the volatile component of the coating liquid 14 by heating the applied coating liquid 14. Thereby, the coating liquid 14 is dried.
  • the coating liquid 14 on the target surface may be heated all at once after being applied, or may be heated each time it is divided and applied several times. That is, the application step and the drying step may be alternately repeated a plurality of times.
  • the coating liquid 14 is dried to form the films 4 and 5 (FIG. 2B).
  • the thermal decomposition type foaming agent is contained in the coating liquid 14, by heating the coating liquid 14, the films 4 and 5 are formed to have a foaming structure.
  • the coatings 4 and 5 contain the copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent having high gas adsorption performance.
  • unnecessary gas present in the hollow portion S1 can be adsorbed well by the gas adsorbent.
  • the adsorption performance of the gas adsorbent can be improved.
  • heat conduction by unnecessary gas can be prevented, and vacuum heat insulation between the outer cylinder 3 and the inner cylinder 2 can be improved.
  • the copper ion-exchanged ZSM-5 type zeolite can adsorb and remove the gas remaining in the hollow portion S1 at the time of production of the container 1, and the gas such as hydrogen which permeates and enters the hollow portion S1 from the outside of the produced container 1.
  • the vacuum insulation performance at the initial stage after production can be improved, and the vacuum insulation performance can be well maintained.
  • the outer cylinder 3 and the inner cylinder 2 consist of metal materials, the outer cylinder 3 and the inner cylinder 2 have favorable rigidity.
  • the shapes of the outer cylinder 3 and the inner cylinder 2 can be maintained without arranging a reinforcing material in the hollow portion S1. Therefore, vacuum insulation between the outer cylinder 3 and the inner cylinder 2 can be stably obtained while keeping the container 1 light in weight.
  • it is not necessary to arrange a reinforcing material in the hollow portion S1 it is possible to prevent the reinforcing material from becoming an obstacle when the gas adsorbents of the coatings 4 and 5 adsorb the gas in the hollow portion S1.
  • the thermal conductivity of the coatings 4 and 5 is set to a value lower than the thermal conductivity of each of the inner cylinder 2 and the outer cylinder 3 because the coatings 4 and 5 contain copper ion-exchanged ZSM-5 type zeolite There is.
  • the films 4 and 5 in the hollow portion S1, the heat conduction between the outer cylinder 3 and the inner cylinder 2 can be prevented from increasing, and the excellent vacuum heat insulation performance of the container 1 can be obtained. it can.
  • the thermal conductivity of the copper ion-exchanged ZSM-5 type zeolite is lower than the thermal conductivity of a general gas adsorbent made of an alloy material in addition to the inner cylinder 2 and the outer cylinder 3. For this reason, even when using a general gas adsorbent made of an alloy material, it is possible to increase the design freedom while maintaining the excellent vacuum heat insulation performance of the container 1.
  • the adsorption performance of the conventional alloy-based getter is degraded when an oxide film is formed on the surface. Therefore, in the conventional alloy getter, the necessary adsorption performance is obtained by removing the oxide film on the surface by heat treatment.
  • the adsorption performance of the conventional alloy getter is high at high temperature during heat treatment, but decreases at normal temperature.
  • the copper ion-exchanged ZSM-5 type zeolite is set to a particle size of 300 ⁇ m or less.
  • the particle size of the copper ion-exchanged ZSM-5 type zeolite is set to such a particle size, even when the volume of the hollow portion S1 is limited, the gas adsorbent can be easily disposed in the hollow portion S1. Also, even if the gas adsorbent desorbed from the coatings 4 and 5 moves in the hollow portion S1, abnormal noise caused by the gas adsorbent hitting the outer cylinder 3 or the inner cylinder 2 is less likely to occur. be able to.
  • the copper ion exchange is closer to the size of the gas molecule targeted for adsorption of the copper ion exchanged ZSM-5 type zeolite in the copper ion exchanged ZSM-5 type zeolite. It has been found that ZSM-5 type zeolite is easy to adsorb gas.
  • the copper ion-exchanged ZSM-5 type zeolite can be obtained by setting the pore diameter of the copper ion-exchanged ZSM-5 type zeolite to a value in the range including the respective molecular sizes described above. Gas molecules can be adsorbed well.
  • the pore diameter of the copper ion-exchanged ZSM-5 type zeolite contained in the gas adsorbent is set to a value in a relatively large range.
  • the gas adsorbent is shaped such that the density is set to a value in the range of more than 0 g / ml and 2 g / ml or less.
  • the surface of the gas adsorbent can be widely exposed in the hollow portion S1, and the abundant adsorption amount of the gas adsorbent can be easily ensured.
  • the coatings 4 and 5 contain an inorganic binder, the coatings 4 and 5 can prevent the adsorption performance of the copper ion-exchanged ZSM-5 type zeolite, which is a gas adsorbent, from being hindered by the inorganic binders.
  • the gas adsorbent can be well retained by the inorganic binder.
  • the weight of the inorganic binder in the coatings 4 and 5 is set to a value in the range of more than 0 wt% and not more than 20 wt% of the weight of the coatings 4 and 5. This prevents the adsorption performance of the copper ion-exchanged ZSM-5 type zeolite contained in the gas adsorbent from being inhibited by a large amount of the inorganic binder, and in the coatings 4 and 5, the gas adsorbent is made of the inorganic binder It can hold well.
  • the nitrogen adsorption amount of the gas adsorbent is set to a value of 10 ml / g or more at normal temperature and normal pressure. According to this configuration, it is possible to adsorb and remove the gas such as nitrogen remaining in the hollow portion S1 when manufacturing the container 1, and the gas such as nitrogen permeating into the hollow portion S1 after manufacturing the container 1. While being able to improve the adsorption performance of the gas adsorbent in the early stage after manufacture by this, adsorption performance can be maintained favorably.
  • the vacuum insulation performance can be improved in the initial stage after production, and the vacuum insulation performance can be maintained well.
  • the film thickness dimension of the coatings 4 and 5 is set to a value in the range of 100 ⁇ m to 300 ⁇ m.
  • the coating solution 14 is applied to and dried on at least one of the inner surface of the outer cylinder 3 and the outer surface of the inner cylinder 2 in the hollow portion S1. Can be formed relatively easily. Moreover, since the coating liquid 14 contains a thermal decomposition type foaming agent, the coatings 4 and 5 having a foamed structure can be formed by thermally decomposing the applied coating liquid 14.
  • the coating may be disposed at a plurality of positions on at least one of the inner surface of the outer cylinder 3 in the hollow portion S1 and the outer surface of the inner cylinder 2.
  • coatings different in at least one of film thickness size and shape may be disposed at a plurality of positions.
  • a relatively large area coating may be disposed on at least one of the side portions 2a and 3a, and a relatively small area coating may be disposed on at least one of the bottom portions 2b and 3b.
  • a recess for holding the film may be formed on the surface on which the film is disposed.
  • the recess may be formed to extend in the circumferential direction of the inner cylinder 2 and the outer cylinder 3 or may be formed to extend in the axial direction of the inner cylinder 2 and the outer cylinder 3.
  • the container 1 is a vacuum insulation container, and may be a vacuum container which does not require heat insulation.
  • the present disclosure relates to a vacuum insulation container comprising an inner cylinder and an outer cylinder, wherein a hollow portion having a pressure lower than atmospheric pressure is formed between the outer cylinder and the inner cylinder. It has an excellent effect that it is possible to stably improve the quality. Therefore, the present disclosure can be widely applied to and useful in vacuum containers such as vacuum insulation containers.

Abstract

A coating film (4, 5) for a vacuum container (1), wherein the vacuum container (1) comprises a bottomed cylindrical outer cylinder (3), a bottomed cylindrical inner cylinder (2) that is positioned inside the outer cylinder (3), and the coating film (4, 5). A hollow part (S1) that has been depressurized below atmospheric pressure is formed between the outer surface of the inner cylinder (2) and the inner surface of the outer cylinder (3). The inner cylinder (2) and the outer cylinder (3) are joined such that the hollow part (S1) is sealed, and the coating film (4, 5) is formed inside the hollow part (S1) on the inner surface of the outer cylinder (3) and/or the outer surface of the inner cylinder (2). The coating film (4, 5) includes copper ion exchange ZSM-5 zeolite, which is a gas adsorbent.

Description

真空容器の被膜、塗工液および真空断熱容器Coating of vacuum vessel, coating liquid and vacuum insulation vessel
 本開示は、真空断熱容器等の真空容器に関する。 The present disclosure relates to vacuum containers such as vacuum insulation containers.
 特許文献1に開示されるように、真空容器として、例えば、内筒と外筒とを備え、外筒と内筒との間に、大気圧よりも減圧された中空部が形成された真空断熱容器が知られている。中空部には、吸着材が配置される。 As disclosed in Patent Document 1, for example, a vacuum insulation is provided with an inner cylinder and an outer cylinder as a vacuum vessel, and a hollow portion whose pressure is reduced than atmospheric pressure is formed between the outer cylinder and the inner cylinder. The container is known. An adsorbent is disposed in the hollow portion.
