JP2008044144A - Mold and its manufacturing method - Google Patents

Mold and its manufacturing method Download PDF

Info

Publication number
JP2008044144A
JP2008044144A JP2006219546A JP2006219546A JP2008044144A JP 2008044144 A JP2008044144 A JP 2008044144A JP 2006219546 A JP2006219546 A JP 2006219546A JP 2006219546 A JP2006219546 A JP 2006219546A JP 2008044144 A JP2008044144 A JP 2008044144A
Authority
JP
Japan
Prior art keywords
thin plate
flow path
mold
fluid flow
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006219546A
Other languages
Japanese (ja)
Other versions
JP5151089B2 (en
Inventor
Takayuki Yamada
高幸 山田
Kazuaki Tabata
和章 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2006219546A priority Critical patent/JP5151089B2/en
Publication of JP2008044144A publication Critical patent/JP2008044144A/en
Application granted granted Critical
Publication of JP5151089B2 publication Critical patent/JP5151089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold which can rapidly and homogeneously control the temperature of a molding surface (cavity) and efficiently obtain a homogeneous molding and a method for producing the mold. <P>SOLUTION: A main part 1 having the molding surface S and a prescribed three-dimensional shape is composed, so that the first-tenth thin plates P1-P10 having the first-eighth through holes H1-H8 having a prescribed shape are laminated to make the outside shape as a whole have a three-dimensional shape, and the first-eighth through holes H1-H8 in the first-eighth thin plates P1-P8 as a whole form a fluid passage W communicating three-dimensionally with the inside of the main part 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、成形型及びその製造方法に関し、さらに詳しくは、成形面(キャビティ)の迅速かつ均質な温度制御が可能で、均質な成形品を効率よく得ることが可能な成形型及びその製造方法に関する。   The present invention relates to a mold and a method for manufacturing the mold, and more specifically, a mold and a method for manufacturing the mold that can quickly and uniformly control a molding surface (cavity) and efficiently obtain a uniform molded product. About.

各種成形品を成形するために用いられる成形型としては、均質な成形品を効率よく得るために、成形面(キャビティ)の迅速かつ均質な温度制御が求められている。   As a mold used for molding various molded products, rapid and uniform temperature control of the molding surface (cavity) is required in order to efficiently obtain a uniform molded product.

このような要請に対応して、例えば、レーザーによって切断した薄板を積層(拡散接合)して流路を形成した金型の概括的イメージが開示されている(特許文献1参照)。また、型面と反対面との間にリブを形成することによって流路を形成したブロー成形用金型が開示されている(特許文献2参照)。
特開平11‐314229号公報 特開平07‐314543号公報
In response to such a request, for example, a general image of a mold in which a thin plate cut by a laser is laminated (diffusion bonding) to form a flow path is disclosed (see Patent Document 1). Further, a blow molding die is disclosed in which a flow path is formed by forming a rib between the mold surface and the opposite surface (see Patent Document 2).
Japanese Patent Laid-Open No. 11-314229 Japanese Patent Application Laid-Open No. 07-314543

本発明は、上述の背景技術に鑑みてなされたものであり、成形面(キャビティ)の迅速かつ均質な温度制御が可能で、均質な成形品を効率よく得ることが可能な成形型及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described background art, and is capable of rapid and homogeneous temperature control of a molding surface (cavity), and a mold capable of efficiently obtaining a uniform molded product and its manufacture. It aims to provide a method.

本発明は、上記目的を達成するため、以下の成形型及びその製造方法が提供される。   In order to achieve the above object, the present invention provides the following mold and a method for producing the same.

[1]成形面を有するとともに所定の立体形状を有する本体部から構成され、前記本体部は、所定形状の貫通孔を有する複数枚の薄板が積層されて、前記本体部の外形形状が全体として前記立体形状を有するように、かつ、前記薄板の前記貫通孔が全体として前記本体部の内部を立体的に連通する流体流路を形成するように、構成されてなることを特徴とする成形型。 [1] It is composed of a main body having a molding surface and a predetermined three-dimensional shape. The main body is formed by laminating a plurality of thin plates having through holes of a predetermined shape, and the outer shape of the main body is as a whole. A mold having the three-dimensional shape and configured so that the through-hole of the thin plate forms a fluid channel that communicates three-dimensionally with the interior of the main body as a whole. .

[2] 前記流体流路は、前記本体部の前記成形面の近傍に配置されることを特徴とする前記[1]に記載の成形型。 [2] The mold according to [1], wherein the fluid channel is disposed in the vicinity of the molding surface of the main body.

[3]前記流体流路は、外部に開口する流体入口及び流体出口を有することを特徴とする前記[1]に記載の成形型。 [3] The mold according to [1], wherein the fluid flow path has a fluid inlet and a fluid outlet that open to the outside.

[4]前記流体入口の近傍に、前記流体の混合手段が配設されたことを特徴とする前記[3]に記載の成形型。 [4] The mold according to [3], wherein the fluid mixing means is disposed in the vicinity of the fluid inlet.

[5]前記流体流路は、2種以上の互いに独立した経路から構成されてなることを特徴とする前記[2]に記載の成形型。 [5] The mold according to [2], wherein the fluid flow path is configured by two or more kinds of mutually independent paths.

[6]機械的加工が困難な硬質材料から形成されてなることを特徴とする前記[1]に記載の成形型。 [6] The mold according to [1], which is formed from a hard material that is difficult to mechanically process.

