JP2008049351A - Method and apparatus for ultrasonic wave-applying welding - Google Patents

Method and apparatus for ultrasonic wave-applying welding Download PDF

Info

Publication number
JP2008049351A
JP2008049351A JP2006225328A JP2006225328A JP2008049351A JP 2008049351 A JP2008049351 A JP 2008049351A JP 2006225328 A JP2006225328 A JP 2006225328A JP 2006225328 A JP2006225328 A JP 2006225328A JP 2008049351 A JP2008049351 A JP 2008049351A
Authority
JP
Japan
Prior art keywords
melting
ultrasonic
welding
contact
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006225328A
Other languages
Japanese (ja)
Inventor
Akihide Katsura
了英 桂
Masato Koshiishi
正人 越石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Original Assignee
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Nuclear Fuel Development Co Ltd, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP2006225328A priority Critical patent/JP2008049351A/en
Publication of JP2008049351A publication Critical patent/JP2008049351A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for ultrasonic wave-applying welding, by which method and apparatus, the agitation of a melted portion by the ultrasonic waves can be uniformly performed, and the melted portion can be agitated by moving an ultrasonic oscillator in synchronization with the movement of a melting means. <P>SOLUTION: A welding base material 14 is melted by being heated, and a melted portion 15 is irradiated with the ultra sonic waves in a non-contact state, and is solidified while being agitated. Further, a synchronizing means 4 is provided to synchronize the movement of melting means 5, 17 for melting the melted portion 15 with the movement of non-contact type ultrasonic wave radiating means 11, 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は溶接母材の溶融部を超音波で振動させながら凝固させる超音波付加溶接方法及びその溶接装置に係り、特に、中性子被曝材を補修溶接するのに好適な超音波付加溶接方法及びその溶接装置に関する。   The present invention relates to an ultrasonic additive welding method and a welding apparatus for solidifying the molten part of a weld base material while vibrating with ultrasonic waves, and more particularly, an ultrasonic additive welding method suitable for repair welding of a neutron exposed material and the welding apparatus thereof. The present invention relates to a welding apparatus.

一般に、溶接部の凝固時の局部的な残留応力を低減させるために、溶接母材に超音波振動子を接触させて溶融部を間接的に超音波で振動させながら凝固させる超音波付加溶接方法及びその溶接装置が、例えば非特許文献1に示すように、既に提案されている。   In general, in order to reduce local residual stress during solidification of a welded part, an ultrasonic addition welding method in which an ultrasonic transducer is brought into contact with a welding base material and solidified while the molten part is indirectly vibrated with ultrasonic waves. As shown in Non-Patent Document 1, for example, a welding apparatus has already been proposed.

Transactions of the 15th.International Conference on Structural Mechanics in Reactor Technology(SmiRT-15) Seoul,Korea,August 15-20,1999 「Reduction of Residual Stress by Ultrasonic Vibration During Welding」第X-225〜X-261頁Transactions of the 15th.International Conference on Structural Mechanics in Reactor Technology (SmiRT-15) Seoul, Korea, August 15-20, 1999 `` Reduction of Residual Stress by Ultrasonic Vibration During Welding '' pp. X-225 to X-261

上記従来の技術によれば、超音波振動子を溶接母材に接触させるために、超音波振動は超音波振動子の接触方向に伝播するので、溶融部に超音波振動が伝わりにくく、溶融部を十分に振動させて攪拌することができず、その結果、溶融部の凝固が不均一となり残留応力が生じて溶接割れに進行する虞があった。また、超音波振動子を溶接母材に接触させるために、超音波振動子は反力に耐えるように強固に支持しなければならず、そのために、溶融部の移動に同期させて超音波振動子を移動させることが困難であった。   According to the above-described conventional technology, since the ultrasonic vibration propagates in the contact direction of the ultrasonic vibrator in order to bring the ultrasonic vibrator into contact with the welding base material, the ultrasonic vibration is not easily transmitted to the melting portion. As a result, there is a possibility that solidification of the melted portion becomes non-uniform and residual stress is generated and proceeds to weld cracking. Also, in order to bring the ultrasonic vibrator into contact with the welding base material, the ultrasonic vibrator must be firmly supported to withstand the reaction force. For this reason, the ultrasonic vibration is synchronized with the movement of the molten part. It was difficult to move the child.

本発明の目的は、溶融部の超音波による攪拌を均一に行うことができ、溶接割れの発生を抑制する超音波付加溶接方法及びその溶接装置を提供することにある。   An object of the present invention is to provide an ultrasonic welding method and a welding apparatus for the same, which can uniformly agitate the melted portion by ultrasonic waves and suppress the occurrence of weld cracks.

本発明の別の目的は、溶融手段の移動に同期させて超音波振動子を移動させて溶融部の攪拌を均一に行うことができる超音波付加溶接方法及びその溶接装置を提供することにある。   Another object of the present invention is to provide an ultrasonic addition welding method and a welding apparatus for the same, in which the ultrasonic vibrator can be moved in synchronization with the movement of the melting means to uniformly stir the molten portion. .