 このような構成を有する真空容器においては、その仕様に応じて、吸着材における吸着性能のさらなる向上が要求される場合がある。 In the vacuum vessel having such a configuration, further improvement of the adsorption performance of the adsorbent may be required depending on the specification.
 また、気体吸着デバイスに用いられる銅イオン交換ZSM-5型ゼオライトの製造方法等については、例えば、特許文献2に開示された技術が知られている。 Further, as a method for producing a copper ion-exchanged ZSM-5 type zeolite used for a gas adsorption device, for example, the technology disclosed in Patent Document 2 is known.
特開平7-148078号公報Unexamined-Japanese-Patent No. 7-148078 日本国特許第5719995号公報Japanese Patent No. 5719995
 本開示は真空容器において、その気体吸着材における吸着性能の向上を図れる真空容器の被膜、塗工液および真空断熱容器を提供するものである。 The present disclosure provides, in a vacuum vessel, a coating of a vacuum vessel, a coating liquid, and a vacuum heat insulation vessel capable of improving the adsorption performance of the gas adsorbent.
 本開示の被膜は、真空容器の被膜である。真空容器は、有底筒状の外筒と、外筒の内部に配置された、有底筒状の内筒と、被膜とを備えている。内筒の外表面と、外筒の内表面との間には、大気圧よりも減圧された中空部が形成されている。中空部を封止するように、内筒と外筒とは接合されている。被膜は、中空部内における、外筒の内表面、および、内筒の外表面のうち、少なくとも一方に形成されている。被膜は、気体吸着材である銅イオン交換ZSM-5型ゼオライトを含んでいる。 The coating of the present disclosure is a coating of a vacuum vessel. The vacuum vessel includes a bottomed cylindrical outer cylinder, a bottomed cylindrical inner cylinder disposed inside the outer cylinder, and a coating. A hollow portion whose pressure is lower than atmospheric pressure is formed between the outer surface of the inner cylinder and the inner surface of the outer cylinder. The inner cylinder and the outer cylinder are joined so as to seal the hollow portion. The coating is formed on at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder in the hollow portion. The coating contains copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent.
 このような構成によれば、被膜が、高度な気体吸着性能を有する気体吸着材である銅イオン交換ZSM-5型ゼオライトを含んでいる。これにより、中空部に存在する不要な気体を、気体吸着材によって良好に吸着できる。これにより、気体吸着材における吸着性能を向上できる。 According to such a configuration, the coating contains a copper ion-exchanged ZSM-5 type zeolite, which is a gas adsorbent having high gas adsorption performance. Thus, unnecessary gas present in the hollow portion can be adsorbed well by the gas adsorbent. Thereby, the adsorption performance in a gas adsorbent can be improved.
 本開示の塗工液は、少なくとも、上述の気体吸着材とバインダとを含み、上述の被膜を塗布形成するために用いられる。 The coating liquid of the present disclosure contains at least the above-described gas adsorbent and a binder, and is used to apply and form the above-mentioned film.
 本開示の真空断熱容器は、上述の被膜を備えている。 The vacuum insulation container of the present disclosure includes the above-described coating.
 本開示によれば、真空容器において、その気体吸着材における吸着性能の向上を図れる、真空容器の被膜、塗工液および真空断熱容器を提供することができる。 According to the present disclosure, it is possible to provide a coating of a vacuum container, a coating liquid, and a vacuum heat insulation container capable of improving the adsorption performance of the gas adsorbent in the vacuum container.
図1は、本開示の実施の形態に係る真空断熱容器の断面図である。FIG. 1 is a cross-sectional view of a vacuum insulation container according to an embodiment of the present disclosure. 図2Aは、本開示の実施の形態の被膜の形成方法を示す一部の断面図である。FIG. 2A is a partial cross-sectional view showing a method of forming a film according to an embodiment of the present disclosure. 図2Bは、本開示の実施の形態の被膜の形成方法を示す一部の断面図である。FIG. 2B is a partial cross-sectional view showing the method of forming a film of the embodiment of the present disclosure.
 (本開示の態様の一例)
 本開示の態様の一例の被膜は、真空容器の被膜である。真空容器は、有底筒状の外筒と、外筒の内部に配置された、有底筒状の内筒と、被膜とを備えている。内筒の外表面と、外筒の内表面との間には、大気圧よりも減圧された中空部が形成されている。中空部を封止するように、内筒と外筒とは接合されている。被膜は、中空部内における、外筒の内表面、および、内筒の外表面のうち、少なくとも一方に形成されている。被膜は、気体吸着材である銅イオン交換ZSM-5型ゼオライトを含んでいる。
(An example of the aspect of this indication)
The coating of an example of the aspects of the present disclosure is a coating of a vacuum vessel. The vacuum vessel includes a bottomed cylindrical outer cylinder, a bottomed cylindrical inner cylinder disposed inside the outer cylinder, and a coating. A hollow portion whose pressure is lower than atmospheric pressure is formed between the outer surface of the inner cylinder and the inner surface of the outer cylinder. The inner cylinder and the outer cylinder are joined so as to seal the hollow portion. The coating is formed on at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder in the hollow portion. The coating contains copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent.
 このような構成によれば、被膜が、高度な気体吸着性能を有する気体吸着材である銅イオン交換ZSM-5型ゼオライトを含んでいる。これにより、中空部に存在する不要な気体を、気体吸着材により良好に吸着できる。よって、気体吸着材における吸着性能を向上できる。 According to such a configuration, the coating contains a copper ion-exchanged ZSM-5 type zeolite, which is a gas adsorbent having high gas adsorption performance. Thereby, the unnecessary gas present in the hollow portion can be adsorbed well by the gas adsorbent. Thus, the adsorption performance of the gas adsorbent can be improved.
 さらに、被膜が、発泡構造を有してもよい。 Additionally, the coating may have a foamed structure.
 これにより、さらに、被膜に含まれる気体吸着材の表面を、中空部に広く露出させて、気体吸着材の豊富な吸着量を確保し易くすることができる。 As a result, the surface of the gas adsorbent contained in the film can be exposed widely in the hollow portion, and the abundant adsorption amount of the gas adsorbent can be easily ensured.
 さらに、銅イオン交換ZSM-5型ゼオライトは、粒径が300μm以下の値に設定されていてもよい。 Furthermore, the copper ion-exchanged ZSM-5 type zeolite may be set to a particle size of 300 μm or less.
 銅イオン交換ZSM-5型ゼオライトがこのような粒径に設定されていれば、さらに、中空部の容積が限られる場合でも、中空部に気体吸着材を配置し易くすることができる。また、仮に中空部において、被膜から脱離した気体吸着材が移動した場合でも、気体吸着材が、外筒または内筒に当たることで発生する異音を生じにくくすることができる。 If the copper ion-exchanged ZSM-5 type zeolite is set to such a particle diameter, the gas adsorbent can be easily disposed in the hollow portion even when the volume of the hollow portion is limited. In addition, even if the gas adsorbent desorbed from the film moves in the hollow portion, it is possible to make it difficult for the gas adsorbent to generate an abnormal noise caused by hitting the outer cylinder or the inner cylinder.
 また、被膜は、無機バインダを含んでいてもよい。 The coating may also contain an inorganic binder.
 無機バインダを用いることで、さらに、気体吸着材である銅イオン交換ZSM-5型ゼオライトの気体吸着活性が、被膜に含まれるバインダにより損われることを防止できる。 By using the inorganic binder, the gas adsorption activity of the copper ion-exchanged ZSM-5 type zeolite, which is a gas adsorbent, can be further prevented from being damaged by the binder contained in the film.
 また、被膜中における無機バインダの重量が、被膜の重量の0wt%より多く20wt%以下の範囲の値に設定されていてもよい。 In addition, the weight of the inorganic binder in the coating may be set to a value in the range of more than 0 wt% and 20 wt% or less of the weight of the coating.
 無機バインダの重量が、上述範囲の値に設定されていることで、さらに、気体吸着材に含まれる銅イオン交換ZSM-5型ゼオライトの吸着性能が、大量の無機バインダにより阻害されるのを防止しながら、被膜において、気体吸着材を無機バインダにより良好に保持できる。 By setting the weight of the inorganic binder to a value in the above range, the adsorption performance of the copper ion-exchanged ZSM-5 type zeolite contained in the gas adsorbent is further prevented from being inhibited by a large amount of the inorganic binder Meanwhile, in the film, the gas adsorbent can be well retained by the inorganic binder.
 また、気体吸着材の窒素吸着量が、常温かつ常圧にて、10ml/g以上の値に設定されていてもよい。 In addition, the nitrogen adsorption amount of the gas adsorbent may be set to a value of 10 ml / g or more at normal temperature and normal pressure.
 この構成によれば、さらに、真空容器の製造時に中空部に残留した窒素等の気体、および、容器の製造後に中空部に透過浸入する窒素等の気体を、吸着除去できる。よって、製造後初期における気体吸着材の吸着性能を向上できると共に、吸着性能を良好に維持できる。 According to this configuration, it is possible to adsorb and remove the gas such as nitrogen remaining in the hollow portion at the time of manufacture of the vacuum vessel and the gas such as nitrogen which permeates and infiltrates the hollow portion after the manufacture of the vessel. Therefore, while being able to improve the adsorption performance of the gas adsorbent in the early stage after manufacture, the adsorption performance can be maintained favorably.