[7]前記硬質材料は、炭素系材料又はタングステン・カーバイド(WC)であることを特徴とする前記[6]に記載の成形型。 [7] The mold according to [6], wherein the hard material is a carbon-based material or tungsten carbide (WC).

[8]所定形状の貫通孔を有し、積層されることによって、成形面を有するとともに全体として外形形状が所定の立体形状を有するようにかつ前記貫通孔が全体として内部を立体的に連通する流体流路を形成するように、本体部を構成することになる複数枚の薄板を形成する第1の工程と、前記貫通孔を有する薄板を積層して前記流体流路を形成する第2の工程とを含むことを特徴とする成形型の製造方法。 [8] Having through holes of a predetermined shape and being laminated, the through hole has a three-dimensional communication with the inside so that the outer shape has a predetermined three-dimensional shape as a whole and has a molding surface. A first step of forming a plurality of thin plates constituting the main body so as to form a fluid flow path; and a second step of forming the fluid flow path by laminating the thin plates having the through holes. A process for producing a mold, comprising the steps of:

[9]前記第1の工程において、薄板形成基板を用意し、前記薄板形成基板上に薄板形成部材を配置し、前記薄板形成部材に所定形状の前記貫通孔を形成して薄板を形成し、かつ前記第2の工程において、対向基板を用意し、真空中又は不活性ガス雰囲気中で複数枚の前記薄板を前記薄板形成基板から前記対向基板上に順次転写し接合することにより積層することを特徴とする前記[8]に記載の成形型の製造方法。 [9] In the first step, a thin plate forming substrate is prepared, a thin plate forming member is disposed on the thin plate forming substrate, the through hole having a predetermined shape is formed in the thin plate forming member, and a thin plate is formed. In the second step, a counter substrate is prepared, and a plurality of the thin plates are sequentially transferred and bonded from the thin plate forming substrate to the counter substrate in a vacuum or an inert gas atmosphere. The method for producing a mold according to [8], characterized in that it is characterized in that

[10]前記薄板は、機械的加工が困難な硬質材料から形成されてなることを特徴とする前記[8]に記載の成形型の製造方法。 [10] The method for manufacturing a mold according to [8], wherein the thin plate is formed of a hard material that is difficult to mechanically process.

[11]前記硬質材料は、炭素系材料又はタングステン・カーバイド(WC)であることを特徴とする前記[10]に記載の成形型の製造方法。 [11] The method for manufacturing a mold according to [10], wherein the hard material is a carbon-based material or tungsten carbide (WC).

本発明の請求項1に係る成形型によって、成形面(キャビティ)の迅速かつ均質に温度制御することが可能となり、均質な成形品を効率よく得ることが可能となる。   With the mold according to claim 1 of the present invention, the temperature of the molding surface (cavity) can be quickly and uniformly controlled, and a homogeneous molded product can be obtained efficiently.

本発明の請求項2に係る成形型によって、成形面(キャビティ)をさらに迅速かつ均質に温度制御することが可能となる。   The molding die according to claim 2 of the present invention makes it possible to control the temperature of the molding surface (cavity) more quickly and uniformly.

本発明の請求項3に係る成形型によって、流体を円滑に流路内を還流させることができ、成形面(キャビティ)を迅速かつ確実に温度制御することが可能となる。   With the molding die according to claim 3 of the present invention, the fluid can be smoothly recirculated through the flow path, and the temperature of the molding surface (cavity) can be controlled quickly and reliably.

本発明の請求項4に係る成形型によって、成形面(キャビティ)を所望の温度範囲に迅速かつ均質に制御することが可能となる。   With the mold according to claim 4 of the present invention, the molding surface (cavity) can be quickly and uniformly controlled within a desired temperature range.

本発明の請求項5に係る成形型によって、例えば、冷却用と加熱用の2種の流体を適宜還流させることができ、成形面(キャビティ)のきめの細かい温度制御が可能となる。   With the molding die according to claim 5 of the present invention, for example, two kinds of fluids for cooling and heating can be appropriately refluxed, and fine temperature control of the molding surface (cavity) becomes possible.

本発明の請求項6に係る成形型の場合、流体流路を機械的加工によっては形成しないことから、簡易かつ確実に流体流路を形成することができる。従って、本発明の請求項6に係る成形型は、このような機械的加工が困難な硬質材料から成形型を形成する場合に特に有効である。なお、成形型を硬質材料から構成しない場合であっても、本発明は有効である。すなわち、機械的加工によって立体的な流体流路を形成する場合、例えば、縦横等の一括的連続加工は困難なため、適宜孔を塞ぐ作業が必要になるが、本発明の場合はこのような機械的加工が不要であるため有効である。   In the case of the mold according to claim 6 of the present invention, the fluid flow path is not formed by mechanical processing, and therefore the fluid flow path can be formed easily and reliably. Therefore, the mold according to claim 6 of the present invention is particularly effective when the mold is formed from such a hard material that is difficult to machine. Note that the present invention is effective even when the mold is not made of a hard material. That is, when forming a three-dimensional fluid flow path by mechanical processing, for example, batch continuous processing such as vertical and horizontal is difficult, and thus an operation to close holes is necessary, but in the case of the present invention, This is effective because mechanical processing is not required.

本発明の請求項7に係る成形型の場合、すなわち、上述の硬質材料が、具体的には炭素系材料又はタングステン・カーバイド(WC)であるときに、簡易かつ確実に流体流路を形成することができる。   In the case of the mold according to claim 7 of the present invention, that is, when the above-mentioned hard material is specifically a carbon-based material or tungsten carbide (WC), the fluid flow path is easily and reliably formed. be able to.

