JP2008044818A - Group iii-v nitride-based semiconductor substrate and group iii-v nitride-based light-emitting element - Google Patents

Group iii-v nitride-based semiconductor substrate and group iii-v nitride-based light-emitting element Download PDF

Info

Publication number
JP2008044818A
JP2008044818A JP2006222407A JP2006222407A JP2008044818A JP 2008044818 A JP2008044818 A JP 2008044818A JP 2006222407 A JP2006222407 A JP 2006222407A JP 2006222407 A JP2006222407 A JP 2006222407A JP 2008044818 A JP2008044818 A JP 2008044818A
Authority
JP
Japan
Prior art keywords
substrate
group iii
concentration
gan
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006222407A
Other languages
Japanese (ja)
Other versions
JP4462251B2 (en
Inventor
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006222407A priority Critical patent/JP4462251B2/en
Priority to US11/716,918 priority patent/US7847313B2/en
Priority to DE102007027446A priority patent/DE102007027446B4/en
Priority to TW096121705A priority patent/TWI355756B/en
Publication of JP2008044818A publication Critical patent/JP2008044818A/en
Application granted granted Critical
Publication of JP4462251B2 publication Critical patent/JP4462251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a group III-V nitride-based semiconductor substrate which can obtain performances equivalent to the values of averaged electric characteristics, obtained by the measurement of a normal bulk crystal, and to provide a group III-V nitride-based light-emitting element. <P>SOLUTION: In the group III-V nitride-based semiconductor substrate, the minimum value of the concentration of a n-type impurity at an arbitrary place within the substrate surface is set to be ≥5×10<SP>17</SP>cm<SP>-3</SP>. Further, the group III-V nitride-based light-emitting element comprises the group III-V nitride-based semiconductor substrate and at least an active layer composed of a group III-V nitride-based semiconductor, which layer is formed on the group III-V nitride-based semiconductor substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電極のオーミック不良やデバイスの特性不良、信頼性不良といった問題を回避することができるIII−V族窒化物系半導体基板、及び該半導体基板を使用したIII−V族窒化物系発光素子に関するものである。   The present invention relates to a group III-V nitride semiconductor substrate capable of avoiding problems such as electrode ohmic defects, device characteristic defects, and reliability defects, and group III-V nitride light emission using the semiconductor substrate. It relates to an element.

窒化ガリウム(GaN)、窒化インジウムガリウム(InGaN)、窒化ガリウムアルミニウム(GaAlN)等のIII−V族窒化物系半導体材料は、禁制帯幅が充分大きく、バンド間遷移も直接遷移型であるため、短波長発光素子への適用が盛んに検討されている。また、電子の飽和ドリフト速度が大きいこと、ヘテロ接合による2次元キャリアガスの利用が可能なこと等から、電子素子への応用も期待されている。   Group III-V nitride-based semiconductor materials such as gallium nitride (GaN), indium gallium nitride (InGaN), and gallium aluminum nitride (GaAlN) have a sufficiently large forbidden band and the interband transition is also a direct transition type. Application to short-wavelength light emitting devices has been actively studied. In addition, application to electronic devices is also expected due to the high saturation drift velocity of electrons and the use of two-dimensional carrier gas by heterojunction.

半導体のデバイスを作製する場合、その下地基板にはエピタキシャル成長する結晶と格子定数や線膨張係数の同じ基板を使用する、いわゆるホモエピタキシャル成長を行うのが一般的である。例えば、GaAsやAlGaAsのエピタキシャル成長を行うための基板には、GaAs単結晶基板が用いられている。しかし、GaN等のIII−V族窒化物系半導体結晶に限っては、これまでに実用に足るサイズ、特性のIII−V族窒化物系半導体基板を製造することができなかった。このため、GaN成長用の基板としては単結晶サファイアが用いられ、この単結晶サファイア基板上に有機金属気相成長(MOVPE)法、分子線気相成長法(MBE)、ハイドライド気相成長法(HVPE)等の気相成長法により、GaNをヘテロエピタキシャル成長させていた。   When a semiconductor device is manufactured, so-called homoepitaxial growth is generally performed using a substrate having the same lattice constant and linear expansion coefficient as that of an epitaxially grown crystal. For example, a GaAs single crystal substrate is used as a substrate for epitaxial growth of GaAs or AlGaAs. However, it has been impossible to produce a group III-V nitride semiconductor substrate having a size and characteristics sufficient for practical use so far only for a group III-V nitride semiconductor crystal such as GaN. For this reason, single crystal sapphire is used as a substrate for GaN growth, and metal organic vapor phase epitaxy (MOVPE), molecular beam vapor phase epitaxy (MBE), hydride vapor phase epitaxy (on the single crystal sapphire substrate ( GaN was heteroepitaxially grown by a vapor phase growth method such as HVPE.

しかしながら、サファイア基板は、GaNと格子定数が異なるため、サファイア基板上に直接GaNを成長させたのでは単結晶膜を成長させることができない。このため、サファイア基板上にSiなどをヘテロ成長させる目的で考案された、低温バッファ層技術をGaNの成長に応用して、サファイア基板上に一旦500℃程度の低温でAlNやGaNのバッファ層を成長させ、この低温成長バッファ層で格子の歪みを緩和させてからその上にGaNを成長させる方法が案出された。   However, since the sapphire substrate has a lattice constant different from that of GaN, a single crystal film cannot be grown by directly growing GaN on the sapphire substrate. Therefore, by applying the low temperature buffer layer technology devised for hetero-growth of Si and the like on the sapphire substrate to the growth of GaN, a buffer layer of AlN or GaN is once formed on the sapphire substrate at a low temperature of about 500 ° C. A method has been devised in which GaN is grown on the low-temperature growth buffer layer after the growth and relaxation of lattice distortion.

この低温成長窒化物層をバッファ層として用いることで、サファイア基板上のGaNの単結晶エピタキシャル成長が可能になった。しかし、低温バッファ層は、成長温度と成長膜厚の最適な条件設定範囲が狭く、再現性を取るのが難しい。   By using this low-temperature grown nitride layer as a buffer layer, single crystal epitaxial growth of GaN on a sapphire substrate became possible. However, the low-temperature buffer layer has a narrow optimum condition setting range for the growth temperature and the growth film thickness, and it is difficult to achieve reproducibility.

このため、サファイア基板上に連続でデバイス構造をエピタキシャル成長させるのではなく、一旦、GaN単層だけを成長させた基板、いわゆるテンプレートだけをまとめて作り溜めしておいて、あるいは、GaNテンプレートだけを外部から調達して、その上に改めてデバイス構造をエピタキシャル成長させる方法も用いられている。   For this reason, the device structure is not epitaxially grown continuously on the sapphire substrate, but only a substrate on which only a GaN single layer is grown, that is, a so-called template is collectively collected or only the GaN template is externally deposited. A method is also used in which a device structure is epitaxially grown on the device.

しかし、サファイア上にGaNを成長させたテンプレートでは、低温バッファ層技術を用いても、やはり基板と結晶の格子のずれは如何ともし難く、得られたGaNは、10〜1010cm−2もの転位密度を有している。この欠陥は、GaN系デバイス、特にLDや紫外発光LEDを製作する上で障害となるため、GaNテンプレートは、もっぱら、デバイス特性に転位の影響が出にくい、可視LED用や電子デバイス用に用いられている。 However, in the template in which GaN is grown on sapphire, even if the low-temperature buffer layer technique is used, the deviation of the lattice between the substrate and the crystal is still difficult, and the obtained GaN has a density of 10 9 to 10 10 cm −2. Have dislocation density. This defect is an obstacle to the production of GaN-based devices, especially LDs and ultraviolet light-emitting LEDs, so GaN templates are used exclusively for visible LEDs and electronic devices that are less susceptible to dislocations on device characteristics. ing.

一方、転位密度の低いエピタキシャル成長層が要求されるLDや紫外LEDデバイスでは、結晶成長用の基板としてGaN材料単体からなる基板を用い、この上に素子部を構成する半導体多層膜を形成する手法が検討されている。以下、こうした結晶成長用のGaN基板を、GaN自立基板と称する。   On the other hand, in LD and ultraviolet LED devices that require an epitaxial growth layer with a low dislocation density, there is a technique in which a substrate made of a single GaN material is used as a substrate for crystal growth, and a semiconductor multilayer film constituting an element portion is formed thereon. It is being considered. Hereinafter, such a GaN substrate for crystal growth is referred to as a GaN free-standing substrate.

GaN自立基板は、サファイア基板等の異種基板上に、転位密度を低減したGaN層を厚くエピ成長させ、成長後にGaN層を下地から剥離して、得られたGaN層を自立したGaN基板として用いる方法が一般的である。   The GaN free-standing substrate is obtained by epitaxially growing a GaN layer with a reduced dislocation density on a heterogeneous substrate such as a sapphire substrate, peeling off the GaN layer from the substrate after growth, and using the obtained GaN layer as a self-standing GaN substrate. The method is common.

例えば、下地基板に開口部を有するマスクを形成し、開口部からラテラル成長させることにより転位の少ないGaN層を得る技術、いわゆるELO(Epitaxial Lateral Overgrowth)技術を用いてサファイア基板上にGaN層を形成した後、サファイア基板をエッチング等により除去し、GaN自立基板を得ることが提案されている(例えば、特許文献1参照)。   For example, a GaN layer is formed on a sapphire substrate using a so-called ELO (Epitaxial Lateral Overgrowth) technique, which is a technique for obtaining a GaN layer with few dislocations by forming a mask having an opening on a base substrate and laterally growing from the opening. After that, it has been proposed to remove the sapphire substrate by etching or the like to obtain a GaN free-standing substrate (see, for example, Patent Document 1).

更に、サファイア等の基板上で網目構造のTiN薄膜を介してGaNを成長することにより、下地基板とGaN層の界面にボイドを形成するVAS法(Void-Assisted Separation)により、GaN基板の剥離と低転位化を同時に可能にする手法も開示されている(例えば、非特許文献1参照)。   Further, by growing GaN on a substrate such as sapphire through a TiN thin film having a network structure, the VAS method (Void-Assisted Separation) is used to form a void at the interface between the base substrate and the GaN layer. A technique for simultaneously enabling low dislocation is also disclosed (for example, see Non-Patent Document 1).

これらの方法で得られたGaN基板は、通常アズグロウンの状態では、その表面にピットやヒロック等のモフォロジが現れており、そのままではデバイス作製のためのエピ層を成長させることが難しい。このため、基板表面を研磨加工して、鏡面に仕上げてから使用されるのが一般的である。
特開平11−251253号公報 Y. Oshima et. al., 「Preparation of Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy with Void−Assisted Separation.」, Jpn. J. Appl. Phys. vol. 42(2003)pp. L1-L3
The GaN substrate obtained by these methods usually has a morphology such as pits and hillocks on its surface in an as-grown state, and it is difficult to grow an epi layer for device fabrication as it is. Therefore, the substrate surface is generally used after being polished to a mirror surface.
JP-A-11-251253 Y. Oshima et. Al., "Preparation of Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy with Void-Assisted Separation.", Jpn. J. Appl. Phys. Vol. 42 (2003) pp. L1-L3

一般に、半導体のバルク結晶は、結晶の成長方向(すなわち、基板厚さ方向)に、不純物濃度の異なる層が周期的に多重に積層されてなる構造を持っていることが多い。この多層構造は、結晶成長中に結晶を回転させていることにより、結晶が温度勾配のある領域や、原料やドーパント濃度の異なる領域を周期的に通過することで、不純物濃度の異なる結晶層が積層されていくことによって現出すると考えられる。この多層構造の様子は、SIMSなどを使って基板の厚さ方向に不純物の濃度分布を調べると、不純物濃度が結晶の回転数と成長速度によって決まる一定周期の振幅を伴っていることからも推測できる。   In general, a semiconductor bulk crystal often has a structure in which multiple layers having different impurity concentrations are periodically stacked in the crystal growth direction (that is, the substrate thickness direction). In this multi-layer structure, the crystal is rotated during crystal growth, so that the crystal periodically passes through regions with temperature gradients and regions with different raw material and dopant concentrations. It is thought to appear by being laminated. The state of this multilayer structure is estimated from the fact that when the impurity concentration distribution is examined in the thickness direction of the substrate using SIMS or the like, the impurity concentration is accompanied by an amplitude of a fixed period determined by the rotation speed and growth rate of the crystal. it can.

また、成長した結晶を成長方向と平行に切断し、切断面にある種のエッチングを施す、或いは励起光を当てて発光の様子を観察すると、「結晶成長界面」(観察している箇所が丁度成長していた時刻にその場所に存在していたはずの仮想的な結晶成長界面の意味)に平行な、一定周期の明瞭な縞模様が見られる。観察される縞はストリエーションとか成長縞と呼ばれている。即ち、結晶中には、その結晶の特定領域が成長した時刻に於ける結晶成長界面形状が、不純物の濃度ムラ=ストリエーションラインとして刻まれていて、それの推移を辿ることで結晶成長界面の履歴が判る。上記縞模様の周期は、前述の不純物濃度分布の周期よりも長周期の場合もあり、必ずしも両者は一致するわけではないが、前記のような縞模様が現れるということは、基板の厚さ方向に不純物濃度の周期的な変動が存在することを示唆している。   In addition, when the grown crystal is cut parallel to the growth direction and some kind of etching is performed on the cut surface, or the state of light emission is observed by applying excitation light, the "crystal growth interface" There is a clear striped pattern with a constant period parallel to the virtual crystal growth interface that should have existed at the time of growth. The observed stripes are called striations or growth stripes. That is, in the crystal, the shape of the crystal growth interface at the time when the specific region of the crystal has grown is engraved as impurity concentration unevenness = striation line. You can see the history. The period of the stripe pattern may be longer than the period of the impurity concentration distribution described above, and the two do not necessarily match, but the appearance of the stripe pattern as described above means that the thickness direction of the substrate This suggests that there are periodic fluctuations in the impurity concentration.

