JP2008045247A - Method for producing carbon fiber woven fabric and fiber-reinforced plastic - Google Patents

Method for producing carbon fiber woven fabric and fiber-reinforced plastic Download PDF

Info

Publication number
JP2008045247A
JP2008045247A JP2006223869A JP2006223869A JP2008045247A JP 2008045247 A JP2008045247 A JP 2008045247A JP 2006223869 A JP2006223869 A JP 2006223869A JP 2006223869 A JP2006223869 A JP 2006223869A JP 2008045247 A JP2008045247 A JP 2008045247A
Authority
JP
Japan
Prior art keywords
carbon fiber
yarn
fabric
resin
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006223869A
Other languages
Japanese (ja)
Other versions
JP4992339B2 (en
Inventor
Eisuke Wadahara
英輔 和田原
Ikuo Horibe
郁夫 堀部
Yuji Kojima
雄司 児嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006223869A priority Critical patent/JP4992339B2/en
Publication of JP2008045247A publication Critical patent/JP2008045247A/en
Application granted granted Critical
Publication of JP4992339B2 publication Critical patent/JP4992339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon fiber woven fabric to which filling treatment capable of suppressing collapse of structure of carbon fiber and tangle in cutting and effective for retention of shape of weave structure suppressed in gap and excellent in appearance and quality appearance when molded into fiber-reinforced plastic is applied and to provide a method for producing a fiber-reinforced plastic. <P>SOLUTION: The method for producing a carbon fiber woven fabric by which at least either one of warp and weft is composed of yarn of carbon fiber and by which filling treatment for retaining shape of weave structure is applied through (A) a drawing process for introducing warp into a loom, (B) an attaching process for at least partially moistening the weft with a resin solution, emulsion and suspension in which a solvent or a dispersion medium is water, (C) a weaving process for weaving the weft at least partially moistened and the warp in a crossed state into a woven fabric, (D) a drying process for heating and drying the woven fabric and (E) a rolling process for rolling the woven fabric into a roll. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は炭素繊維織物の製造方法および繊維強化プラスチックの製造方法に関するものである。より詳しくは、炭素繊維織物の組織崩れ(織糸の目曲がり)、裁断時の解れを抑えることができ、目隙を抑えた織組織の形態保持に有効で、かつ、繊維強化プラスチックに成形した時に外観品位(特に表面平滑性)に優れる目どめ処理を施された炭素繊維織物の製造方法および繊維強化プラスチックの製造方法に関するものである。   The present invention relates to a method for producing a carbon fiber fabric and a method for producing a fiber reinforced plastic. More specifically, it is possible to suppress the collapse of the structure of the carbon fiber fabric (bending of the weaving yarn) and the unraveling at the time of cutting, and it is effective for maintaining the shape of the woven structure with reduced gaps, and is formed into a fiber reinforced plastic. The present invention relates to a method for producing a carbon fiber fabric and a method for producing a fiber reinforced plastic that have been subjected to a crushing process that is sometimes excellent in appearance quality (particularly surface smoothness).

従来より、炭素繊維などの強化繊維は、比強度、比弾性率が高いことから、繊維強化プラスチック(以下FRPということがある。)として軽量化効果の大きいスポーツ・レジャー用品をはじめ、航空機用途や一般産業用に多く使われている。かかるFRPの成形方法としては、ハンドレイアップ成形をはじめとしてオートクレーブ成形、RTM成形など種々の方法でがあり、成形品の形状、個数、要求される特性などにより適宜選ばれている。これら成形法では、強化繊維は中間基材として織物の形態にしたものが多用されている。かかる織物においては、取り扱う際に変形したり織糸がずれる目ズレの問題や、織物を裁断した際に織糸が解れ易いという問題があった。   Conventionally, reinforced fibers such as carbon fibers have a high specific strength and specific elastic modulus, so that they can be used as a fiber reinforced plastic (hereinafter sometimes referred to as FRP) for sports / leisure products, which have a large weight reduction effect, It is often used for general industries. Such FRP molding methods include various methods such as hand lay-up molding, autoclave molding, and RTM molding, and are appropriately selected depending on the shape and number of molded products, required characteristics, and the like. In these molding methods, reinforcing fibers are often used in the form of a woven fabric as an intermediate substrate. In such a woven fabric, there is a problem of misalignment when the fabric is deformed or the weaving yarn is displaced, and there is a problem that the weaving yarn is easily unraveled when the fabric is cut.

かかる問題に対し、強化繊維と熱可塑性繊維とを織り込んで加熱したり、織物に粒子を塗布したりして、熱可塑性繊維や粒子でたて糸とよこ糸との交錯点を目どめし、解れ抑制機能や形態安定機能を与える提案がなされている(例えば、特許文献1、2など参照)。   To prevent such problems, weaving reinforcement fibers and thermoplastic fibers and heating them, or applying particles to the fabric, aiming at the intersection of the warp and weft with thermoplastic fibers and particles, and the ability to suppress the release There have been proposals to provide a form-stable function (see, for example, Patent Documents 1 and 2).

これらの提案では、ガイドロールを経た後に加熱し、さらに押圧ロールを通過して巻き取られる旨の記載がある。しかしながら、織成した織物が複数のロールを通過した後に加熱するため、織物が、既に組織崩れ(織糸の目曲がり)が発生している場合があり、織糸が真直に配列した織物が得られない問題があった。かかる現象は、特に強化繊維をたて糸とし、強化繊維よりも細繊度の補助繊維をよこ糸とした、一方向性織物において顕著に発現する。   In these proposals, there is a description that the sheet is heated after passing through the guide roll and then wound through the pressing roll. However, since the woven fabric is heated after passing through a plurality of rolls, the fabric may already have a collapsed structure (weaving of the yarn), resulting in a fabric in which the yarn is arranged in a straight line. There was no problem. Such a phenomenon is particularly prominent in a unidirectional woven fabric in which the reinforcing fiber is a warp and the auxiliary fiber is finer than the reinforcing fiber.

また、目どめ剤として、比較的寸法の大きい熱可塑性繊維や粒子の形態を有するものを用い、かつ、目どめ剤とマトリックス樹脂との相溶性が考慮されていなかったため、得られたFRPにおいて、目どめ剤がマトリックス樹脂中で目視できる寸法のドメインを形成してしまい(目どめ剤とマトリックス樹脂とが非相溶)、FRPの外観品位、特に表面平滑性に劣るという問題があった。さらには、得られたFRPを高温環境下で使用すると、FRP表面に形成された目どめ剤のドメインから、目どめ剤自体がブリード(溶出)してしまう問題もあった。   In addition, as a squeezing agent, a thermoplastic fiber or particle having a relatively large size was used, and the compatibility between the squeezing agent and the matrix resin was not taken into consideration. , The sizing agent forms a domain having a dimension that can be visually observed in the matrix resin (the squeezing agent and the matrix resin are incompatible), and the appearance quality of the FRP, in particular, the surface smoothness is inferior. there were. Furthermore, when the obtained FRP is used in a high temperature environment, there is also a problem that the squeezing agent itself bleeds (elutes) from the domain of the squeezing agent formed on the FRP surface.

これに対して、目どめ剤として樹脂エマルジョンなどを用いる提案がなされている(例えば、特許文献3、4など参照)。しかしながら、特許文献3では織成した後の織物に樹脂エマルジョンを付与しているため、織物自体が硬くなってしまい、ドレープ性に劣り取り扱い難くなってしまうだけでなく、付与される目どめ剤が不必要に多くなり過ぎる問題があった。また、特許文献4では織糸に予め付与して織糸を開繊した状態で固定して織成しているため、予め織糸に付与・開繊する余分な工程が増え、同様に目どめ剤が不必要に多くなり過ぎる問題があった。   On the other hand, the proposal which uses resin emulsion etc. as a squeezing agent is made | formed (for example, refer patent document 3, 4 etc.). However, in Patent Document 3, since the resin emulsion is applied to the woven fabric after weaving, the woven fabric itself becomes hard, and the drapeability is inferior and difficult to handle. There was an unnecessarily large problem. Further, in Patent Document 4, since the woven yarn is preliminarily applied and fixed and woven in a state in which the woven yarn is opened, an extra process for preliminarily applying and opening the woven yarn is increased. There was a problem that there were too many unnecessarily.

一方、炭素繊維織物の製造方法においては、製織時に炭素繊維から発生する毛羽を抑制するために、液体をたて糸やよこ糸に付与する提案がなされている(例えば、特許文献5、6など参照)。これらの提案では、水または糊剤(ポリエチレングリコールと水とメタノール)を付与することにより、毛羽を抑制できる旨の記載がある。しかしながら、かかる提案は毛羽抑制を作用効果としており、織組織の形態保持するための目どめや、優れた外観品位を有するFRPを得るために必要な目どめ材の形態や、目どめ剤とマトリックス樹脂との相溶性に関する記載は一切見られない。また、特許文献5は、緯糸を再度集束させるが、炭素繊維織物においては、集束させることは織物のクリンプを大きくすることを意味し、炭素繊維本来の優れた強度・弾性率を発現することを阻害するだけでなく、織物の目開き(目隙)が大きくなり、得られるFRPの外観品位に劣るという問題もあった。   On the other hand, in a method for producing a carbon fiber fabric, a proposal has been made to apply a liquid to warp yarns and weft yarns in order to suppress fluff generated from carbon fibers during weaving (see, for example, Patent Documents 5 and 6). In these proposals, there is a description that fluff can be suppressed by applying water or a paste (polyethylene glycol, water, and methanol). However, such a proposal has the effect of suppressing fluff, and is effective in maintaining the form of the woven structure, the form of the squeezing material necessary for obtaining an FRP having an excellent appearance quality, and the sizing. There is no description about the compatibility between the agent and the matrix resin. Further, Patent Document 5 refocuses the weft yarn. However, in the carbon fiber woven fabric, it means that the crimp of the woven fabric is enlarged and expresses the strength and elastic modulus inherent to the carbon fiber. In addition to hindering, there was also a problem that the opening (gap) of the fabric was increased and the appearance quality of the resulting FRP was inferior.

すなわち、以上に提案された技術では、織組織の形態保持に有効で、かつ、強化繊維織物の組織崩れ(織糸の目曲がり)や裁断時の解れを完全に抑えた織物の製造方法は得られていなかったのである。つまり、従来技術により得られた強化繊維織物は、炭素繊維が配列がずれ易いるので、FRPにおいて本来の力学的特性が発揮できないばかりか、得られたFRPの外観品位、特に表面平滑性に劣っていたのである。
特開昭63−152637号公報(図11) 特開2004−256930号公報(図1) 特開平08−158207号公報(図1) 特開2001−226850号公報(図1) 特開平05−005252号公報(図1) 特開2002−115145号公報(図1)
In other words, the technique proposed above provides a method for producing a woven fabric that is effective in maintaining the shape of the woven fabric and that completely suppresses the collapse of the woven fabric fabric (bending of the woven yarn) and the unraveling during cutting. It was not done. In other words, the reinforced fiber fabric obtained by the prior art cannot easily exhibit the original mechanical characteristics in the FRP because the carbon fibers are easily misaligned, and is inferior in the appearance quality of the obtained FRP, particularly in the surface smoothness. It was.
Japanese Patent Laid-Open No. 63-152637 (FIG. 11) JP 2004-256930 A (FIG. 1) Japanese Patent Laid-Open No. 08-158207 (FIG. 1) JP 2001-226850 A (FIG. 1) JP 05-005252 A (FIG. 1) JP 2002-115145 A (FIG. 1)

本発明の目的は、上記従来技術の問題点を解決し、炭素繊維織物の組織崩れ(織糸の目曲がり)、裁断時の解れを抑えることができて、目隙を抑えた織組織の形態保持に有効で、かつ、繊維強化プラスチックに成形した時に外観品位(特に表面平滑性)に優れる目どめ処理を施された炭素繊維織物の製造方法および繊維強化プラスチックの製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, to suppress the collapse of the carbon fiber woven fabric (bending of the weaving yarn) and the unraveling at the time of cutting, and to reduce the gap. To provide a method for producing a carbon fiber fabric and a method for producing a fiber reinforced plastic that are effective for holding and subjected to a squeezing treatment that is excellent in appearance quality (particularly surface smoothness) when molded into a fiber reinforced plastic. is there.