本発明の請求項8に係る成形型の製造方法によって、成形面(キャビティ)を迅速かつ均質に温度制御することが可能で、均質な成形品を製造することが可能な成形型を効率よく得ることができる。   By the method for manufacturing a mold according to claim 8 of the present invention, it is possible to quickly and uniformly control the temperature of the molding surface (cavity), and efficiently obtain a mold capable of manufacturing a homogeneous molded product. be able to.

本発明の請求項9に係る成形型の製造方法によって、上述の成形型を簡易かつ確実に得ることができる。   By the method for manufacturing a mold according to claim 9 of the present invention, the above-described mold can be obtained easily and reliably.

本発明の請求項10に係る成形型の製造方法の場合、流体流路を機械的加工によっては形成しないことから、簡易かつ確実に流体流路を形成することができる。従って、本発明はこのような機械的加工が困難な硬質材料から成形型を形成する場合に特に有効である。   In the case of the mold manufacturing method according to the tenth aspect of the present invention, since the fluid flow path is not formed by mechanical processing, the fluid flow path can be formed easily and reliably. Therefore, the present invention is particularly effective when forming a mold from such a hard material that is difficult to machine.

本発明の請求項11に係る成形型の製造方法の場合、すなわち、上述の硬質材料として、具体的には炭素系材料又はタングステン・カーバイド(WC)を用いるときに、簡易かつ確実に流体流路を形成することができる。   In the case of the mold manufacturing method according to the eleventh aspect of the present invention, that is, when a carbon-based material or tungsten carbide (WC) is specifically used as the hard material, the fluid flow path can be simply and reliably. Can be formed.

本実施の形態の成形型は、成形面を有するとともに所定の立体形状を有する本体部から構成され、本体部は、所定形状の貫通孔を有する複数枚の薄板が積層されて、本体部の外形形状が全体として立体形状を有するように、かつ、薄板の貫通孔が全体として本体部の内部を立体的に連通する流体流路を形成するように構成され、好ましくは成形面の近傍に流体流路が配置されるように構成することが可能であり、成形面(キャビティ)を迅速かつ均質に温度制御することができるとともに均質な成形品を効率よく製造することができる。   The mold according to the present embodiment includes a main body portion having a molding surface and a predetermined three-dimensional shape, and the main body portion is formed by laminating a plurality of thin plates having through holes of a predetermined shape, thereby forming an outer shape of the main body portion. The thin plate has a three-dimensional shape as a whole, and the thin plate through hole forms a fluid flow channel that communicates three-dimensionally with the interior of the main body as a whole, preferably in the vicinity of the molding surface. It is possible to configure so that the path is arranged, the temperature of the molding surface (cavity) can be quickly and uniformly controlled, and a homogeneous molded product can be efficiently manufactured.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る成形型を示す斜視図であり、図2は、図1のA−A線断面図である。
[First Embodiment]
FIG. 1 is a perspective view showing a mold according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

図1に示すように、本実施の形態の成形型10は、成形面Sを有するとともに所定の立体形状を有する本体部1から構成されている。また、図2に示すように、本体部1は、所定形状の第1〜第8の貫通孔H1〜H8を有する8枚(第1〜第8の薄板P1〜P8)と貫通孔を有しない2枚(第9〜第10の薄板P9〜P10)の合計10枚の第1〜第10の薄板P1〜P10が積層されて、本体部1の外形形状が全体として立体形状を有するように、かつ、第1〜第8の薄板P1〜P8における第1〜第8の貫通孔H1〜H8が全体として本体部1の内部を立体的に連通する流体流路Wを形成するように、構成されている。   As shown in FIG. 1, the molding die 10 of the present embodiment includes a main body 1 having a molding surface S and a predetermined three-dimensional shape. Moreover, as shown in FIG. 2, the main-body part 1 does not have eight through the 1st-8th through-holes H1-H8 (1st-8th thin plates P1-P8) of a predetermined shape, and a through-hole. A total of ten 1st to 10th thin plates P1 to P10 of 2 sheets (9th to 10th thin plates P9 to P10) are laminated so that the outer shape of the main body 1 has a three-dimensional shape as a whole. And it is comprised so that the 1st-8th through-hole H1-H8 in the 1st-8th thin plates P1-P8 may form the fluid flow path W which communicates the inside of the main-body part 1 as a whole. ing.

本実施の形態において、流体流路Wは、本体部1における成形面Sの近傍に配置されるように、また、外部に開口する流体入口11及び流体出口12を有するように構成されている。例えば、成形型10の成形面と流体流路Wとの最短距離を0.1mm以下とすること、また、流体経路Wの直径を0.1mm以下とすることが好ましい。ここで、「成形面Sの近傍」とは、上述のように、成形面からの距離が0.1mm以下であることが好ましいことを意味する。この「成形面Sの近傍」を薄板の積層枚数で表すと、薄板の厚さにもよるが、薄板の厚さが数十μmの場合、成形面Sから薄板の1枚〜3枚分程度隔たった領域を意味する。さらに、本実施の形態の成形型10は、高圧(例えば、50〜80MPa)に耐え得るものであることが好ましい。   In the present embodiment, the fluid flow path W is configured to be disposed in the vicinity of the molding surface S in the main body 1 and has a fluid inlet 11 and a fluid outlet 12 that open to the outside. For example, the shortest distance between the molding surface of the mold 10 and the fluid flow path W is preferably 0.1 mm or less, and the diameter of the fluid path W is preferably 0.1 mm or less. Here, “in the vicinity of the molding surface S” means that the distance from the molding surface is preferably 0.1 mm or less as described above. When this “near the molding surface S” is expressed by the number of laminated thin plates, depending on the thickness of the thin plate, if the thickness of the thin plate is several tens of μm, about 1 to 3 sheets of the thin plate from the molding surface S It means a separated area. Furthermore, it is preferable that the shaping | molding die 10 of this Embodiment can endure a high voltage | pressure (for example, 50-80 Mpa).