 本開示の一態様に係る塗工液は、少なくとも、上述した気体吸着材と、バインダとを含み、上述した被膜を塗布形成するためのものである。 The coating liquid which concerns on 1 aspect of this indication is for apply | coating and forming the film mentioned above which contains the gas adsorbent and the binder which were mentioned above at least.
 この構成によれば、真空容器の製造時において、中空部内における、外筒の内表面、および、内筒の外表面のうち、少なくとも一方に塗工液を塗布して乾燥させることにより、被膜を比較的容易に形成することができる。 According to this configuration, at the time of manufacturing the vacuum container, the coating liquid is applied to and dried on at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder in the hollow portion. It can be formed relatively easily.
 また、塗工液は、熱分解型発泡剤を含んでいてもよい。 Moreover, the coating liquid may contain a thermal decomposition type foaming agent.
 これにより、さらに、塗布した塗工液を熱分解することで、発泡構造を有する被膜を形成できる。 Thereby, by further thermally decomposing the applied coating liquid, a film having a foam structure can be formed.
 また、本開示の真空断熱容器は、上述したいずれかの被膜を備えている。 In addition, the vacuum insulation container of the present disclosure includes any of the films described above.
 本開示の各態様によれば、内筒と外筒とを備え、外筒と内筒との間に大気圧よりも減圧された中空部が形成され、この中空部に気体吸着材が配置された真空容器において、気体吸着材における吸着性能の向上を、安定して図ることができる。 According to each aspect of the present disclosure, an inner cylinder and an outer cylinder are provided, and a hollow portion whose pressure is reduced below atmospheric pressure is formed between the outer cylinder and the inner cylinder, and the gas adsorbent is disposed in the hollow portion. In the vacuum container, it is possible to stably improve the adsorption performance of the gas adsorbent.
 (実施の形態)
 以下、図面を参照して、本開示の実施の形態を説明する。
Embodiment
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1は、本開示の実施の形態に係る真空断熱容器1(以下、単に容器1と称する。)の断面図である。 FIG. 1 is a cross-sectional view of a vacuum insulation container 1 (hereinafter simply referred to as a container 1) according to an embodiment of the present disclosure.
 図1に示すように、容器1は、全体としてボトル状に形成されている。なお、本明細書でいう真空とは、大気圧よりも減圧された状態を指す。 As shown in FIG. 1, the container 1 is formed in a bottle shape as a whole. In addition, the vacuum as used in this specification refers to the state pressure-reduced rather than atmospheric pressure.
 容器1は、内筒2、外筒3および被膜4,5を備える。 The container 1 includes an inner cylinder 2, an outer cylinder 3 and coatings 4 and 5.
 外筒3および内筒2は、有底筒状に形成されている。外筒3および内筒2は、気体難透過性材料により構成されている。本実施の形態では、外筒3および内筒2は、一例として、金属材料により構成されている。この金属材料としては、例えば、アルミニウム、鉄、ステンレスおよび銅等が挙げられる。 The outer cylinder 3 and the inner cylinder 2 are formed in a bottomed cylindrical shape. The outer cylinder 3 and the inner cylinder 2 are made of a gas impermeable material. In the present embodiment, the outer cylinder 3 and the inner cylinder 2 are made of, for example, a metal material. Examples of the metal material include aluminum, iron, stainless steel and copper.
 外筒3および内筒2は、円筒状に形成されている。内筒2は、側部2a、底部2b、ネック部2cおよびショルダー部2dを有する。側部2aおよびネック部2cは、内筒2の筒軸方向に延びる円筒状に形成されている。底部2bは、一例として、内筒2の筒軸方向(図1における上方向または下方向)から見て、円形に形成されている。側部2aは、底部2bの周縁から内筒2の筒軸方向に延びている。 The outer cylinder 3 and the inner cylinder 2 are formed in a cylindrical shape. The inner cylinder 2 has a side portion 2a, a bottom portion 2b, a neck portion 2c and a shoulder portion 2d. The side portion 2 a and the neck portion 2 c are formed in a cylindrical shape extending in the axial direction of the inner cylinder 2. The bottom 2 b is formed in a circular shape as viewed from the axial direction of the inner cylinder 2 (upward or downward in FIG. 1), as an example. The side portion 2 a extends in the axial direction of the inner cylinder 2 from the peripheral edge of the bottom portion 2 b.
 ネック部2cは、側部2aの内径よりも小さい内径を有する。ネック部2cは、側部2aの、底部2b側とは反対側から、ショルダー部2dを介して、内筒2の筒軸方向に延びている。ネック部2cの、底部2bとは反対側には、外部と内筒2の内部とが連通する開口が設けられている。ネック部2cと側部2aとは、ショルダー部2dにより接続されている。ショルダー部2dは、内筒2の筒軸方向から見て環状に形成されている。 The neck portion 2c has an inner diameter smaller than the inner diameter of the side portion 2a. The neck portion 2c extends in the axial direction of the inner cylinder 2 via the shoulder portion 2d from the side of the side portion 2a opposite to the side of the bottom portion 2b. On the side of the neck portion 2c opposite to the bottom portion 2b, an opening that allows the outside to communicate with the inside of the inner cylinder 2 is provided. The neck portion 2c and the side portion 2a are connected by a shoulder portion 2d. The shoulder portion 2 d is formed in an annular shape as viewed from the cylinder axial direction of the inner cylinder 2.
 外筒3は、側部3a、底部3b、ネック部3cおよびショルダー部3dを有する。側部3aおよびネック部3cは、外筒3の筒軸方向に延びる円筒状に形成されている。底部3bは、一例として、外筒3の筒軸方向から見て、円形に形成されている。側部3aは、底部3bの周縁から外筒3の筒軸方向に延びている。 The outer cylinder 3 has a side portion 3a, a bottom 3b, a neck 3c and a shoulder 3d. The side portion 3 a and the neck portion 3 c are formed in a cylindrical shape extending in the axial direction of the outer cylinder 3. The bottom 3 b is formed in a circular shape as viewed from the axial direction of the outer cylinder 3 as an example. The side portion 3 a extends in the axial direction of the outer cylinder 3 from the peripheral edge of the bottom 3 b.
 ネック部3cは、側部3aの内径よりも小さい内径を有する。ネック部3cは、側部3aの、底部3b側とは反対側から、ショルダー部3dを介して、外筒3の筒軸方向に延びている。ネック部3cの、底部3bとは反対側には、容器1の内部と外部とが連通する開口が設けられている。ネック部3cと側部3aとは、ショルダー部3dにより接続されている。ショルダー部3dは、外筒3の筒軸方向から見て環状に形成されている。 The neck 3c has an inner diameter smaller than the inner diameter of the side 3a. The neck portion 3c extends in the axial direction of the outer cylinder 3 via the shoulder portion 3d from the side of the side portion 3a opposite to the bottom 3b side. On the opposite side of the neck portion 3c to the bottom portion 3b, an opening for communicating the inside and the outside of the container 1 is provided. The neck portion 3c and the side portion 3a are connected by a shoulder portion 3d. The shoulder portion 3 d is formed in an annular shape as viewed from the cylinder axial direction of the outer cylinder 3.
 側部3aの内径は、側部2aの内径よりも大きい。ネック部3cの内径は、ネック部2cの内径よりも大きい。底部3bの直径は、底部2bの直径よりも大きい。 The inner diameter of the side 3a is larger than the inner diameter of the side 2a. The inner diameter of the neck portion 3c is larger than the inner diameter of the neck portion 2c. The diameter of the bottom 3b is larger than the diameter of the bottom 2b.
 内筒2は、内筒2の外表面と外筒3の内表面との間に中空部S1を形成しながら、外筒3の内部に配置されている。一例として、内筒2は、その筒軸方向を外筒3の筒軸方向と一致させた状態で、外筒3の内部に配置されている。内筒2の容積は、一例として、400ml以上600ml以下の範囲の値に設定されており、ここでは500mlである。 The inner cylinder 2 is disposed inside the outer cylinder 3 while forming a hollow portion S1 between the outer surface of the inner cylinder 2 and the inner surface of the outer cylinder 3. As an example, the inner cylinder 2 is disposed inside the outer cylinder 3 in a state in which the axial direction of the inner cylinder 2 matches the axial direction of the outer cylinder 3. The volume of the inner cylinder 2 is set to, for example, a value in the range of 400 ml or more and 600 ml or less, and is 500 ml here.
 容器1では、外筒3の内部に内筒2が配置された状態で、内筒2の開口部の開口周縁が、外筒3の開口部の開口周縁と一体に接続されている。これにより、内筒2は、中空部S1を封止するように、外筒3と接合されている。 In the container 1, in the state where the inner cylinder 2 is disposed inside the outer cylinder 3, the opening periphery of the opening of the inner cylinder 2 is integrally connected to the opening periphery of the opening of the outer cylinder 3. Thereby, the inner cylinder 2 is joined to the outer cylinder 3 so as to seal the hollow portion S1.