通常、GaAsやInP等の化合物半導体基板にも、基板の厚さ方向に向かって上述のストリエーションが形成されているが、これらの結晶は、融液から成長させたバルク結晶から切り出されているため、ストリエーション内の基板厚さ方向の不純物濃度差は比較的少なく、これがデバイス作製に悪影響を与えることはまず無いと推測される。なぜなら、上記の不純物濃度差は、前述のように、例えば結晶の回転などにより、結晶が温度勾配のある領域や、原料やドーパント濃度の異なる領域を、周期的に通過することで、結晶に取り込まれる不純物濃度に差が生じて引き起こされるが、GaAsやInP等の結晶成長においては、結晶成長界面は、常に同一の融液表面に接しているため、温度勾配やドーパントの濃度勾配は、後述するGaN結晶に較べて極端に少ない環境で成長されているからである。   Normally, the above-mentioned striations are formed in the compound semiconductor substrate such as GaAs or InP in the thickness direction of the substrate, but these crystals are cut out from a bulk crystal grown from a melt. Therefore, the difference in impurity concentration in the substrate thickness direction within the striation is relatively small, and it is presumed that this hardly has an adverse effect on device fabrication. This is because, as described above, the impurity concentration difference is taken into the crystal by periodically passing through a region having a temperature gradient or a region having different raw material or dopant concentration due to, for example, rotation of the crystal. However, in crystal growth of GaAs, InP, etc., the crystal growth interface is always in contact with the same melt surface, so the temperature gradient and dopant concentration gradient will be described later. This is because it is grown in an extremely small environment compared to the GaN crystal.

一方、GaN基板は、前述のように気相成長で製造されるため、融液から成長される他の化合物半導体結晶と較べて、温度勾配の急峻な環境を周期的に通過しながら成長される場合が多い。また、結晶のある通過位置における結晶成長速度は、そこに存在する原料ガス濃度に左右され、また、そこで取り込まれる不純物濃度は、そこに存在するドーパントガス濃度に左右されるが、これらはいずれも炉内の原料ガスの流れの分布によって決まってしまうため、融液から成長される結晶と較べてばらつきが非常に大きくなりやすい。このため、原料ガスが炉内を偏って流れていた場合、結晶基板を回転させていれば、見かけは平均化されて、厚さも不純物濃度も均一な結晶ができるが、実際は、成長速度の極端に大きい領域と小さい領域を交互に通過しながら成長するため、これを詳細に調べてみると、不純物濃度差の非常に大きい層を多層に積み重ねた構造となっている場合が往々にして見つかるのである。   On the other hand, since the GaN substrate is manufactured by vapor phase growth as described above, it is grown while periodically passing through an environment where the temperature gradient is steep compared to other compound semiconductor crystals grown from the melt. There are many cases. In addition, the crystal growth rate at the passing position of the crystal depends on the concentration of the raw material gas existing there, and the concentration of the impurity incorporated therein depends on the concentration of the dopant gas existing there. Since it is determined by the distribution of the raw material gas flow in the furnace, the variation tends to be very large as compared with crystals grown from the melt. For this reason, when the source gas is flowing in the furnace in a biased manner, if the crystal substrate is rotated, the appearance is averaged and crystals with uniform thickness and impurity concentration can be formed. Since it grows while alternately passing through large and small areas, it is often found that when it is examined in detail, it has a structure in which layers with extremely large impurity concentration differences are stacked in multiple layers. is there.

半導体基板のキャリア濃度は、一般にvan der Pauw法や渦電流測定法で測られているが、これらは、いずれもバルクとしての平均化されたキャリア濃度を見ているのであり、基板の厚さ方向に周期的な不純物濃度の分布があっても、それを検知することはできない。しかし、前述のように不純物濃度差の非常に大きいストリエーションが存在している場合は、高キャリア濃度層と低キャリア濃度層を交互に積層したのと等価であり、いくら平均化された見かけのキャリア濃度が高かったとしても、その基板に電極を付けるとオーミックが取れなかったり、基板に垂直に電流を流すデバイスでは、動作電圧を上昇させる、デバイスの発熱を増やして信頼性を劣化させるといった不具合につながる問題があった。   The carrier concentration of a semiconductor substrate is generally measured by the van der Pauw method or the eddy current measurement method, and these are all viewed as an averaged carrier concentration as a bulk. Even if there is a periodic impurity concentration distribution, it cannot be detected. However, when there is a striation with a very large difference in impurity concentration as described above, it is equivalent to alternately stacking high carrier concentration layers and low carrier concentration layers. Even if the carrier concentration is high, if an electrode is attached to the substrate, ohmics cannot be obtained, or in devices that pass current perpendicular to the substrate, the operating voltage is increased, the heat generation of the device is increased, and the reliability is degraded. There was a problem that led to

従って、本発明は上記事情に鑑みなされたものであって、その目的とするところは、通常のバルク結晶の測定で得られる、平均化された電気特性の値通りの性能を得ることが可能なIII−V族窒化物系半導体基板及びIII−V族窒化物系発光素子を提供することにある。   Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to obtain the performance according to the value of the averaged electrical property obtained by measurement of a normal bulk crystal. It is an object to provide a group III-V nitride semiconductor substrate and a group III-V nitride light emitting device.

これまで、当業者間において、基板のストリエーションに着目して基板厚さ方向のキャリア濃度分布を規定するということは行われていなかった。しかし、本発明者は、前述のように、たとえ均一組成を有する単結晶基板といえども、その内部には不純物の濃度分布=キャリア濃度分布が厚さ方向に周期的に存在している点に着目し、基板厚さ方向の最小キャリア濃度層のキャリア濃度を特定の値以上とするように制御して基板を作製することができれば、電極付けや、基板の内部抵抗に起因して発生するデバイスの特性不良や信頼性不良といった問題が回避できることを見出した。   Until now, it has not been performed by those skilled in the art to specify the carrier concentration distribution in the substrate thickness direction by paying attention to the striation of the substrate. However, as described above, the inventor of the present invention is that, even in a single crystal substrate having a uniform composition, impurity concentration distribution = carrier concentration distribution periodically exists in the thickness direction. If the substrate can be manufactured by paying attention and controlling the carrier concentration of the minimum carrier concentration layer in the substrate thickness direction to be equal to or higher than a specific value, devices generated due to electrode attachment and internal resistance of the substrate It was found that problems such as poor characteristics and poor reliability can be avoided.

更に、本発明者は、結晶成長中に結晶基板が回転させられている場合、その回転中心に近い側と遠い側では、基板面内でストリエーションにおけるキャリア濃度の振幅(最小キャリア濃度と最大キャリア濃度の差)に差が生じてしまうことに着目し、平均化されたキャリア濃度が面内で均一に見えていても、この振幅が異なれば、その上に作製したデバイスの動作性能に差が出てしまうことを見出した。   Further, when the crystal substrate is rotated during crystal growth, the present inventor has determined that the carrier concentration amplitude (minimum carrier concentration and maximum carrier concentration) in the striations on the substrate surface on the side closer to and far from the center of rotation. Focusing on the difference in concentration), even if the averaged carrier concentration looks uniform in the plane, if this amplitude is different, there will be a difference in the operating performance of the device fabricated on it. I found out.

本発明は、このように当業者がこれまで着目していなかった新たな視点における上記知見に基づいてなされたものである。即ち、本発明のIII−V族窒化物系半導体基板は、n型不純物を含有したIII−V族窒化物系半導体の単結晶からなる自立した基板であって、前記基板の厚さ方向に対して前記n型不純物濃度の分布が周期的な変動を有しており、前記基板面内の任意の場所で前記n型不純物濃度の最小値が5×1017cm−3以上であることを特徴とする。 The present invention has been made on the basis of the above findings in a new viewpoint that has not been focused on by those skilled in the art. That is, the group III-V nitride semiconductor substrate of the present invention is a self-supporting substrate made of a single crystal of a group III-V nitride semiconductor containing an n-type impurity, and is in the thickness direction of the substrate. The distribution of the n-type impurity concentration has periodic fluctuations, and the minimum value of the n-type impurity concentration is 5 × 10 17 cm −3 or more at an arbitrary position in the substrate surface. And

前記基板の厚さ方向における前記n型不純物濃度の周期的な変動の振幅が前記基板面内の任意の場所において2×1018cm−3以下であることが好ましい。 It is preferable that the amplitude of the periodic fluctuation of the n-type impurity concentration in the thickness direction of the substrate is 2 × 10 18 cm −3 or less at an arbitrary place in the substrate surface.

前記III−V族窒化物系半導体は六方晶系の窒化ガリウムであることが望ましく、この場合、前記基板表面をC面のガリウム面とすることが好ましい。また、前記基板表面に鏡面研磨加工を施すことが望ましい。   The III-V nitride semiconductor is preferably hexagonal gallium nitride. In this case, the substrate surface is preferably a C-plane gallium surface. In addition, it is desirable to perform mirror polishing on the surface of the substrate.

前記n型不純物がシリコン又は酸素とすることができる。また、前記基板の直径が50mm以上であることが好ましい。   The n-type impurity may be silicon or oxygen. The diameter of the substrate is preferably 50 mm or more.

更に、前記III−V族窒化物系半導体基板上に、少なくともIII−V族窒化物系半導体からなる活性層を形成してIII−V族窒化物系発光素子とすることもできる。   Furthermore, an active layer made of at least a group III-V nitride semiconductor can be formed on the group III-V nitride semiconductor substrate to form a group III-V nitride light emitting device.

本発明によれば、基板の平均化されたキャリア濃度は十分に高くても、深さ方向の不純物濃度分布が周期的に変動している(即ち、低濃度層と高濃度層が周期構造を成していて、低濃度層が存在している)ことに起因して起こる電極のオーミック不良やデバイスの特性不良、信頼性不良といった問題を回避することができる。その結果、設計通りのIII−V族窒化物系発光素子を歩留まり良く製造することが可能となる。   According to the present invention, even if the average carrier concentration of the substrate is sufficiently high, the impurity concentration distribution in the depth direction varies periodically (that is, the low concentration layer and the high concentration layer have a periodic structure). Therefore, problems such as electrode ohmic failure, device characteristic failure, and reliability failure caused by the presence of a low concentration layer) can be avoided. As a result, the designed III-V nitride-based light emitting device can be manufactured with a high yield.

(自立基板)
本発明における自立基板(自立した基板)とは、自らの形状を保持でき、ハンドリングに不都合が生じない程度の強度を有する基板をいう。このような強度を具備させるためには、自立基板の厚みは、好ましくは200μm以上とする。また、素子形成後の劈開の容易性等を考慮し、自立基板の厚みは、好ましくは1mm以下とする。あまり厚さが厚いと劈開が困難となり、劈開面に凹凸が生じる。この結果、たとえば半導体レーザ等に適用した場合、反射のロスによるデバイス特性の劣化が問題となる。また、その直径は50mm以上であることが好ましい。
(Independent substrate)
The self-supporting substrate (self-supporting substrate) in the present invention refers to a substrate having a strength that can maintain its own shape and does not cause inconvenience in handling. In order to provide such strength, the thickness of the self-supporting substrate is preferably 200 μm or more. In consideration of easiness of cleavage after element formation, the thickness of the self-supporting substrate is preferably 1 mm or less. If the thickness is too thick, it will be difficult to cleave, and the cleaved surface will be uneven. As a result, when applied to, for example, a semiconductor laser, deterioration of device characteristics due to loss of reflection becomes a problem. Moreover, it is preferable that the diameter is 50 mm or more.

(III−V族窒化物系半導体)
本発明におけるIII−V族窒化物系半導体としては、InGaAl1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される半導体が挙げられる。このうち、窒化ガリウム(GaN)が最も好ましい。強度、製造安定性等、基板材料に求められる特性を満足するからである。また、基板の表面は、(0001)のIII族面(ガリウム面)であることが望ましい。GaN系の結晶は、極性が強く、III族面(ガリウム面)の方がV族面(窒素面)よりも化学的、熱的に安定で、デバイスの作製が容易であるからである。
(III-V group nitride semiconductor)
As the III-V group nitride semiconductor in the present invention, a semiconductor represented by In x Ga y Al 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) is used. Can be mentioned. Of these, gallium nitride (GaN) is most preferred. This is because the properties required for the substrate material such as strength and manufacturing stability are satisfied. Further, the surface of the substrate is desirably a (0001) group III surface (gallium surface). This is because GaN-based crystals are more polar, the group III surface (gallium surface) is more chemically and thermally stable than the group V surface (nitrogen surface), and devices are easier to fabricate.