この場合、第1〜第8の薄板P1〜P8に形成される第1〜第8の貫通孔H1〜H8のうち、例えば、流体流路の上下端部を構成することになるもの(例えば、第8の貫通孔H8)等は、完全に貫通させないで凹部としてもよい。また、貫通孔の一部周縁に凹部を付加した構成の貫通孔としてもよい。また、第1〜第10の薄板P1〜P10は、常温接合によって接合されるものが好ましい。ここで、「常温接合」とは、室温で原子同士を直接接合することをいう。常温接合によれば、第1〜第10の薄板P1〜P10の形状や厚さの変化が少なく、高精度な成形型を得ることができる。   In this case, of the first to eighth through holes H1 to H8 formed in the first to eighth thin plates P1 to P8, for example, the upper and lower ends of the fluid flow path (for example, The eighth through hole H8) or the like may be a recess without being completely penetrated. Moreover, it is good also as a through-hole of the structure which added the recessed part to the one part periphery of the through-hole. Further, the first to tenth thin plates P1 to P10 are preferably bonded by room temperature bonding. Here, “room temperature bonding” refers to direct bonding of atoms at room temperature. According to the room temperature bonding, there is little change in the shape and thickness of the first to tenth thin plates P1 to P10, and a highly accurate mold can be obtained.

第1〜第10の薄板P1〜P10の材料としては、Al,Ni,Cu等の金属やセラミックス,シリコン等の非金属を用いることができる。非金属の中でも、機械的加工が困難な硬質材料(例えば、炭素系材料、タングステン・カーバイド(WC)等)から形成されてなる場合に、最も有効である。第1〜第10の薄板P1〜P10を接合する前に、その表面に中性原子ビーム、イオンビーム等を照射して表面を清浄化することが好ましい。清浄化により表面が活性化して強固な接合を得ることができる。   As materials for the first to tenth thin plates P1 to P10, metals such as Al, Ni, and Cu, and nonmetals such as ceramics and silicon can be used. Among non-metals, it is most effective when formed from a hard material (for example, carbon-based material, tungsten carbide (WC), etc.) that is difficult to machine. Before joining the first to tenth thin plates P1 to P10, it is preferable to clean the surfaces by irradiating the surfaces with a neutral atom beam, an ion beam or the like. By cleaning, the surface is activated and a strong bond can be obtained.

(第1の実施の形態の製造方法)
第1の実施の形態に係る成形型10の製造方法について図3及び図4を参照して説明する。図3は、薄板形成基板上に薄板を配置する工程を示し、(a)は平面図、(b)は(a)のB−B線断面図である。図4は、接合装置を用いた薄板の転写工程を示す説明図であり、(a)はFAB処理工程、(b)は薄板の接合工程、(c)は薄板の剥離工程をそれぞれ示す。
(Manufacturing method of the first embodiment)
The manufacturing method of the shaping | molding die 10 which concerns on 1st Embodiment is demonstrated with reference to FIG.3 and FIG.4. 3A and 3B show a process of arranging a thin plate on a thin plate forming substrate, wherein FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along line BB in FIG. 4A and 4B are explanatory views showing a thin plate transfer process using a bonding apparatus, wherein FIG. 4A shows a FAB treatment process, FIG. 4B shows a thin plate joining process, and FIG. 4C shows a thin plate peeling process.

(第1の工程)
図3(a)、(b)に示すように、まず、ステンレス等の鉄系の金属、又は銅等の非鉄系の金属からなる薄板形成基板21を用意する。薄板形成基板21の厚さは、通常0.1〜5mmで、0.5〜1mmが好ましい。
(First step)
As shown in FIGS. 3A and 3B, first, a thin plate forming substrate 21 made of an iron-based metal such as stainless steel or a non-ferrous metal such as copper is prepared. The thickness of the thin plate forming substrate 21 is usually 0.1 to 5 mm, preferably 0.5 to 1 mm.

次に、薄板形成基板21の表面を鏡面研磨する。この研磨は、電解研磨、遊離砥粒による機械研磨等を用いて、粗研磨から仕上げ研磨までを複数のステップで行う。最終的に、表面粗さ(算術平均粗さRa)を通常10nm以下、好ましくは5nm以下にする。表面粗さが小さいほど、パターン形成後の密着力が低くなり、後の接合転写の歩留まりが向上する。しかし、小さすぎると、電鋳の成長中や成長後の洗浄、レジスト剥離工程で、予期せぬ膜の脱離が発生することがある。従って、表面粗さは、3〜5nm程度が好ましい。   Next, the surface of the thin plate forming substrate 21 is mirror-polished. This polishing is performed in a plurality of steps from rough polishing to final polishing using electrolytic polishing, mechanical polishing with loose abrasive grains, or the like. Finally, the surface roughness (arithmetic mean roughness Ra) is usually 10 nm or less, preferably 5 nm or less. The smaller the surface roughness, the lower the adhesion after pattern formation, and the yield of subsequent bonding transfer is improved. However, if it is too small, unexpected film detachment may occur during electroforming growth, cleaning after growth, or resist stripping process. Accordingly, the surface roughness is preferably about 3 to 5 nm.