上記目的を達成するために、本発明は以下の構成を採用する。すなわち、
(1)たて糸またはよこ糸の少なくとも一方が炭素繊維糸条からなり、織組織の形態を保持する目どめ処理が施された炭素繊維織物の製造方法であって、次の(A)〜(E)の工程を経ることを特徴とする炭素繊維織物の製造方法。
(A)たて糸を、織機に導く引出工程
(B)よこ糸を、溶媒または分散媒が水である樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らす付着工程
(C)少なくとも部分的に濡れたよこ糸を、たて糸と交錯させて織物を織成する織成工程
(D)織成した織物を加熱して乾燥させる乾燥工程
(E)織物を巻き取って巻物にする巻取工程
(2)前記(D)の乾燥工程と(E)の巻取工程との間において、次の(F)の工程を経る、前記(1)に記載の炭素繊維織物の製造方法。
(F)加熱乾燥した織物を、樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂の融点未満に冷却する冷却工程
(3)前記(A)の引出工程と(C)の織成工程との間において、次の(G)の工程を経る、前記(1)または(2)に記載の炭素繊維織物の製造方法。
(G)たて糸を、溶媒または分散媒が水である樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らす第二付着工程
(4)前記(C)の織成工程において、よこ糸を横取りして解舒撚を混入させずに杼口に打ち込む、前記(1)〜(3)のいずれかに記載の炭素繊維織物の製造方法。
In order to achieve the above object, the present invention adopts the following configuration. That is,
(1) A method for producing a carbon fiber woven fabric in which at least one of the warp yarn or the weft yarn is made of carbon fiber yarns and is subjected to a crushing treatment that maintains the shape of the woven structure, and includes the following (A) to (E The method for producing a carbon fiber woven fabric, characterized in that it undergoes the step of
(A) Pulling out the warp yarn to the loom (B) Adhering step (C) At least partially wet the weft yarn at least partially with a resin solution, emulsion or suspension in which the solvent or dispersion medium is water Weaving process of wetting the weft yarn with the warp yarn to weave the fabric (D) Drying step of heating and drying the woven fabric (E) Winding step of winding the fabric into a roll (2) Between the drying process of (D) and the winding-up process of (E), the manufacturing method of the carbon fiber fabric as described in said (1) which passes through the process of the following (F).
(F) A cooling step of cooling the heat-dried woven fabric below the melting point of the agitating resin that is a solute or dispersoid of a resin solution, emulsion or suspension. (3) The drawing step of (A) above ( The method for producing a carbon fiber woven fabric according to the above (1) or (2), which undergoes the following step (G) between the weaving step C).
(G) Second adhering step in which the warp yarn is at least partially wetted with a resin solution, emulsion or suspension whose solvent or dispersion medium is water. (4) In the weaving step of (C), the weft yarn is intercepted. And the manufacturing method of the carbon fiber fabric in any one of said (1)-(3) which drives into a shed without mixing untwisting.

(5)前記(C)の織成工程において、少なくとも部分的に濡らされた後のよこ糸の糸幅保持率が70%以上である、前記(1)〜(4)のいずれかに記載の炭素繊維織物の製造方法。   (5) The carbon according to any one of (1) to (4), wherein in the weaving step of (C), the weft width retention of the weft yarn after being at least partially wetted is 70% or more. A method for producing a textile fabric.

(6)樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂が、後述(D)の乾燥工程後の炭素繊維織物において常温(25℃)で固体のものである、前記(1)〜(5)のいずれかに記載の炭素繊維織物の製造方法。   (6) The agitating resin that is the solute or dispersoid of the resin solution, emulsion or suspension is solid at room temperature (25 ° C.) in the carbon fiber fabric after the drying step (D) described later. The manufacturing method of the carbon fiber fabric in any one of said (1)-(5).

(7)樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂が、エポキシ、不飽和ポリエステル、ビニルエステルから選ばれる少なくとも1種である、請求項1〜6のいずれかに記載の炭素繊維織物の製造方法。   (7) Any one of the resin resins, emulsions, or suspension solutes or dispersoids is at least one selected from epoxy, unsaturated polyester, and vinyl ester. A method for producing a carbon fiber fabric according to claim 1.

(8)樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂が、ポリアミド、ポリエステル、ポリオレフィン、ポリビニルホルマール、ポリエーテルスルフォンから選ばれる少なくとも1種である、前記(1)〜(6)のいずれかに記載の炭素繊維織物の製造方法。   (8) The aforesaid resin that is a solute or dispersoid of a resin solution, emulsion or suspension is at least one selected from polyamide, polyester, polyolefin, polyvinyl formal, and polyether sulfone (1) The manufacturing method of the carbon fiber fabric in any one of (6)-(6).

(9)炭素繊維織物が、扁平率20〜200の範囲内の扁平状炭素繊維糸条をたて糸とし、該炭素繊維糸条よりも細繊度である補助繊維糸条をよこ糸とする一方向性織物である、前記(1)〜(8)のいずれかに記載の炭素繊維織物の製造方法。   (9) A unidirectional fabric in which the carbon fiber fabric uses a flat carbon fiber yarn having a flatness ratio of 20 to 200 as a warp, and an auxiliary fiber yarn having a finer degree than the carbon fiber yarn. The manufacturing method of the carbon fiber fabric in any one of said (1)-(8) which is.

(10)前記一方向性織物のよこ糸である補助繊維糸条の融点が300℃以下である、前記(9)に記載の炭素繊維織物の製造方法。   (10) The method for producing a carbon fiber woven fabric according to (9), wherein the auxiliary fiber yarn that is the weft of the unidirectional woven fabric has a melting point of 300 ° C or lower.

(11)炭素繊維織物が、扁平率20〜200の範囲内の扁平状炭素繊維糸条をたて糸およびよこ糸とする二方向性織物であることを特徴とする前記(1)〜(8)のいずれかに記載の炭素繊維織物の製造方法。   (11) Any of the above (1) to (8), wherein the carbon fiber woven fabric is a bi-directional woven fabric having a flat carbon fiber yarn having a flatness ratio of 20 to 200 as a warp and a weft. A method for producing a carbon fiber fabric according to claim 1.

(12)前記(1)〜(11)のいずれかに記載の製造方法により得られる炭素繊維織物と、マトリックス樹脂とで構成される繊維強化プラスチックの製造方法であって、繊維強化プラスチックにおいて、炭素繊維織物に含まれる樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂をマトリックス樹脂に相溶させることを特徴とする繊維強化プラスチックの製造方法。   (12) A method for producing a fiber reinforced plastic comprising a carbon fiber woven fabric obtained by the production method according to any one of (1) to (11) above and a matrix resin, A method for producing a fiber-reinforced plastic, comprising: making a resin that is a solute or dispersoid of a resin solution, emulsion or suspension contained in a fiber fabric, compatible with a matrix resin.

本発明は、よこ糸を、樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らして、織成後に溶媒または分散媒を乾燥させているので、強化繊維織物の組織崩れ、裁断時の解れを抑えて織組織の形態保持に有効な目どめ処理を施すことができる。   In the present invention, the weft yarn is at least partially wetted with a resin solution, emulsion or suspension, and the solvent or dispersion medium is dried after weaving. This makes it possible to perform a crushing process effective for maintaining the shape of the woven structure.

かかる製造方法で得られた炭素繊維織物は、炭素繊維が配列がずれないので、FRPに成形した場合に本来の力学的特性を発現できる。また、マトリックス樹脂と相溶性のある、樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂で目どめしているので、優れた外観品位を有するFRPを得ることができる。本効果は、二方向性織物において最大限に発揮される。   The carbon fiber woven fabric obtained by such a manufacturing method can exhibit original mechanical properties when formed into FRP because the carbon fibers are not misaligned. In addition, since it is agitated with an agitating resin that is a solute or dispersoid of a resin solution, emulsion, or suspension that is compatible with the matrix resin, it is possible to obtain an FRP having excellent appearance quality. it can. This effect is exerted to the maximum extent in a bidirectional fabric.

本発明の炭素繊維織物の製造方法は、たて糸またはよこ糸の少なくとも一方が炭素繊維糸条であり、織組織の形態を保持する目どめ処理を施された炭素繊維織物の製造方法であって、次の(A)〜(E)の工程を経る。好ましくは、下記(D)の加熱乾燥工程と(E)の巻取工程との間に、次の(F)の工程を経ることができる。さらに好ましくは、下記(A)の引出工程と(C)の織成工程との間に、次の(G)の工程を経ることができる。以下に、各工程について順に説明する。   The method for producing a carbon fiber woven fabric of the present invention is a method for producing a carbon fiber woven fabric in which at least one of the warp yarn or the weft yarn is a carbon fiber yarn and is subjected to a squeezing treatment that maintains the shape of the woven structure, The following steps (A) to (E) are performed. Preferably, the following step (F) can be performed between the following (D) heat drying step and (E) winding step. More preferably, the following step (G) can be performed between the drawing step (A) below and the weaving step (C). Below, each process is demonstrated in order.

(A)たて糸を、織機に導く引出工程。     (A) A drawing process for guiding the warp yarn to the loom.

(B)よこ糸を、溶媒または分散媒が水である樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らす付着工程。     (B) An attaching step in which the weft is at least partially wetted with a resin solution, emulsion or suspension whose solvent or dispersion medium is water.

(G)たて糸を、溶媒または分散媒が水である樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らす第二付着工程。     (G) a second attachment step wherein the warp yarn is at least partially wetted with a resin solution, emulsion or suspension in which the solvent or dispersion medium is water.

(C)少なくとも部分的に濡れたよこ糸を、たて糸と交錯させて織物を織成する織成工程。     (C) a weaving step of weaving a woven fabric by interweaving at least partially wet weft yarns with warp yarns.

(D)織成した織物を加熱して乾燥させる乾燥工程。     (D) A drying step of heating and drying the woven fabric.

(F)加熱乾燥した織物を、樹脂溶液、乳濁液または懸濁液の溶質または分散質である樹脂の融点未満に冷却する冷却工程。     (F) A cooling step of cooling the heat-dried fabric to a temperature lower than the melting point of the resin that is the solute or dispersoid of the resin solution, emulsion or suspension.

(E)織物を巻き取って巻物にする巻取工程。     (E) A winding process in which the fabric is wound into a roll.