(基板表面)
一般に、アズグロウンのGaN系エピ表面には、ヒロック等の大きな凹凸や、ステップバンチングによって現れると思われる微少な凹凸が多数存在している。これらは、その上にエピを成長させたときのモフォロジや、膜厚、組成等を不均一にする要因となるばかりでなく、デバイス作製プロセスにおいても、フォトリソグラフィ工程の露光精度を落とすという問題がある。従って、基板表面は平坦な鏡面として研磨加工されていることが望ましい。しかし、研磨加工により、研磨基板の表面には、加工ダメージ層が残留していることがある。転位密度は、grown−in(結晶成長時)で生じた転位のみならず、研磨加工等により結晶成長後に導入された転位によっても増大するため、転位密度を下げ、表面荒れの生じにくい基板を得るためにも、研磨後の加工ダメージ層は、ウェットエッチング、ドライエッチング、歪除去アニール等の手法で除去されていることが望ましい。表面研磨加工後の基板表面は、平坦であることが望ましいことはいうまでもないが、その粗さは、50μm範囲で測定した算術平均粗さRaの値が10nm以下であることが望ましい。なお、可視LED用基板では、微細な加工等がそれほど必要ではなく、それよりもコスト競争力が重視される傾向があるため、結晶成長で得られたままの基板(as−grown基板)を用いても構わない。
(Substrate surface)
In general, a large number of large irregularities such as hillocks and minute irregularities that appear to appear due to step bunching exist on the GaN-based epi surface of as-grown. These are not only factors that make the morphology, film thickness, composition, etc., non-uniform when the epi is grown thereon, but also the problem of reducing the exposure accuracy of the photolithography process in the device fabrication process. is there. Therefore, it is desirable that the substrate surface be polished as a flat mirror surface. However, a processing damage layer may remain on the surface of the polishing substrate due to polishing. The dislocation density is increased not only by dislocations generated by grown-in (during crystal growth) but also by dislocations introduced after crystal growth by polishing or the like, so that the dislocation density is lowered to obtain a substrate that is less prone to surface roughness. For this reason, it is desirable that the processing damage layer after polishing is removed by a technique such as wet etching, dry etching, or strain removal annealing. Needless to say, the surface of the substrate after the surface polishing is desirably flat, but the roughness is preferably 10 nm or less in terms of the arithmetic average roughness Ra measured in the 50 μm range. In addition, since the visible LED substrate does not require so much fine processing or the like, and cost competitiveness tends to be more important than that, a substrate (as-grown substrate) as obtained by crystal growth is used. It doesn't matter.

(基板裏面)
一般に、GaN系の自立基板は、異種の下地基板にヘテロエピ成長させたものを何らかの手法で剥離させて得られる。このため、剥離したままの基板の裏面は、梨地状に荒れていたり、下地基板の一部が付着していたりすることが多い。また、基板の反りに起因して、平坦でない場合もある。これらは、基板上にエピを成長させる際に、基板の温度分布の不均一を生じる原因となり、その結果、エピの均一性を悪化させたり、再現性を悪くしたりしてしまう。このため、一般に、基板裏面は平坦に研磨加工されていることが望ましい。
(Back side of substrate)
In general, a GaN-based free-standing substrate can be obtained by peeling off a hetero-growth substrate on a different kind of base substrate by some method. For this reason, the back surface of the substrate that has been peeled off is often roughened in a satin state, or a part of the base substrate is often attached. Further, it may not be flat due to warpage of the substrate. These cause the temperature distribution of the substrate to become non-uniform when growing the epi on the substrate, and as a result, the uniformity of the epi deteriorates or the reproducibility deteriorates. For this reason, it is generally desirable that the back surface of the substrate be polished flat.

(基板のn型不純物)
基板のn型不純物は、SiやOの他に、Ge、Se、Sといったものを対象とすることができる。
(Substrate n-type impurities)
In addition to Si and O, the n-type impurity of the substrate can target Ge, Se, S, and the like.

(キャリア濃度)
基板厚さ方向の不純物濃度差が問題とされるのは、基板に対して垂直に通電して動作させるLEDやLDといった発光デバイス用のGaN基板においてであり、これらの用途の基板においては、デバイスを作製したときの電極の付けやすさや、電極〜基板間の接触抵抗の低減、通電時の基板抵抗の低減といった観点から、少なくとも5×1017cm−3以上のキャリア濃度が要求される。しかし、このキャリア濃度はあくまでも平均化された見かけのキャリア濃度であり、これまでは、基板のストリエーションに着目して、基板厚さ方向のキャリア濃度分布を規定するということが当業者間で行われていなかった。本発明者は、たとえ均一組成を有する単結晶基板といえども、その内部には不純物の濃度分布=キャリア濃度分布が厚さ方向に周期的に存在しているという観点から、基板厚さ方向の最低キャリア濃度層のキャリア濃度を5×1017cm−3以上とするように制御して基板を作製することにより、電極付けや、基板の内部抵抗に起因して発生するデバイスの特性不良や信頼性不良といった問題が回避できることを明らかにした。
(Carrier concentration)
The difference in impurity concentration in the substrate thickness direction is a problem in GaN substrates for light emitting devices such as LEDs and LDs that are operated by energization perpendicularly to the substrate. A carrier concentration of at least 5 × 10 17 cm −3 or more is required from the viewpoints of ease of attaching an electrode when manufacturing the substrate, reducing contact resistance between the electrode and the substrate, and reducing substrate resistance during energization. However, this carrier concentration is an apparent average carrier concentration, and so far, it has been performed by those skilled in the art to define the carrier concentration distribution in the substrate thickness direction by paying attention to the striation of the substrate. It wasn't. Even if the present inventor is a single crystal substrate having a uniform composition, the concentration distribution of impurities = carrier concentration distribution is periodically present in the thickness direction in the inside thereof, from the viewpoint of the substrate thickness direction. By producing the substrate by controlling the carrier concentration of the lowest carrier concentration layer to be 5 × 10 17 cm −3 or more, it is difficult to obtain device characteristics and reliability due to electrode attachment and internal resistance of the substrate. It was clarified that problems such as sexual defects could be avoided.

(キャリア濃度の振幅)
また、結晶成長中に結晶基板が回転させられている場合、その回転中心に近い側と遠い側では、基板面内でストリエーションにおけるキャリア濃度の振幅(キャリア濃度の最大値と最小値の差)に差が生じてしまう。平均化されたキャリア濃度が面内で均一に見えていても、この振幅が異なれば、その上に作製したデバイスの動作性能に差が出てしまうのである。基板面内の任意の場所における該振幅は2×1018cm−3以下であることが望ましい。かかる範囲としたのは、振幅が2×1018cm−3を超えると、基板面内の最高キャリア濃度は2.5×1018cm−3を超えてしまうことになり、基板の結晶性劣化に伴うデバイス性能の低下が起こり始めるためである。
(Carrier concentration amplitude)
In addition, when the crystal substrate is rotated during crystal growth, the carrier concentration amplitude (the difference between the maximum value and the minimum value of the carrier concentration) in the striation in the substrate plane on the side closer to and far from the center of rotation. Will cause a difference. Even if the averaged carrier concentration looks uniform in the plane, if this amplitude is different, there will be a difference in the operating performance of the device fabricated thereon. The amplitude at an arbitrary location in the substrate surface is desirably 2 × 10 18 cm −3 or less. The reason for this range is that when the amplitude exceeds 2 × 10 18 cm −3 , the highest carrier concentration in the substrate surface exceeds 2.5 × 10 18 cm −3, and the crystallinity of the substrate deteriorates. This is because the device performance starts to deteriorate.

(キャリア濃度の測定方法)
発光デバイス用のGaN基板は、通常SiやOをドープしたn型基板が用いられている。半導体基板のキャリア濃度は前述の通り平均化されたバルク情報として測定されることが多いため、ストリエーション内のキャリア濃度分布を精確に測定することは難しい。しかし、これらのn型ドーパントは、GaN結晶中での活性化率が100%に近いので、基板厚さ方向のドーパント濃度分布を測定することで、ストリエーション内のキャリア濃度分布をほぼ精確に把握することができる。このドーパント濃度は、一般に良く用いられているSIMS分析で容易に測定が可能である。
(Measurement method of carrier concentration)
As a GaN substrate for a light emitting device, an n-type substrate doped with Si or O is usually used. Since the carrier concentration of the semiconductor substrate is often measured as averaged bulk information as described above, it is difficult to accurately measure the carrier concentration distribution in the striation. However, since the activation rate of these n-type dopants in the GaN crystal is close to 100%, the carrier concentration distribution in the striation is almost accurately grasped by measuring the dopant concentration distribution in the substrate thickness direction. can do. This dopant concentration can be easily measured by SIMS analysis that is generally used.

(キャリア濃度の制御方法)
基板厚さ方向の最低キャリア濃度層のキャリア濃度を5×1017cm−3以上とするように、また、面内の任意の場所においてキャリア濃度の振幅を2×1018cm−3以下とするように制御して基板を作製するためには、結晶成長炉内の温度分布の均一化と原料ガス、ドーパントガスの流れの均一化を図った上で、適当な結晶成長速度と結晶回転数を組み合わせて、最適条件を選び、前記のSIMS分析で目的とする不純物濃度分布を満足しているか確認して、成長条件を最終決定すれば良い。個々の結晶成長条件は、使用する炉によっても異なるし、前記パラメータの組み合わせによって、多数の最適条件が存在するので、一義的に決めることはできない。
(Carrier concentration control method)
The carrier concentration of the lowest carrier concentration layer in the substrate thickness direction is set to 5 × 10 17 cm −3 or more, and the amplitude of the carrier concentration is set to 2 × 10 18 cm −3 or less at an arbitrary position in the plane. In order to fabricate the substrate in such a manner, the temperature distribution in the crystal growth furnace is made uniform and the flow of the source gas and dopant gas is made uniform, and then an appropriate crystal growth rate and crystal rotation speed are set. In combination, the optimum condition is selected, and it is confirmed by the SIMS analysis whether the target impurity concentration distribution is satisfied, and the growth condition is finally determined. The individual crystal growth conditions differ depending on the furnace used, and since there are many optimum conditions depending on the combination of the parameters, they cannot be uniquely determined.

(基板の製造方法)
本発明のIII−V族窒化物系半導体基板は、異種基板上にIII−V族窒化物系半導体の単結晶を成長した後、これを剥離することにより得られる。III−V族窒化物系半導体の単結晶は、HVPE法(ハイドライド気相成長)により成長することが望ましい。これは、HVPE法は結晶成長速度が速く、厚膜成長を必要とする基板の作製に適するからである。以下、具体的にGaN自立基板を製造する際に用いるHVPE反応炉について詳述する。
(Substrate manufacturing method)
The group III-V nitride semiconductor substrate of the present invention can be obtained by growing a single crystal of a group III-V nitride semiconductor on a different substrate and then peeling it. A single crystal of a III-V nitride semiconductor is desirably grown by HVPE (hydride vapor phase epitaxy). This is because the HVPE method has a high crystal growth rate and is suitable for manufacturing a substrate that requires thick film growth. Hereinafter, the HVPE reactor used when manufacturing a GaN free-standing substrate will be described in detail.

(HVPE反応炉)
図1に、GaN自立基板の結晶成長に用いる一般的なHVPE炉の構成を示す。
このHVPE反応炉10は、横長の石英製反応管1の外側に、原料加熱用ヒータ2aと結晶成長領域加熱用ヒータ2bからなるヒータで加熱するホットウォール式であり、反応管1の図面左側(上流側)には、V族原料となるNHガスを導入するアンモニアガス導入配管3と、III族原料となるGaClを形成するための塩酸(HCl)ガスを導入する塩酸ガス導入配管4と、導電性制御のためのドーパントガスを導入するドーピングガス導入配管5とを備えている。また、塩酸ガス導入配管4は、途中で拡径されてガリウム融液溜め6が形成されており、金属ガリウムを融解したガリウム融液7を収容できるようになっている。一方、石英反応管1内の図面中央近傍には、下地基板8を配置し、回転軸9aを中心に回転可能に設けられた基板フォルダ9が配置されている。更に、図面右側(下流側)には、排ガスを外部に放出するための排気管11が設けられている。
(HVPE reactor)
FIG. 1 shows a configuration of a general HVPE furnace used for crystal growth of a GaN free-standing substrate.
This HVPE reaction furnace 10 is a hot wall type that is heated outside a horizontally long quartz reaction tube 1 by a heater comprising a raw material heating heater 2a and a crystal growth region heating heater 2b. On the upstream side), an ammonia gas introduction pipe 3 for introducing NH 3 gas as a group V source, a hydrochloric acid gas introduction pipe 4 for introducing hydrochloric acid (HCl) gas for forming GaCl as a group III source, And a doping gas introduction pipe 5 for introducing a dopant gas for controlling conductivity. Further, the hydrochloric acid gas introduction pipe 4 is expanded in the middle to form a gallium melt reservoir 6 and can accommodate a gallium melt 7 in which metal gallium is melted. On the other hand, in the vicinity of the center of the drawing in the quartz reaction tube 1, a base substrate 8 is disposed, and a substrate folder 9 provided so as to be rotatable about a rotation shaft 9a is disposed. Furthermore, an exhaust pipe 11 for releasing exhaust gas to the outside is provided on the right side (downstream side) of the drawing.

このHVPE反応炉10を用いてGaNを成長させるには、まず、原料加熱用ヒータ2aを800℃に、結晶成長領域加熱用ヒータ2bを1000℃に加熱すると共に、ガリウム融液溜め6をGaの融点以上の温度に加熱して金属ガリウムを融解し、ガリウム融液7を形成する。   In order to grow GaN using this HVPE reactor 10, first, the raw material heating heater 2a is heated to 800 ° C., the crystal growth region heating heater 2b is heated to 1000 ° C., and the gallium melt reservoir 6 is made of Ga. The metal gallium is melted by heating to a temperature higher than the melting point to form a gallium melt 7.