表面粗さの計測は、原子間力顕微鏡(AFM:Atomic Force Microscope)、白色干渉計、触針式表面プロファイラ等を使用することができる。   The surface roughness can be measured using an atomic force microscope (AFM), a white interferometer, a stylus type surface profiler, or the like.

次に、薄板形成基板21の鏡面研磨された表面に、例えば、30μの厚さに厚膜レジストを塗布してレジスト膜(図示せず)を形成する。   Next, a thick film resist is applied to a thickness of, for example, 30 μm on the mirror-polished surface of the thin plate forming substrate 21 to form a resist film (not shown).

次に、所定のパターンを有するフォトマスク(図示せず)をレジスト膜上に設置する。次に、露光手段(図示せず)によりフォトマスクの開口部を通してレジスト膜を露光する。これにより、目的の成形型の断面パターンに対応してポジネガ反転によるレジストパターン(図示せず)が形成される。   Next, a photomask (not shown) having a predetermined pattern is placed on the resist film. Next, the resist film is exposed through the opening of the photomask by exposure means (not shown). As a result, a resist pattern (not shown) by positive / negative reversal is formed corresponding to the cross-sectional pattern of the target mold.

次に、図3(a)、(b)に示すように、薄板形成基板21をめっき浴に浸し、電解めっきにより、ニッケルによって第1〜第8の貫通孔H1〜H8を有する第1〜第10の薄板P1〜P10を、例えば、25μの厚さに成長させる。なお、第1〜第10の薄板P1〜P10を、ニッケルに代えて、ニッケル合金、銅、銅合金等を用いて形成してもよい。   Next, as shown in FIGS. 3A and 3B, the thin plate forming substrate 21 is immersed in a plating bath, and the first to eighth through holes H1 to H8 are formed by nickel by electrolytic plating. Ten thin plates P1 to P10 are grown to a thickness of 25 μm, for example. The first to tenth thin plates P1 to P10 may be formed using nickel alloy, copper, copper alloy or the like instead of nickel.

(第2の工程)
まず、図4(a)に示すように、真空槽31内の平面ステージ35に薄板形成基板21を固定し、対向ステージ36に対向基板37を固定する。真空槽31内を真空ポンプ(図示せず)を駆動して排気口32から排気し、10−5Paの真空にする。次に、Ar中性ビームからなるFAB(Fast Atom Beam)をFAB源34Aから対向基板37に、FAB源34Bから薄板形成基板21上の第1の薄板P1(最も下層に積層される)にそれぞれ照射し、表面を清浄化して活性化する。
(Second step)
First, as shown in FIG. 4A, the thin plate forming substrate 21 is fixed to the flat stage 35 in the vacuum chamber 31, and the counter substrate 37 is fixed to the counter stage 36. A vacuum pump (not shown) is driven in the vacuum chamber 31 to exhaust from the exhaust port 32 to make a vacuum of 10 −5 Pa. Next, a FAB (Fast Atom Beam) made of Ar neutral beam is applied from the FAB source 34A to the counter substrate 37, and from the FAB source 34B to the first thin plate P1 on the thin plate forming substrate 21 (stacked in the lowermost layer). Irradiate to clean and activate the surface.

次に、図4(b)に示すように、垂直ステージ38を下降させ、平面ステージ35を水平のx方向、y方向、垂直のz軸周りのθ方向に移動させて対向基板37と第1の薄板P1とを位置合わせする。なお、位置合せ機構としては、ゴニオメータ機構やボールジョイント機構を用いることができる。   Next, as shown in FIG. 4B, the vertical stage 38 is lowered, and the flat stage 35 is moved in the horizontal x direction, the y direction, and the θ direction around the vertical z axis, and the counter substrate 37 and the first stage are moved. The thin plate P1 is aligned. A goniometer mechanism or a ball joint mechanism can be used as the alignment mechanism.

次に、対向基板37と第1の薄板P1とを接触させ、さらに荷重50kgf/cmで5分間押し付けて対向基板37と第1の薄板P10とを接合する。このとき、接合強度は、50〜100MPaである。 Next, the counter substrate 37 and the first thin plate P1 are brought into contact with each other, and further pressed with a load of 50 kgf / cm 2 for 5 minutes to bond the counter substrate 37 and the first thin plate P10. At this time, the bonding strength is 50 to 100 MPa.

次に、図4(c)に示すように、垂直ステージ38を上昇させると、対向基板37上に第1の薄板P1が転写される。このように第1の薄板P1が薄板形成基板21(離型層22)側から対向基板37側に転写できるのは、第1の薄板P1と離型層22間の接着力よりも第1の薄板P1と対向基板37間の接着力の方が大きいからである。次に、第2〜第10の薄板P2〜P10についても同様の操作を順に行う。10回の転写を行うことによって、図1に示す成形型10を得ることができる。   Next, as shown in FIG. 4C, when the vertical stage 38 is raised, the first thin plate P <b> 1 is transferred onto the counter substrate 37. The first thin plate P1 can be transferred from the thin plate forming substrate 21 (release layer 22) side to the counter substrate 37 side in this manner because the adhesive force between the first thin plate P1 and the release layer 22 is greater than that of the first thin plate P1. This is because the adhesive force between the thin plate P1 and the counter substrate 37 is larger. Next, the same operation is sequentially performed on the second to tenth thin plates P2 to P10. The mold 10 shown in FIG. 1 can be obtained by performing the transfer 10 times.