(A)引出工程
本工程は、たて糸を織機に導く工程である。たて糸に炭素繊維糸条を用いる場合は、炭素繊維糸条を各ボビンから解舒して引き揃えて、直接織機に導いて製織することが好ましい。一旦、各ボビンの炭素繊維糸条を整経または部分整経してから(ビーミングしてから)シート状のたて糸群を引き揃えて織機に導くと、特に、繊度が350〜3,500texである太繊度の炭素繊維糸条を用いた場合、各炭素繊維糸条での厚みムラが発生し易いため糸条間に糸長の差が生じる場合が多い。上記問題は、整経または部分整経を行わずに、各ボビンから炭素繊維糸条をそれぞれ引き揃えて直接織機に導き製織することによって解消される。
(A) Draw process This process is a process of guiding the warp yarn to the loom. When carbon fiber yarns are used for warp yarns, it is preferable that the carbon fiber yarns are unwound from the bobbins and aligned, and then guided directly to a loom for weaving. Once the bobbin carbon fiber yarns are warped or partially warped (beamed), when the sheet warp group is aligned and guided to the loom, the fineness is particularly 350 to 3,500 tex. When carbon fiber yarns having a large fineness are used, unevenness in the thickness of each carbon fiber yarn is likely to occur, so that there is often a difference in yarn length between yarns. The above problem can be solved by drawing and weaving carbon fiber yarns from each bobbin directly to a loom without performing warping or partial warping.

また、本工程において、たて糸を横取りして解舒撚を混入させずに織機に導くのが好ましい。前記の通り、たて糸である炭素繊維糸条を無撚で導くことにより、例えば扁平率20〜200の範囲内の扁平状炭素繊維糸条を用いた場合でも、開口率が5%未満の炭素繊維織物を容易に得ることができる。なお、本発明における扁平率とは、炭素繊維糸条を平面で見た際の糸条厚と糸条幅との除の百分率にて表される。実際の測定では、用いる炭素繊維糸条を1m毎に均等間隔に5箇所取り出し、取り出したものの糸条厚をダイヤルゲージで、糸条幅をノギスでそれぞれ読みとり算出する(n=5の平均値)。また、本発明における開口率とは、炭素繊維織物を平面で見た際の炭素繊維糸条が存在しない空隙部の面積と検査面積との除の百分率にて表される。実際の測定では、15cm×15cmの正方形(検査面積225cm)を幅方向に均等間隔に5枚切り取り、切り取ったものの空隙部の面積を光学顕微鏡でそれぞれ読みとり算出する(n=5の平均値)。 In this step, it is preferable that the warp yarn is taken and guided to the loom without mixing the untwisted yarn. As described above, by guiding the carbon fiber yarn which is a warp yarn without twisting, for example, even when a flat carbon fiber yarn having a flatness ratio of 20 to 200 is used, the carbon fiber having an opening ratio of less than 5%. A woven fabric can be easily obtained. The flatness in the present invention is expressed as a percentage of the division of the yarn thickness and the yarn width when the carbon fiber yarn is viewed in a plane. In actual measurement, five carbon fiber yarns to be used are taken out at intervals of 1 m, and the yarn thicknesses of the taken out yarns are read and calculated with a dial gauge and the yarn width with a caliper (n = 5 average value). Further, the aperture ratio in the present invention is expressed as a percentage obtained by dividing the area of the void portion where the carbon fiber yarn does not exist and the inspection area when the carbon fiber fabric is viewed in a plane. In actual measurement, 5 squares of 15 cm × 15 cm (inspection area 225 cm 2 ) were cut out at equal intervals in the width direction, and the area of the voids was read and calculated with an optical microscope (average value of n = 5). .

(B)付着工程
本工程は、よこ糸を、溶媒または分散媒が水である樹脂溶液(ソリューション:溶媒中に溶質が溶けあっている液体)、乳濁液(エマルジョン:液体である分散質が分散媒中に分散している液体)または懸濁液(サスペンジョン:固体である分散質が分散媒中に分散している液体)で少なくとも部分的に濡らす工程である。本工程により、かかる樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂を付与し、後述の(C)の織成工程にてよこ糸が濡れた状態でたて糸と交錯して、後述の(D)の乾燥工程にて目どめすることができる。本工程により、目どめに必要な箇所に必要最小限の量の目どめ樹脂を付着できため、目隙を抑えた織組織の形態保持することができるのである。また、かかる炭素繊維織物は、マトリックス樹脂と相溶性のある目どめ樹脂を、その形態の制限を受けずに選択できるので、優れた外観品位を有するFRPを安価に得ることができる。
(B) Adhesion process In this process, weft is dispersed in a resin solution (solution: a liquid in which a solute is dissolved in a solvent) or an emulsion (emulsion: a liquid dispersoid) in which the solvent or dispersion medium is water. A liquid dispersed in a medium) or a suspension (suspension: a liquid in which a solid dispersoid is dispersed in a dispersion medium). By this step, a clogging resin which is a solute or dispersoid of such a resin solution, emulsion or suspension is applied, and the warp yarn is interlaced with the warp yarn in a wet state in the weaving step (C) described later. Then, it can be awakened in the drying step (D) described later. By this step, since a minimum amount of the crushing resin can be attached to a place required for crushing, the shape of the woven structure with a reduced crevice can be maintained. In addition, since the carbon fiber woven fabric can be selected from a close resin compatible with the matrix resin without being limited in its form, an FRP having excellent appearance quality can be obtained at low cost.

ここで、付与する際に繊維状や粒子状の固形の目どめ樹脂であると、目どめ樹脂の選択に制限があるだけでなく、目どめ剤がマトリックス樹脂中で目視できる寸法のドメインを形成してしまう。また、織成した後に付与・固定したものであると、織物自体が硬くなってしまい、ドレープ性に劣り取り扱い難くなってしまうだけでなく、付与される目どめ樹脂が不必要に多くなり過ぎる。さらに、織成する前に事前に付与・固定しておいた織糸を織成して、改めて目どめするものであると、余分な工程が増えるだけでなく、同様に目どめ樹脂が不必要に多くなり過ぎる。かかる従来の技術では、この本発明の効果は発現しないのである。   Here, when the resin is a solid or fine resin, it is not only limited in the selection of the fine resin, but the size of the fine resin can be visually observed in the matrix resin. It will form a domain. Further, if the material is applied and fixed after weaving, the fabric itself becomes hard and the drapeability becomes inferior, making it difficult to handle, and the amount of clogging resin applied is excessively increased. Furthermore, if weaving yarns that have been applied and fixed in advance before weaving and awakening again, not only will extra processes be added, but also no awakening resin is required. Too much. This conventional technique does not exhibit the effect of the present invention.

本工程において、よこ糸を少なくとも部分的に濡らす手段が、(b1)樹脂溶液、乳濁液または懸濁液で濡らされているロールに接触させるコンタクトロール手段、(b2)樹脂溶液、乳濁液または懸濁液で濡らされている液体を保持できる多孔質体に接触させる多孔質体接触手段、(b3)樹脂溶液、乳濁液または懸濁液を滴下する滴下手段、(b4)樹脂溶液、乳濁液または懸濁液をスプレーするスプレー手段、(b5)前記(b1)〜(b4)の組み合わせ、のいずれかであるのが好ましい。   In this step, the means for at least partially wetting the weft thread is (b1) contact roll means for contacting the roll wet with the resin solution, emulsion or suspension, (b2) the resin solution, emulsion or Porous body contact means for contacting a porous body capable of holding the liquid wetted with the suspension, (b3) dropping means for dropping the resin solution, emulsion or suspension, (b4) resin solution, milk It is preferably any one of spray means for spraying a turbid liquid or suspension, and (b5) a combination of (b1) to (b4).

前記(b1)のコンタクトロール手段の場合、簡易な装置で樹脂溶液、乳濁液または懸濁液である液体を定量供給することができる。また、本手段であると、よこ糸の動きによりコンタクトロールが回転するようにしておくと、よこ糸の間欠的な動きに追従するために特別な装置が必要とならない利点もある。特に扁平率20〜200の範囲内の扁平状炭素繊維糸条を用いる場合や、よこ糸を横取りして打ち込む場合には、炭素繊維糸条を狭めることがなく、特に好ましい手段ということができる。   In the case of the contact roll means (b1), a liquid that is a resin solution, an emulsion or a suspension can be quantitatively supplied with a simple device. Further, in this means, if the contact roll is rotated by the movement of the weft yarn, there is an advantage that no special device is required to follow the intermittent movement of the weft yarn. In particular, when a flat carbon fiber yarn having a flatness ratio of 20 to 200 is used, or when a weft yarn is intercepted and driven, the carbon fiber yarn is not narrowed and can be said to be a particularly preferable means.

前記(b2)の多孔質体接触手段の場合、簡易な装置で樹脂溶液、乳濁液または懸濁液である液体を定量供給することができる。特に多孔質体が柔軟なものであると、よこ糸の糸道の僅かな変化にも追従することができるため好ましい。かかる柔軟な多孔質体としては、例えば、耐擦過性に優れる材質(例えばポリアミドやポリアセタールなど)のスポンジ、ネット、などを挙げることができる。また、本手段であると、よこ糸の間欠的な動きに追従するために特別な装置が必要とならない利点もある。よこ糸にまんべんなく付着させるという観点からは、特に好ましい手段ということができる。   In the case of the porous body contact means (b2), a liquid which is a resin solution, an emulsion or a suspension can be quantitatively supplied with a simple device. In particular, it is preferable that the porous body is flexible because it can follow a slight change in the yarn path of the weft yarn. Examples of such a flexible porous body include sponges, nets, and the like made of a material excellent in scratch resistance (eg, polyamide, polyacetal, etc.). In addition, this means has an advantage that no special device is required to follow the intermittent movement of the weft yarn. From the viewpoint of evenly adhering to the weft yarn, it can be said to be a particularly preferable means.

前記(b3)の滴下手段の場合、ロードセルやメタリングポンプなどの液体の定量供給手段を併用することにより、簡易な装置で液体を定量供給することができる。かかる定量供給手段に、よこ糸を打ち込む織機からの信号を入力することにより、よこ糸の間欠的な運動にも追従することができる。よこ糸の所定の箇所に付着させるという観点からは、特に好ましい手段ということができる。   In the case of the dropping means (b3), the liquid can be quantitatively supplied with a simple apparatus by using a liquid quantitative supply means such as a load cell or a metering pump. By inputting a signal from the weaving machine for driving the weft yarn to such a quantitative supply means, it is possible to follow the intermittent movement of the weft yarn. From the viewpoint of adhering to a predetermined portion of the weft yarn, it can be said to be a particularly preferable means.

前記(b4)のスプレー手段の場合、ロードセルやメタリングポンプなどの液体の定量供給手段を併用することにより、よこ糸に付与する目どめ樹脂の付着量を正確に制御することができる。かかる定量供給手段に、よこ糸を打ち込む織機からの信号を入力することにより、よこ糸の間欠的な運動にも追従することができる。本手段によると、よこ糸に接触することがないため、特に扁平率20〜200の範囲内の扁平状炭素繊維糸条を用いる場合や、よこ糸を横取りして打ち込む場合には、炭素繊維糸条を狭めることがなく、特に好ましい手段ということができる。   In the case of the spraying means (b4), the amount of the fine resin to be applied to the weft yarn can be accurately controlled by using a liquid quantitative supply means such as a load cell or a metering pump. By inputting a signal from the weaving machine for driving the weft yarn to such a quantitative supply means, it is possible to follow the intermittent movement of the weft yarn. According to this means, the weft yarn does not come into contact. Therefore, when using a flat carbon fiber yarn in the range of a flatness ratio of 20 to 200, or when wefting the weft yarn and driving it, the carbon fiber yarn is used. It can be said that it is a particularly preferable means without narrowing.