本発明は上記目的を達成するために、溶接母材を加熱して溶融させ、この溶融部に対し超音波を非接触で照射して前記溶融部を振動させながら凝固させるようにしたのである。さらに、溶接部を溶融させる溶融手段と非接触型超音波照射手段との動きを同期させる同期手段を設けたのである。   In order to achieve the above-mentioned object, the present invention heats and melts the weld base material and irradiates the melted portion with ultrasonic waves in a non-contact manner to solidify the molten portion while vibrating the melted portion. Furthermore, a synchronizing means for synchronizing the movements of the melting means for melting the weld and the non-contact ultrasonic irradiation means is provided.

上記構成によれば、超音波を直接溶融部に照射して攪拌することができるので溶融部は均一に攪拌され、その結果、溶融部の凝固が均一となり残留応力による溶接割れの発生を抑制することができるのである。さらに、超音波の照射を非接触で行うことにより、溶融手段と非接触型超音波照射手段とを同期して移動させることができるので、効率よく溶融部の攪拌を行うことができ、溶接割れの発生を抑制できるのである。   According to the above configuration, since the ultrasonic wave can be directly applied to the melted portion and stirred, the melted portion is stirred uniformly, and as a result, the solidified portion of the melted portion becomes uniform and the occurrence of weld cracking due to residual stress is suppressed. It can be done. Furthermore, by performing non-contact ultrasonic irradiation, the melting means and the non-contact ultrasonic irradiation means can be moved synchronously, so that the molten part can be efficiently stirred and weld cracking can be achieved. Can be suppressed.

以上説明したように本発明によれば、溶融部の超音波による攪拌を均一に行うことができると共に、溶融手段の移動に同期させて超音波振動子を移動させて溶融部の攪拌を均一に行うことができる超音波付加溶接方法及びその溶接装置を得ることができる。   As described above, according to the present invention, it is possible to uniformly agitate the melted portion by ultrasonic waves, and move the ultrasonic vibrator in synchronization with the movement of the melting means to uniformly agitate the melted portion. An ultrasonic additive welding method and a welding apparatus for the same can be obtained.

以下本発明による超音波付加溶接装置の第1の実施の形態を図1及び図2に基づいて説明する。本実施の形態は、タングステン不活性ガスアーク溶接装置に非接触型超音波照射手段を付加したものである。   A first embodiment of an ultrasonic welding apparatus according to the present invention will be described below with reference to FIGS. In the present embodiment, a non-contact type ultrasonic irradiation means is added to a tungsten inert gas arc welding apparatus.

タングステン不活性ガスアーク溶接装置は、溶接架台1と、この溶接架台1上に移動可能に支持された溶接母材支持台2と、この溶接母材支持台2を一方向に移動させる駆動手段3と、前記溶接架台1に固定された溶接枠体4と、この溶接枠体4に支持された溶融手段であるタングステン電極5と、前記溶接枠体4に支持された溶接部材供給手段であるフィラーワイヤー供給手段6と、非接触型超音波照射手段7とにより構成されている。したがって、前記溶接枠体4がタングステン電極5とフィラーワイヤー供給手段6と非接触型超音波照射手段7との移動を同期させる同期手段となる。   The tungsten inert gas arc welding apparatus includes a welding gantry 1, a welding base material support 2 that is movably supported on the welding gantry 1, and drive means 3 that moves the welding base material support 2 in one direction. The welding frame 4 fixed to the welding frame 1, the tungsten electrode 5 which is a melting means supported by the welding frame 4, and the filler wire which is a welding member supply means supported by the welding frame 4 The supply means 6 and the non-contact ultrasonic irradiation means 7 are comprised. Therefore, the welding frame 4 serves as a synchronizing means for synchronizing the movements of the tungsten electrode 5, the filler wire supplying means 6 and the non-contact ultrasonic irradiation means 7.

前記駆動手段3は、前記溶接母材支持台2に連結されたねじ棒8と、このねじ棒8に螺合されて回転駆動し、前記溶接架台1に支持された駆動部9とより構成されている。   The driving means 3 includes a screw rod 8 connected to the welding base material support 2 and a drive unit 9 that is screwed into the screw rod 8 and rotationally driven and supported by the welding mount 1. ing.

前記タングステン電極5は、電力供給線10を介して図示しない電源に接続されており、前記フィラーワイヤー供給手段6は、前記駆動手段3による移動に同期して適量のフィラーワイヤーを供出するように構成されている。   The tungsten electrode 5 is connected to a power source (not shown) via a power supply line 10, and the filler wire supply means 6 is configured to deliver an appropriate amount of filler wire in synchronization with the movement by the drive means 3. Has been.

一方、前記非接触型超音波照射手段7は、前記溶接枠体4に支持された振動子11とこの振動子11を加振する超音波発生装置12と、前記振動子11の先端に形成されたホーン13とを有している。そして、ホーン13は、後述する溶接母材14に対して接触することがないように、即ち、溶接母材14に対して非接触状態を維持できるように、振動子11を溶接枠体4に対して進退させて高さを変えることができるように構成されている。   On the other hand, the non-contact ultrasonic irradiation means 7 is formed at the transducer 11 supported by the welding frame 4, the ultrasonic generator 12 for exciting the transducer 11, and the tip of the transducer 11. And a horn 13. And the horn 13 does not contact the welding base material 14 mentioned later, ie, the vibrator | oscillator 11 is made to the welding frame 4 so that a non-contact state can be maintained with respect to the welding base material 14. FIG. In contrast, the height can be changed by advancing and retreating.