次に、アンモニアガス導入配管3からV族原料となるNHガスを、塩酸ガス導入配管4からIII族原料を生成させる為のHClガスを、ドーピングガス導入配管5からドーパント成分を含むガスを導入する。なお、反応性の制御の点から、原料ガスであるHClガス及びNHガスは、Hガスなどのキャリアガスと混合して用いられる。また、HVPE成長では炉内の石英部材からのSiの混入が少なからず起こるので、成長条件によっては、ドーピングガスを流さなくてもn型不純物を含有するGaN結晶を成長させることができる。 Next, NH 3 gas which is a group V raw material is introduced from the ammonia gas introduction pipe 3, HCl gas for generating a group III raw material is introduced from the hydrochloric acid gas introduction pipe 4, and a gas containing a dopant component is introduced from the doping gas introduction pipe 5. To do. From the viewpoint of controlling the reactivity, HCl gas and NH 3 gas, which are raw material gases, are used by being mixed with a carrier gas such as H 2 gas. In addition, since HVPE growth involves a considerable amount of Si mixing from the quartz member in the furnace, depending on the growth conditions, a GaN crystal containing n-type impurities can be grown without flowing a doping gas.

塩酸ガス導入配管4では、途中で、HClガスがガリウム融液7と接触して、
Ga+HCl→GaCl+(1/2)Hという反応が起こり、塩化ガリウムGaClを生成する。
In the hydrochloric acid gas introduction pipe 4, HCl gas comes into contact with the gallium melt 7 along the way,
A reaction of Ga + HCl → GaCl + (1/2) H 2 occurs to generate gallium chloride GaCl.

このGaClガスとキャリアガスHの混合ガス、及びアンモニアNHとキャリアガスHの混合ガスが反応管1内の空間内を矢印方向に運ばれ、基板フォルダ9に設けられた下地基板8上で、GaCl+NH→GaN+HCl+Hの反応が起こり、下地基板8上にGaNが堆積される。なお、結晶成長の下地とする下地基板8は、回転軸9aによって支持された基板フォルダ9に固定されており、成長中は回転されている。反応管内に導入されたガスは、下流の排気管11によって除害設備に導かれ、無害化処理を施された後、大気に排出される。 The mixed gas of GaCl gas and carrier gas H 2 and the mixed gas of ammonia NH 3 and carrier gas H 2 are carried in the space in the reaction tube 1 in the direction of the arrow, and on the base substrate 8 provided in the substrate folder 9. Thus, a reaction of GaCl + NH 3 → GaN + HCl + H 2 occurs, and GaN is deposited on the base substrate 8. Note that the base substrate 8 as a base for crystal growth is fixed to the substrate folder 9 supported by the rotation shaft 9a, and is rotated during the growth. The gas introduced into the reaction tube is guided to a detoxification facility by the downstream exhaust pipe 11, subjected to a detoxification process, and then discharged to the atmosphere.

(HVPE炉の改良例)
HVPE炉は、図2のような構造のものに改良することができる。このHVPE炉20は、回転軸19aを中心に回転可能に設けられた基板フォルダ19を原料ガスの流れに対して10°傾けて配置した以外は、図1に示したHVPE炉と同様に形成されている。
このように構成することで、原料ガスの流れが下流側に行くに従って流路断面積が狭くなり、流速が大きくなる。この作用により、上流側でのGaCl原料の消耗による原料濃度の低下の影響を相殺して、流れの上流から下流に亘って成長速度が減少するのを抑制する。
(Example of improved HVPE furnace)
The HVPE furnace can be improved to a structure as shown in FIG. The HVPE furnace 20 is formed in the same manner as the HVPE furnace shown in FIG. 1 except that the substrate folder 19 provided so as to be rotatable about the rotating shaft 19a is inclined by 10 ° with respect to the flow of the source gas. ing.
By comprising in this way, a flow-path cross-sectional area becomes narrow and the flow velocity becomes large as the flow of source gas goes downstream. By this action, the influence of the decrease in the raw material concentration due to the exhaustion of the GaCl raw material on the upstream side is offset, and the growth rate is suppressed from decreasing from the upstream to the downstream of the flow.

(HVPE炉の変形例)
HVPE炉は、図3のような構造のものに変形することもできる。このHVPE炉30は、回転軸29aを中心に回転可能に設けられた基板フォルダ29を多数枚同時成長型とし、直径2インチの基板を3枚載置可能とした以外は、図1に示したHVPE炉と同様に形成されている。
この基板フォルダ29は、回転軸29aの周りに回転が可能であるが、個々の下地基板8自体は回転しない。即ち、HVPE成長中に下地基板8が自転せずに公転する点が、図1に示したHVPE炉と異なっている。
(Modification of HVPE furnace)
The HVPE furnace can be modified to have a structure as shown in FIG. This HVPE furnace 30 is shown in FIG. 1 except that a large number of substrate folders 29 provided so as to be rotatable about a rotating shaft 29a are of a simultaneous growth type and three substrates having a diameter of 2 inches can be placed. It is formed like the HVPE furnace.
The substrate folder 29 can be rotated around the rotation axis 29a, but the individual base substrate 8 itself does not rotate. That is, the point that the base substrate 8 revolves without rotating during HVPE growth is different from the HVPE furnace shown in FIG.

(下地基板からの剥離方法)
GaN系半導体単結晶を成長した後、これを下地基板から剥離する方法には、ボイド形成剥離法(VAS法)を用いることができる。VAS法は、大口径の基板を再現良く剥離することが可能で、かつ、低転位で特性の均一なGaN自立基板を得ることができるという点で優れている。以下、図4に基づきVAS法について説明する。
(Peeling method from the base substrate)
As a method of peeling a GaN-based semiconductor single crystal from a base substrate after growing it, a void formation peeling method (VAS method) can be used. The VAS method is excellent in that a large-diameter substrate can be peeled off with good reproducibility and a GaN free-standing substrate with low dislocations and uniform characteristics can be obtained. Hereinafter, the VAS method will be described with reference to FIG.

(VAS法)
VAS法では、まずサファイアなどの異種基板41上に、MOVPE法で、低温成長GaNバッファ層(図示せず)を介してGaN層43(例えばSiドープGaN層43)を0.5μm程度成長させる(a)。次に、このGaN層43上に、金属Ti薄膜45を20nm程度の厚さに蒸着し(b)、この基板を電気炉に入れ、アンモニアを含有する水素ガス気流中で1050℃程度に加熱し、熱処理を施す。こうすることで、GaN層43の一部がエッチングされて高密度の空隙(ボイド)を有するボイド層46が発生し、またTi薄膜45は窒化されて表面にサブミクロンの微細な穴が高密度に形成された網目状のTiN層47に変化する(c)。この基板を下地基板として図1〜図3に示すようなHVPE反応炉に入れ、その上に厚膜のGaN層48を成長する(d)。HVPE反応炉を冷却する過程で、厚膜のGaN層48はボイド層46を境に下地基板から自然に剥離し、GaN自立基板49が得られる(e)。得られた基板の表裏面を平坦化加工することによってGaN自立基板50とされる(f)。
(VAS method)
In the VAS method, a GaN layer 43 (for example, a Si-doped GaN layer 43) is first grown on a heterogeneous substrate 41 such as sapphire by a MOVPE method through a low-temperature growth GaN buffer layer (not shown) by about 0.5 μm ( a). Next, a metal Ti thin film 45 is deposited on the GaN layer 43 to a thickness of about 20 nm (b), and the substrate is placed in an electric furnace and heated to about 1050 ° C. in a hydrogen gas stream containing ammonia. Apply heat treatment. By doing so, a part of the GaN layer 43 is etched to generate a void layer 46 having high-density voids, and the Ti thin film 45 is nitrided to form high-density submicron holes on the surface. It changes into the network-like TiN layer 47 formed in (c). This substrate is placed in an HVPE reactor as shown in FIGS. 1 to 3 as a base substrate, and a thick GaN layer 48 is grown thereon (d). In the process of cooling the HVPE reactor, the thick GaN layer 48 is naturally separated from the underlying substrate with the void layer 46 as a boundary, and a GaN free-standing substrate 49 is obtained (e). By planarizing the front and back surfaces of the obtained substrate, a GaN free-standing substrate 50 is obtained (f).

(GaN系発光素子)
得られたGaN自立基板は、その上にMOVPE法でIII−V族窒化物系半導体結晶をエピタキシャル成長させ、発光ダイオードを製造する用途に適している。
(GaN light emitting device)
The obtained GaN free-standing substrate is suitable for use in manufacturing a light-emitting diode by epitaxially growing a group III-V nitride semiconductor crystal on the GaN substrate by MOVPE.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(VAS法による下地基板の作製)
まず、これから述べる比較例及び実施例において使用される下地基板(ボイド形成GaNテンプレート)をVAS法により作製した。
(Preparation of base substrate by VAS method)
First, the base substrate (void formation GaN template) used in the comparative examples and examples described below was manufactured by the VAS method.

図4に示すように、φ2インチ径のサファイアC面ジャスト基板(異種基板41)上に、MOVPE法で、20nmの低温成長GaNバッファ層(図示せず)を介してSiドープGaN層43を0.5μm成長させた(a)。成長圧力は常圧、バッファ層成長時の基板温度は600℃、エピ層成長時の基板温度は1100℃とした。原料は、III族原料としてトリメチルガリウム(TMG)を、V族原料としてアンモニアを、ドーパントとしてモノシランを用いた。キャリアガスは、水素と窒素の混合ガスである。結晶の成長速度は4μm/hであった。エピ層のキャリア濃度は、2×1018cm−3とした。 As shown in FIG. 4, a Si-doped GaN layer 43 is formed on a φ2 inch diameter sapphire C-plane just substrate (heterogeneous substrate 41) by a MOVPE method through a 20 nm low-temperature growth GaN buffer layer (not shown). .5 μm growth (a). The growth pressure was normal pressure, the substrate temperature during buffer layer growth was 600 ° C., and the substrate temperature during epi layer growth was 1100 ° C. As raw materials, trimethylgallium (TMG) was used as a group III raw material, ammonia was used as a group V raw material, and monosilane was used as a dopant. The carrier gas is a mixed gas of hydrogen and nitrogen. The crystal growth rate was 4 μm / h. The carrier concentration of the epi layer was 2 × 10 18 cm −3 .

次に、このGaNエピ基板上に、金属Ti薄膜45を20nmの厚さに蒸着した(b)。こうして得られた基板を電気炉に入れ、20%のアンモニアを含有する水素ガス気流中において1050℃で20分間熱処理した。その結果、SiドープGaN層43の一部がエッチングされて高密度の空隙層(ボイド層46)が発生し、またTi薄膜45は窒化されて表面にサブミクロンの微細な穴が高密度に形成された窒化チタン層(TiN層47)に変化した(c)。以下、説明する比較例及び実施例は、総てこの下地基板(ボイド形成GaNテンプレート)を用いて行ったものである。   Next, a metal Ti thin film 45 was deposited on the GaN epi substrate to a thickness of 20 nm (b). The substrate thus obtained was put in an electric furnace and heat-treated at 1050 ° C. for 20 minutes in a hydrogen gas stream containing 20% ammonia. As a result, a part of the Si-doped GaN layer 43 is etched to generate a high-density void layer (void layer 46), and the Ti thin film 45 is nitrided to form submicron fine holes at a high density on the surface. The resulting titanium nitride layer (TiN layer 47) was changed to (c). The comparative examples and examples to be described below are all performed using this base substrate (void-formed GaN template).

[比較例1]
(基板中心部から20mm離れた場所において、不純物濃度の最小値が5×1017cm−3以上でなく、面内の振幅が2×1018cm−3以下でない場合)
まず、図1に示したHVPE炉を用いて、ボイド形成GaNテンプレート(下地基板8)上に、厚膜のGaNを成長させた。HVPEの成長条件は、キャリアガス中に8×10−3atmの塩化ガリウム及び4.8×10−2atmのアンモニアからなる原料ガスを含有する供給ガス用いて、GaN層を目標の厚さに成長させた。キャリアガスは、水素を5%含有する窒素ガスを用いた。GaN層の成長条件は常圧及び1000℃の基板温度であった。またGaN結晶の成長工程において、ドーピング原料ガスとしてジクロルシランを基板領域に供給することによりシリコンをドープした。
[Comparative Example 1]
(When the minimum value of the impurity concentration is not 5 × 10 17 cm −3 or more and the in-plane amplitude is not 2 × 10 18 cm −3 or less at a location 20 mm away from the center of the substrate)
First, using the HVPE furnace shown in FIG. 1, a thick GaN film was grown on the void-formed GaN template (underlying substrate 8). The growth condition of HVPE is that a GaN layer is formed to a target thickness by using a supply gas containing a source gas composed of 8 × 10 −3 atm gallium chloride and 4.8 × 10 −2 atm ammonia in a carrier gas. Grown up. As the carrier gas, nitrogen gas containing 5% of hydrogen was used. The growth conditions for the GaN layer were atmospheric pressure and a substrate temperature of 1000 ° C. Also, in the GaN crystal growth process, silicon was doped by supplying dichlorosilane as a doping source gas to the substrate region.

図5及び図6は、図1に示したHVPE炉を用いて成長したGaN結晶の膜厚分布を示す図である。   5 and 6 are diagrams showing the film thickness distribution of GaN crystals grown using the HVPE furnace shown in FIG.