 このように、容器1では、外筒3と内筒2との接触部が、各開口部の開口周縁に限定される。これにより、外筒3と内筒2との間におけるヒートブリッジの形成を最小限に抑制しながら、外筒3と内筒2との間の真空断熱効果を発揮させることができる。 Thus, in the container 1, the contact portion between the outer cylinder 3 and the inner cylinder 2 is limited to the opening peripheral edge of each opening. Thereby, the vacuum heat insulating effect between the outer cylinder 3 and the inner cylinder 2 can be exhibited while suppressing the formation of the heat bridge between the outer cylinder 3 and the inner cylinder 2 to the minimum.
 なお、このヒートブリッジの形成が、許容される範囲内であれば、外筒3と内筒2とは、各開口部の開口周縁以外の領域で熱結合されていてもよい。 The outer cylinder 3 and the inner cylinder 2 may be thermally coupled to each other in the region other than the opening peripheral edge of each opening, as long as the formation of the heat bridge is within the allowable range.
 内筒2の開口部は、キャップ6により閉塞されている。キャップ6は、一例として、内筒2の開口部よりも内側の一部領域と、外筒3の開口部よりも外側の一部領域とに密着するように配置される。これにより、内筒2の内部S2は気密状態に保たれる。 The opening of the inner cylinder 2 is closed by a cap 6. The cap 6 is disposed, for example, in close contact with a partial region inside the opening of the inner cylinder 2 and a partial region outside the opening of the outer cylinder 3. Thereby, the inside S2 of the inner cylinder 2 is kept airtight.
 中空部S1は、大気圧よりも減圧されている。中空部S1の内圧は、一例として、1×10-3Pa以下の値に設定されている。この中空部S1の内圧の値としては、一例として、1×10-4Pa以下の値であることが、より好ましい。容器1では、中空部S1を十分に減圧することにより、その内圧を1×10-4Pa以下の値に設定できる。 The hollow portion S1 is depressurized below atmospheric pressure. The internal pressure of the hollow portion S1 is set to, for example, a value of 1 × 10 −3 Pa or less. The internal pressure of the hollow portion S1 is more preferably, for example, 1 × 10 −4 Pa or less. In the container 1, the internal pressure can be set to a value of 1 × 10 −4 Pa or less by sufficiently depressurizing the hollow portion S1.
 中空部S1の容積は、一例として、10ml以上20ml以下の範囲の値に設定されており、ここでは15mlである。 The volume of the hollow portion S1 is, for example, set to a value in the range of 10 ml or more and 20 ml or less, and is 15 ml here.
 なお、ネック部2c,3cは必須ではなく、省略してもよい。また、外筒3および内筒2は、各筒軸方向に延びる角筒状に形成されていてもよいし、互いに異なる形状に形成されていてもよい。 The neck portions 2c and 3c are not essential and may be omitted. Moreover, the outer cylinder 3 and the inner cylinder 2 may be formed in the shape of a rectangular cylinder extending in the axial direction of each cylinder, or may be formed in shapes different from each other.
 被膜4,5は、中空部S1内における、外筒3の内表面、および、内筒2の外表面のうち、少なくとも一方(ここでは両方)に形成されている。被膜4,5は、気体吸着材である銅イオン交換ZSM-5型ゼオライトを含んでいる。 The coatings 4 and 5 are formed on at least one (here, both) of the inner surface of the outer cylinder 3 and the outer surface of the inner cylinder 2 in the hollow portion S1. The coatings 4 and 5 contain copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent.
 一例として、被膜4は、外筒3の内表面のうち、側部3aおよび底部3bの表面に形成されている。また被膜5は、内筒2の外表面のうち、側部2aおよび底部2bの表面に形成されている。被膜4,5は、発泡構造を有する。これにより、被膜4,5の表面積が広く確保されている。容器1は、このような被膜4,5による被膜構造10を備えている。 As an example, the coating 4 is formed on the surface of the side 3 a and the bottom 3 b of the inner surface of the outer cylinder 3. Further, the coating 5 is formed on the surface of the side portion 2 a and the bottom portion 2 b of the outer surface of the inner cylinder 2. The coatings 4 and 5 have a foam structure. Thereby, the surface area of the films 4 and 5 is widely secured. The container 1 is provided with a coating structure 10 with such coatings 4 and 5.
 なお、発泡構造とは、被膜内に気体が分散している状態で、発泡状(フォーム)または多孔質形状に成形された構造のことをいうものとする。 In addition, foam structure shall mean the structure shape | molded by the foam-like (foam) or porous shape in the state which gas disperse | distributed in the film.
 被膜4,5の膜厚寸法は、例えば1μm以上500μm以下の範囲の値に設定されている。この膜厚寸法の値は、例えば、1μm以上400μm以下の範囲の値が好ましく、100μm以上300μm以下の範囲の値が一層好ましい。 The film thickness dimension of the films 4 and 5 is set to, for example, a value in the range of 1 μm to 500 μm. For example, a value in the range of 1 μm to 400 μm is preferable, and a value in the range of 100 μm to 300 μm is more preferable.
 気体吸着材は、中空部S1の気体を吸着する。この気体は、一例として、窒素、酸素、水素および二酸化炭素のうち、少なくともいずれかを含む。また、気体吸着材は、メタンおよびエタン等の、比較的低分子量の炭化水素ガスをも吸着する。 The gas adsorbent adsorbs the gas in the hollow portion S1. This gas contains, by way of example, at least one of nitrogen, oxygen, hydrogen and carbon dioxide. Gas adsorbents also adsorb relatively low molecular weight hydrocarbon gases such as methane and ethane.
 一例として、銅イオン交換ZSM-5型ゼオライトは、粒径が300μm以下の値に設定されている。銅イオン交換ZSM-5型ゼオライトは、複数の空孔を有し、その空孔径が、5Å以上9Å以下の範囲の値に設定されている。 As an example, the copper ion-exchanged ZSM-5 type zeolite is set to a particle size of 300 μm or less. The copper ion-exchanged ZSM-5 type zeolite has a plurality of pores, and the pore diameter is set to a value in the range of 5 Å or more and 9 Å or less.
 銅イオン交換ZSM-5型ゼオライトが有する空孔の径は、上述範囲の値に設定されている。これにより、発明者の検討によれば、中空部S1が大気よりも減圧されている場合、銅イオン交換ZSM-5型ゼオライトは、中空部S1に存在する、窒素および酸素等の気体分子を良好に吸着できる。中空部S1は、大気に比べて、気体濃度が希薄な状態になっている。このため、銅イオン交換ZSM-5型ゼオライトによる、優れた吸着性能が期待できる。 The diameter of the pores of the copper ion-exchanged ZSM-5 type zeolite is set to the value in the above-mentioned range. Thereby, according to the study of the inventor, when the hollow portion S1 is decompressed from the atmosphere, the copper ion-exchanged ZSM-5 type zeolite has good gas molecules such as nitrogen and oxygen which are present in the hollow portion S1. Can be adsorbed on The hollow portion S1 is in a state in which the gas concentration is lean compared to the atmosphere. Therefore, excellent adsorption performance can be expected from copper ion-exchanged ZSM-5 type zeolite.
 銅イオン交換ZSM-5型ゼオライトの空孔径の値としては、例えば、6Å以上8Å未満の範囲の値がより好ましく、5Å以上6Å以下の範囲の値が、一層好ましい。また別の例では、銅イオン交換ZSM-5型ゼオライトの空孔径の値としては、例えば、8Å未満の範囲の値がより好ましい。 The value of the pore diameter of the copper ion-exchanged ZSM-5 type zeolite is, for example, more preferably 6 Å or more and less than 8 Å, and still more preferably 5 Å or more and 6 Å or less. In another example, the value of the pore diameter of the copper ion-exchanged ZSM-5 type zeolite is more preferably, for example, a value in the range of less than 8 Å.
 気体吸着材は、密度が、0g/mlより大きく2g/ml以下の範囲の値に設定されるように成形されている。気体吸着材の密度としては、一例として、0.5g/ml以上1.7g/ml以下の範囲の値が、より好ましく、0.9g/ml以上1.4g/ml以下の範囲の値が、一層好ましい。 The gas adsorbent is shaped so that the density is set to a value in the range of more than 0 g / ml and 2 g / ml or less. The density of the gas adsorbent is, for example, more preferably in the range of 0.5 g / ml to 1.7 g / ml, and in the range of 0.9 g / ml to 1.4 g / ml, More preferred.
 例えば、気体吸着材の密度を、0.9g/ml以上1.4g/ml以下の範囲の値に設定した場合、気体吸着材中の銅イオン交換ZSM-5型ゼオライトの空隙率は、およそ40%以上60%以下の範囲の値となる。これにより、容器1の製造時において、中空部S1を真空ポンプ等を用いて脱気する際、気体吸着材中の気体を、迅速かつ適切に除去できる。さらに、気体吸着材の気体吸着可能な表面積を、確保し易くすることができる。 For example, when the density of the gas adsorbent is set to a value in the range of 0.9 g / ml or more and 1.4 g / ml or less, the porosity of copper ion-exchanged ZSM-5 type zeolite in the gas adsorbent is approximately 40 It becomes a value in the range of% or more and 60% or less. Thereby, when deaerating hollow part S1 using a vacuum pump etc. at the time of manufacture of container 1, gas in a gas adsorbent can be removed quickly and appropriately. Furthermore, the surface area of the gas adsorbent capable of adsorbing gas can be easily secured.