上記構成のタングステン不活性ガスアーク溶接装置によって例えば、中性子被曝材である原子炉構造物を補修溶接する場合には、原子炉構造物である炉心シュラウド,炉心支持板,上部格子板,ジェットポンプ等の溶接母材14を前記溶接母材支持台2に固定し、溶融手段であるタングステン電極5によって溶接母材14の溶接部を溶融させる。溶接部が溶融したならその溶融部15にホーン13から超音波を照射する。この超音波の照射により溶融部15は、超音波の疎密波によって振動して均一に攪拌され、凝固過程において溶接母材14に対して均一に馴染むようになる。   For example, when repair welding a nuclear reactor structure that is a neutron exposed material using the tungsten inert gas arc welding apparatus having the above-described configuration, a core shroud that is a nuclear reactor structure, a core support plate, an upper lattice plate, a jet pump, etc. The welding base material 14 is fixed to the welding base material support 2, and the welded portion of the welding base material 14 is melted by the tungsten electrode 5 which is a melting means. When the welded portion is melted, the melted portion 15 is irradiated with ultrasonic waves from the horn 13. By this ultrasonic irradiation, the melted portion 15 is vibrated and uniformly stirred by the ultrasonic dense wave, and becomes uniformly adapted to the weld base material 14 during the solidification process.

因みに、超音波の周波数は、20〜100KHzであり、溶融部15は1000℃前後における高温において超音波の攪拌によって凝固過程の残留応力が低下し、その結果、中性子被爆によって発生したヘリウム気泡の特定箇所への集中を防止して溶接割れを防止することができる。   Incidentally, the frequency of the ultrasonic wave is 20 to 100 KHz, and the melted portion 15 has a residual stress in the solidification process lowered by ultrasonic agitation at a high temperature around 1000 ° C. As a result, the helium bubble generated by the neutron exposure is identified. It is possible to prevent welding cracks by preventing concentration on the part.

そして、駆動手段3を例えば図1の矢印A方向に駆動することで、タングステン電極5とフィラーワイヤー供給手段6とホーン13とは、図2の矢印Bで示すように相対的に移動する。そして、この相対移動により、タングステン電極5による溶接母材14とフィラーワイヤーとの溶融とホーン13からの超音波照射により、次々に補修された溶接完了部16が形成されることになる。   Then, by driving the drive means 3 in the direction of arrow A in FIG. 1, for example, the tungsten electrode 5, the filler wire supply means 6, and the horn 13 move relatively as shown by the arrow B in FIG. And by this relative movement, the welding completion part 16 repaired one after another by the fusion | melting of the welding base material 14 and filler wire by the tungsten electrode 5, and ultrasonic irradiation from the horn 13 will be formed.

上記実施の形態により、溶融部15の超音波による攪拌が均一に行うことができると共に、溶融手段の移動に同期させてホーン13を含む振動子11を移動させて溶融部15の攪拌を均一に行うことができ、その結果、中性子被爆によって発生したヘリウム気泡の特定箇所への集中を防止して溶接割れを防止することができる。   According to the above embodiment, the ultrasonic stirring of the melting part 15 can be performed uniformly, and the vibrator 11 including the horn 13 is moved in synchronization with the movement of the melting means to uniformly stir the melting part 15. As a result, it is possible to prevent the helium bubbles generated by the neutron exposure from being concentrated at specific locations and to prevent weld cracking.

尚、上記実施の形態は、中性子被曝材である原子炉構造物の補修溶接について説明したが、通常の溶接にも適用できることは云うまでもなく、凝固過程に溶融部15を均一に攪拌できるので、品質の優れた溶接を得ることができる。さらに、上記実施の形態は、フィラーワイヤー供給手段6を必要としているが、溶接の目的や補修内容によっては、フィラーワイヤー供給手段6を省略して溶接母材14のみを溶融させることで対応することができるのは当然である。   In addition, although the said embodiment demonstrated repair welding of the reactor structure which is a neutron exposure material, it cannot be overemphasized that it can apply also to normal welding, since the fusion | melting part 15 can be stirred uniformly in the solidification process. , You can get excellent quality welding. Furthermore, although the said embodiment requires the filler wire supply means 6, depending on the purpose and repair content of welding, it can respond by omitting the filler wire supply means 6 and melting only the welding base material 14. Of course you can.

図3は、超音波付加溶接装置をレーザ溶接装置に適用した第2に実施の形態を示す。溶融手段であるレーザ溶接装置を構成する溶接架台と、この溶接架台上に移動可能に支持された溶接母材支持台と、この溶接母材支持台を一方向に移動させる駆動手段と、前記溶接架台に固定された溶接枠体と、非接触型超音波照射手段と、これらに付随する構成は、第1の実施の形態と同じであるので、ここでは要部のみ説明する。   FIG. 3 shows a second embodiment in which the ultrasonic welding apparatus is applied to a laser welding apparatus. A welding pedestal constituting a laser welding apparatus as a melting means; a welding base material supporting base supported movably on the welding base; a driving means for moving the welding base material support base in one direction; and the welding Since the welding frame fixed to the gantry, the non-contact ultrasonic irradiation means, and the configuration associated therewith are the same as those in the first embodiment, only the main parts will be described here.