かかる樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂は、熱硬化性樹脂や熱可塑性樹脂を用いることができ、例えば、後述のマトリックス樹脂との相溶性などの各目的により適宜選択されるものである。かかる目どめ樹脂は、後述(D)の乾燥工程後の炭素繊維織物において常温(25℃)で固体のものであるのが好ましい。常温固体のものであると、目どめ効果を高く発現することができる。常温液体のものであると、液状であるためたて糸とよこ糸との交錯点においてそれぞれが運動する外力が働いた場合、その外力に対する抵抗力が発現し難い。また、目どめ樹脂は溶媒に溶解または分散媒に分散している状態で常温固体であるのが更に好ましい。この場合、樹脂溶液または懸濁液を用いるのが好ましい。   As the resin that is a solute or dispersoid of the resin solution, emulsion or suspension, a thermosetting resin or a thermoplastic resin can be used, for example, compatibility with a matrix resin described later. It is appropriately selected depending on each purpose. Such a fine resin is preferably solid at room temperature (25 ° C.) in the carbon fiber woven fabric after the drying step described later (D). If it is a solid at room temperature, it can exhibit a high acuity effect. In the case of a liquid at room temperature, when an external force that moves at the intersection of the warp and the weft is applied because it is liquid, resistance to the external force is hardly exhibited. Further, it is more preferable that the agitating resin is a room temperature solid in a state where it is dissolved in a solvent or dispersed in a dispersion medium. In this case, it is preferable to use a resin solution or suspension.

熱硬化性樹脂の目どめ樹脂としては、エポキシ、不飽和ポリエステル、ビニルエステル、フェノール、ベンゾオキサジン、アクリル、酢酸ビニルから選ばれる少なくとも1種であるのが好ましい。かかる熱硬化性樹脂であると、後述のマトリックス樹脂として熱硬化性樹脂を用いた場合に優れた相溶性を発現し、FRPに成形した時に外観品位、特に表面平滑性に優れたものを得ることができる。   It is preferable that the thermosetting resin is at least one selected from epoxy, unsaturated polyester, vinyl ester, phenol, benzoxazine, acrylic, and vinyl acetate. When such a thermosetting resin is used, it exhibits excellent compatibility when a thermosetting resin is used as a matrix resin to be described later, and when it is molded into FRP, it has excellent appearance quality, particularly surface smoothness. Can do.

熱可塑性樹脂の目どめ樹脂としては、ポリアミド、ポリエステル、ポリオレフィン、ポリビニルホルマール、ポリエーテルスルフォンから選ばれる少なくとも1種であるのが好ましい。特にポリアミド、ポリエステルであると、乳化剤を用いずに水を溶媒または分散媒とすることができるため好ましい(他の樹脂では乳化剤が必要となる場合が多い)。但し、後述のマトリックス樹脂として熱硬化性樹脂を用いた場合には、上記の熱硬化性樹脂を目どめ樹脂とした場合よりも外観品位に劣る場合が多いため、マトリックス樹脂として熱可塑性樹脂を用いた場合に好ましいといえる。   The thermoplastic resin is preferably at least one selected from polyamide, polyester, polyolefin, polyvinyl formal, and polyether sulfone. In particular, polyamide and polyester are preferable because water can be used as a solvent or dispersion medium without using an emulsifier (an emulsifier is often required for other resins). However, when a thermosetting resin is used as the matrix resin described later, the appearance quality is often inferior to the case where the above-mentioned thermosetting resin is used as an abrupt resin, so a thermoplastic resin is used as the matrix resin. It can be said that it is preferable when used.

(G)第二付着工程
本工程は、たて糸を、溶媒または分散媒が水である樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らす工程である。本工程により、後述の(C)織成工程にてよこ糸およびたて糸がいずれも濡れた状態で交錯して、後述の(D)の乾燥工程にて目どめすることにより、より一層目どめ効果を高く発現することができる。また、前記(B)の付着工程と同様に本工程でも、目どめに必要な箇所に必要最小限の量の目どめ樹脂を付着できため、目隙を抑えた織組織の形態保持することができる。
(G) Second attachment step This step is a step of at least partially wetting the warp yarn with a resin solution, emulsion or suspension whose solvent or dispersion medium is water. By this step, weft and warp yarns are both wet in the weaving step (C) described later and are awakened in the drying step (D) described later, thereby making them more awake. An effect can be expressed highly. Further, in this step as well as the attaching step (B), since the minimum amount of the agitation resin can be adhered to the location required for the agitation, the shape of the woven structure with a reduced gap is maintained. be able to.

用いる樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂は、前記(B)の付着工程と同じものを用いるのが好ましい。樹脂溶液、乳濁液または懸濁液の濃度は適宜よこ糸と異なる濃度のものを使用することができる。よこ糸よりもボビン交換頻度の低いたて糸に関しては、糸道の汚れを最小限にするのが好ましく、かかる観点から、よこ糸を部分的に濡らする樹脂溶液、乳濁液または懸濁液の濃度よりも、たて糸を部分的に濡らすものの方が低いのが好ましい。   The resin used as the solute or dispersoid of the resin solution, emulsion or suspension is preferably the same as that used in the attaching step (B). The concentration of the resin solution, emulsion or suspension can be appropriately different from the weft. For warp yarns that have a lower bobbin replacement frequency than weft yarns, it is preferable to minimize dirt on the yarn path, and from this point of view, the concentration of the resin solution, emulsion or suspension that partially wets the weft yarns. It is preferred that the one that partially wets the warp yarn is lower.

また、たて糸を少なくとも部分的に濡らす手段は、前記(B)の付着工程と同じ手段をとることができる。具体的には、(g1)樹脂溶液、乳濁液または懸濁液で濡らされているロールに接触させるコンタクトロール手段、(g2)樹脂溶液、乳濁液または懸濁液で濡らされている液体を保持できる多孔質体に接触させる多孔質体接触手段、(g3)樹脂溶液、乳濁液または懸濁液を滴下する滴下手段、(g4)樹脂溶液、乳濁液または懸濁液をスプレーするスプレー手段、(g5)前記(g1)〜(g4)の組み合わせ、のいずれかであるのが好ましい。特に、多数本が引き揃えて導かれるたて糸に適用する場合は、前記(g1)のコンタクトロール手段が好ましい。   Further, the means for at least partially wetting the warp yarn can be the same means as the attaching step (B). Specifically, (g1) contact roll means for contacting a roll wetted with a resin solution, emulsion or suspension, (g2) a liquid wetted with a resin solution, emulsion or suspension A porous body contact means for contacting a porous body capable of holding a liquid; (g3) a dropping means for dropping a resin solution, emulsion or suspension; (g4) spraying a resin solution, emulsion or suspension; The spray means is preferably any one of (g5) (g1) to (g4). In particular, when applying to a warp yarn in which a large number of yarns are drawn and aligned, the contact roll means (g1) is preferred.

(C)織成工程
本工程は、少なくとも部分的に濡れたよこ糸を、たて糸と交錯させて織物を織成する工程である。好ましくは、たて糸も少なくとも部分的に濡れているものを用いる。よこ糸とたて糸との交錯には織機(例えば、シャトル織機、レピア織機、ニードル織機、ウォータージェット織機、エアジェット織機など)を用いる。
(C) Weaving process This process is a process of weaving a woven fabric by crossing at least partially wet weft yarns with warp yarns. Preferably, the warp yarn is also at least partially wetted. A weaving machine (for example, a shuttle loom, a rapier loom, a needle loom, a water jet loom, an air jet loom, etc.) is used for the intersection of the weft and the warp.

交錯させる組織としては、平織、綾織、繻子織、それらの組み合わせまたは変化組織などが挙げられる。織組織がルーズで目どめの効果が最大限に発現される綾織、繻子織、それらの組み合わせまたは変化組織であるのが好ましい。織物形態としては、炭素繊維糸条をたて糸とし炭素繊維糸条よりも細繊度である補助繊維糸条をよこ糸とする一方向性織物、炭素繊維糸条をたて糸およびよこ糸とする二方向性織物または多方向性織物、さらに織物厚み方向(Z方向)に炭素繊維糸条または補助繊維糸条を配列した三次元織物などを製織することができる。中でも、扁平率20〜200の範囲内の扁平状炭素繊維糸条をたて糸とし、炭素繊維糸条よりも細繊度である補助繊維糸条をよこ糸とする一方向性織物、または、扁平率20〜200の範囲内の扁平状炭素繊維糸条をたて糸およびよこ糸とする二方向性織物であるのが好ましい。かかる扁平率20〜200の範囲内の扁平状炭素繊維糸条を用いることにより、織物の交錯点におけるクリンプを最小限にすることができ、力学特性(引張や圧縮)に優れるFRPを得ることができる。   Examples of the interlaced structure include plain weave, twill weave, satin weave, combinations thereof, or changed structures. It is preferable that the woven structure is a twill weave, a satin weave, a combination thereof, or a changed structure in which the effect of loosening and a maximum effect is exhibited. As the woven form, a unidirectional woven fabric using carbon fiber yarns as warp yarns and auxiliary fiber yarns having finer finer than carbon fiber yarns as weft yarns, bi-directional woven fabric using carbon fiber yarns as warp yarns and weft yarns, or It is possible to weave a multi-directional fabric, a three-dimensional fabric in which carbon fiber yarns or auxiliary fiber yarns are arranged in the fabric thickness direction (Z direction). Among them, a unidirectional woven fabric having a flat carbon fiber yarn in the range of flatness 20 to 200 as a warp and an auxiliary fiber yarn having a finer fineness than the carbon fiber yarn, or a flatness 20 to 20 A bi-directional woven fabric having a flat carbon fiber yarn within the range of 200 as warp and weft is preferable. By using a flat carbon fiber yarn having a flatness in the range of 20 to 200, crimping at the crossing point of the fabric can be minimized, and an FRP excellent in mechanical properties (tensile and compression) can be obtained. it can.

特に、一方向性織物の場合、よこ糸である補助繊維糸条の融点が100〜300℃の範囲内であると、比較的低温で目どめできるため、本発明の効果が最大限に発現される。つまり、本発明においては、溶媒または分散媒である水を乾燥させるだけでよいため、高温で目どめ処理する必要がない。この効果により高温の目どめ処理において補助繊維糸条が熱収縮して織物の幅方向の寸法安定性を損なうことを最小限に抑制することができるのである。より好ましい融点は120〜260℃、さらに好ましくは140〜230℃の範囲内である。なお、本発明における融点とは、DSC(示差走査熱量計)を用いてJIS K7121(1987)「プラスチックの転移温度測定方法」に従って絶乾状態で20℃/minの昇温速度にて測定される融解温度を指す。   In particular, in the case of a unidirectional woven fabric, when the melting point of the auxiliary fiber yarn, which is a weft yarn, is within the range of 100 to 300 ° C., the effect of the present invention can be maximized because it can be awakened at a relatively low temperature. The That is, in the present invention, it is only necessary to dry the water that is the solvent or the dispersion medium. Due to this effect, it is possible to suppress the auxiliary fiber yarns from being thermally contracted in the high-temperature squeezing process and impairing the dimensional stability in the width direction of the woven fabric to a minimum. A more preferable melting point is in the range of 120 to 260 ° C, and more preferably 140 to 230 ° C. The melting point in the present invention is measured at a rate of temperature increase of 20 ° C./min in an absolutely dry state using a DSC (differential scanning calorimeter) according to JIS K7121 (1987) “Method for measuring transition temperature of plastic”. Refers to the melting temperature.