 気体吸着材の窒素吸着量は、常温(20±15℃)かつ常圧(大気圧)において、10ml/g以上の値に設定されている。この窒素吸着量の値としては、常温かつ10Paの平衡圧において、2ml/g以上の値であることが、より好ましい。なお、被膜4,5は、銅イオン交換ZSM-5型ゼオライト以外の気体吸着成分をさらに含んでいてもよい。また、被膜4,5の表面には、複数の窪みおよびまたは貫通孔のうち、少なくともいずれかが形成されていてもよい。これにより、被膜4,5の表面積を、さらに大きくすることができる。 The nitrogen adsorption amount of the gas adsorbent is set to a value of 10 ml / g or more at normal temperature (20 ± 15 ° C.) and normal pressure (atmospheric pressure). The value of the nitrogen adsorption amount is more preferably 2 ml / g or more at normal temperature and an equilibrium pressure of 10 Pa. The coatings 4 and 5 may further contain gas adsorption components other than copper ion-exchanged ZSM-5 type zeolite. Further, at least one of a plurality of recesses and / or through holes may be formed on the surface of the coatings 4 and 5. Thereby, the surface area of the coatings 4 and 5 can be further increased.
 気体吸着材は、無機バインダを含んでいる。この無機バインダとしては、例えば、シリカおよびアルミナのうち、少なくともいずれかを含むものが挙げられ、水分散シリカゾル、水分散アルミナゾル、コロイダルシリカおよび水ガラス等を用いることができる。 The gas adsorbent contains an inorganic binder. Examples of the inorganic binder include those containing at least one of silica and alumina, and water-dispersed silica sol, water-dispersed alumina sol, colloidal silica, water glass and the like can be used.
 被膜4中における無機バインダの重量は、被膜4の重量の0wt%より多く20wt%以下の範囲の値に設定されている。この被膜4中における無機バインダの重量としては、被膜4の重量の0wt%より多く10wt%以下の範囲の値がより好ましい。また、一例として、被膜5中における無機バインダの重量も同様である。 The weight of the inorganic binder in the coating 4 is set to a value in the range of more than 0 wt% and not more than 20 wt% of the weight of the coating 4. The weight of the inorganic binder in the film 4 is more preferably in the range of more than 0 wt% and 10 wt% or less of the weight of the film 4. Moreover, as an example, the weight of the inorganic binder in the film 5 is also the same.
 気体吸着材は、活性化された状態で、中空部S1に配置されている。具体的に、気体吸着材は、吸着した気体を十分に放出した状態で、中空部S1に配置されている。気体吸着材の活性化方法としては、例えば、気体吸着材を減圧雰囲気下で加熱する方法が挙げられる。気体吸着材は、容器1の製造時において、活性化された状態で、内部が減圧された中空部S1に配置されている。 The gas adsorbent is disposed in the hollow portion S1 in an activated state. Specifically, the gas adsorbent is disposed in the hollow portion S1 in a state where the adsorbed gas is sufficiently released. As a method of activating the gas adsorbent, for example, a method of heating the gas adsorbent under a reduced pressure atmosphere can be mentioned. The gas adsorbent is disposed in the hollow portion S1 whose inside is depressurized in an activated state at the time of manufacturing the container 1.
 このときの中空部S1の内圧としては、例えば、10mPa以下の値が好ましく、1mPa以下の値が、より好ましい。また、気体吸着材の加熱温度としては、300℃以上の値が好ましく、400℃以上700℃以下の範囲の値が、より好ましい。気体吸着材を加熱することにより、銅イオン交換ZSM-5型ゼオライトに含まれる2価の銅イオン(Cu2+)が1価の銅イオン(Cu)に還元されることで、銅イオン交換ZSM-5型ゼオライトが活性化される。 As an internal pressure of hollow part S1 at this time, a value of 10 mPa or less is preferable, for example, and a value of 1 mPa or less is more preferable. Moreover, as a heating temperature of a gas adsorbent, the value of 300 degreeC or more is preferable, and the value of the range of 400 degreeC or more and 700 degrees C or less is more preferable. By heating the gas adsorbent, divalent copper ions (Cu 2+ ) contained in the copper ion-exchanged ZSM type 5 zeolite are reduced to monovalent copper ions (Cu + ), whereby copper ion exchanged ZSM is produced. -The type 5 zeolite is activated.
 活性化された銅イオン交換ZSM-5型ゼオライトは、中空部S1内に存在する気体を、常温にて良好に吸着する。これにより、銅イオン交換ZSM-5型ゼオライトは、中空部S1が高真空に設定されている場合でも、気体を放出することなく、吸着性能を発揮できる。 The activated copper ion-exchanged ZSM-5 type zeolite adsorbs the gas present in the hollow portion S1 well at normal temperature. Thereby, the copper ion-exchanged ZSM-5 type zeolite can exhibit the adsorption performance without releasing the gas even when the hollow portion S1 is set to high vacuum.
 製造直後の容器1における中空部S1では、一例として、銅イオン交換ZSM-5型ゼオライトの銅サイトのうち、少なくとも60%以上の銅サイトが銅1価サイトである。この銅1価サイトは、銅イオン交換ZSM-5型ゼオライトの銅サイトのうち、70%以上であることがより好ましく、80%以上であることが一層好ましく、90%以上であることがさらに好ましい。 In the hollow portion S1 of the container 1 immediately after the production, as an example, at least 60% or more of the copper sites of the copper ion-exchanged ZSM-5 type zeolite are copper monovalent sites. The copper monovalent site is more preferably 70% or more, still more preferably 80% or more, and still more preferably 90% or more of the copper sites of the copper ion-exchanged ZSM-5 type zeolite .
 ZSM-5型ゼオライトの銅イオン交換方法としては、公知の方法を利用できる。例えば、塩化銅水溶液およびアンミン酸銅水溶液等の、銅の可溶性塩水溶液に、ZSM-5型ゼオライトを浸漬する方法が挙げられる。なお、銅イオン交換ZSM-5型ゼオライトの製造方法等については、例えば、日本国特許第5719995号公報(特許文献2)を参照できる。 A known method can be used as a copper ion exchange method of ZSM-5 type zeolite. For example, a method of immersing ZSM-5 type zeolite in an aqueous solution of copper soluble salt such as aqueous solution of copper chloride and aqueous solution of copper ammate is mentioned. Incidentally, for example, Japanese Patent No. 5719995 (Patent Document 2) can be referred to for a method for producing a copper ion-exchanged ZSM-5 type zeolite and the like.
 図2Aおよび図2Bは、被膜4,5の形成方法を示す断面図である。 2A and 2B are cross-sectional views showing a method of forming the coatings 4 and 5.
 図2Aおよび図2Bでは、一例として、外筒3の表面に被膜4を形成する様子を示しているが、内筒2の表面に被膜5を形成する方法も同様である。被膜4,5の形成方法は、塗工液を調整する調整ステップと、調整した塗工液を容器1の対象表面に塗布する塗布ステップと、塗布した塗工液を乾燥させる乾燥ステップとを有する。 In FIG. 2A and FIG. 2B, although a mode that coating film 4 is formed in the surface of outer cylinder 3 is shown as an example, the method of forming coating film 5 in the surface of inner cylinder 2 is also the same. The method of forming the films 4 and 5 includes an adjusting step of adjusting the coating liquid, an applying step of applying the adjusted coating liquid to the target surface of the container 1, and a drying step of drying the applied coating liquid. .
 調整ステップでは、オペレータは、複数の材料を用いて、塗工液14を調整する。塗工液14は、被膜4,5を塗布形成するためのものであり、少なくとも、上述した気体吸着材とバインダとを含む。本実施の形態では、気体吸着材とバインダとに加えて、さらに熱分解型発泡剤を含む塗工液14を調整する。バインダとしては、上述した無機バインダを用いることができる。熱分解型発泡剤としては、公知のものを用いることができる。塗工液14は、粘度調整剤等の、他の成分を含むように調整されてもよい。 In the adjustment step, the operator adjusts the coating liquid 14 using a plurality of materials. The coating liquid 14 is for coating and forming the films 4 and 5 and includes at least the above-described gas adsorbent and a binder. In the present embodiment, in addition to the gas adsorbent and the binder, the coating liquid 14 further containing a thermal decomposition-type foaming agent is prepared. As the binder, the above-mentioned inorganic binder can be used. A well-known thing can be used as a thermal decomposition type foaming agent. The coating liquid 14 may be adjusted to include other components such as a viscosity modifier.
 塗布ステップでは、オペレータは、塗工液14を、容器1の対象表面(図2Aでは外筒3の底部3bの内表面)に塗布する。このとき、オペレータは、被膜4,5の最終(乾燥後)膜厚寸法に合わせて、塗工液14の、塗布回数および塗布量を調整する。 In the application step, the operator applies the coating liquid 14 to the target surface of the container 1 (in FIG. 2A, the inner surface of the bottom 3 b of the outer cylinder 3). At this time, the operator adjusts the number of times of application and the amount of application of the coating liquid 14 in accordance with the final (after drying) film thickness dimension of the films 4 and 5.