[第2の実施の形態]
図5は、本発明の第2の実施の形態に係る成形型を示し、(a)は平面図、(b)は(a)のC−C線断面図、(c)は、(a)のD−D線断面図である。図6は、薄板形成基板上における薄板の形状を示す平面図であり、(a)は第1〜第3の薄板(3枚とも同一の形状とすることができる)、(b)は第4の薄板、(c)は第5の薄板、(d)は第6の薄板の形状をそれぞれ示す。
[Second Embodiment]
FIG. 5: shows the shaping | molding die concerning the 2nd Embodiment of this invention, (a) is a top view, (b) is CC sectional view taken on the line of (a), (c) is (a). It is the DD sectional view taken on the line. FIG. 6 is a plan view showing the shape of the thin plate on the thin plate forming substrate, where (a) is the first to third thin plates (all can be the same shape), and (b) is the fourth. (C) shows the shape of the fifth thin plate, and (d) shows the shape of the sixth thin plate.

図5に示すように、本実施の形態の成形型50は、成形面Sを有するとともに所定の立体形状を有する本体部1から構成されている。この本体部1は、所定形状の第1〜第4の貫通孔H1〜H4(図6参照)を有する6枚の第1〜第6の薄板P1〜P6が積層されて、本体部1の外形形状が全体として図5に示す立体形状を有するように、かつ、第1〜第4の貫通孔H1〜H4(図6参照)が全体として本体部1の内部を立体的に連通する流体流路Wを形成するように、構成されている。   As shown in FIG. 5, the molding die 50 of the present embodiment includes a main body 1 having a molding surface S and a predetermined three-dimensional shape. The main body 1 is formed by laminating six first to sixth thin plates P1 to P6 having first to fourth through holes H1 to H4 (see FIG. 6) having a predetermined shape. A fluid flow path in which the first to fourth through holes H1 to H4 (see FIG. 6) communicate with each other in a three-dimensional manner as a whole so as to have the three-dimensional shape shown in FIG. 5 as a whole. It is comprised so that W may be formed.

本実施の形態において、流体流路Wは、本体部1における成形面Sの近傍に配置されるように、また、外部に開口する流体入口11及び流体出口12を有するように構成されている。   In the present embodiment, the fluid flow path W is configured to be disposed in the vicinity of the molding surface S in the main body 1 and has a fluid inlet 11 and a fluid outlet 12 that open to the outside.

このように、第2の実施の形態に係る成形型50は、流体流路Wの主な経路が第4の薄板P4における第4の貫通孔H4(図5(b)、図6(b)参照)として平面的に集中して配置されている点において、第1の実施の形態に係る成形型10とは異なっているがその他については同様に構成されている。   Thus, in the mold 50 according to the second embodiment, the main path of the fluid flow path W is the fourth through hole H4 in the fourth thin plate P4 (FIGS. 5B and 6B). Reference) is different from the mold 10 according to the first embodiment in that it is concentrated in a planar manner, but the other components are configured in the same manner.

(第2の実施の形態の製造方法)
第2の実施の形態に係る成形型50の製造方法については、第1の実施の形態に係る成形型10の場合と同様にすることができる。すなわち、薄板形成基板21(離型層22)の上に、第1〜第4の貫通孔H1〜H4(これらの第1〜第4の貫通孔H1〜H4が全体として内部を立体的に連通する流体流路Wを形成することになる)を有する第1〜第6の薄板P1〜P6を配置する(図3(b)、図6参照)。次に、第1の薄板P1を薄板形成基板21(離型層22)側から対向基板37側に転写し、第2〜第6の薄板P2〜P6についても同様の操作を順に行う。6回の転写を行うことによって、図5に示す成形型50を得ることができる。
(Manufacturing method of the second embodiment)
About the manufacturing method of the shaping | molding die 50 which concerns on 2nd Embodiment, it can be made to be the same as that of the case of the shaping | molding die 10 which concerns on 1st Embodiment. That is, on the thin plate forming substrate 21 (release layer 22), the first to fourth through holes H1 to H4 (these first to fourth through holes H1 to H4 communicate three-dimensionally as a whole. The first to sixth thin plates P1 to P6 having the fluid flow path W to be formed are disposed (see FIG. 3B and FIG. 6). Next, the first thin plate P1 is transferred from the thin plate forming substrate 21 (release layer 22) side to the counter substrate 37 side, and the same operations are sequentially performed on the second to sixth thin plates P2 to P6. A mold 50 shown in FIG. 5 can be obtained by performing the transfer six times.

[他の実施の形態]
なお、本発明は、上記実施の形態に限定されず、本発明の要旨を変更しない範囲内で種々に変形実施が可能である。また、各実施の形態の構成要素を本発明の要旨を変更しない範囲内で任意に組み合わせることは可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. Moreover, it is possible to combine arbitrarily the component of each embodiment within the range which does not change the summary of this invention.

例えば、流体入口11の近傍に、流体(例えば、冷却用の水及び加熱用の湯)の混合手段(例えば、三方バルブ等)を配設してもよい。このように構成することによって、成形面(キャビティ)を所望の温度範囲に迅速かつ均質に制御することが可能となる。   For example, a fluid mixing means (for example, a three-way valve) may be disposed in the vicinity of the fluid inlet 11. By comprising in this way, it becomes possible to control a molding surface (cavity) rapidly and uniformly to a desired temperature range.