本工程において、よこ糸を横取りして解舒撚を混入させずに杼口に打ち込むのが好ましい。前記の通り、よこ糸である炭素繊維糸条を無撚で打ち込むことにより、例えば扁平率20〜200の範囲内の扁平状炭素繊維糸条を用いた場合でも、開口率が5%未満の炭素繊維織物を容易に得ることができる。なお、たて糸に関しても同様で、前記(A)の引出工程で記載した通りである。   In this step, it is preferable that the weft yarn is intercepted and driven into the shed without mixing untwisting. As described above, a carbon fiber having an opening ratio of less than 5% is obtained by driving a carbon fiber yarn which is a weft yarn without twisting, for example, even when a flat carbon fiber yarn having a flatness of 20 to 200 is used. A woven fabric can be easily obtained. The same applies to the warp yarn as described in the drawing step (A).

本工程において、少なくとも部分的に濡らされた後のよこ糸の糸幅保持率が70〜100%の範囲内であることが好ましい。より好ましくは80〜100%、さらに好ましくは90〜100%の範囲内である。なお、ここでいう糸幅保持率とは、濡らされる前(ドライ状態)のよこ糸幅Wdと、少なくとも部分的に濡らされた後のよこ糸幅Wwとを測定して、糸幅保持率=(少なくとも部分的に濡らされた後のよこ糸幅Ww)×100/(濡らされる前のよこ糸幅Wd)により求められた値を指す。糸幅減少率が70%未満のよこ糸を用いると、織成した後の炭素繊維織物において、よこ糸同士の間に解消できないレベルの大きな隙間を形成してしまう。例えば扁平率20〜200の範囲内の扁平状炭素繊維糸条を用いた場合はこのような隙間が顕著に形成され、開口率が5%未満の炭素繊維織物になり易い。なお、上述の糸幅保持率はよこ糸に関する内容であるが、たて糸を少なくとも部分的に濡らす場合、よこ糸と同様の理由で糸幅保持率が70〜100%の範囲内であることが好ましい。より好ましくは80〜100%、さらに好ましくは90〜100%の範囲内である。   In this step, it is preferable that the weft width retention of the weft yarn after being at least partially wetted is in the range of 70 to 100%. More preferably, it is 80-100%, More preferably, it exists in the range of 90-100%. Here, the yarn width retention rate refers to the weft yarn width Wd before wetting (dry state) and the weft yarn width Ww after at least partial wetting, and the yarn width retention rate = (at least It refers to the value obtained by weft width Ww after being partially wetted x 100 / (weft width Wd before being wetted). When weft yarns having a yarn width reduction rate of less than 70% are used, a large gap that cannot be eliminated is formed between the weft yarns in the woven carbon fiber fabric. For example, when a flat carbon fiber yarn having a flatness ratio of 20 to 200 is used, such a gap is formed remarkably, and a carbon fiber woven fabric having an opening ratio of less than 5% tends to be formed. The above-described yarn width retention rate is related to the weft yarn. However, when the warp yarn is at least partially wetted, the yarn width retention rate is preferably in the range of 70 to 100% for the same reason as the weft yarn. More preferably, it is 80-100%, More preferably, it exists in the range of 90-100%.

(D)乾燥工程
本工程は、織成した織物を加熱して乾燥させる。本工程によりたて糸とよこ糸とが目どめされる工程である。織成した織物を、樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂の融点以上に加熱するのが好ましい。目どめ樹脂が融点を有さないものである場合は融点に替えて軟化点以上に加熱するのが好ましい。加熱する温度の上限としては、目どめ樹脂の分解温度未満であるのが一般的である。なお、本発明における軟化点とは、JIS K7234(1986)「エポキシ樹脂の軟化点試験方法」に従って測定される値を指す。また、分解温度とはTG(熱重量分析)法で窒素雰囲気中で昇温速度10℃/分で測定した熱減量が30%を越える温度を指す。
(D) Drying step In this step, the woven fabric is heated and dried. In this step, warp yarns and weft yarns are awakened. The woven fabric is preferably heated to a temperature equal to or higher than the melting point of the agitating resin, which is a solute or dispersoid of a resin solution, emulsion or suspension. In the case where the agitating resin does not have a melting point, it is preferable to heat to the softening point or higher instead of the melting point. Generally, the upper limit of the heating temperature is lower than the decomposition temperature of the abrupt resin. The softening point in the present invention refers to a value measured according to JIS K7234 (1986) “Testing method for softening point of epoxy resin”. The decomposition temperature refers to a temperature at which the heat loss measured by a TG (thermogravimetric analysis) method in a nitrogen atmosphere at a heating rate of 10 ° C./min exceeds 30%.

本工程において、織成した織物を加熱する手段が、(d1)ロールに接触していない状態で熱を放射または送風する非接触加熱手段、(d2)ロールに接触している状態で熱を放射または送風する疑似接触加熱手段、(d3)加熱源に直接接触させる接触加熱手段、(d4)前記(d1)〜(d3)の組み合わせ、のいずれかであるのが好ましい。   In this step, means for heating the woven fabric is (d1) non-contact heating means for radiating or blowing heat in a state where it is not in contact with the roll, (d2) radiating heat in a state where it is in contact with the roll, or Pseudo contact heating means for blowing air, (d3) contact heating means for direct contact with a heating source, (d4) a combination of (d1) to (d3) are preferable.

前記(d1)の場合、引取ロールに接触する前、すなわち、織前において加熱するのが好ましい。かかる態様であると、たて糸およびよこ糸との交錯している角度が織成された状態のまま正確に目どめすることができるだけでなく、織機の引取ロールをはじめとしたロール類に樹脂溶液、乳濁液または懸濁液が付着して汚れるのを最小限に抑制することができる。また、別の観点からは、引取ロールを通過した後の巻取ロールまでの間で加熱されてもよい。かかる態様であると製織の作業性に特に優れる。正確な交錯角度を保持し、汚れを最小限にするという観点からは、特に好ましい手段ということができる。   In the case of (d1), it is preferable to heat before contacting the take-up roll, that is, before weaving. In such an embodiment, not only can the angle where the warp yarn and the weft yarn are interwoven be woven, but the resin solution can be applied to rolls including a take-up roll of a loom, It is possible to minimize the adhesion or contamination of the emulsion or suspension. Moreover, from another viewpoint, you may heat between the winding rolls after passing a take-up roll. Such an embodiment is particularly excellent in workability of weaving. From the viewpoint of maintaining an accurate crossing angle and minimizing contamination, it can be said to be a particularly preferable means.

前記(d2)の場合、ロールが織機の引取ロールであるのが好ましい。かかる態様であると、たて糸とよこ糸とが確実に接触している状態で目どめすることができる。強固に目どめするという観点からは、特に好ましい手段ということができる。   In the case of (d2), the roll is preferably a take-up roll of a loom. With such an embodiment, it is possible to awaken in a state where the warp and the weft are in reliable contact. It can be said that it is a particularly preferable means from the viewpoint of aiming firmly.

前記(d3)の場合、加熱源がロール、特に織機の引取ロールであるのが好ましい。かかる態様であると、前記(d2)と同様にたて糸とよこ糸とが確実に接触している状態で目どめすることができるだけでなく、直接接触しているため熱伝達効率にも優れる。強固に目どめし、省エネルギーという観点からは、特に好ましい手段ということができる。   In the case of (d3), the heating source is preferably a roll, particularly a take-up roll of a loom. In this mode, as in (d2) above, not only can warp in a state where the warp yarn and the weft yarn are in reliable contact but also excellent heat transfer efficiency because of direct contact. It can be said to be a particularly preferable means from the viewpoint of energy saving and energy saving.

前記(d4)の場合、設備費は嵩むが、それぞれの長所を反映することができる利点がある。   In the case of (d4), the equipment cost increases, but there is an advantage that each advantage can be reflected.

(F)冷却工程
本工程は、加熱した織物を、樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂の融点未満に冷却する工程である。なお、目どめ樹脂が融点を有さないものである場合は融点に替えて軟化点未満に冷却する。目どめ樹脂の融点以上の温度で巻き取られると、巻物において織物同士が接着されて織物を巻物からスムーズに巻出できない問題が発生する場合がある。本工程を経ることにより、下記(E)の巻取工程で、織物同士が接着するという問題を解決することができるのである。
(F) Cooling step This step is a step of cooling the heated fabric below the melting point of the agitating resin that is the solute or dispersoid of the resin solution, emulsion or suspension. In addition, when the agitating resin does not have a melting point, it is cooled to below the softening point instead of the melting point. When the winding is performed at a temperature equal to or higher than the melting point of the fine resin, the fabrics may be bonded to each other in the roll, and the fabric may not be smoothly unwound from the roll. By passing through this step, it is possible to solve the problem that the fabrics adhere to each other in the winding step (E) below.

(E)巻取工程
本工程は、織物を巻き取って巻物にする工程である。
(E) Winding process This process is a process of winding a fabric into a roll.

本発明で得られる炭素繊維織物は、その開口率は5%未満であるのが好ましい。開口率が5%以上であると、本発明の課題であるFRPに成形した時にFRPにおいて樹脂リッチ部分を形成することとなり、外観品位、特に表面平滑性に優れるものが得られ難いだけでなく、軽量性、耐久性(疲労強度)、耐環境性などに劣る場合がある。   The carbon fiber fabric obtained by the present invention preferably has an opening ratio of less than 5%. When the aperture ratio is 5% or more, not only is it difficult to obtain a resin-rich portion in the FRP when molded into the FRP which is the subject of the present invention, and excellent appearance quality, particularly surface smoothness, It may be inferior in lightness, durability (fatigue strength), environmental resistance and the like.

本発明のFRPの製造方法は、上述した製造方法により得られる炭素繊維織物と、マトリックス樹脂とで構成されるFRPにおいて、炭素繊維織物に含まれる樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂をマトリックス樹脂に相溶させるのが好ましい。目どめ樹脂とマトリックス樹脂との組み合わせを適切に選択することにより、両者を相溶させることができる。目どめ樹脂とマトリックス樹脂とが相溶することにより、FRPに成形した時に外観品位、特に表面平滑性だけでなく、力学特性にも優れたものを得ることができる。   The FRP production method of the present invention is an FRP composed of a carbon fiber woven fabric obtained by the above-described production method and a matrix resin, and a solute of a resin solution, emulsion or suspension contained in the carbon fiber woven fabric or It is preferable that the fine resin as a dispersoid is compatible with the matrix resin. By appropriately selecting the combination of the agitating resin and the matrix resin, both can be made compatible. Due to the compatibility between the agitating resin and the matrix resin, not only the appearance quality, particularly the surface smoothness, but also the mechanical properties can be obtained when molded into FRP.