第1の実施の形態のタングステン電極に代えて溶融手段を構成するレーザビームを照射するレーザ光学部17を設け、このレーザ光学部17に、図示しないレーザ発振装置から光ファイバー18を介してレーザを導き、溶接母材14に照射して溶融部15を作り、この溶融部15に振動子11及びホーン13を通して超音波を照射し、第1の実施の形態と同じように、溶融部15を振動攪拌させながら凝固させることで残留応力の生じない溶接ができるのである。そして、ホーン13とレーザ光学部17とを一緒に、溶接母材15に対して矢印方向に相対移動させながら、次々に、溶接完了部16を形成してゆくのである。   In place of the tungsten electrode of the first embodiment, a laser optical unit 17 for irradiating a laser beam constituting the melting means is provided, and a laser is guided to the laser optical unit 17 from a laser oscillation device (not shown) through an optical fiber 18. Then, the welded base material 14 is irradiated to form a melted portion 15, and the melted portion 15 is irradiated with ultrasonic waves through the vibrator 11 and the horn 13, and the melted portion 15 is vibrated and stirred in the same manner as in the first embodiment. It is possible to perform welding without causing residual stress by solidifying while making it occur. And the welding completion part 16 is formed one after another, moving the horn 13 and the laser optical part 17 together relative to the welding base material 15 in the arrow direction.

したがって、本実施の形態においても、第1の実施の形態と同じような効果を奏することができる。   Therefore, the present embodiment can provide the same effects as those of the first embodiment.

図4は、本発明による第3の実施の形態を示すもので、基本構成は第1の実施の形態と同じである。   FIG. 4 shows a third embodiment according to the present invention, and the basic configuration is the same as that of the first embodiment.

第1の実施の形態と異なる構成は、非接触型超音波照射手段を付加したタングステン不活性ガスアーク溶接装置に、さらに磁気攪拌手段を付加した構成である。   A different configuration from the first embodiment is a configuration in which a magnetic stirring means is further added to a tungsten inert gas arc welding apparatus to which a non-contact ultrasonic irradiation means is added.

即ち、磁気攪拌手段は、タングステン電極5の周囲に隙間を介して筒体19を設置し、この筒体19の外周にボビン20を装着してコイル21を巻回し、この巻回したコイル21に交番磁場発生電源より電力を供給して交番磁場を発生させるように構成したもので、このような磁気攪拌手段をタングステン不活性ガスアーク溶接装置に付加したのである。そして、非接触型超音波照射手段の振動子11やホーン13も同時に備えたのである。   That is, the magnetic stirring means installs the cylinder 19 around the tungsten electrode 5 through a gap, attaches the bobbin 20 to the outer periphery of the cylinder 19 and winds the coil 21, It is configured to generate an alternating magnetic field by supplying electric power from an alternating magnetic field generating power source, and such a magnetic stirring means is added to the tungsten inert gas arc welding apparatus. The vibrator 11 and the horn 13 of the non-contact type ultrasonic irradiation means are also provided at the same time.

上記構成のタングステン不活性ガスアーク溶接装置は、溶接時にタングステン電極5やホーン13やコイル21を溶融部15に対して矢印方向に相対移動させながら、溶接母材14を溶かして溶融部15を作ると共に、この溶融部15に対し超音波の照射やコイル21が発する交番磁場によって溶融部15を十分に攪拌しながら凝固させ、凝固過程の残留応力を低下させて品質のよい溶接完了部16を次々に連続して形成するのである。   The tungsten inert gas arc welding apparatus having the above configuration melts the welding base material 14 while making the tungsten electrode 5, the horn 13, and the coil 21 relatively move in the direction of the arrow with respect to the melting portion 15 during welding and creates the melting portion 15. The melted portion 15 is solidified while being sufficiently stirred by the irradiation of ultrasonic waves and the alternating magnetic field generated by the coil 21 to reduce the residual stress in the solidification process, thereby successively producing high quality welded portions 16. It is formed continuously.

尚、超音波の照射と交番磁場による溶融部15の攪拌は、溶接条件(溶接材質や形状)によっては同時に行ってもよく、超音波の照射と交番磁場の発生を交互に行わせてもよく、あるいはいずれか一方で溶融部15を攪拌するようにしてもよい。   The ultrasonic irradiation and the stirring of the melted part 15 by the alternating magnetic field may be performed simultaneously depending on the welding conditions (welding material and shape), or the ultrasonic irradiation and the generation of the alternating magnetic field may be alternately performed. Alternatively, the melted part 15 may be agitated on either side.

図5は、図1及び図2に示す非接触型超音波照射手段を付加したタングステン不活性ガスアーク溶接装置を、狭い開先を有する溶接母材14の溶接に適用した適用例を示す。   FIG. 5 shows an application example in which the tungsten inert gas arc welding apparatus to which the non-contact ultrasonic irradiation means shown in FIGS. 1 and 2 is added is applied to welding of a welding base material 14 having a narrow groove.