図7は、流体流路を2種の互いに独立した経路から構成した実施の形態を示す説明図である。図7に示すように、流体流路Wは、2種の互いに独立した経路(冷却用流体流路Wa及び加熱用流体流路Wb)から構成されている。冷却用流体流路Waの場合の流体は、冷却入口11aから流入し、冷却出口12aから流出することになる。また、加熱用流体流路Wbの場合の流体は、加熱入口11bから流入し、加熱出口12bから流出することになる。このように構成することによって、例えば、冷却用と加熱用の2種の流体を適宜還流させることができ、成形面(キャビティ)のきめの細かい温度制御が可能となる。   FIG. 7 is an explanatory view showing an embodiment in which a fluid flow path is constituted by two kinds of mutually independent paths. As shown in FIG. 7, the fluid flow path W includes two kinds of mutually independent paths (cooling fluid flow path Wa and heating fluid flow path Wb). The fluid in the cooling fluid flow path Wa flows in from the cooling inlet 11a and flows out of the cooling outlet 12a. Moreover, the fluid in the case of the heating fluid flow path Wb flows in from the heating inlet 11b and flows out from the heating outlet 12b. With this configuration, for example, two kinds of fluids for cooling and heating can be appropriately refluxed, and fine temperature control of the molding surface (cavity) can be achieved.

また、転写工程において薄板を真空雰囲気下で接合を行わず、他のガス雰囲気下で行うことにより、他の成分ガスを任意の圧力で封入することが可能である。封入できるガスは、活性化した表面に対して不活性であれば何でもよく、特に、希ガスはどの材料に対しても不活性であるため、材料を問わず封入することができる。また、中性原子ビーム源でも使用しているArガスを封入する場合は、中性原子ビーム源をガス流入口として代用することにより、ガス流入口を省略することができる。   Further, in the transfer step, it is possible to enclose other component gases at an arbitrary pressure by performing bonding in a different gas atmosphere without bonding the thin plates in a vacuum atmosphere. Any gas can be used as long as it is inert with respect to the activated surface. In particular, since the rare gas is inert with respect to any material, it can be sealed regardless of the material. Further, when Ar gas used also in the neutral atom beam source is sealed, the gas inlet can be omitted by substituting the neutral atom beam source as the gas inlet.

薄板形成基板21及び対向基板37は、ウェハ状でもチップ状でもよく、この2種の基板は、同形状である必要もない。薄板形成基板21を垂直ステージ側に設けてもよい。   The thin plate forming substrate 21 and the counter substrate 37 may be wafer-shaped or chip-shaped, and the two types of substrates do not need to have the same shape. The thin plate forming substrate 21 may be provided on the vertical stage side.

上記実施の形態では、薄板形成基板21側で薄板の接着力を調整したが、薄板形成基板21側と対向基板37側の両方で行ってもよく、対向基板37側だけで行ってもよい。また、薄板形成基板21が金属の場合、電鋳条件を制御して密着力が制御された薄板形成基板21を作製してもよい。   In the above embodiment, the adhesive force of the thin plate is adjusted on the thin plate forming substrate 21 side, but may be performed on both the thin plate forming substrate 21 side and the counter substrate 37 side, or may be performed only on the counter substrate 37 side. Further, when the thin plate forming substrate 21 is a metal, the thin plate forming substrate 21 in which the adhesion is controlled by controlling the electroforming conditions may be manufactured.

本発明は、各種成形品を成形するために用いられる成形型、特に、機械的加工が困難な硬質材料から構成された成形型を必要とする各種産業分野で有効に利用される。   INDUSTRIAL APPLICABILITY The present invention is effectively used in various industrial fields that require a mold used for molding various molded products, particularly a mold composed of a hard material that is difficult to machine.

本発明の第1の実施の形態に係る成形型を示す斜視図である。It is a perspective view which shows the shaping | molding die concerning the 1st Embodiment of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 薄板形成基板上に薄板を配置する工程を示し、(a)は平面図、(b)は(a)のB−B線断面図である。The process of arrange | positioning a thin plate on a thin plate formation board | substrate is shown, (a) is a top view, (b) is the BB sectional drawing of (a). 接合装置を用いた薄板の転写工程を示す説明図であり、(a)はFAB処理工程、(b)は薄板の接合工程、(c)は薄板の剥離工程をそれぞれ示す。It is explanatory drawing which shows the transfer process of the thin plate using a joining apparatus, (a) shows the FAB process, (b) shows the joining process of a thin plate, (c) shows the peeling process of a thin plate, respectively. 本発明の第2の実施の形態に係る成形型を示し、(a)は平面図、(b)は(a)のC−C線断面図、(c)は、(a)のD−D線断面図である。The shaping | molding die concerning the 2nd Embodiment of this invention is shown, (a) is a top view, (b) is CC sectional view taken on the line of (a), (c) is DD of (a). It is line sectional drawing. 薄板形成基板上における薄板の形状を示す平面図であり、(a)は第1〜第3の薄板、(b)は第4の薄板、(c)は第5の薄板、(d)は第6の薄板の形状をそれぞれ示す。It is a top view which shows the shape of the thin plate on a thin plate formation board | substrate, (a) is the 1st-3rd thin plate, (b) is the 4th thin plate, (c) is the 5th thin plate, (d) is the 1st 6 shows the shape of each thin plate. 流体流路を2種の互いに独立した経路から構成した実施の形態を示す説明図である。It is explanatory drawing which shows embodiment which comprised the fluid flow path from 2 types of mutually independent paths | routes.