なお、本発明における相溶とは、目どめ樹脂を10wt%、マトリックス樹脂を90wt%を配合したモデル的な樹脂組成物を、FRPの成形条件と同じ熱履歴を与えて硬化・固化させた硬化物を、DSC(示差走査熱量計)を用いてJIS K7121(1987)「プラスチックの転移温度測定方法」に従って絶乾状態で20℃/minの昇温速度にて測定されるガラス転移点が1つであり、かつ、目どめ樹脂をFRPの成形条件と同じ熱履歴を与えて硬化・固化させた硬化物、および、マトリックス樹脂をFRPの成形条件と同じ熱履歴を与えて硬化・固化させた硬化物、のそれぞれのガラス転移点と同一でなく、かつ、両者の間に位置していることを指す。   In the present invention, the compatibility means that a model resin composition containing 10 wt% of the awake resin and 90 wt% of the matrix resin was cured and solidified by giving the same thermal history as the FRP molding conditions. The glass transition point of the cured product measured at a heating rate of 20 ° C./min in an absolutely dry state according to JIS K7121 (1987) “Method for measuring the transition temperature of plastics” using a DSC (differential scanning calorimeter) is 1 In addition, the cured resin is cured and solidified by applying the same thermal history as the FRP molding conditions, and the matrix resin is cured and solidified by applying the same thermal history as the FRP molding conditions. It is not the same as the glass transition point of each cured product, and is located between the two.

マトリックス樹脂を炭素繊維織物に含浸させてFRPを成形する方法としては、炭素繊維織物に予めマトリックス樹脂を含浸させたプリプレグ(ホットメルト法、ウェット法など)を用いたオートクレーブ法、炭素繊維織物でプリフォーム(予成形体)を形成してキャビティ(雄型と雌型とが金型である両面型で形成されるもの、雄型または雌型の一方が金型でもう一方がバッグフィルムなどの柔軟型である片面型で形成されるものなど)内で直接マトリックス樹脂を含浸させる直接注入法、などが挙げられる。中でも、生産性に優れ、低コスト化が容易な後者(特に両面型を用いたRTM法)が好ましい。   As a method of forming a FRP by impregnating a carbon fiber fabric with a matrix resin, an autoclave method using a prepreg (a hot melt method, a wet method, etc.) in which the carbon fiber fabric is impregnated with a matrix resin in advance, or a carbon fiber fabric is used. Forming a remodel (pre-formed body) to form a cavity (a double-sided mold in which a male mold and a female mold are molds), one of the male mold and female mold is a mold and the other is a flexible bag film And a direct injection method in which the matrix resin is directly impregnated in a single-sided mold that is a mold). Among them, the latter (particularly the RTM method using a double-sided type) is preferable because it is excellent in productivity and easy to reduce costs.

本発明で用いる炭素繊維糸条としては、繊維直径が5〜10μmのポリアクリルニトリル系で、引張強度が3〜7GPa、引張弾性率が200〜500GPaのマルチフィラメントとすることにより高い力学特性を発揮するFRPが得られることから好ましい。かかる炭素繊維糸条は、一般に繊度が大きくなるほど製造コストが安価であるから低コストの織物基材を提供できることから、本発明に用いる炭素繊維糸条の繊度は350〜3,500texの太繊度糸が好ましい。炭素繊維糸条の繊度が350texより小さい細繊度糸では、たて糸とよこ糸の交錯点数が多いので織物形態が安定しており、目どめする必要もなく本発明の熱処理を施すことなくそのままの形で用いることが可能である。これより太繊度の炭素繊維糸条の場合、たて糸とよこ糸の交錯点数が少なくなり目ずれし易く、取扱の難しい織物であるから目どめが必要となり、本発明の効果が高く発揮される。しかし、3,500texを越える太繊度の炭素繊維糸条となると、糸幅を均一に拡げない限り繊維分散が均一な織物が得られない問題があり、力学特性を十分に発揮させる織物を得ることが難しい場合がある。   The carbon fiber yarn used in the present invention is a polyacrylonitrile fiber having a fiber diameter of 5 to 10 μm, and exhibits high mechanical properties by being a multifilament having a tensile strength of 3 to 7 GPa and a tensile modulus of 200 to 500 GPa. It is preferable because FRP is obtained. Since such carbon fiber yarns can generally provide a low-cost textile substrate because the production cost is lower as the fineness increases, the carbon fiber yarn used in the present invention has a fineness yarn of 350 to 3,500 tex. Is preferred. In the case of a fine yarn having a fineness of carbon fiber yarn of less than 350 tex, the number of crossing points of the warp and weft yarn is large, so that the woven form is stable, and it is not necessary to awaken and it is not subjected to the heat treatment of the present invention. Can be used. In the case of a carbon fiber yarn having a thicker fineness than this, the number of crossing points of the warp and weft yarns is small, and the fabric is easily misaligned. However, when the carbon fiber yarn has a fineness exceeding 3,500 tex, there is a problem that a woven fabric with uniform fiber dispersion cannot be obtained unless the yarn width is uniformly expanded. May be difficult.

(実施例1)
たて糸に、炭素繊維糸条(JIS R7601に沿って測定された引張強度4,900MPa、引張弾性率234GPa、繊度800tex、撚数0ターン/m、扁平率70の扁平状炭素繊維糸条)を用い、よこ糸に、ポリエステル繊維(融点260℃、繊度55dtex)を用いて、たて糸密度が2.5本/cm、よこ糸密度が3本/cmである一方向性織物(炭素繊維目付200g/m)を製織した。以下に詳細な工程を記載する。
(Example 1)
Carbon fiber yarns (flat carbon fiber yarns having a tensile strength of 4,900 MPa, a tensile modulus of elasticity of 234 GPa, a fineness of 800 tex, a twist of 0 turns / m, and a flatness of 70 measured according to JIS R7601) are used for the warp. A polyester fiber (melting point 260 ° C., fineness 55 dtex) is used for the weft yarn, and the warp yarn density is 2.5 yarns / cm and the weft yarn density is 3 yarns / cm (carbon fiber basis weight 200 g / m 2 ). Was woven. Detailed steps are described below.

(A)引出工程:炭素繊維糸条をたて糸とし、各ボビンから横取り解舒して引き揃えて、整経せずに織機に導いて製織した。なお、炭素繊維糸条として、扁平率70の扁平状のものを用いた。   (A) Drawing process: Carbon fiber yarns were used as warp yarns, taken from each bobbin, unwound and drawn, and led to a loom without warping to be woven. In addition, as the carbon fiber yarn, a flat one having a flatness ratio of 70 was used.

(B)付着工程:ポリアミド樹脂を水に溶解させた樹脂溶液1(水溶性ポリアミド樹脂、濃度は7重量%、東レ(株)製AQナイロン)で、縦取り解舒したよこ糸を全体的に濡らした。よこ糸を濡らす手段として多孔質体接触手段を用いた。具体的には、多孔質体としてポリアミド製スポンジを用い、よこ糸はスポンジの上部は接触させ、スポンジの下部には乳濁液1を浸し、スポンジの浸透圧でスポンジ上部に乳濁液1が供給され、よこ糸が接触する上部からよこ糸が持ち出すようにした。   (B) Adhesion step: Wet the weft thread that has been unraveled vertically with resin solution 1 (water-soluble polyamide resin, 7% by weight, AQ nylon manufactured by Toray Industries, Inc.) in which polyamide resin is dissolved in water. It was. A porous body contact means was used as a means for wetting the weft yarn. Specifically, a polyamide sponge is used as the porous body, the weft thread is in contact with the upper part of the sponge, the emulsion 1 is immersed in the lower part of the sponge, and the emulsion 1 is supplied to the upper part of the sponge by the osmotic pressure of the sponge. The weft thread is taken out from the upper part where the weft thread comes into contact.

(C)織成工程:よこ糸を、たて糸と交錯させてレピア織機で織成した。   (C) Weaving process: Weft yarn was interwoven with warp yarn and woven with a rapier loom.

(D)乾燥工程:織成した織物を、非接触加熱手段にて分散媒である水を乾燥させた繊度800tex。具体的には、織前(引取ロールに接触する前)で遠赤外線ヒーターを用いて120℃に加熱した。   (D) Drying step: Fineness 800 tex obtained by drying water, which is a dispersion medium, of a woven fabric by a non-contact heating means. Specifically, it was heated to 120 ° C. using a far infrared heater before weaving (before contacting the take-up roll).

(E)巻取工程:織物を巻き取って巻物にした。   (E) Winding step: The fabric was wound into a roll.

得られた一方向性織物1は、よこ糸に沿って線状にポリアミド樹脂がたて糸とよこ糸とを接着して目どめしており取扱性に優れた。また、開口率は4%であった。   The obtained unidirectional woven fabric 1 was excellent in handleability because the polyamide resin adhered to the warp yarn and the weft yarn linearly along the weft yarn. Moreover, the aperture ratio was 4%.

(実施例2)
たて糸およびよこ糸に、繊度が800texの炭素繊維糸条(JIS R7601に沿って測定された引張強度4,900MPa、引張弾性率234GPa、撚数0ターン/m、扁平率70の扁平状炭素繊維糸条)を用いて、たて糸密度およびよこ糸密度が3.1本/cmである二方向性織物(炭素繊維目付200g/m)を、レピア織機にて製織した。製織にあたり、
(B)の付着工程で、エポキシ樹脂を水に乳化剤で乳化させた乳濁液1(エマルジョン型エポキシ樹脂、濃度は12重量%、大日本インキ化学工業(株)製エピクロンEM−82−75Wを水で希釈したもの)で、横取り解舒したよこ糸を、扁平率70の扁平状炭素繊維糸条の片面のみを濡らし、よこ糸を濡らす手段としてロールに接触させるコンタクトロール手段を用いたこと、
(D)の乾燥工程で、接触加熱手段(織機の引取ロールを通過した後の巻取ロールまでの間に配置した、3つの加熱ロールと織物とを直接接触させながら、それぞれ接触する順に100℃、110℃、130℃に加熱)にて加熱・乾燥したこと、
(F)加熱した織物を、送風装置(扇風機)にて35℃未満(エポキシ樹脂である目どめ樹脂の融点および軟化点未満)に冷却する冷却工程を追加したこと、
以外は、実施例1と同様にして炭素繊維織物を得た。
(Example 2)
Carbon fiber yarns having a fineness of 800 tex (flat carbon fiber yarns having a tensile strength of 4,900 MPa measured in accordance with JIS R7601, a tensile modulus of elasticity of 234 GPa, a twist of 0 turns / m, and a flatness of 70 are used for warp and weft. ), A bi-directional woven fabric (carbon fiber basis weight 200 g / m 2 ) having a warp yarn density and a weft yarn density of 3.1 yarns / cm was woven using a rapier loom. In weaving,
In the adhesion step (B), an emulsion 1 obtained by emulsifying an epoxy resin in water with an emulsifier (emulsion type epoxy resin, concentration is 12% by weight, manufactured by Dainippon Ink & Chemicals, Inc., Epicron EM-82-75W) A contact roll means that wets only one side of a flat carbon fiber yarn having a flatness ratio of 70 and wets the weft thread as a means for wetting the weft thread.
In the drying step (D), contact heating means (100 ° C. in the order of contact with each other while directly contacting the three heating rolls and the fabric disposed between the take-up roll after passing through the take-up roll of the loom) , Heated to 110 ° C. and 130 ° C.)
(F) The cooling process which cools the heated textile fabric to less than 35 degreeC (below melting | fusing point and softening point of the awakening resin which is an epoxy resin) with an air blower (electric fan),
Except for the above, a carbon fiber fabric was obtained in the same manner as in Example 1.