図5は、原料ガスの流れ方向に対する成長速度分布を明らかにするために、故意に基板回転を止めて成長したものである。本成長条件においては、塩化ガリウムのモル流量に対して、十分に沢山のアンモニアガスを流しており、従って、GaNの成長速度は塩化ガリウムの供給律速となっている。塩化ガリウムは、GaNの結晶成長で消費されるため、下流に行くほど原料濃度が下がり、従って成長速度も遅くなっていく。図5より、本成長条件においては、基板の直径である50mmの間に、成長速度は約1/5に減少することが分かる。   FIG. 5 shows the growth with intentionally stopping the substrate rotation in order to clarify the growth rate distribution with respect to the flow direction of the source gas. Under this growth condition, a sufficiently large amount of ammonia gas is allowed to flow with respect to the molar flow rate of gallium chloride. Therefore, the growth rate of GaN is limited to supply of gallium chloride. Since gallium chloride is consumed by crystal growth of GaN, the concentration of the raw material decreases as it goes downstream, and thus the growth rate also slows down. From FIG. 5, it can be seen that under the growth conditions, the growth rate is reduced to about 1/5 during the substrate diameter of 50 mm.

図6は、同じ成長条件で、基板を10rpmで回転させて成長させたGaN結晶の膜厚分布である。基板の回転により、原料ガス流れの上流と下流における成長速度の差が平均化されて、表面はかなり平坦化していた。   FIG. 6 is a film thickness distribution of a GaN crystal grown by rotating the substrate at 10 rpm under the same growth conditions. Due to the rotation of the substrate, the difference in growth rate upstream and downstream of the source gas flow was averaged, and the surface was considerably flattened.

上述の成長条件で、基板を10rpmで回転させて、中心膜厚が約600μmのGaN層48を形成し(図4(d))、基板剥離により自立基板49とした後(図4(e))、この基板の表裏面をそれぞれラップ、鏡面研磨して、厚さ430μmのGaN自立基板50とした(図4(f))。   Under the above growth conditions, the substrate is rotated at 10 rpm to form a GaN layer 48 having a center film thickness of about 600 μm (FIG. 4D), and after the substrate is peeled to form a freestanding substrate 49 (FIG. 4E). The front and back surfaces of this substrate were lapped and mirror-polished, respectively, to obtain a 430 μm-thick GaN free-standing substrate 50 (FIG. 4F).

この基板の直径に沿って、5mm角の試料を一列に9枚切り出し、それぞれIn電極を付けてvan der Pauw法でキャリア濃度を測定したところ、その値は1.1±0.1×1018cm−3の範囲に納まっていた。次に、基板の中心と、中心から10mm及び20mm離れた場所から切り出した試料について、基板の厚さ方向のSi濃度分布を測定した。基板の中心と、中心から10mm、20mm離れた場所におけるSIMS測定結果をそれぞれ図7〜9に示す。 Nine 5 mm square samples were cut out in a line along the diameter of the substrate, and each carrier was measured for the carrier concentration by the van der Pauw method with In electrodes attached. The value was 1.1 ± 0.1 × 10 18. It was in the range of cm −3 . Next, the Si concentration distribution in the thickness direction of the substrate was measured with respect to the sample cut out from the center of the substrate and 10 mm and 20 mm away from the center. FIGS. 7 to 9 show the SIMS measurement results at the center of the substrate and at locations 10 mm and 20 mm away from the center, respectively.

図7に、GaN自立基板の中央部に於けるSi濃度プロファイルを示す。基板の中央部から切り出した試料で測定したSi濃度の深さ分布は、それほど大きな変動は無く、約10μmの深さまでの測定で、最大値1.23×1018cm−3、最小値9.96×1017cm−3、平均値1.12×1018cm−3であった。ここで、Si濃度の変動の振幅を(最大濃度−最小濃度)とすると、その値は2.34×1017cm−3となる。 FIG. 7 shows a Si concentration profile at the center of the GaN free-standing substrate. The depth distribution of the Si concentration measured with the sample cut from the center of the substrate does not vary so much, and the maximum value is 1.23 × 10 18 cm −3 and the minimum value is 9. 96 × 10 17 cm -3, and an average value 1.12 × 10 18 cm -3. Here, assuming that the amplitude of fluctuation of the Si concentration is (maximum concentration−minimum concentration), the value is 2.34 × 10 17 cm −3 .

図8に、GaN自立基板の中央から10mmの地点に於けるSi濃度プロファイルを示す。基板の中心から10mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、中央部のそれと較べてやや変動が大きく、最大値1.75×1018cm−3、最小値5.58×1017cm−3、平均値1.12×1018cm−3であった。これより、この測定点におけるSi濃度の振幅は1.19×1018cm−3となる。 FIG. 8 shows a Si concentration profile at a point 10 mm from the center of the GaN free-standing substrate. The depth distribution of the Si concentration measured with a sample cut from a location 10 mm away from the center of the substrate is slightly larger than that of the central portion, with a maximum value of 1.75 × 10 18 cm −3 and a minimum value of 5. 58 × 10 17 cm -3, and an average value 1.12 × 10 18 cm -3. Accordingly, the amplitude of the Si concentration at this measurement point is 1.19 × 10 18 cm −3 .

図9に、GaN自立基板の中央から20mmの地点に於けるSi濃度プロファイルを示す。基板の中心から20mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、中央部のそれと較べてさらに変動が大きく、最大値3.21×1018cm−3、最小値3.23×1017cm−3、平均値1.14×1018cm−3であった。これより、基板の中心から20mm離れた場所におけるSi濃度の振幅は2.89×1018cm−3となる。 FIG. 9 shows a Si concentration profile at a point 20 mm from the center of the GaN free-standing substrate. The depth distribution of the Si concentration measured with a sample cut from a location 20 mm away from the center of the substrate has a larger variation than that of the central portion, with a maximum value of 3.21 × 10 18 cm −3 and a minimum value of 3. 23 × 10 17 cm -3, and an average value 1.14 × 10 18 cm -3. Thus, the amplitude of the Si concentration at a location 20 mm away from the center of the substrate is 2.89 × 10 18 cm −3 .

従って、この基板は、面内の任意の場所におけるSi濃度の振幅が、約2.89×1018cm−3以下であるといえる。尚、SIMS測定において、基板の最表面は、吸着不純物等の影響で、異常な不純物濃度が測定される場合がある。また、結晶欠陥等の存在する特異な点上で測定した場合も、基板の大部分を占める母相部分とは異なる不純物濃度を示す場合がある。このため、本明細書においては、これらの特異な点を除いて測定される値を取り扱うものとする。従って、上述の不純物濃度の値も、明らかに基板表面の影響と判断される高濃度な測定値は除外して取り扱っている。以降に述べる実施例等においても、同様とする。 Therefore, it can be said that this substrate has an Si concentration amplitude of about 2.89 × 10 18 cm −3 or less at an arbitrary position in the plane. In SIMS measurement, an abnormal impurity concentration may be measured on the outermost surface of the substrate due to an adsorbed impurity or the like. In addition, even when measured on a specific point where a crystal defect or the like exists, the impurity concentration may be different from that of the parent phase portion that occupies most of the substrate. For this reason, in this specification, the value measured except these special points shall be handled. Therefore, the above-described impurity concentration values are handled excluding high concentration measurement values that are clearly judged to be the influence of the substrate surface. The same applies to the embodiments described below.

上述の基板とまったく同じ方法で作製したGaN自立基板上に、図10に示す構造のLEDエピを成長し、チップ化してLED特性の面内ばらつきを調査した。LED構造エピはMOVPE成長装置を用いて成長した。成長に用いた原料は、TMG、TMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)、NHである。成長は、まず基板をNH:水素=1:1の混合気流中で1150℃まで昇温し、温度が安定してから5分保持した後、第一層の成長に必要なIII族原料を流し始めるという手順で行った。成長したエピの構造は、GaN基板51側から順に、Siドープn型GaN層52を1μm、In0.15Ga0.85N/GaN−3−MQW活性層53(well層3nm,barrier層10nm)、Mgドープp型Al0.1Ga0.9N層54を40nm、p型GaN層55を500nmである。MQW層の成長は、成長温度を800℃まで下げて行った。それ以外の層の成長温度は、1150℃である。成長圧力は、すべて常圧とした。エピ層成長後、GaN基板51の裏面にTi/Alからなるn型電極56を、p型GaN層55の表面にNi/Auからなるp型電極57を形成した。 An LED epi having a structure shown in FIG. 10 was grown on a GaN free-standing substrate manufactured by the same method as the above-described substrate, and the variation in the LED characteristics was investigated by forming a chip. The LED structure epi was grown using a MOVPE growth apparatus. The raw materials used for the growth are TMG, TMA (trimethylaluminum), TMI (trimethylindium), and NH 3 . In the growth, first, the substrate is heated to 1150 ° C. in a mixed gas flow of NH 3 : hydrogen = 1: 1, held for 5 minutes after the temperature is stabilized, and then the group III raw material necessary for the growth of the first layer is obtained. The procedure was to start flowing. The grown epi structure has an Si-doped n-type GaN layer 52 of 1 μm and an In 0.15 Ga 0.85 N / GaN-3-MQW active layer 53 (well layer 3 nm, barrier layer 10 nm in order from the GaN substrate 51 side. ), The Mg-doped p-type Al 0.1 Ga 0.9 N layer 54 is 40 nm, and the p-type GaN layer 55 is 500 nm. The growth of the MQW layer was performed by lowering the growth temperature to 800 ° C. The growth temperature of the other layers is 1150 ° C. The growth pressure was all normal pressure. After the epi layer growth, an n-type electrode 56 made of Ti / Al was formed on the back surface of the GaN substrate 51, and a p-type electrode 57 made of Ni / Au was formed on the surface of the p-type GaN layer 55.

作製したLEDチップの20mA時の駆動電圧Vfは、基板面内で3.25〜6.02Vと大きくばらついており、基板の外周側で取得したチップほどVfが高くなる傾向が見られた。Vf<3.5Vを合格品とすると、この基板では合格率は45%であった。また、定電流駆動で実施した信頼性試験の結果でも、基板の外周側で取得したチップほど発光出力の変動幅が大きい傾向が見られた。   The drive voltage Vf at 20 mA of the manufactured LED chip varies greatly from 3.25 to 6.02 V within the substrate surface, and the Vf tends to increase as the chip obtained on the outer peripheral side of the substrate. Assuming Vf <3.5V as an acceptable product, the acceptance rate for this substrate was 45%. Further, even in the result of the reliability test performed by the constant current drive, there was a tendency that the fluctuation range of the light emission output was larger as the chip obtained on the outer peripheral side of the substrate.

[実施例1]
(不純物濃度の最小値が5×1017cm−3以上であり、面内の振幅が2×1018cm−3以下の場合)
図2に示す構造のHVPE反応炉を用いた以外は、比較例1と同じ条件でGaNの自立基板を作製した。
[Example 1]
(When the minimum value of the impurity concentration is 5 × 10 17 cm −3 or more and the in-plane amplitude is 2 × 10 18 cm −3 or less)
A GaN free-standing substrate was fabricated under the same conditions as in Comparative Example 1 except that the HVPE reactor having the structure shown in FIG.

図11及び図12は、図2に示したHVPE炉を用いて成長したGaN結晶の膜厚分布を示す図である。   11 and 12 are diagrams showing the film thickness distribution of GaN crystals grown using the HVPE furnace shown in FIG.

図11は、原料ガスの流れ方向に対する成長速度分布を明らかにするために、故意に基板回転を止めて成長したものである。塩化ガリウムは、GaNの結晶成長で消費され、下流に行くほど原料濃度が下がるが、上述の如く基板を傾けて配置したことで、比較例1に対して、下流側で成長速度が遅くなる傾向を大幅に緩和することができる。
図12は、同じ成長条件で、基板を10rpmで回転させて成長させたGaN結晶の膜厚分布である。基板の回転により、原料ガス流れの上流と下流における成長速度の差が平均化されて、表面はほぼ平坦化していた。
FIG. 11 shows growth with intentionally stopping the substrate rotation in order to clarify the growth rate distribution with respect to the flow direction of the source gas. Gallium chloride is consumed in the crystal growth of GaN, and the concentration of the raw material decreases as it goes downstream. However, since the substrate is inclined as described above, the growth rate tends to be slower on the downstream side than Comparative Example 1. Can be greatly eased.
FIG. 12 shows the film thickness distribution of a GaN crystal grown by rotating the substrate at 10 rpm under the same growth conditions. Due to the rotation of the substrate, the difference in growth rate between the upstream and downstream of the source gas flow was averaged, and the surface was almost flattened.

図2に示したHVPE炉を用いて比較例1と同じ条件でGaNの自立基板を作製し、基板の直径に沿って5mm角の試料を一列に9枚切り出して、それぞれIn電極を付けてvan der Pauw法でキャリア濃度を測定した。その結果、キャリア濃度の値は1.2±0.1×1018cm−3の範囲に納まっていた。次に、基板の中心と、中心から10mm及び20mm離れた場所から切り出した試料について、基板の厚さ方向のSi濃度分布を測定した。基板の中心と、中心から10mm及び20mm離れた場所におけるSIMS測定結果をそれぞれ図13〜15に示す。 A GaN free-standing substrate was produced using the HVPE furnace shown in FIG. 2 under the same conditions as in Comparative Example 1. Nine 5 mm square samples were cut out in a row along the diameter of the substrate, and each was attached with an In electrode and van. The carrier concentration was measured by the der Pauw method. As a result, the value of carrier concentration was within the range of 1.2 ± 0.1 × 10 18 cm −3 . Next, the Si concentration distribution in the thickness direction of the substrate was measured with respect to the sample cut out from the center of the substrate and 10 mm and 20 mm away from the center. FIGS. 13 to 15 show the SIMS measurement results at the center of the substrate and at locations 10 mm and 20 mm away from the center, respectively.