通常、狭開先部23を有する溶接母材14の溶接では、溶融部16が狭域となるので、凝固が不均一となり易く、溶接不良が生じ易い。そこで、従来のように溶接母材に超音波振動子を接触させて溶接母材14を振動させ、それにより溶融部を間接的に振動させながら凝固させることも考えられる。しかし、この場合には、ある程度の攪拌効果はあるもの溶融部15を直接攪拌していないことと、溶融部15の凝固速度が速いので、溶融部15を均一に攪拌することは難しく、凝固が不均一となって溶接不良ができてしまう。そこで、狭開先部23を有する狭域の溶融部15に振動子11及びホーン13を経由して超音波を直接照射して攪拌させることで、凝固速度が速くても溶融部15を均一に攪拌することができ、その結果、溶融部15の凝固が均一となり、溶接不良を減らすことができるのである。   Usually, in the welding of the welding base material 14 having the narrow groove portion 23, the melted portion 16 becomes a narrow region, so that solidification is likely to be uneven, and poor welding is likely to occur. Therefore, it is conceivable to cause the welded base material 14 to vibrate by bringing an ultrasonic vibrator into contact with the welded base material as in the prior art, thereby solidifying the molten part while indirectly vibrating it. However, in this case, although there is a certain stirring effect, it is difficult to stir the melted portion 15 uniformly because the melted portion 15 is not directly stirred and the solidifying speed of the melted portion 15 is fast. It becomes uneven and poor welding occurs. Therefore, by directly irradiating and stirring the ultrasonic wave through the vibrator 11 and the horn 13 to the narrow melting part 15 having the narrow groove part 23, the melting part 15 can be made uniform even if the solidification speed is high. Stirring can be performed, and as a result, solidification of the melted portion 15 becomes uniform and poor welding can be reduced.

本発明による超音波付加溶接装置の第1の実施の形態を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows 1st Embodiment of the ultrasonic addition welding apparatus by this invention. 図1の溶接母材の溶融部近傍を示す拡大図。The enlarged view which shows the fusion | melting part vicinity of the welding base material of FIG. 本発明による超音波付加溶接装置の第2の実施の形態を示す図2相当図。FIG. 2 is a view corresponding to FIG. 2 showing a second embodiment of the ultrasonic welding apparatus according to the present invention. 本発明による超音波付加溶接装置の第3の実施の形態を示す図2相当図。FIG. 2 is an equivalent view of FIG. 2 showing a third embodiment of the ultrasonic welding apparatus according to the present invention. 本発明による超音波付加溶接装置の適用例を示す図2相当図。FIG. 2 is a view corresponding to FIG. 2 showing an application example of the ultrasonic welding apparatus according to the present invention.

符号の説明Explanation of symbols

1…溶接架台、2…溶接母材支持台、3…駆動手段、4…溶接枠体、5…タングステン電極、6…フィラーワイヤー供給手段、7…非接触型超音波照射手段、8…ねじ棒、9…駆動部、10…電力供給線、11…振動子、12…超音波発生装置、13…ホーン、14…溶接母材、15…溶融部、16…溶接完了部、17…レーザ光学部、18…光ファイバー、21…コイル、22…交番磁場発生電源、23…狭い開先。   DESCRIPTION OF SYMBOLS 1 ... Welding base, 2 ... Welding base support stand, 3 ... Drive means, 4 ... Welding frame, 5 ... Tungsten electrode, 6 ... Filler wire supply means, 7 ... Non-contact type ultrasonic irradiation means, 8 ... Screw rod DESCRIPTION OF SYMBOLS 9 ... Drive part, 10 ... Power supply line, 11 ... Vibrator, 12 ... Ultrasonic generator, 13 ... Horn, 14 ... Welding base material, 15 ... Melting part, 16 ... Welding completion part, 17 ... Laser optical part , 18: optical fiber, 21: coil, 22: alternating magnetic field generating power source, 23: narrow groove.

Claims (8)