得られた二方向性織物2は、よこ糸に沿って帯状にエポキシ樹脂がたて糸とよこ糸とを接着して目どめしており取扱性に優れた。また、開口率は1.2%であり、外観品位に非常に優れた。   The obtained bi-directional woven fabric 2 was excellent in handleability because the epoxy resin adhered to the warp yarn and the weft yarn in a band shape along the weft yarn. Further, the aperture ratio was 1.2%, and the appearance quality was very excellent.

(実施例3)
実施例2と同じ織構造を有する二方向性織物を、レピア織機にて製織するにあたり、
(B)の付着工程で、エポキシ樹脂を水に乳化剤で乳化させた乳濁液2(エマルジョン型エポキシ樹脂、濃度は12重量%、ジャパンエポキシレジン(株)製エピレッツ3540WY55を水で希釈したもの)で、横取り解舒したよこ糸を、扁平率70の扁平状炭素繊維糸条の片面のみを濡らし、よこ糸を濡らす手段として、スプレー手段を用いたこと、
(G)横取り解舒したたて糸全てを、乳濁液2で扁平率70の扁平状炭素繊維糸条の片面のみを濡らし、たて糸を濡らす手段としてロールに接触させるコンタクトロール手段を用いた第二付着工程を追加したこと、
(D)の乾燥工程で、織成した織物を、非接触加熱手段(織前の遠赤外線ヒーターで150℃に加熱)と、接触加熱手段(織機の引取ロールを通過した後の巻取ロールまでの間に配置した、3つの加熱ロールと織物とを直接接触させながら、それぞれ接触する順に100℃、110℃、130℃に加熱)とで加熱・乾燥したこと、
以外は、実施例2と同様にして炭素繊維織物を得た。
(Example 3)
When weaving a bidirectional fabric having the same woven structure as in Example 2 with a rapier loom,
Emulsion 2 in which epoxy resin is emulsified in water with an emulsifier in the adhesion step (B) (emulsion type epoxy resin, concentration is 12 wt%, Japan Epoxy Resins Co., Ltd. Epiletz 3540WY55 diluted with water) Then, the weft thread that had been unrolled was wetted only on one side of the flat carbon fiber yarn having a flatness ratio of 70, and spray means were used as means for wetting the weft thread,
(G) Second adhesion using contact roll means that wets only one side of the flat carbon fiber yarn having a flatness ratio of 70 with the emulsion 2 and makes contact with the roll as means for wetting the warp yarn with the emulsion 2 Adding a process,
In the drying step of (D), the woven fabric is heated to non-contact heating means (heated to 150 ° C. with a far infrared heater before weaving) and contact heating means (up to the winding roll after passing through the take-up roll of the loom). Heating and drying at 100 ° C., 110 ° C., and 130 ° C. in the order of contact, while directly contacting the three heating rolls and the woven fabric disposed between them,
Except for the above, a carbon fiber fabric was obtained in the same manner as in Example 2.

得られた二方向性織物3は、たて糸およびよこ糸に沿って帯状にエポキシ樹脂がたて糸とよこ糸とを接着して目どめしており、実施例2の二方向性織物2よりもさらに取扱性に優れた。また、開口率は2%であり、実施例2の二方向性織物2よりも僅かに大きくなったが、外観品位上は問題ないレベルであった。   The obtained bi-directional woven fabric 3 is made of an epoxy resin that adheres the warp and the weft to a band along the warp and the weft. The bi-directional woven fabric 3 is more handleable than the bi-directional woven fabric 2 of Example 2. outstanding. The opening ratio was 2%, which was slightly larger than that of the bi-directional fabric 2 of Example 2. However, the appearance quality was satisfactory.

(実施例4)
実施例1、2、3で得られた一方向性織物1、二方向性織物2、3をそれぞれ30cm×30cmの正方形に裁断した。裁断時にたて糸やよこ糸がバラバラに成らず、得られたそれぞれの炭素繊維織物は十分に目どめされていた。裁断した炭素繊維織物を同じ方向に合計8枚積層してアイロン(160℃)で加熱・加圧してプリフォームを得た。得られたプリフォームは、二方向性織物がバラバラにならず、目どめ樹脂により接着されていた。このプリフォームを、雄型と雌型とでの両面型(金型)で形成されたキャビティ内に配置し、マトリックス樹脂としてエポキシ樹脂(ジャパンエポキシレジン(株)製エピコート630(主剤)、エピキュアW(硬化剤)を混合比0.464で混ぜたもの)を含浸させ、1.5℃/分で180℃まで昇温し、180℃に到達後120分間保持して硬化させ、2.5℃/分で25℃まで降温してFRPを得た。
Example 4
The unidirectional woven fabric 1 and the bidirectional woven fabrics 2 and 3 obtained in Examples 1, 2, and 3 were each cut into a 30 cm × 30 cm square. The warp and weft yarns did not fall apart at the time of cutting, and each carbon fiber fabric obtained was sufficiently awakened. A total of eight cut carbon fiber fabrics were laminated in the same direction, and heated and pressed with an iron (160 ° C.) to obtain a preform. In the obtained preform, the bi-directional woven fabric did not fall apart, and was adhered by a clogging resin. This preform is placed in a cavity formed by a double-sided mold (mould) of male and female molds, and epoxy resin (Epicoat 630 (main agent) manufactured by Japan Epoxy Resin Co., Ltd., EpiCure W) is used as a matrix resin. (Hardening agent mixed at a mixing ratio of 0.464) is impregnated and heated to 180 ° C. at 1.5 ° C./min, and after reaching 180 ° C., held for 120 minutes to cure, 2.5 ° C. The temperature was lowered to 25 ° C./min to obtain FRP.

得られたFRPは、目どめ樹脂がドメインを形成することなることなく、いずれも表面平滑性に非常に優れた。なお、二方向織物3に較べて二方向性織物2の方が開口率が僅かに低かったため、その分表面平滑性に優れた。   The obtained FRPs were extremely excellent in surface smoothness, without the mesh resin forming a domain. In addition, since the opening ratio of the bidirectional fabric 2 was slightly lower than that of the bidirectional fabric 3, the surface smoothness was improved accordingly.

(比較例1)
(B)の付着工程で、乳濁液を1を用いずに、低融点ポリアミド繊維(東レ(株)製“エルダー”(登録商標)110dtex)を縦取り解舒したよこ糸と引き揃えたこと、
(C)の織成工程で、縦取り解除したよこ糸と低融点ポリアミド繊維とを引き揃えたものを一緒に打ち込み織成したこと、以外は、実施例2と同様にして二方向性織物1を得た。
(Comparative Example 1)
In the adhesion step (B), the low melting point polyamide fiber (“Elder” (registered trademark) 110 dtex manufactured by Toray Industries, Inc.) was aligned with the weft yarn that was unraveled and removed without using the emulsion 1.
In the weaving step (C), the bi-directional fabric 1 is obtained in the same manner as in Example 2 except that the weft yarn released from the longitudinal direction and the low-melting polyamide fiber are aligned and weaved together. It was.

得られた二方向性織物1は、目どめ樹脂であるポリアミド樹脂が安定して引き揃えられておらず、たて糸とよこ糸との交錯点によっては目どめされていない箇所も存在し、目どめにバラツキが大きかった。また、開口率は6%であり、実施例2、3の二方向性織物2、3よりもかなり大きくなり、外観品位上は問題があるレベルであった。   The obtained bi-directional woven fabric 1 does not have the polyamide resin, which is a crush resin, stably arranged, and there are places that are not cleaved depending on the intersection of the warp and the weft. The variation was large. Further, the opening ratio was 6%, which was considerably larger than the bidirectional fabrics 2 and 3 of Examples 2 and 3, and there was a problem in terms of appearance quality.

(比較例2)
よこ糸に、ガラス繊維(ECE225 1/2、扁平率20未満のガラス繊維糸条)と低融点ポリアミド繊維(東レ(株)製“エルダー”(登録商標)330dtex)とを合糸した撚糸を用いたこと、
(B)の付着工程で、樹脂溶液1を用いなかったこと、
(D)の乾燥工程で、非接触加熱手段(巻取前の遠赤外線ヒーターで170℃)加熱したこと、以外は、実施例1と同様にして一方向性織物2を得た。
(Comparative Example 2)
For the weft yarn, a twisted yarn in which glass fiber (ECE225 1/2, glass fiber yarn having a flatness ratio of less than 20) and low melting point polyamide fiber (“Elder” (registered trademark) 330 dtex manufactured by Toray Industries, Inc.) was combined was used. thing,
The resin solution 1 was not used in the adhesion step (B),
In the drying step (D), a unidirectional fabric 2 was obtained in the same manner as in Example 1 except that non-contact heating means (170 ° C. with a far-infrared heater before winding) was used.

得られた一方向性織物2は、よこ糸に沿って線状にポリアミド樹脂がたて糸とよこ糸とを接着して目どめしていた。しかしながら、目どめするのに実施例1よりも高い温度が必要であった。   In the obtained unidirectional fabric 2, the polyamide resin adhered to the warp yarn and the weft yarn linearly along the weft yarn. However, a higher temperature than Example 1 was required to awaken.

(比較例3)
比較例1、2で得られた二方向性織物1、一方向性織物2を実施例4と同様にしてFRPを成形した。
(Comparative Example 3)
FRP was molded in the same manner as in Example 4 using the bidirectional fabric 1 and the unidirectional fabric 2 obtained in Comparative Examples 1 and 2.

得られたFRPは、目どめ樹脂であるポリアミド樹脂がドメインを形成し、表面平滑性に非常に劣った(ポリアミド樹脂が溶け出していた)。   In the obtained FRP, the polyamide resin, which is an abrupt resin, formed a domain, and the surface smoothness was very inferior (the polyamide resin was dissolved).

本発明は、強化繊維織物の組織崩れ、裁断時の解れを抑えて織組織の形態保持に有効な目どめ処理を施すことができ、かつ、マトリックス樹脂と相溶性のある、樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂で目どめしているため、優れた外観品位のFRPを得ることができる。かかるFRPは、表面平滑性の要求が厳しい自動車用途や航空機用途の外装部材に特に好適である。   The present invention is a resin solution, milk, which can be subjected to a squeezing treatment effective in maintaining the shape of the woven structure by suppressing the collapse of the structure of the reinforcing fiber fabric and cutting, and being compatible with the matrix resin. FRP with excellent appearance quality can be obtained because it is agitated with an agitating resin that is a solute or dispersoid of a suspension or suspension. Such FRP is particularly suitable for exterior members for automobiles and aircrafts where surface smoothness requirements are severe.