 乾燥ステップでは、オペレータは、塗布した塗工液14を加熱することにより、塗工液14の揮発成分を揮発させる。これにより、塗工液14を乾燥させる。なお、対象表面上の塗工液14は、全てが塗布されてから一度に加熱されてもよいし、数回に分けて塗布される毎に加熱されてもよい。すなわち、塗布ステップと乾燥ステップとは、交互に複数回繰り返されてもよい。 In the drying step, the operator evaporates the volatile component of the coating liquid 14 by heating the applied coating liquid 14. Thereby, the coating liquid 14 is dried. The coating liquid 14 on the target surface may be heated all at once after being applied, or may be heated each time it is divided and applied several times. That is, the application step and the drying step may be alternately repeated a plurality of times.
 全ての乾燥ステップが終了すると、塗工液14が乾燥されて、被膜4,5が形成される(図2B)。ここで、塗工液14には、熱分解型発泡剤が含まれているので、塗工液14を加熱することで、被膜4,5が発泡構造を有するように形成される。 When all the drying steps are completed, the coating liquid 14 is dried to form the films 4 and 5 (FIG. 2B). Here, since the thermal decomposition type foaming agent is contained in the coating liquid 14, by heating the coating liquid 14, the films 4 and 5 are formed to have a foaming structure.
 以上説明したように、容器1によれば、被膜4,5が、高度な気体吸着性能を有する気体吸着材である銅イオン交換ZSM-5型ゼオライトを含んでいる。これにより、中空部S1に存在する不要な気体を、気体吸着材により良好に吸着できる。よって、気体吸着材における吸着性能を向上できる。本実施の形態の容器1では、不要な気体による熱伝導を防止し、外筒3と内筒2との間の真空断熱性を向上できる。 As described above, according to the container 1, the coatings 4 and 5 contain the copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent having high gas adsorption performance. Thus, unnecessary gas present in the hollow portion S1 can be adsorbed well by the gas adsorbent. Thus, the adsorption performance of the gas adsorbent can be improved. In the container 1 of the present embodiment, heat conduction by unnecessary gas can be prevented, and vacuum heat insulation between the outer cylinder 3 and the inner cylinder 2 can be improved.
 銅イオン交換ZSM-5型ゼオライトは、容器1の製造時に中空部S1に残留した気体、および、製造後の容器1の外部から中空部S1に透過浸入する水素等の気体を吸着除去できる。これにより、製造後初期の真空断熱性能を向上できると共に、真空断熱性能を良好に維持できる。 The copper ion-exchanged ZSM-5 type zeolite can adsorb and remove the gas remaining in the hollow portion S1 at the time of production of the container 1, and the gas such as hydrogen which permeates and enters the hollow portion S1 from the outside of the produced container 1. As a result, the vacuum insulation performance at the initial stage after production can be improved, and the vacuum insulation performance can be well maintained.
 また、外筒3と内筒2とが金属材料からなるため、外筒3と内筒2とは、良好な剛性を有している。これにより、中空部S1を高真空に設定しても、中空部S1に補強材を配置することなく、外筒3と内筒2との形状を維持できる。よって、容器1を軽量に保ちながら、外筒3と内筒2との間の真空断熱性を安定して得ることができる。また、中空部S1に補強材を配置しなくてもよいので、被膜4,5の気体吸着材が中空部S1の気体を吸着する際に、補強材が障害となることを回避できる。 Moreover, since the outer cylinder 3 and the inner cylinder 2 consist of metal materials, the outer cylinder 3 and the inner cylinder 2 have favorable rigidity. Thus, even if the hollow portion S1 is set to a high vacuum, the shapes of the outer cylinder 3 and the inner cylinder 2 can be maintained without arranging a reinforcing material in the hollow portion S1. Therefore, vacuum insulation between the outer cylinder 3 and the inner cylinder 2 can be stably obtained while keeping the container 1 light in weight. Moreover, since it is not necessary to arrange a reinforcing material in the hollow portion S1, it is possible to prevent the reinforcing material from becoming an obstacle when the gas adsorbents of the coatings 4 and 5 adsorb the gas in the hollow portion S1.
 また、被膜4,5の熱伝導率は、被膜4,5が銅イオン交換ZSM-5型ゼオライトを含むことにより、内筒2および外筒3それぞれの熱伝導率よりも低い値に設定されている。これにより、被膜4,5を中空部S1に配置したことによって、外筒3と内筒2との間の熱伝導が増大することを防止でき、容器1の優れた真空断熱性能を得ることができる。 Further, the thermal conductivity of the coatings 4 and 5 is set to a value lower than the thermal conductivity of each of the inner cylinder 2 and the outer cylinder 3 because the coatings 4 and 5 contain copper ion-exchanged ZSM-5 type zeolite There is. Thereby, by arranging the films 4 and 5 in the hollow portion S1, the heat conduction between the outer cylinder 3 and the inner cylinder 2 can be prevented from increasing, and the excellent vacuum heat insulation performance of the container 1 can be obtained. it can.
 また、銅イオン交換ZSM-5型ゼオライトの熱伝導率は、内筒2および外筒3の他、合金材料からなる一般的な気体吸着材の熱伝導率に比べても低い。このため、合金材料からなる一般的な気体吸着材を用いた場合に比べても、容器1の優れた真空断熱性能を維持しながら、その設計自由度を高めることができる。 In addition, the thermal conductivity of the copper ion-exchanged ZSM-5 type zeolite is lower than the thermal conductivity of a general gas adsorbent made of an alloy material in addition to the inner cylinder 2 and the outer cylinder 3. For this reason, even when using a general gas adsorbent made of an alloy material, it is possible to increase the design freedom while maintaining the excellent vacuum heat insulation performance of the container 1.
 ここで、従来の合金系ゲッターは、表面に酸化被膜が形成されていると、吸着性能が低下する。このため、従来の合金ゲッターでは、加熱処理により表面の酸化被膜を除去することで、必要な吸着性能を得ている。しかしながら、従来の合金ゲッターの吸着性能は、加熱処理中の高温時には高いものの、常温では低下する。 Here, the adsorption performance of the conventional alloy-based getter is degraded when an oxide film is formed on the surface. Therefore, in the conventional alloy getter, the necessary adsorption performance is obtained by removing the oxide film on the surface by heat treatment. However, the adsorption performance of the conventional alloy getter is high at high temperature during heat treatment, but decreases at normal temperature.
 これに対して、銅イオン交換ZSM-5型ゼオライトは、このような従来の合金系ゲッターとは異なり、表面に酸化被膜が形成されない。また、常温でも、継続して良好な吸着性能を発揮できる。このため、金属筐体を透過して浸入する水素等を、継続して吸着できる。 In contrast, copper ion-exchanged ZSM-5 type zeolite does not form an oxide film on the surface, unlike such conventional alloy-based getters. In addition, good adsorption performance can be exhibited continuously even at normal temperature. For this reason, hydrogen etc. which permeate | transmit and permeate | transmit a metal housing | casing can be continuously adsorbed.
 また、銅イオン交換ZSM-5型ゼオライトは、粒径が300μm以下の値に設定されている。銅イオン交換ZSM-5型ゼオライトがこのような粒径に設定されていることで、中空部S1の容積が限られる場合でも、中空部S1に、気体吸着材を配置し易くすることができる。また、仮に、中空部S1内において、被膜4,5から脱離した気体吸着材が移動した場合でも、気体吸着材が外筒3または内筒2に当たることで発生する異音を、生じにくくすることができる。 In addition, the copper ion-exchanged ZSM-5 type zeolite is set to a particle size of 300 μm or less. By setting the particle size of the copper ion-exchanged ZSM-5 type zeolite to such a particle size, even when the volume of the hollow portion S1 is limited, the gas adsorbent can be easily disposed in the hollow portion S1. Also, even if the gas adsorbent desorbed from the coatings 4 and 5 moves in the hollow portion S1, abnormal noise caused by the gas adsorbent hitting the outer cylinder 3 or the inner cylinder 2 is less likely to occur. be able to.
 発明者の検討によれば、減圧雰囲気下では、銅イオン交換ZSM-5型ゼオライトの空孔径が、銅イオン交換ZSM-5型ゼオライトの吸着対象とする気体分子のサイズに近いほど、銅イオン交換ZSM-5型ゼオライトが気体を吸着し易いことが分かっている。 According to the inventor's investigation, in the reduced pressure atmosphere, the copper ion exchange is closer to the size of the gas molecule targeted for adsorption of the copper ion exchanged ZSM-5 type zeolite in the copper ion exchanged ZSM-5 type zeolite. It has been found that ZSM-5 type zeolite is easy to adsorb gas.