図13に、GaN自立基板の中央部に於けるSi濃度プロファイルを示す。基板の中央部から切り出した試料で測定したSi濃度の深さ分布は、約10μmの深さまでの測定で、最大値1.31×1018cm−3、最小値1.10×1018cm−3、平均値1.21×1018cm−3であった。ここで、Si濃度の変動の振幅を(最大濃度−最小濃度)とすると、その値は2.10×1017cm−3となる。 FIG. 13 shows the Si concentration profile at the center of the GaN free-standing substrate. The depth distribution of the Si concentration measured with the sample cut out from the center of the substrate is a maximum value of 1.31 × 10 18 cm −3 and a minimum value of 1.10 × 10 18 cm − when measured to a depth of about 10 μm. 3 and the average value was 1.21 × 10 18 cm −3 . Here, assuming that the amplitude of fluctuation of the Si concentration is (maximum concentration−minimum concentration), the value is 2.10 × 10 17 cm −3 .

図14に、GaN自立基板の中央から10mmの地点に於けるSi濃度プロファイルを示す。基板の中心から10mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、最大値1.40×1018cm−3、最小値1.07×1018cm−3、平均値1.20×1018cm−3であった。これより、基板の中心から10mm離れた場所におけるSi濃度の振幅は3.3×1017cm−3となる。 FIG. 14 shows the Si concentration profile at a point 10 mm from the center of the GaN free-standing substrate. The depth distribution of the Si concentration measured with a sample cut from a location 10 mm away from the center of the substrate has a maximum value of 1.40 × 10 18 cm −3 , a minimum value of 1.07 × 10 18 cm −3 , and an average value of 1 20 × 10 18 cm −3 . Thus, the amplitude of the Si concentration at a location 10 mm away from the center of the substrate is 3.3 × 10 17 cm −3 .

図15に、GaN自立基板の中央から20mmの地点に於けるSi濃度プロファイルを示す。基板の中心から20mm離れた場所から切り出した試料で測定したSi濃度の深さ分布も、中央部のそれとほとんど遜色無く、最大値1.45×1018cm−3、最小値8.58×1017cm−3、平均値1.17×1018cm−3であった。これより、Si濃度の振幅は5.92×1017cm−3となる。 FIG. 15 shows a Si concentration profile at a point 20 mm from the center of the GaN free-standing substrate. The depth distribution of the Si concentration measured with a sample cut from a location 20 mm away from the center of the substrate is almost the same as that of the central portion, with a maximum value of 1.45 × 10 18 cm −3 and a minimum value of 8.58 × 10. It was 17 cm −3 and the average value was 1.17 × 10 18 cm −3 . Thus, the amplitude of the Si concentration is 5.92 × 10 17 cm −3 .

上記結果より、基板の外周部に行くに従って、Si濃度の振幅は徐々に大きくなる傾向が見えるが、基板の中心におけるSi濃度の振幅が2.10×1017cm−3で、中心から20mmの点、即ち、基板の最外周から5mmの点で測定したSi濃度の振幅が5.92×1017cm−3であったということは、この基板では、面内の任意の場所におけるSi濃度の振幅は、1017cm−3台に納まっているであろうと推定される。 From the above results, it can be seen that the amplitude of the Si concentration tends to gradually increase toward the outer peripheral portion of the substrate, but the amplitude of the Si concentration at the center of the substrate is 2.10 × 10 17 cm −3, which is 20 mm from the center. That is, the amplitude of the Si concentration measured at a point 5 mm from the outermost periphery of the substrate was 5.92 × 10 17 cm −3 . It is estimated that the amplitude will be in the 10 17 cm −3 range.

上記のGaN自立基板上に、比較例1と同じく図10に示す構造のLEDエピを成長し、チップ化してLED特性の面内ばらつきを調査した。作製したLEDチップの20mA時の駆動電圧Vfは、基板面内で3.25〜3.55Vと比較的均一であり、基板の面内全域でほぼ均一なVfの分布が観測された。Vf<3.5Vを合格品とすると、この基板では合格率は98%であった。また、定電流駆動で実施した信頼性試験の結果でも、基板の面内でチップの取得位置に対応した分布は見られなかった。   On the GaN free-standing substrate, an LED epi having the structure shown in FIG. 10 was grown as in Comparative Example 1, and the chip was made into chips to investigate in-plane variation in LED characteristics. The drive voltage Vf at 20 mA of the manufactured LED chip was relatively uniform at 3.25 to 3.55 V within the substrate surface, and a substantially uniform distribution of Vf was observed over the entire surface of the substrate. Assuming that Vf <3.5 V is an acceptable product, the acceptance rate of this substrate was 98%. Further, even in the result of the reliability test performed by constant current driving, no distribution corresponding to the chip acquisition position was found in the plane of the substrate.

[実施例2]
(不純物濃度の最小値が5×1017cm−3以上であるが、面内の振幅が2×1018cm−3以下でない場合)
図1に示したHVPE装置を用い、比較例1と同じ条件で、GaNの自立基板を作製した。比較例1との違いは、Si濃度の最低値が結晶の外周側でも5×1017cm−3より低くならないように、ドーパントガスであるジクロルシランの流量を増やしたことにある。その結果、成長終了後の結晶の表面を観察すると、特に結晶の外周側で細かい凹凸の発生が見られた。この結晶の表裏面に、比較例1と同じ研磨加工を施し、得られた基板から直径に沿って5mm角の試料を一列に9枚切り出して、それぞれIn電極を付けてvan der Pauw法でキャリア濃度を測定した。キャリア濃度は、比較例1の時よりもやや上がり、1.6±0.1×1018cm−3の範囲となった。次に、基板の中心と、中心から10mm及び20mm離れた場所から切り出した試料について、基板の厚さ方向のSi濃度分布を測定した。
[Example 2]
(When the minimum value of the impurity concentration is 5 × 10 17 cm −3 or more but the in-plane amplitude is not 2 × 10 18 cm −3 or less)
Using the HVPE apparatus shown in FIG. 1, a GaN free-standing substrate was fabricated under the same conditions as in Comparative Example 1. The difference from Comparative Example 1 is that the flow rate of dichlorosilane, which is a dopant gas, is increased so that the minimum value of the Si concentration does not become lower than 5 × 10 17 cm −3 even on the outer peripheral side of the crystal. As a result, when the surface of the crystal after the growth was observed, fine irregularities were observed particularly on the outer peripheral side of the crystal. The same polishing process as in Comparative Example 1 was applied to the front and back surfaces of this crystal, and nine 5 mm square samples were cut out in a line along the diameter from the obtained substrate, each with an In electrode, and a carrier by van der Pauw method. Concentration was measured. The carrier concentration was slightly higher than that in Comparative Example 1, and was in the range of 1.6 ± 0.1 × 10 18 cm −3 . Next, the Si concentration distribution in the thickness direction of the substrate was measured with respect to the sample cut out from the center of the substrate and 10 mm and 20 mm away from the center.

基板の中央部から切り出した試料で測定したSi濃度の深さ分布は、やはりそれほど大きな変動は無く、約6μmの深さまでの測定で、最大値1.71×1018cm−3、最小値1.48×1018cm−3、平均値1.61×1018cm−3であった。従って、Si濃度の変動の振幅は、2.30×1017cm−3となる。 The depth distribution of the Si concentration measured with the sample cut out from the center of the substrate does not change so much, and the maximum value is 1.71 × 10 18 cm −3 and the minimum value is 1 when measured to a depth of about 6 μm. It was .48 × 10 18 cm −3 and the average value was 1.61 × 10 18 cm −3 . Therefore, the amplitude of variation of the Si concentration is 2.30 × 10 17 cm −3 .

基板の中心から10mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、中央部のそれと較べてやや変動が大きく、最大値2.19×1018cm−3、最小値1.08×1018cm−3、平均値1.63×1018cm−3であった。これより、この測定点におけるSi濃度の振幅は1.11×1018cm−3となる。 The depth distribution of the Si concentration measured with a sample cut from a location 10 mm away from the center of the substrate is slightly larger than that of the central portion, with a maximum value of 2.19 × 10 18 cm −3 and a minimum value of 1. It was 08 × 10 18 cm −3 and the average value was 1.63 × 10 18 cm −3 . Thus, the amplitude of the Si concentration at this measurement point is 1.11 × 10 18 cm −3 .

基板の中心から20mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、中央部のそれと較べてさらに変動が大きく、最大値3.61×1018cm−3、最小値8.25×1017cm−3、平均値1.60×1018cm−3であった。これより、基板の中心から20mm離れた場所におけるSi濃度の振幅は2.79×1018cm−3となる。従って、この基板は、面内の任意の場所におけるSi濃度の振幅が、約2.79×1018cm−3以下であると言える。 The depth distribution of the Si concentration measured with a sample cut from a location 20 mm away from the center of the substrate has a larger variation than that of the central portion, with a maximum value of 3.61 × 10 18 cm −3 and a minimum value of 8. 25 × 10 17 cm -3, and an average value 1.60 × 10 18 cm -3. Thus, the amplitude of the Si concentration at a location 20 mm away from the center of the substrate is 2.79 × 10 18 cm −3 . Therefore, it can be said that this substrate has an Si concentration amplitude of about 2.79 × 10 18 cm −3 or less at an arbitrary position in the plane.

上記のGaN自立基板上に、比較例1と同じく図10に示す構造のLEDエピを成長し、チップ化してLED特性の面内ばらつきを調査した。作製したLEDチップの20mA時の駆動電圧Vfは、基板面内で3.35〜3.81Vと比較的均一であり、基板の面内全域でほぼ均一なVfの分布が観測された。Vf<3.5Vを合格品とすると、この基板では合格率は91%であった。しかし、基板の外周部で、LEDの発光出力が低い分布傾向があり、定電流駆動で実施した信頼性試験の結果では、外周部ほど発光出力の変動が大きい傾向が観測された。   On the GaN free-standing substrate, an LED epi having the structure shown in FIG. 10 was grown as in Comparative Example 1, and the chip was made into chips to investigate in-plane variation in LED characteristics. The drive voltage Vf at 20 mA of the manufactured LED chip was relatively uniform from 3.35 to 3.81 V within the substrate surface, and a substantially uniform distribution of Vf was observed over the entire surface of the substrate. Assuming that Vf <3.5V is an acceptable product, this substrate had a passing rate of 91%. However, the light emission output of the LED tends to be low at the outer peripheral portion of the substrate, and in the result of the reliability test performed by constant current driving, a tendency that the fluctuation of the light output is larger as the outer peripheral portion is observed.

[実施例3]
(不純物濃度の最小値が5×1017cm−3以上であり、面内の振幅が2×1018cm−3以下の場合)
図2に示したHVPE装置を用い、実施例1と同じ条件で、GaNの自立基板を作製した。実施例1との違いは、HVPE装置の基板の傾き角度を5°と小さくした点にある。得られた基板から直径に沿って5mm角の試料を一列に9枚切り出して、それぞれIn電極を付けてvan der Pauw法で測定したキャリア濃度は、実施例1とほとんど変わらない、1.5±0.2×1018cm−3の範囲に納まっていた。次に、基板の中心と、中心から10mm及び20mm離れた場所から切り出した試料について、基板の厚さ方向のSi濃度分布を測定した。
[Example 3]
(When the minimum value of the impurity concentration is 5 × 10 17 cm −3 or more and the in-plane amplitude is 2 × 10 18 cm −3 or less)
Using the HVPE apparatus shown in FIG. 2, a GaN free-standing substrate was fabricated under the same conditions as in Example 1. The difference from the first embodiment is that the tilt angle of the substrate of the HVPE apparatus is reduced to 5 °. Nine 5 mm square samples were cut out in a line along the diameter from the obtained substrate, and each carrier concentration measured by the van der Pauw method with an In electrode attached was almost the same as in Example 1, 1.5 ± It was in the range of 0.2 × 10 18 cm −3 . Next, the Si concentration distribution in the thickness direction of the substrate was measured with respect to the sample cut out from the center of the substrate and 10 mm and 20 mm away from the center.

基板の中央部から切り出した試料で測定したSi濃度の深さ分布は、約10μmの深さまでの測定で、最大値1.69×1018cm−3、最小値1.28×1018cm−3、平均値1.49×1018cm−3であった。ここで、Si濃度の変動の振幅を(最大濃度−最小濃度)とすると、その値は4.1×1017cm−3となる。 The depth distribution of the Si concentration measured with the sample cut out from the center of the substrate is a maximum value of 1.69 × 10 18 cm −3 and a minimum value of 1.28 × 10 18 cm − when measured to a depth of about 10 μm. 3 and the average value was 1.49 × 10 18 cm −3 . Here, assuming that the amplitude of fluctuation of the Si concentration is (maximum concentration−minimum concentration), the value is 4.1 × 10 17 cm −3 .

基板の中心から10mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、最大値2.16×1018cm−3、最小値8.62×1017cm−3、平均値1.51×1018cm−3であった。これより、基板の中心から10mm離れた場所におけるSi濃度の振幅は1.30×1018cm−3となる。 The depth distribution of the Si concentration measured with a sample cut from a location 10 mm away from the center of the substrate has a maximum value of 2.16 × 10 18 cm −3 , a minimum value of 8.62 × 10 17 cm −3 , and an average value of 1 It was 51 × 10 18 cm −3 . Thus, the amplitude of the Si concentration at a location 10 mm away from the center of the substrate is 1.30 × 10 18 cm −3 .