Claims (12)

たて糸またはよこ糸の少なくとも一方が炭素繊維糸条からなり、織組織の形態を保持する目どめ処理が施された炭素繊維織物の製造方法であって、次の(A)〜(E)の工程を経ることを特徴とする炭素繊維織物の製造方法。
(A)たて糸を、織機に導く引出工程
(B)よこ糸を、溶媒または分散媒が水である樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らす付着工程
(C)少なくとも部分的に濡れたよこ糸を、たて糸と交錯させて織物を織成する織成工程
(D)織成した織物を加熱して乾燥させる乾燥工程
(E)織物を巻き取って巻物にする巻取工程
A method for producing a carbon fiber woven fabric in which at least one of warp yarns and weft yarns is made of carbon fiber yarns and has been subjected to a clogging treatment that maintains the shape of the woven structure, the following steps (A) to (E) A process for producing a carbon fiber woven fabric, characterized in that
(A) Pulling out the warp yarn to the loom (B) Adhering step (C) At least partially wet the weft yarn at least partially with a resin solution, emulsion or suspension in which the solvent or dispersion medium is water Weaving process in which wet weft yarn is interlaced with warp yarn to weave the fabric (D) Drying step in which the woven fabric is heated to dry (E) Winding step in which the fabric is wound into a roll
前記(D)の乾燥工程と(E)の巻取工程との間において、次の(F)の工程を経る、請求項1に記載の炭素繊維織物の製造方法。
(F)加熱乾燥した織物を、樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂の融点未満に冷却する冷却工程
The manufacturing method of the carbon fiber fabric of Claim 1 which passes through the process of following (F) between the drying process of said (D), and the winding process of (E).
(F) A cooling step for cooling the heat-dried fabric to a temperature lower than the melting point of the agitating resin that is the solute or dispersoid of the resin solution, emulsion or suspension.
前記(A)の引出工程と(C)の織成工程との間において、次の(G)の工程を経る、請求項1または2に記載の炭素繊維織物の製造方法。
(G)たて糸を、溶媒または分散媒が水である樹脂溶液、乳濁液または懸濁液で少なくとも部分的に濡らす第二付着工程
The manufacturing method of the carbon fiber fabric of Claim 1 or 2 which passes through the process of following (G) between the drawing-out process of the said (A), and the weaving process of (C).
(G) Second attachment step in which the warp yarn is at least partially wetted with a resin solution, emulsion or suspension in which the solvent or dispersion medium is water.
前記(C)の織成工程において、よこ糸を横取りして解舒撚を混入させずに杼口に打ち込む、請求項1〜3のいずれかに記載の炭素繊維織物の製造方法。 The method for producing a carbon fiber woven fabric according to any one of claims 1 to 3, wherein in the weaving step (C), the weft is intercepted and driven into the shed without mixing untwisting. 前記(C)の織成工程において、少なくとも部分的に濡らされた後のよこ糸の糸幅保持率が70%以上である、請求項1〜4のいずれかに記載の炭素繊維織物の製造方法。 The method for producing a carbon fiber fabric according to any one of claims 1 to 4, wherein in the weaving step (C), the yarn width retention of the weft yarn after being at least partially wetted is 70% or more. 樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂が、後述(D)の乾燥工程後の炭素繊維織物において常温固体のものである、請求項1〜5のいずれかに記載の炭素繊維織物の製造方法。 Any one of Claims 1-5 which are the normal temperature solids in the carbon fiber fabric after the drying process of the below-mentioned (D) are the lime resin which is a solute or dispersoid of a resin solution, emulsion, or suspension. A method for producing a carbon fiber fabric according to claim 1. 樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂が、エポキシ、不飽和ポリエステル、ビニルエステルから選ばれる少なくとも1種である、請求項1〜6のいずれかに記載の炭素繊維織物の製造方法。 7. A close-up resin which is a solute or dispersoid of a resin solution, emulsion or suspension is at least one selected from epoxy, unsaturated polyester, and vinyl ester. Carbon fiber fabric manufacturing method. 樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂が、ポリアミド、ポリエステル、ポリオレフィン、ポリビニルホルマール、ポリエーテルスルフォンから選ばれる少なくとも1種である、請求項1〜6のいずれかに記載の炭素繊維織物の製造方法。 The close-up resin that is a solute or dispersoid of a resin solution, emulsion or suspension is at least one selected from polyamide, polyester, polyolefin, polyvinyl formal, and polyether sulfone. The manufacturing method of the carbon fiber fabric in any one. 炭素繊維織物が、扁平率20〜200の範囲内の扁平状炭素繊維糸条をたて糸とし、該炭素繊維糸条よりも細繊度である補助繊維糸条をよこ糸とする一方向性織物である、請求項1〜8のいずれかに記載の炭素繊維織物の製造方法。 The carbon fiber woven fabric is a unidirectional woven fabric having a flat carbon fiber yarn within the range of a flatness ratio of 20 to 200 as a warp and an auxiliary fiber yarn having a finer degree than the carbon fiber yarn as a weft. The manufacturing method of the carbon fiber fabric in any one of Claims 1-8. 前記一方向性織物のよこ糸である補助繊維糸条の融点が300℃以下である、請求項9に記載の炭素繊維織物の製造方法。 The manufacturing method of the carbon fiber fabric of Claim 9 whose melting | fusing point of the auxiliary fiber yarn which is the weft of the said unidirectional fabric is 300 degrees C or less. 炭素繊維織物が、扁平率20〜200の範囲内の扁平状炭素繊維糸条をたて糸およびよこ糸とする二方向性織物である、請求項1〜8のいずれかに記載の炭素繊維織物の製造方法。 The method for producing a carbon fiber woven fabric according to any one of claims 1 to 8, wherein the carbon fiber woven fabric is a bi-directional woven fabric using a flat carbon fiber yarn having a flatness ratio of 20 to 200 as a warp and a weft. . 請求項1〜11のいずれかに記載の製造方法により得られる炭素繊維織物と、マトリックス樹脂とで構成される繊維強化プラスチックの製造方法であって、繊維強化プラスチックにおいて、炭素繊維織物に含まれる樹脂溶液、乳濁液または懸濁液の溶質または分散質である目どめ樹脂をマトリックス樹脂に相溶させることを特徴とする繊維強化プラスチックの製造方法。 It is a manufacturing method of the fiber reinforced plastic comprised by the carbon fiber fabric obtained by the manufacturing method in any one of Claims 1-11, and matrix resin, Comprising: In fiber reinforced plastic, resin contained in a carbon fiber fabric A method for producing a fiber reinforced plastic, characterized in that an agitating resin, which is a solute or dispersoid of a solution, emulsion or suspension, is dissolved in a matrix resin.
JP2006223869A 2006-08-21 2006-08-21 Method for producing carbon fiber fabric and fiber reinforced plastic Active JP4992339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223869A JP4992339B2 (en) 2006-08-21 2006-08-21 Method for producing carbon fiber fabric and fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223869A JP4992339B2 (en) 2006-08-21 2006-08-21 Method for producing carbon fiber fabric and fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2008045247A true JP2008045247A (en) 2008-02-28
JP4992339B2 JP4992339B2 (en) 2012-08-08

Family

ID=39179262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223869A Active JP4992339B2 (en) 2006-08-21 2006-08-21 Method for producing carbon fiber fabric and fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP4992339B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892588A (en) * 2010-07-09 2010-11-24 东华大学 Normal-temperature size mixing and normal-temperature warp sizing method
CN107841801A (en) * 2017-11-11 2018-03-27 龙邦复合材料有限公司 Carbon fibre carbonizing and prepreg assembly line and its production technology

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203851A (en) * 1987-02-17 1988-08-23 株式会社 梶製作所 Weft yarn feeder of loom
JPH055252A (en) * 1991-06-20 1993-01-14 Kanebo Ltd Method for collecting and weaving weft yarn
JPH07300739A (en) * 1994-03-08 1995-11-14 Toray Ind Inc Reinforcing woven fabric and method and device for producing the same
JPH08209482A (en) * 1995-02-06 1996-08-13 Toray Ind Inc Reinforcing fiber woven fabric
JPH0978401A (en) * 1995-09-04 1997-03-25 Teijin Ltd Weaving by water jet loom
JP2002138344A (en) * 2000-10-25 2002-05-14 Nippon Mitsubishi Oil Corp Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JP2002249984A (en) * 2001-02-23 2002-09-06 Mitsubishi Rayon Co Ltd Rolled material of reinforcing fiber cloth, method and apparatus for producing the same
JP2003082578A (en) * 2001-09-10 2003-03-19 Toray Ind Inc Method for manufacturing nylon woven fabric

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203851A (en) * 1987-02-17 1988-08-23 株式会社 梶製作所 Weft yarn feeder of loom
JPH055252A (en) * 1991-06-20 1993-01-14 Kanebo Ltd Method for collecting and weaving weft yarn
JPH07300739A (en) * 1994-03-08 1995-11-14 Toray Ind Inc Reinforcing woven fabric and method and device for producing the same
JPH08209482A (en) * 1995-02-06 1996-08-13 Toray Ind Inc Reinforcing fiber woven fabric
JPH0978401A (en) * 1995-09-04 1997-03-25 Teijin Ltd Weaving by water jet loom
JP2002138344A (en) * 2000-10-25 2002-05-14 Nippon Mitsubishi Oil Corp Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JP2002249984A (en) * 2001-02-23 2002-09-06 Mitsubishi Rayon Co Ltd Rolled material of reinforcing fiber cloth, method and apparatus for producing the same
JP2003082578A (en) * 2001-09-10 2003-03-19 Toray Ind Inc Method for manufacturing nylon woven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892588A (en) * 2010-07-09 2010-11-24 东华大学 Normal-temperature size mixing and normal-temperature warp sizing method
CN107841801A (en) * 2017-11-11 2018-03-27 龙邦复合材料有限公司 Carbon fibre carbonizing and prepreg assembly line and its production technology

Also Published As

Publication number Publication date
JP4992339B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4626340B2 (en) Method for producing reinforcing fiber substrate and method for producing composite material using the substrate
JP5309561B2 (en) Method for producing reinforcing fiber base laminate for preform, method for producing preform, and method for producing reinforcing fiber plastic
JP4254158B2 (en) Carbon fiber substrate manufacturing method, preform manufacturing method, and composite material manufacturing method
JPWO2016136793A1 (en) Resin supply material, preform, and method for producing fiber reinforced resin
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JP5002895B2 (en) Method for producing reinforced fiber fabric
JP4992339B2 (en) Method for producing carbon fiber fabric and fiber reinforced plastic
JP2002138344A (en) Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JP4341419B2 (en) Preform manufacturing method and composite material manufacturing method
KR102204244B1 (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
JP4559589B2 (en) Method for producing reinforced fiber fabric
JP2012188786A (en) Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof
JP2017160571A (en) Manufacturing method of reinforcing fiber woven fabric and manufacturing apparatus thereof
JP3214648B2 (en) Mesh prepreg for reinforcement, mesh fiber-reinforced plastic and fiber-reinforced cementitious materials
JP2007023431A (en) Carbon fiber woven fabric and method for producing the same
JP2004256961A (en) Method for producing reinforcing fiber substrate and method for producing composite material by using the substrate
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP2007314926A (en) Method for producing carbon fiber woven fabric
JP3834999B2 (en) Prepreg of reinforced fiber fabric and method for producing the same
JP3672043B2 (en) Thermoplastic composite continuous molding and continuous molding method
CN110770377B (en) Method for producing commingled yarn, and method for producing woven fabric or knitted fabric
JP2005264366A (en) Reinforcing fiber fabric roll and method for producing the same
JP2010053477A (en) Methods for producing carbon fiber woven fabric and fiber-reinforced plastic
JP4230069B2 (en) Reinforcing fiber fabric, prepreg, reinforcing fiber composite, and method for producing reinforcing fiber fabric
JP4765553B2 (en) Method for producing carbon fiber fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4992339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3