 中空部S1には、窒素分子(分子サイズ:約3.6Å)、酸素分子(分子サイズ:約3.5Å)、および、水分子(分子サイズ:約3Å)のうち、少なくともいずれかが存在すると考えられる。このような気体分子であれば、銅イオン交換ZSM-5型ゼオライトの空孔径を、上述した各分子サイズを含む範囲の値に設定することにより、銅イオン交換ZSM-5型ゼオライトに、上述の気体分子を良好に吸着させることができる。 When at least one of a nitrogen molecule (molecular size: about 3.6 Å), an oxygen molecule (molecular size: about 3.5 Å), and a water molecule (molecular size: about 3 Å) is present in the hollow portion S1 Conceivable. If it is such a gas molecule, the copper ion-exchanged ZSM-5 type zeolite can be obtained by setting the pore diameter of the copper ion-exchanged ZSM-5 type zeolite to a value in the range including the respective molecular sizes described above. Gas molecules can be adsorbed well.
 また、気体吸着材に含まれる銅イオン交換ZSM-5型ゼオライトの空孔径を、比較的小さな上述範囲の値に設定することにより、空孔径を、比較的大きな範囲の値に設定した場合に比べて、銅イオン交換ZSM-5型ゼオライトから気体分子を脱離しにくくすることができる。この効果は、容器1の温度が上昇して、中空部S1の気体分子の運動エネルギーが高まった場合に、良好に得られる。 Also, by setting the pore diameter of the copper ion-exchanged ZSM-5 type zeolite contained in the gas adsorbent to a relatively small value in the above-mentioned range, the pore diameter is set to a value in a relatively large range. Thus, it is possible to make it difficult to desorb gas molecules from copper ion-exchanged ZSM-5 type zeolite. This effect is obtained well when the temperature of the container 1 is increased and the kinetic energy of the gas molecules in the hollow portion S1 is increased.
 また、気体吸着材は、密度が、0g/mlより大きく2g/ml以下の範囲の値に設定されるように成形されている。これにより、気体吸着材の表面を中空部S1に広く露出させて、気体吸着材の豊富な吸着量を確保し易くすることができる。 In addition, the gas adsorbent is shaped such that the density is set to a value in the range of more than 0 g / ml and 2 g / ml or less. As a result, the surface of the gas adsorbent can be widely exposed in the hollow portion S1, and the abundant adsorption amount of the gas adsorbent can be easily ensured.
 また被膜4,5は、無機バインダを含んでいるので、気体吸着材である銅イオン交換ZSM-5型ゼオライトの吸着性能が、無機バインダにより阻害されることを防止しながら、被膜4,5において、気体吸着材を、無機バインダにより良好に保持できる。 In addition, since the coatings 4 and 5 contain an inorganic binder, the coatings 4 and 5 can prevent the adsorption performance of the copper ion-exchanged ZSM-5 type zeolite, which is a gas adsorbent, from being hindered by the inorganic binders. The gas adsorbent can be well retained by the inorganic binder.
 また、被膜4,5中における無機バインダの重量が、被膜4,5の重量の0wt%より多く20wt%以下の範囲の値に設定されている。これにより、気体吸着材に含まれる銅イオン交換ZSM-5型ゼオライトの吸着性能が、大量の無機バインダにより阻害されるのを防止しながら、被膜4,5において、気体吸着材を、無機バインダにより良好に保持できる。 Further, the weight of the inorganic binder in the coatings 4 and 5 is set to a value in the range of more than 0 wt% and not more than 20 wt% of the weight of the coatings 4 and 5. This prevents the adsorption performance of the copper ion-exchanged ZSM-5 type zeolite contained in the gas adsorbent from being inhibited by a large amount of the inorganic binder, and in the coatings 4 and 5, the gas adsorbent is made of the inorganic binder It can hold well.
 また、気体吸着材の窒素吸着量は、常温かつ常圧において、10ml/g以上の値に設定されている。この構成によれば、容器1の製造時に中空部S1に残留した窒素等の気体、および、容器1の製造後に中空部S1に透過浸入する窒素等の気体を、吸着除去できる。これにより、製造後初期における気体吸着材の吸着性能を向上できるとともに、吸着性能を良好に維持できる。 Further, the nitrogen adsorption amount of the gas adsorbent is set to a value of 10 ml / g or more at normal temperature and normal pressure. According to this configuration, it is possible to adsorb and remove the gas such as nitrogen remaining in the hollow portion S1 when manufacturing the container 1, and the gas such as nitrogen permeating into the hollow portion S1 after manufacturing the container 1. While being able to improve the adsorption performance of the gas adsorbent in the early stage after manufacture by this, adsorption performance can be maintained favorably.
 このように、本実施の形態の容器1では、製造後初期における真空断熱性能を向上できると共に、真空断熱性能を良好に維持できる。 As described above, in the container 1 of the present embodiment, the vacuum insulation performance can be improved in the initial stage after production, and the vacuum insulation performance can be maintained well.
 また本実施の形態では、被膜4,5の膜厚寸法が、100μm以上300μm以下の範囲の値に設定されている。これにより、比較的豊富な気体吸着材を中空部S1に配置でき、中空部S1に存在する気体を、良好に吸着除去できる。 Further, in the present embodiment, the film thickness dimension of the coatings 4 and 5 is set to a value in the range of 100 μm to 300 μm. Thus, a relatively abundant gas adsorbent can be disposed in the hollow portion S1, and the gas present in the hollow portion S1 can be adsorbed and removed well.
 また、容器1の製造時において、中空部S1内における外筒3の内表面および内筒2の外表面のうち、少なくとも一方に、塗工液14を塗布・乾燥することにより、被膜4,5を比較的容易に形成することができる。また、塗工液14が熱分解型発泡剤を含んでいるため、塗布した塗工液14を熱分解することで、発泡構造を有する被膜4,5を形成できる。 Further, at the time of manufacturing the container 1, the coating solution 14 is applied to and dried on at least one of the inner surface of the outer cylinder 3 and the outer surface of the inner cylinder 2 in the hollow portion S1. Can be formed relatively easily. Moreover, since the coating liquid 14 contains a thermal decomposition type foaming agent, the coatings 4 and 5 having a foamed structure can be formed by thermally decomposing the applied coating liquid 14.
 本開示は、上述した各実施の形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、その構成を変更、追加および削除できる。 The present disclosure is not limited to the above-described embodiments, and the configuration may be changed, added, or deleted without departing from the spirit of the present disclosure.
 例えば、被膜は、中空部S1内における外筒3の内表面、および、内筒2の外表面のうち、少なくとも一方において、複数の位置に配置されていてもよい。この場合、複数の位置に、膜厚寸法および形状のうち、少なくとも一方が異なる被膜が配置されていてもよい。また、側部2a,3aの少なくとも一方に、比較的大面積の被膜を配置し、底部2b,3bの少なくとも一方に、比較的小面積の被膜を配置してもよい。 For example, the coating may be disposed at a plurality of positions on at least one of the inner surface of the outer cylinder 3 in the hollow portion S1 and the outer surface of the inner cylinder 2. In this case, coatings different in at least one of film thickness size and shape may be disposed at a plurality of positions. Alternatively, a relatively large area coating may be disposed on at least one of the side portions 2a and 3a, and a relatively small area coating may be disposed on at least one of the bottom portions 2b and 3b.
 また、中空部S1内における、外筒3の内表面、および、内筒2の外表面のうち、被膜を配置する表面には、被膜を保持するための凹部を形成してもよい。この凹部は、例えば、内筒2および外筒3の各周方向に延びるように形成してもよいし、内筒2および外筒3の各筒軸方向に延びるように形成してもよい。なお、容器1は、真空断熱容器であることは必須ではなく、断熱性を必要としない真空容器であってもよい。 In the inner surface of the outer cylinder 3 and the outer surface of the inner cylinder 2 in the hollow portion S1, a recess for holding the film may be formed on the surface on which the film is disposed. For example, the recess may be formed to extend in the circumferential direction of the inner cylinder 2 and the outer cylinder 3 or may be formed to extend in the axial direction of the inner cylinder 2 and the outer cylinder 3. In addition, it is not essential that the container 1 is a vacuum insulation container, and may be a vacuum container which does not require heat insulation.
 以上述べたように、本開示は、内筒と外筒とを備え、外筒と内筒との間に、大気圧よりも減圧された中空部が形成された真空断熱容器において、その真空断熱性の向上を安定して図れるという優れた効果を有する。したがって、真空断熱容器等の真空容器に本開示を広く適用でき、有用である。 As described above, the present disclosure relates to a vacuum insulation container comprising an inner cylinder and an outer cylinder, wherein a hollow portion having a pressure lower than atmospheric pressure is formed between the outer cylinder and the inner cylinder. It has an excellent effect that it is possible to stably improve the quality. Therefore, the present disclosure can be widely applied to and useful in vacuum containers such as vacuum insulation containers.