溶接母材を加熱して溶融させ、この溶融部に対し超音波を非接触で照射して前記溶融部を振動させながら凝固させるようにしたことを特徴とする超音波付加溶接方法。   An ultrasonic additive welding method characterized in that a welding base material is heated and melted, and ultrasonic waves are irradiated to the melted portion in a non-contact manner so that the melted portion is solidified while being vibrated. 溶接母材に形成された狭開先部を溶融し、この溶融部に対し超音波を非接触で照射して前記溶融部を振動させながら凝固させるようにしたことを特徴とする超音波付加溶接方法。   Ultrasonic additive welding characterized by melting a narrow groove portion formed in a weld base material and irradiating the melted portion with ultrasonic waves in a non-contact manner to solidify the molten portion while vibrating. Method. 溶接部を加熱して溶融させる溶融手段と、この溶融手段により溶融した溶融部に非接触で超音波を照射させる非接触型超音波照射手段とを備えたことを特徴とする超音波付加溶接装置。   An ultrasonic additive welding apparatus comprising: a melting unit that heats and melts a welded portion; and a non-contact type ultrasonic irradiation unit that irradiates ultrasonic waves to the melted portion melted by the melting unit in a non-contact manner. . 溶接部を不活性ガスで覆いタングステン電極のアークによって溶融させる溶融手段と、この溶融手段によって溶融した溶融部に非接触で超音波を照射させる非接触型超音波照射手段とを備えたことを特徴とする超音波付加溶接装置。   A melting means for covering the welded portion with an inert gas and melting it by an arc of a tungsten electrode, and a non-contact ultrasonic irradiation means for irradiating ultrasonic waves to the molten portion melted by the melting means in a non-contact manner are provided. Ultrasonic additional welding equipment. 溶接部にレーザビームを照射して溶融させる溶融手段と、この溶融手段によって溶融した溶融部に非接触で超音波を照射させる非接触型超音波照射手段とを備えたことを特徴とする超音波付加溶接装置。   Ultrasonic waves characterized by comprising melting means for irradiating and melting a welded portion with a laser beam, and non-contact ultrasonic irradiation means for irradiating ultrasonic waves in a non-contact manner to the molten portion melted by the melting means Additional welding equipment. 溶接部を不活性ガスで覆いタングステン電極のアークによって溶融させる溶融手段と、この溶融手段によって溶融した溶融部を磁気的に攪拌する磁気攪拌手段と、前記溶融部に非接触で超音波を照射させる非接触型超音波照射手段とを備えたことを特徴とする超音波付加溶接装置。   A melting means for covering the welded portion with an inert gas and melting it by an arc of a tungsten electrode, a magnetic stirring means for magnetically stirring the molten portion melted by the melting means, and irradiating the molten portion with non-contact ultrasonic waves An ultrasonic addition welding apparatus comprising: a non-contact type ultrasonic irradiation means. 前記溶融手段と前記非接触型超音波照射手段とは、これらの動きを同期させる同期手段によって一体に構成されていることを特徴とする請求項3,4,5または6記載の超音波付加溶接装置。   The ultrasonic welding according to claim 3, 4, 5, or 6, wherein the melting means and the non-contact ultrasonic irradiation means are integrally formed by a synchronizing means for synchronizing their movements. apparatus. 溶接部に溶接部材を供給する溶接部材供給手段と、不活性ガスで覆いながらタングステン電極のアークによって前記溶接部材と共に前記溶接部を溶融させる溶融手段と、この溶融手段によって溶融された溶融部に非接触で超音波を照射させる非接触型超音波照射手段と、これら溶接部材供給手段と溶融手段と非接触型超音波照射手段との動きを同期させる同期手段と、この同期手段と前記溶接部とを溶接方向に沿って相対的に移動させる駆動手段とを備えた超音波付加溶接装置。   A welding member supplying means for supplying a welding member to the welded portion, a melting means for melting the welded portion together with the welding member by an arc of a tungsten electrode while being covered with an inert gas, and a melting portion melted by the melting means. Non-contact ultrasonic irradiation means for irradiating ultrasonic waves by contact; synchronization means for synchronizing the movements of the welding member supply means, melting means and non-contact ultrasonic irradiation means; and the synchronization means and the welded portion The ultrasonic addition welding apparatus provided with the drive means which moves relatively along a welding direction.
JP2006225328A 2006-08-22 2006-08-22 Method and apparatus for ultrasonic wave-applying welding Pending JP2008049351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225328A JP2008049351A (en) 2006-08-22 2006-08-22 Method and apparatus for ultrasonic wave-applying welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225328A JP2008049351A (en) 2006-08-22 2006-08-22 Method and apparatus for ultrasonic wave-applying welding

Publications (1)

Publication Number Publication Date
JP2008049351A true JP2008049351A (en) 2008-03-06

Family

ID=39233873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225328A Pending JP2008049351A (en) 2006-08-22 2006-08-22 Method and apparatus for ultrasonic wave-applying welding

Country Status (1)