基板の中心から20mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、最大値2.44×1018cm−3、最小値5.43×1017cm−3、平均値1.51×1018cm−3であった。これより、Si濃度の振幅は1.90×1018cm−3となる。 The depth distribution of the Si concentration measured with a sample cut from a location 20 mm away from the center of the substrate has a maximum value of 2.44 × 10 18 cm −3 , a minimum value of 5.43 × 10 17 cm −3 , and an average value of 1 It was 51 × 10 18 cm −3 . Accordingly, the amplitude of the Si concentration is 1.90 × 10 18 cm −3 .

上記結果より、基板の外周部に行くに従って、Si濃度の振幅は徐々に大きくなる傾向が見え、この基板では、基板面内でぎりぎりSi濃度の振幅が2×1018cm−3以内に納まっている程度の分布を持っていると推定される。 From the above results, it can be seen that the amplitude of the Si concentration tends to gradually increase toward the outer peripheral portion of the substrate, and in this substrate, the amplitude of the Si concentration is within 2 × 10 18 cm −3 within the substrate plane. It is estimated that it has a certain degree of distribution.

上記のGaN自立基板上に、比較例1と同じく図10に示す構造のLEDエピを成長し、チップ化してLED特性の面内ばらつきを調査した。作製したLEDチップの20mA時の駆動電圧Vfは、基板面内で3.30〜3.77Vと比較的均一であり、基板の面内全域でほぼ均一なVfの分布が観測された。Vf<3.5Vを合格品とすると、この基板では合格率は92%であった。この基板でも、基板の外周部で、LEDの発光出力がやや低い分布傾向が見られ、定電流駆動で実施した信頼性試験の結果でも、外周部で発光出力の変動が大きい傾向が観測されたが、問題となるような異常な挙動は見られなかった。   On the GaN free-standing substrate, an LED epi having the structure shown in FIG. 10 was grown as in Comparative Example 1, and the chip was made into chips to investigate in-plane variation in LED characteristics. The drive voltage Vf at 20 mA of the manufactured LED chip was relatively uniform from 3.30 to 3.77 V within the substrate surface, and a substantially uniform distribution of Vf was observed over the entire surface of the substrate. Assuming Vf <3.5V as an acceptable product, this substrate had a acceptance rate of 92%. Even in this substrate, the LED light emission output tends to be slightly low in the outer peripheral portion of the substrate, and even in the result of the reliability test performed by constant current driving, a tendency that the light emission output fluctuates greatly in the outer peripheral portion was observed. However, no abnormal behavior was observed.

[比較例2]
(不純物濃度の最小値が5×1017cm−3以上でなく、面内の振幅が2×1018cm−3以下でない場合)
図3に示すような、多数枚同時成長型のサセプタを有するHVPE装置を用いて、比較例1と同じ条件で、GaN自立基板を作製した。
得られた基板から直径に沿って5mm角の試料を一列に9枚切り出して、それぞれIn電極を付けてvan der Pauw法で測定したキャリア濃度は、これも比較例1とほとんど変わらない、1.1±0.2×1018cm−3の範囲に納まっていた。次に、基板の中心と、中心から10mm及び20mm離れた場所から切り出した試料について、基板の厚さ方向のSi濃度分布を測定した。
[Comparative Example 2]
(When the minimum value of the impurity concentration is not 5 × 10 17 cm −3 or more and the in-plane amplitude is not 2 × 10 18 cm −3 or less)
A GaN free-standing substrate was manufactured under the same conditions as in Comparative Example 1 using an HVPE apparatus having a susceptor of a multiple-growth type as shown in FIG.
Nine 5 mm square samples were cut out in a line along the diameter from the obtained substrate, and each carrier concentration measured by the van der Pauw method with an In electrode attached was almost the same as in Comparative Example 1. It was in the range of 1 ± 0.2 × 10 18 cm −3 . Next, the Si concentration distribution in the thickness direction of the substrate was measured with respect to the sample cut out from the center of the substrate and 10 mm and 20 mm away from the center.

この基板では、基板の中央部から外周部に渡って、いずれの位置から切り出した試料のSi濃度の深さ分布でも、大きな変動が観測され、基板中央部では、約6μmの深さまでの測定で、最大値3.09×1018cm−3、最小値3.89×1017cm−3、平均値1.13×1018cm−3であった。従って、Si濃度の変動の振幅は、2.70×1018cm−3となる。 In this substrate, a large variation was observed in the depth distribution of the Si concentration of the sample cut from any position from the center to the outer periphery of the substrate. In the center of the substrate, the measurement was performed up to a depth of about 6 μm. The maximum value was 3.09 × 10 18 cm −3 , the minimum value was 3.89 × 10 17 cm −3 , and the average value was 1.13 × 10 18 cm −3 . Therefore, the amplitude of variation of the Si concentration is 2.70 × 10 18 cm −3 .

基板の中心から10mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、最大値3.03×1018cm−3、最小値4.10×1017cm−3、平均値1.13×1018cm−3であった。これより、この測定点におけるSi濃度の振幅は2.62×1018cm−3となる。 The depth distribution of the Si concentration measured with a sample cut from a location 10 mm away from the center of the substrate has a maximum value of 3.03 × 10 18 cm −3 , a minimum value of 4.10 × 10 17 cm −3 , and an average value of 1 It was 13 × 10 18 cm −3 . Accordingly, the amplitude of the Si concentration at this measurement point is 2.62 × 10 18 cm −3 .

基板の中心から20mm離れた場所から切り出した試料で測定したSi濃度の深さ分布は、最大値3.21×1018cm−3、最小値3.35×1017cm−3、平均値1.15×1018cm−3であった。これより、基板の中心から20mm離れた場所におけるSi濃度の振幅は2.87×1018cm−3となる。従って、この基板は、面内の任意の場所におけるSi濃度の振幅が、約2.87×1018cm−3以下であるといえる。 The depth distribution of the Si concentration measured with a sample cut from a location 20 mm away from the center of the substrate has a maximum value of 3.21 × 10 18 cm −3 , a minimum value of 3.35 × 10 17 cm −3 , and an average value of 1 It was 15 × 10 18 cm −3 . Thus, the amplitude of the Si concentration at a location 20 mm away from the center of the substrate is 2.87 × 10 18 cm −3 . Therefore, it can be said that this substrate has an Si concentration amplitude of about 2.87 × 10 18 cm −3 or less at an arbitrary position in the plane.

上記のGaN自立基板上に、比較例1と同じく図10に示す構造のLEDエピを成長し、チップ化してLED特性の面内ばらつきを調査した。作製したLEDチップの20mA時の駆動電圧Vfは、基板面内で3.31〜5.83Vと大きくばらついており、基板の全面に亘って平均的にVfが高い傾向が観測された。Vf<3.5Vを合格品とすると、この基板では合格率は15%しかなかった。また、定電流駆動で実施した信頼性試験の結果でも、基板の面内でチップの取得位置に対応した分布は見られず、全体的に発光出力の変動が大きい傾向が観測された。   On the GaN free-standing substrate, an LED epi having the structure shown in FIG. 10 was grown as in Comparative Example 1, and the chip was made into chips to investigate in-plane variation in LED characteristics. The drive voltage Vf at 20 mA of the manufactured LED chip varied greatly from 3.31 to 5.83 V within the substrate surface, and it was observed that the average Vf was high on the entire surface of the substrate. Assuming Vf <3.5V as an acceptable product, this substrate had a pass rate of only 15%. In addition, even in the result of the reliability test performed by constant current driving, no distribution corresponding to the chip acquisition position was observed in the plane of the substrate, and a tendency that the fluctuation of the light emission output was large overall was observed.

以上、実施例に基づいて本発明を説明したが、これは例示であり、種々のプロセスの組合せ等にいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。たとえば、実施例においては、従来のHVPE反応炉(図1)を改良したHVPE反応炉(図2)を用いることで、結晶への不純物の取り込まれ方が周期的に変動することを防いだわけだが、図1に示す従来のHVPE反応炉であっても、例えば原料流速を極端に速くすれば、原料の利用効率は犠牲になるが、流れの上流〜下流の成長速度差は少なくなって、不純物濃度の深さ方向の分布を均一化させることが可能である。要は、基板の深さ方向に関する不純物濃度の変動幅を小さくすることが肝要であり、その手段は問わない。   Although the present invention has been described based on the embodiments, this is an exemplification, and various modifications can be made to combinations of various processes, and such modifications are also within the scope of the present invention. That is understood by the contractor. For example, in the embodiment, by using an HVPE reactor (FIG. 2) obtained by improving the conventional HVPE reactor (FIG. 1), the way in which impurities are incorporated into the crystal is prevented from periodically fluctuating. However, even in the conventional HVPE reactor shown in FIG. 1, for example, if the raw material flow rate is extremely increased, the utilization efficiency of the raw material is sacrificed, but the difference in the growth rate between the upstream and downstream of the flow is reduced, It is possible to make the distribution of the impurity concentration in the depth direction uniform. In short, it is important to reduce the fluctuation range of the impurity concentration in the depth direction of the substrate, and any means can be used.

結晶成長に用いる従来のHVPE反応炉の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the conventional HVPE reactor used for crystal growth. 図1のHVPE反応炉を改良した構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure which improved the HVPE reactor of FIG. 図1のHVPE反応炉を変形した構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure which deform | transformed the HVPE reactor of FIG. GaN基板の製造工程(VAS法)を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing process (VAS method) of a GaN substrate. 比較例1において、基板回転を止めて成長したときのGaNの膜厚分布を示すグラフである。In Comparative Example 1, it is a graph showing the film thickness distribution of GaN when growing with the substrate rotation stopped. 比較例1において、基板を回転させて成長したときのGaNの膜厚分布を示すグラフである。In Comparative Example 1, it is a graph showing the film thickness distribution of GaN when growing by rotating the substrate. 比較例1で作製したGaN自立基板結晶の中央部に於けるSi濃度プロファイルを示す図である。FIG. 4 is a diagram showing a Si concentration profile in the central portion of a GaN free-standing substrate crystal produced in Comparative Example 1. 比較例1で作製したGaN自立基板結晶の中央から10mmの地点に於けるSi濃度プロファイルを示す図である。6 is a diagram showing a Si concentration profile at a point 10 mm from the center of the GaN free-standing substrate crystal produced in Comparative Example 1. FIG. 比較例1で作製したGaN自立基板結晶の中央から20mmの地点に於けるSi濃度プロファイルを示す図である。FIG. 6 is a diagram showing a Si concentration profile at a point 20 mm from the center of the GaN free-standing substrate crystal produced in Comparative Example 1. 比較例および実施例で作製したLEDの構造を示す断面図である。It is sectional drawing which shows the structure of LED produced by the comparative example and the Example. 実施例1において、基板回転を止めて成長したときのGaNの膜厚分布を示すグラフである。In Example 1, it is a graph which shows the film thickness distribution of GaN when it stops growing a substrate and it grew. 実施例1において、基板を回転させて成長したときのGaNの膜厚分布を示すグラフである。In Example 1, it is a graph which shows the film thickness distribution of GaN when it grows by rotating a board | substrate. 実施例1で作製したGaN自立基板結晶の中央部に於けるSi濃度プロファイルを示す図である。FIG. 3 is a diagram showing a Si concentration profile in the central portion of a GaN free-standing substrate crystal produced in Example 1. 実施例1で作製したGaN自立基板結晶の中央から10mmの地点に於けるSi濃度プロファイルを示す図である。FIG. 3 is a diagram showing a Si concentration profile at a point 10 mm from the center of the GaN free-standing substrate crystal produced in Example 1. 実施例1で作製したGaN自立基板結晶の中央から20mmの地点に於けるSi濃度プロファイルを示す図である。FIG. 3 is a view showing a Si concentration profile at a point 20 mm from the center of the GaN free-standing substrate crystal produced in Example 1.