 1  容器(真空断熱容器)
 2  内筒
 2a  側部
 2b  底部
 2c  ネック部
 2d  ショルダー部
 3  外筒
 3a  側部
 3b  底部
 3c  ネック部
 3d  ショルダー部
 4,5  被膜
 6  キャップ
 10  被膜構造
 14  塗工液
 S1  中空部
 S2  内部
1 container (vacuum insulation container)
DESCRIPTION OF SYMBOLS 2 inner cylinder 2a side 2b bottom 2c neck part 2d shoulder part 3 outer cylinder 3a side 3b bottom part 3c neck part 3d shoulder part 4,5 coating 6 cap 10 coating structure 14 coating liquid S1 hollow part S2 inside

Claims (9)

  1. 真空容器の被膜であって、
    前記真空容器は、有底筒状の外筒と、前記外筒の内部に配置された、有底筒状の内筒と、前記被膜とを備え、前記内筒の外表面と、前記外筒の内表面との間には、大気圧よりも減圧された中空部が形成され、前記中空部を封止するように、前記内筒と前記外筒とは接合され、前記被膜は、前記中空部内における、前記外筒の前記内表面、および、前記内筒の外表面のうち、少なくとも一方に形成され、
    前記被膜は、気体吸着材である銅イオン交換ZSM-5型ゼオライトを含む、
    真空容器の被膜。
    A coating of a vacuum vessel,
    The vacuum vessel includes a bottomed cylindrical outer cylinder, a bottomed cylindrical inner cylinder disposed inside the outer cylinder, and the coating, and the outer surface of the inner cylinder and the outer cylinder Between the inner surface and the inner surface, a hollow portion whose pressure is lower than atmospheric pressure is formed, and the inner cylinder and the outer cylinder are joined so as to seal the hollow portion, and the film is hollow Formed in at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder in a portion;
    The coating comprises copper ion-exchanged ZSM-5 type zeolite which is a gas adsorbent.
    Coating of vacuum vessel.
  2. 前記被膜が、発泡構造を有する、
    請求項1に記載の真空容器の被膜。
    The coating has a foam structure,
    The coating of the vacuum vessel according to claim 1.
  3. 前記銅イオン交換ZSM-5型ゼオライトは、粒径が300μm以下の値に設定されている、
    請求項1または請求項2に記載の真空容器の被膜。
    The copper ion-exchanged ZSM-5 type zeolite has a particle size set to a value of 300 μm or less.
    The coating of the vacuum vessel according to claim 1 or 2.
  4. 前記被膜は、無機バインダを含む、
    請求項1から請求項3までのいずれか1項に記載の真空容器の被膜。
    The coating comprises an inorganic binder
    The coating of the vacuum vessel according to any one of claims 1 to 3.
  5. 前記被膜中における前記無機バインダの重量が、前記被膜の重量の0wt%より多く20wt%以下の範囲の値に設定されている、
    請求項4に記載の真空容器の被膜。
    The weight of the inorganic binder in the coating is set to a value in the range of more than 0 wt% and not more than 20 wt% of the weight of the coating,
    The coating of the vacuum vessel according to claim 4.
  6. 前記気体吸着材の窒素吸着量が、常温かつ常圧にて、10ml/g以上の値に設定されている、
    請求項1から請求項5までのいずれか1項に記載の真空容器の被膜。
    The nitrogen adsorption amount of the gas adsorbent is set to a value of 10 ml / g or more at normal temperature and pressure.
    The coating of the vacuum vessel according to any one of claims 1 to 5.
  7. 少なくとも、前記気体吸着材とバインダとを含む、請求項1から請求項6までのいずれか1項に記載の前記被膜を塗布形成するための塗工液。 The coating liquid for carrying out application | coating formation of the said film of any one of Claim 1- Claim 6 containing the gaseous adsorbent and a binder at least.
  8. さらに、熱分解型発泡剤を含む、
    請求項7に記載の塗工液。
    Furthermore, it contains a thermal decomposition type foaming agent,
    The coating liquid according to claim 7.
  9. 請求項1から請求項6までのいずれか1項に記載の前記被膜を備える、真空断熱容器。 The vacuum insulation container provided with the said film of any one of Claim 1- Claim 6.
PCT/JP2019/001166 2018-01-26 2019-01-17 Coating film, coating liquid for vacuum container, and vacuum insulation container WO2019146471A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019567016A JPWO2019146471A1 (en) 2018-01-26 2019-01-17 Vacuum container coating, coating liquid and vacuum insulation container
CN201980009185.3A CN111629979A (en) 2018-01-26 2019-01-17 Coating film for vacuum container, coating liquid, and vacuum heat-insulating container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-011577 2018-01-26
JP2018011577 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019146471A1 true WO2019146471A1 (en) 2019-08-01

Family

ID=67395640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001166 WO2019146471A1 (en) 2018-01-26 2019-01-17 Coating film, coating liquid for vacuum container, and vacuum insulation container

Country Status (3)

Country Link
JP (1) JPWO2019146471A1 (en)
CN (1) CN111629979A (en)
WO (1) WO2019146471A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050020A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Synthetic resin insulating container
JP2008208844A (en) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd Vacuum heat insulating case body
JP2015105806A (en) * 2013-12-02 2015-06-08 三菱電機株式会社 Vacuum heat insulation box
JP2015169372A (en) * 2014-03-06 2015-09-28 大日本印刷株式会社 Heat insulation container, and method of manufacturing heat insulation container
WO2015177984A1 (en) * 2014-05-22 2015-11-26 パナソニックIpマネジメント株式会社 Sealed container, thermal insulator, and gas adsorption device
JP2016514824A (en) * 2013-03-29 2016-05-23 トキタエ エルエルシー Temperature controlled storage system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317413A (en) * 1988-06-20 1989-12-22 Kawasaki Steel Corp Vacuum heat insulating double vessel and manufacture
JPH06113963A (en) * 1992-10-06 1994-04-26 Nippon Sanso Kk Vacuum heat-insulating container made of synthetic resin and manufacture thereof
JPH07148078A (en) * 1993-11-25 1995-06-13 Nippon Sanso Kk Vacuum heat insulating vessel made of synthetic resin and its manufacture
JP5719995B2 (en) * 2009-04-30 2015-05-20 パナソニックIpマネジメント株式会社 Gas adsorption device
WO2012032786A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Sheet-shaped gas adsorbent and insulating body using same
JP5312431B2 (en) * 2010-10-30 2013-10-09 株式会社セブン・セブン Method for manufacturing vacuum insulated double container
CN105051442B (en) * 2013-04-23 2018-03-02 松下知识产权经营株式会社 Include the insulator of gas absorption part
JP6459609B2 (en) * 2015-02-20 2019-01-30 タイガー魔法瓶株式会社 Vacuum double container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050020A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Synthetic resin insulating container
JP2008208844A (en) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd Vacuum heat insulating case body
JP2016514824A (en) * 2013-03-29 2016-05-23 トキタエ エルエルシー Temperature controlled storage system
JP2015105806A (en) * 2013-12-02 2015-06-08 三菱電機株式会社 Vacuum heat insulation box
JP2015169372A (en) * 2014-03-06 2015-09-28 大日本印刷株式会社 Heat insulation container, and method of manufacturing heat insulation container
WO2015177984A1 (en) * 2014-05-22 2015-11-26 パナソニックIpマネジメント株式会社 Sealed container, thermal insulator, and gas adsorption device

Also Published As

Publication number Publication date
CN111629979A (en) 2020-09-04
JPWO2019146471A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
Saha et al. CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons
Wang et al. Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation
Kudasheva et al. Pervaporation of water/ethanol mixtures through polyimide based mixed matrix membranes containing ZIF‐8, ordered mesoporous silica and ZIF‐8‐silica core‐shell spheres
Min et al. Macroporous Silica with Thick Framework for Steam‐Stable and High‐Performance Poly (ethyleneimine)/Silica CO2 Adsorbent
Nandi et al. Unprecedented CO 2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation
Gargiulo et al. Modeling carbon dioxide adsorption on polyethylenimine-functionalized TUD-1 mesoporous silica
Sakamoto et al. Preparation and CO2 separation properties of amine-modified mesoporous silica membranes
Lu et al. Porous materials for carbon dioxide capture
Teixeira et al. Composite phenolic resin-based carbon molecular sieve membranes for gas separation
Silvestre-Albero et al. Well-defined mesoporosity on lignocellulosic-derived activated carbons
Yin et al. Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties
Patiño et al. DES assisted synthesis of hierarchical nitrogen-doped carbon molecular sieves for selective CO 2 versus N 2 adsorption
KR100884350B1 (en) Adsorbent for selective adsorption of carbon monoxide and process for preparation thereof
KR101404484B1 (en) Preparation method of n-doped activated carbons for carbon dioxide capture
Jeon et al. Influence of nitrogen moieties on CO 2 capture of carbon aerogel
Jeoung et al. Hierarchically porous adamantane-shaped carbon nanoframes
JP6014576B2 (en) Amino compound-supported porous material and method for producing the same
WO2019146471A1 (en) Coating film, coating liquid for vacuum container, and vacuum insulation container
Lourenço et al. Carbonization of periodic mesoporous phenylene-and biphenylene-silicas for CO2/CH4 separation
Bhatnagar et al. Economical synthesis of highly efficient and tunable carbon aerogels for enhanced storage of CO2 emitted from energy sources
WO2017038058A1 (en) Gas adsorbent and vacuum heat insulation member provided with the same
Jiao et al. CO 2 capture of amino functionalized three-dimensional worm-hole mesostructured MSU-J silica
KR101626744B1 (en) Ultraporous graphene aerogels and method for preparing the same
WO2019146472A1 (en) Vacuum insulation container
Wang et al. Elaborate control over the morphology and pore structure of porous silicas for VOCs removal with high efficiency and stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743941

Country of ref document: EP

Kind code of ref document: A1