Country Link
JP (1) JP2008049351A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850462A (en) * 2010-05-06 2010-10-06 哈尔滨工业大学 Ultrasonic welding method of Al/Ti dissimilar metal TIG (Tungsten Inert Gas) electrical arc micro-melting brazing and following welding
CN101966633A (en) * 2010-08-30 2011-02-09 赵显华 Metal-plate welding device for eliminating deformation and stress through ultrasonic waves
CN102059453A (en) * 2011-01-10 2011-05-18 哈尔滨工业大学 Non-contact-type ultrasonic-assisted laser welding method
CN102699545A (en) * 2012-05-31 2012-10-03 中国核工业二三建设有限公司 Method for welding cut surface butt joint formed by thin welding base materials
CN103143848A (en) * 2013-03-26 2013-06-12 哈尔滨工业大学(威海) Vertical welding method for applying ultrasonic-arc hybrid
JP2013128974A (en) * 2011-12-22 2013-07-04 Ihi Inspection & Instrumentation Co Ltd Method and apparatus for laser processing by addition of ultrasonic wave
DE102012006762A1 (en) * 2012-03-29 2013-10-02 BIAS - Bremer Institut für angewandte Strahltechnik GmbH Thermally joining of metallic joining parts via non-contact heat input by laser beam welding, comprises melting joining parts and connecting solidified melt by joining seam, where melt is excited to mechanical vibrations in targeted manner
JP2014116338A (en) * 2012-12-06 2014-06-26 Lintec Corp Cleaving device and cleaving method
CN104759740A (en) * 2015-04-07 2015-07-08 西南石油大学 Device and method for welding high steel grade and large wall thickness pipeline steel
CN105195909A (en) * 2015-10-22 2015-12-30 哈尔滨工业大学 Ultrasound arc hybrid welding method capable of refining welded joint grains
CN105364326A (en) * 2015-12-24 2016-03-02 哈尔滨工业大学 Magnesium alloy laser-ultrasonic double-side welding method
CN105414763A (en) * 2016-01-15 2016-03-23 长春理工大学 Ultrasonic coaxial auxiliary laser welding method for plate heat exchanger
CN105728930A (en) * 2016-05-05 2016-07-06 中国人民解放军装甲兵工程学院 Ultrasonic vibration assisted welding method
CN105880852A (en) * 2016-05-28 2016-08-24 长春理工大学 Ultrasonically assisted pulse laser-MIG composite heat source welding device and welding method thereof
CN106346110A (en) * 2016-11-29 2017-01-25 西南石油大学 Novel welding device and welding method of nickel-based composite pipe
CN109108506A (en) * 2018-09-30 2019-01-01 中车青岛四方机车车辆股份有限公司 Ultrasonic auxiliary device and welding system
CN109759700A (en) * 2019-01-13 2019-05-17 大连理工大学 A kind of method for laser welding with weldering ultrasonic vibration
RU2704874C1 (en) * 2018-12-13 2019-10-31 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Hybrid ultrasonic welding method and device for its implementation
CN110860795A (en) * 2019-12-12 2020-03-06 大连理工大学 Laser welding method combining welding-following ultrasound and chilling
KR20200140090A (en) * 2019-06-05 2020-12-15 동아대학교 산학협력단 Laser Welding Apparatus And Method for Welding Using the Same
CN113172334A (en) * 2021-04-27 2021-07-27 天津工业大学 Rotating magnetic field and ultrasonic vibration assisted laser processing device
KR102458041B1 (en) * 2022-08-05 2022-10-24 터보파워텍(주) Method for repairing turbine rotor using ultrasonic vibration and laser clading
RU2789411C1 (en) * 2022-04-22 2023-02-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Method for welding materials in ultrasound fields and device implementing it

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144862A (en) * 1980-04-11 1981-11-11 Hitachi Ltd Method for improving melt-stuck metal by ultrasonic wave
JPS61279365A (en) * 1985-06-05 1986-12-10 Mitsubishi Heavy Ind Ltd Narrow groove horizontal welding method
JPS6284896A (en) * 1985-10-09 1987-04-18 Kawasaki Steel Corp Submerged arc welding method
JPS6483378A (en) * 1987-09-28 1989-03-29 Ishikawajima Harima Heavy Ind Method for preventing weld crack
JPH01278983A (en) * 1988-05-06 1989-11-09 Toyota Motor Corp Laser welding method
JP2001198677A (en) * 2000-01-14 2001-07-24 Ishikawajima Harima Heavy Ind Co Ltd Agitation welding method and device
JP2003053533A (en) * 2001-08-09 2003-02-26 Toshiba Corp Method of repairing structure and repair welding equipment
JP2006102807A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Method for reforming metallic structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144862A (en) * 1980-04-11 1981-11-11 Hitachi Ltd Method for improving melt-stuck metal by ultrasonic wave
JPS61279365A (en) * 1985-06-05 1986-12-10 Mitsubishi Heavy Ind Ltd Narrow groove horizontal welding method
JPS6284896A (en) * 1985-10-09 1987-04-18 Kawasaki Steel Corp Submerged arc welding method
JPS6483378A (en) * 1987-09-28 1989-03-29 Ishikawajima Harima Heavy Ind Method for preventing weld crack
JPH01278983A (en) * 1988-05-06 1989-11-09 Toyota Motor Corp Laser welding method
JP2001198677A (en) * 2000-01-14 2001-07-24 Ishikawajima Harima Heavy Ind Co Ltd Agitation welding method and device
JP2003053533A (en) * 2001-08-09 2003-02-26 Toshiba Corp Method of repairing structure and repair welding equipment
JP2006102807A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Method for reforming metallic structure