符号の説明Explanation of symbols

1 反応管
2a 原料加熱用ヒータ
2b 結晶成長領域加熱用ヒータ
3 アンモニアガス導入配管
4 塩酸ガス導入配管
5 ドーピングガス導入配管
6 ガリウム融液溜め
7 ガリウム融液
8 下地基板
9,19,29 基板フォルダ
9a,19a,29a 回転軸
10,20,30 HVPE反応炉
41 異種基板
43 SiドープGaN層
45 Ti薄膜
46 ボイド層
47 TiN層
48 GaN層
49 GaN自立基板
50 GaN自立基板
51 GaN基板
52 Siドープn型GaN層
53 InGaN/GaN−MQW活性層
54 Mgドープp型Al0.10GaN層
55 p型GaN層
56 n型電極(Ti/Al)
57 p型電極(Ni/Au)
60 LEDチップ
DESCRIPTION OF SYMBOLS 1 Reaction tube 2a Heater for raw material heating 2b Heater for crystal growth region heating 3 Ammonia gas introduction pipe 4 Hydrochloric acid gas introduction pipe 5 Doping gas introduction pipe 6 Gallium melt reservoir 7 Gallium melt 8 Base substrate 9, 19, 29 Substrate folder 9a , 19a, 29a Rotating shaft 10, 20, 30 HVPE reactor 41 Heterogeneous substrate 43 Si-doped GaN layer 45 Ti thin film 46 Void layer 47 TiN layer 48 GaN layer 49 GaN free-standing substrate 50 GaN free-standing substrate 51 GaN substrate 52 Si-doped n-type GaN layer 53 InGaN / GaN-MQW active layer 54 Mg-doped p-type Al 0.10 GaN layer 55 p-type GaN layer 56 n-type electrode (Ti / Al)
57 p-type electrode (Ni / Au)
60 LED chip

Claims (9)

n型不純物を含有したIII−V族窒化物系半導体の単結晶からなる自立した基板であって、前記基板の厚さ方向に対して前記n型不純物濃度の分布が周期的な変動を有しており、前記基板面内の任意の場所で前記n型不純物濃度の最小値が5×1017cm−3以上であることを特徴とするIII−V族窒化物系半導体基板。 A self-supporting substrate made of a single crystal of a group III-V nitride-based semiconductor containing an n-type impurity, wherein the distribution of the n-type impurity concentration has a periodic variation with respect to the thickness direction of the substrate. And a minimum value of the n-type impurity concentration is 5 × 10 17 cm −3 or more at an arbitrary location in the substrate surface. 前記基板の厚さ方向における前記n型不純物濃度の周期的な変動の振幅が前記基板面内の任意の場所において2×1018cm−3以下であることを特徴とする請求項1記載のIII−V族窒化物系半導体基板。 2. The III according to claim 1, wherein the amplitude of the periodic variation of the n-type impurity concentration in the thickness direction of the substrate is 2 × 10 18 cm −3 or less at an arbitrary location in the substrate surface. -Group V nitride semiconductor substrate. 前記III−V族窒化物系半導体は、六方晶系の窒化ガリウムであることを特徴とする請求項1記載のIII−V族窒化物系半導体基板。   2. The group III-V nitride semiconductor substrate according to claim 1, wherein the group III-V nitride semiconductor is hexagonal gallium nitride. 前記基板表面がC面のガリウム面であることを特徴とする請求項3記載のIII−V族窒化物系半導体基板。   4. The III-V nitride semiconductor substrate according to claim 3, wherein the substrate surface is a C-plane gallium surface. 前記基板表面に鏡面研磨加工が施されていることを特徴とする請求項1記載のIII−V族窒化物系半導体基板。   2. The group III-V nitride semiconductor substrate according to claim 1, wherein the substrate surface is mirror-polished. 前記n型不純物がシリコンであることを特徴とする請求項1記載のIII−V族窒化物系半導体基板。   2. The group III-V nitride semiconductor substrate according to claim 1, wherein the n-type impurity is silicon. 前記n型不純物が酸素であることを特徴とする請求項1記載のIII−V族窒化物系半導体基板。   2. The group III-V nitride semiconductor substrate according to claim 1, wherein the n-type impurity is oxygen. 前記基板の直径が50mm以上であることを特徴とする請求項1記載のIII−V族窒化物系半導体基板。   2. The group III-V nitride semiconductor substrate according to claim 1, wherein the substrate has a diameter of 50 mm or more. 請求項1乃至8のいずれか1項記載のIII−V族窒化物系半導体基板上に、少なくともIII−V族窒化物系半導体からなる活性層を形成したことを特徴とするIII−V族窒化物系発光素子。   9. A group III-V nitride comprising an active layer made of at least a group III-V nitride semiconductor formed on the group III-V nitride semiconductor substrate according to any one of claims 1 to 8. Physical light emitting device.
JP2006222407A 2006-08-17 2006-08-17 III-V nitride semiconductor substrate and III-V nitride light emitting device Active JP4462251B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006222407A JP4462251B2 (en) 2006-08-17 2006-08-17 III-V nitride semiconductor substrate and III-V nitride light emitting device
US11/716,918 US7847313B2 (en) 2006-08-17 2007-03-12 Group III-V nitride-based semiconductor substrate and group III-V nitride-based light emitting device
DE102007027446A DE102007027446B4 (en) 2006-08-17 2007-06-14 Group III-V nitride-based semiconductor substrate and Group III-V nitride-based light emitting device
TW096121705A TWI355756B (en) 2006-08-17 2007-06-15 Group iii-v nitride-based semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222407A JP4462251B2 (en) 2006-08-17 2006-08-17 III-V nitride semiconductor substrate and III-V nitride light emitting device

Publications (2)

Publication Number Publication Date
JP2008044818A true JP2008044818A (en) 2008-02-28
JP4462251B2 JP4462251B2 (en) 2010-05-12

Family

ID=38955016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222407A Active JP4462251B2 (en) 2006-08-17 2006-08-17 III-V nitride semiconductor substrate and III-V nitride light emitting device

Country Status (4)

Country Link
US (1) US7847313B2 (en)
JP (1) JP4462251B2 (en)
DE (1) DE102007027446B4 (en)
TW (1) TWI355756B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109136A (en) * 2011-02-22 2011-06-02 Sumitomo Electric Ind Ltd Gallium nitride epitaxial wafer and method of fabricating epitaxial wafer
JP2012248803A (en) * 2011-05-31 2012-12-13 Hitachi Cable Ltd Metal chloride gas generator and metal chloride gas generation method, and hydride vapor phase epitaxial growth apparatus, nitride semiconductor wafer, nitride semiconductor device, wafer for nitride semiconductor light-emitting diode, manufacturing method of nitride semiconductor self-supporting substrate, and nitride semiconductor crystal
JP2015173273A (en) * 2015-04-15 2015-10-01 株式会社サイオクス Semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP2017109891A (en) * 2015-12-15 2017-06-22 株式会社豊田中央研究所 Production apparatus of compound single crystal, and production method of compound single crystal
WO2018147379A1 (en) * 2017-02-10 2018-08-16 株式会社豊田中央研究所 Compound single crystal production apparatus, method for producing compound single crystal, and gan single crystal
JP2019199376A (en) * 2018-05-16 2019-11-21 株式会社サイオクス Nitride crystal substrate and method for manufacturing the same
WO2021161613A1 (en) * 2020-02-14 2021-08-19 国立大学法人東海国立大学機構 Vapor-phase epitaxy device and production method for gallium nitride
US11677005B2 (en) 2018-03-14 2023-06-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method for manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236267B2 (en) 2008-06-04 2012-08-07 Sixpoint Materials, Inc. High-pressure vessel for growing group III nitride crystals and method of growing group III nitride crystals using high-pressure vessel and group III nitride crystal
US8764903B2 (en) 2009-05-05 2014-07-01 Sixpoint Materials, Inc. Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride
US9803293B2 (en) * 2008-02-25 2017-10-31 Sixpoint Materials, Inc. Method for producing group III-nitride wafers and group III-nitride wafers
KR100809243B1 (en) * 2006-04-27 2008-02-29 삼성전기주식회사 Method of producing a nitride film and nitride structure produced by the same
JP5346443B2 (en) 2007-04-16 2013-11-20 ローム株式会社 Semiconductor light emitting device and manufacturing method thereof
US20080303033A1 (en) * 2007-06-05 2008-12-11 Cree, Inc. Formation of nitride-based optoelectronic and electronic device structures on lattice-matched substrates
TWI460322B (en) 2008-06-04 2014-11-11 Sixpoint Materials Inc Methods for producing improved crystallinity group iii-nitride crystals from initial group iii-nitride seed by ammonothermal growth
JP2010135733A (en) * 2008-11-07 2010-06-17 Panasonic Corp Nitride semiconductor laser device and method of manufacturing the same
WO2010060034A1 (en) * 2008-11-24 2010-05-27 Sixpoint Materials, Inc. METHODS FOR PRODUCING GaN NUTRIENT FOR AMMONOTHERMAL GROWTH
TWI414004B (en) * 2010-10-25 2013-11-01 Univ Nat Chiao Tung Multilayer substrate having a gallium nitride layer and fabrication method thereof
US9252324B2 (en) 2013-05-30 2016-02-02 Globalfoundries Inc Heterojunction light emitting diode
WO2016017127A1 (en) * 2014-07-29 2016-02-04 パナソニックIpマネジメント株式会社 Nitride semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102769A (en) 1986-10-21 1988-05-07 梅原 忠利 Spot like induction heating system
JPH0860369A (en) 1994-08-17 1996-03-05 Nissin Electric Co Ltd Chemical vapor growth apparatus
JP3876518B2 (en) 1998-03-05 2007-01-31 日亜化学工業株式会社 Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate
JP4618836B2 (en) 2000-01-04 2011-01-26 シャープ株式会社 Nitride-based compound semiconductor substrate and method for manufacturing the same
US6576932B2 (en) 2001-03-01 2003-06-10 Lumileds Lighting, U.S., Llc Increasing the brightness of III-nitride light emitting devices
ATE448589T1 (en) * 2001-04-12 2009-11-15 Nichia Corp SEMICONDUCTOR ELEMENT MADE OF GALLIUM NITRIDE COMPOSITION
US20030205193A1 (en) * 2001-07-06 2003-11-06 Melnik Yuri V. Method for achieving low defect density aigan single crystal boules
US7309534B2 (en) * 2003-05-29 2007-12-18 Matsushita Electric Industrial Co., Ltd. Group III nitride crystals usable as group III nitride substrate, method of manufacturing the same, and semiconductor device including the same
JP4470682B2 (en) * 2004-10-13 2010-06-02 住友化学株式会社 Method for producing trimethylgallium
KR100662191B1 (en) * 2004-12-23 2006-12-27 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109136A (en) * 2011-02-22 2011-06-02 Sumitomo Electric Ind Ltd Gallium nitride epitaxial wafer and method of fabricating epitaxial wafer
JP2012248803A (en) * 2011-05-31 2012-12-13 Hitachi Cable Ltd Metal chloride gas generator and metal chloride gas generation method, and hydride vapor phase epitaxial growth apparatus, nitride semiconductor wafer, nitride semiconductor device, wafer for nitride semiconductor light-emitting diode, manufacturing method of nitride semiconductor self-supporting substrate, and nitride semiconductor crystal
JP2015173273A (en) * 2015-04-15 2015-10-01 株式会社サイオクス Semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP2017109891A (en) * 2015-12-15 2017-06-22 株式会社豊田中央研究所 Production apparatus of compound single crystal, and production method of compound single crystal
WO2018147379A1 (en) * 2017-02-10 2018-08-16 株式会社豊田中央研究所 Compound single crystal production apparatus, method for producing compound single crystal, and gan single crystal
JP2018127391A (en) * 2017-02-10 2018-08-16 株式会社豊田中央研究所 APPARATUS FOR PRODUCING SINGLE CRYSTAL OF COMPOUND, METHOD FOR PRODUCING SINGLE CRYSTAL OF COMPOUND, AND GaN SINGLE CRYSTAL
US11091851B2 (en) 2017-02-10 2021-08-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus provided with a crucible including a porous baffle plate therein for manufacturing compound single crystal and method for manufacturing compound single crystal
US11677005B2 (en) 2018-03-14 2023-06-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method for manufacturing the same
JP2019199376A (en) * 2018-05-16 2019-11-21 株式会社サイオクス Nitride crystal substrate and method for manufacturing the same
JP7141849B2 (en) 2018-05-16 2022-09-26 株式会社サイオクス Nitride crystal substrate and method for manufacturing nitride crystal substrate
WO2021161613A1 (en) * 2020-02-14 2021-08-19 国立大学法人東海国立大学機構 Vapor-phase epitaxy device and production method for gallium nitride
US11869767B2 (en) 2020-02-14 2024-01-09 National University Corporation Tokai National Higher Education And Research System Gallium nitride vapor phase epitaxy apparatus used in vapor phase epitaxy not using organic metal as a gallium raw material and manufacturing method therefor

Also Published As

Publication number Publication date
DE102007027446B4 (en) 2013-02-28
US20080042160A1 (en) 2008-02-21
DE102007027446A1 (en) 2008-02-21
JP4462251B2 (en) 2010-05-12
TW200818548A (en) 2008-04-16
US7847313B2 (en) 2010-12-07
TWI355756B (en) 2012-01-01

Similar Documents

Publication Publication Date Title
JP4462251B2 (en) III-V nitride semiconductor substrate and III-V nitride light emitting device
US7981713B2 (en) Group III-V nitride-based semiconductor substrate, group III-V nitride-based device and method of fabricating the same
CN101410950B (en) Growth method using nanostructure compliant layers and HVPE for producing high quality compound semiconductor materials
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4696935B2 (en) III-V nitride semiconductor substrate and III-V nitride light emitting device
US6852161B2 (en) Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
US20070215901A1 (en) Group III-V nitride-based semiconductor substrate and method of fabricating the same
GB2440484A (en) Group 3-5 nitride semiconductor multilayer substrate, method for manufacturing group 3-5 nitride semiconductor free-standing substrate
US20130048942A1 (en) Nitride semiconductor template and light-emitting diode
JP2007070154A (en) Group iii-v nitride-based semiconductor substrate and its manufacturing method
JP5509680B2 (en) Group III nitride crystal and method for producing the same
WO2010113423A1 (en) Method for growing crystals of nitride semiconductor, and process for manufacture of semiconductor device
JP6704386B2 (en) Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer
JP6704387B2 (en) Substrate for growing nitride semiconductor, method of manufacturing the same, semiconductor device, and method of manufacturing the same
JP2009208991A (en) Method for producing nitride semiconductor substrate
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP2009023853A (en) Group iii-v nitride semiconductor substrate, method for manufacturing the same, and group iii-v nitride semiconductor device
WO2006087958A1 (en) Nitride semiconductor material and method for manufacturing nitride semiconductor crystal
JP5195613B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
JP2007227803A (en) Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device
US10707309B2 (en) GaN laminate and method of manufacturing the same
JP5488562B2 (en) Manufacturing method of nitride semiconductor substrate
JP2013193918A (en) Self-supporting gallium nitride crystal substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350