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850462A (en) * 2010-05-06 2010-10-06 哈尔滨工业大学 Ultrasonic welding method of Al/Ti dissimilar metal TIG (Tungsten Inert Gas) electrical arc micro-melting brazing and following welding
CN101966633A (en) * 2010-08-30 2011-02-09 赵显华 Metal-plate welding device for eliminating deformation and stress through ultrasonic waves
CN102059453A (en) * 2011-01-10 2011-05-18 哈尔滨工业大学 Non-contact-type ultrasonic-assisted laser welding method
JP2013128974A (en) * 2011-12-22 2013-07-04 Ihi Inspection & Instrumentation Co Ltd Method and apparatus for laser processing by addition of ultrasonic wave
DE102012006762A1 (en) * 2012-03-29 2013-10-02 BIAS - Bremer Institut für angewandte Strahltechnik GmbH Thermally joining of metallic joining parts via non-contact heat input by laser beam welding, comprises melting joining parts and connecting solidified melt by joining seam, where melt is excited to mechanical vibrations in targeted manner
CN102699545A (en) * 2012-05-31 2012-10-03 中国核工业二三建设有限公司 Method for welding cut surface butt joint formed by thin welding base materials
CN102699545B (en) * 2012-05-31 2015-11-25 中国核工业二三建设有限公司 Weld the method for the tangent plane banjo fixing butt jointing of thin welding base metal
JP2014116338A (en) * 2012-12-06 2014-06-26 Lintec Corp Cleaving device and cleaving method
CN103143848A (en) * 2013-03-26 2013-06-12 哈尔滨工业大学(威海) Vertical welding method for applying ultrasonic-arc hybrid
CN104759740A (en) * 2015-04-07 2015-07-08 西南石油大学 Device and method for welding high steel grade and large wall thickness pipeline steel
CN105195909A (en) * 2015-10-22 2015-12-30 哈尔滨工业大学 Ultrasound arc hybrid welding method capable of refining welded joint grains
CN105364326A (en) * 2015-12-24 2016-03-02 哈尔滨工业大学 Magnesium alloy laser-ultrasonic double-side welding method
CN105414763A (en) * 2016-01-15 2016-03-23 长春理工大学 Ultrasonic coaxial auxiliary laser welding method for plate heat exchanger
CN105728930A (en) * 2016-05-05 2016-07-06 中国人民解放军装甲兵工程学院 Ultrasonic vibration assisted welding method
CN105880852A (en) * 2016-05-28 2016-08-24 长春理工大学 Ultrasonically assisted pulse laser-MIG composite heat source welding device and welding method thereof
CN106346110A (en) * 2016-11-29 2017-01-25 西南石油大学 Novel welding device and welding method of nickel-based composite pipe
CN109108506A (en) * 2018-09-30 2019-01-01 中车青岛四方机车车辆股份有限公司 Ultrasonic auxiliary device and welding system
CN109108506B (en) * 2018-09-30 2021-02-05 中车青岛四方机车车辆股份有限公司 Ultrasonic auxiliary device and welding system
RU2704874C1 (en) * 2018-12-13 2019-10-31 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Hybrid ultrasonic welding method and device for its implementation
CN109759700A (en) * 2019-01-13 2019-05-17 大连理工大学 A kind of method for laser welding with weldering ultrasonic vibration
CN109759700B (en) * 2019-01-13 2020-07-14 大连理工大学 Laser welding method of welding-following ultrasonic vibration
KR20200140090A (en) * 2019-06-05 2020-12-15 동아대학교 산학협력단 Laser Welding Apparatus And Method for Welding Using the Same
KR102239315B1 (en) * 2019-06-05 2021-04-12 동아대학교 산학협력단 Laser Welding Apparatus And Method for Welding Using the Same
CN110860795A (en) * 2019-12-12 2020-03-06 大连理工大学 Laser welding method combining welding-following ultrasound and chilling
CN110860795B (en) * 2019-12-12 2021-03-26 大连理工大学 Laser welding method combining welding-following ultrasound and chilling
CN113172334A (en) * 2021-04-27 2021-07-27 天津工业大学 Rotating magnetic field and ultrasonic vibration assisted laser processing device
CN113172334B (en) * 2021-04-27 2022-09-23 天津工业大学 Rotating magnetic field and ultrasonic vibration assisted laser processing device
RU2789411C1 (en) * 2022-04-22 2023-02-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Method for welding materials in ultrasound fields and device implementing it
KR102458041B1 (en) * 2022-08-05 2022-10-24 터보파워텍(주) Method for repairing turbine rotor using ultrasonic vibration and laser clading

Similar Documents

Publication Publication Date Title
JP2008049351A (en) Method and apparatus for ultrasonic wave-applying welding
KR101275940B1 (en) Laser welding apparatus and method of laser welding
JP6169818B2 (en) Cladding method and apparatus using hybrid laser processing
JP2009518189A (en) Laser rotating arc hybrid welding apparatus and method
JP2014121722A (en) Laser welding method and laser welding apparatus
CN111515541A (en) Thick plate narrow gap laser-TIG composite filler wire welding device and method
CN104827185B (en) High-frequency vibration laser beam welding technology based on electromagnetic type vibration exciter
JP2006102807A (en) Method for reforming metallic structure
KR20110076443A (en) A hybrid welding system and method thereof
JP6071195B2 (en) Ultrasonic addition laser processing method and ultrasonic addition laser processing apparatus
JP5494065B2 (en) Spot welding method and spot welded joint
Sundukov et al. Structure of the weld formed during the application of ultrasonic vibrations
Jones et al. Towards advanced welding methods for the ITER vacuum vessel sectors
JP7189516B2 (en) Weld defect repair method
JP2010253533A (en) Tig welding equipment
JP2006075844A (en) Device and method for repairing crack of structural member
CN111390410B (en) Ultrasonic vibration GTAW composite device based on sound-heat synchronization and use method
RU2704874C1 (en) Hybrid ultrasonic welding method and device for its implementation
CN104439680A (en) Casting repair welding method
JPH0460931B2 (en)
JP2003071579A (en) Laser beam welding device
RU2393070C1 (en) Method of welding with mixing
JP2011062728A (en) Laser beam welding method and laser beam welding apparatus
JP2010086899A (en) Laser welding method of electrode terminal of coin type battery, and device therefor
JP2008213004A (en) Laser welding method and laser welding apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122