符号の説明Explanation of symbols

1 本体部
10 成形型
11 流体入口
11a 冷却入口
11b 加熱入口
12 流体出口
12a 冷却出口
12b 加熱出口
21 薄板形成基板
30 接合装置
31 真空槽
32 排気口
34A,34B FAB源
35 平面ステージ
36 対向ステージ
37 対向基板
38 垂直ステージ
50 成形型
S 成形面
P1 第1の薄板
P2 第2の薄板
P3 第3の薄板
P4 第4の薄板
P5 第5の薄板
P6 第6の薄板
P7 第7の薄板
P8 第8の薄板
P9 第9の薄板
P10 第10の薄板
H1 第1の貫通孔
H2 第2の貫通孔
H3 第3の貫通孔
H4 第4の貫通孔
H5 第5の貫通孔
H6 第6の貫通孔
H7 第7の貫通孔
H8 第8の貫通孔
H9 第9の貫通孔
H10 第10の貫通孔
W 流体流路
Wa 冷却用流体流路
Wb 加熱用流体流路
DESCRIPTION OF SYMBOLS 1 Main-body part 10 Mold 11 Fluid inlet 11a Cooling inlet 11b Heating inlet 12 Fluid outlet 12a Cooling outlet 12b Heating outlet 21 Thin plate formation board 30 Joining device 31 Vacuum tank 32 Exhaust port 34A, 34B FAB source 35 Planar stage 36 Opposite stage 37 Opposite Substrate 38 Vertical stage 50 Mold D S Forming surface P1 First thin plate P2 Second thin plate P3 Third thin plate P4 Fourth thin plate P5 Fifth thin plate P6 Sixth thin plate P7 Seventh thin plate P8 Eightth thin plate P9 9th thin plate P10 10th thin plate H1 1st through-hole H2 2nd through-hole H3 3rd through-hole H4 4th through-hole H5 5th through-hole H6 6th through-hole H7 7th Through hole H8 Eighth through hole H9 Ninth through hole H10 Tenth through hole W Fluid channel Wa Cooling fluid channel Wb Heating fluid channel

Claims (11)

成形面を有するとともに所定の立体形状を有する本体部から構成され、
前記本体部は、所定形状の貫通孔を有する複数枚の薄板が積層されて、前記本体部の外形形状が全体として前記立体形状を有するように、かつ、前記薄板の前記貫通孔が全体として前記本体部の内部を立体的に連通する流体流路を形成するように、構成されてなることを特徴とする成形型。
Consists of a main body having a molding surface and a predetermined three-dimensional shape,
The main body is formed by laminating a plurality of thin plates having through holes of a predetermined shape so that the outer shape of the main body has the three-dimensional shape as a whole, and the through holes of the thin plate as a whole A molding die configured to form a fluid flow path that three-dimensionally communicates with the inside of the main body.
前記流体流路は、前記本体部の前記成形面の近傍に配置されたことを特徴とする請求項1に記載の成形型。   The molding die according to claim 1, wherein the fluid flow path is disposed in the vicinity of the molding surface of the main body. 前記流体流路は、外部に開口する流体入口及び流体出口を有することを特徴とする請求項1に記載の成形型。   The mold according to claim 1, wherein the fluid flow path has a fluid inlet and a fluid outlet that are open to the outside. 前記流体入口の近傍に、前記流体の混合手段が配設されたことを特徴とする請求項3に記載の成形型。   4. The mold according to claim 3, wherein the fluid mixing means is disposed in the vicinity of the fluid inlet. 前記流体流路は、2種以上の互いに独立した経路から構成されてなることを特徴とする請求項2に記載の成形型。   3. The mold according to claim 2, wherein the fluid flow path is composed of two or more kinds of mutually independent paths. 機械的加工が困難な硬質材料から形成されてなることを特徴とする請求項1に記載の成形型。   The mold according to claim 1, wherein the mold is made of a hard material that is difficult to machine. 前記硬質材料は、炭素系材料又はタングステン・カーバイド(WC)であることを特徴とする請求項6に記載の成形型。   The mold according to claim 6, wherein the hard material is a carbon-based material or tungsten carbide (WC). 所定形状の貫通孔を有し、積層されることによって、成形面を有するとともに全体として外形形状が所定の立体形状を有するようにかつ前記貫通孔が全体として内部を立体的に連通する流体流路を形成するように、本体部を構成することになる複数枚の薄板を形成する第1の工程と、
前記貫通孔を有する薄板を積層して前記流体流路を形成する第2の工程とを含むことを特徴とする成形型の製造方法。
A fluid flow path having a through hole of a predetermined shape and having a molding surface and an outer shape having a predetermined three-dimensional shape as a whole and the through hole communicating three-dimensionally inside as a whole by being laminated. A first step of forming a plurality of thin plates that will constitute the main body so as to form
And a second step of forming the fluid flow path by laminating thin plates having the through-holes.
前記第1の工程において、薄板形成基板を用意し、前記薄板形成基板上に薄板形成部材を配置し、前記薄板形成部材に所定形状の前記貫通孔を形成して薄板を形成し、かつ前記第2の工程において、対向基板を用意し、真空中又は不活性ガス雰囲気中で複数枚の前記薄板を前記薄板形成基板から前記対向基板上に順次転写し接合することにより積層することを特徴とする請求項8に記載の成形型の製造方法。   In the first step, a thin plate forming substrate is prepared, a thin plate forming member is disposed on the thin plate forming substrate, the through hole having a predetermined shape is formed in the thin plate forming member, and the thin plate is formed. In step 2, a counter substrate is prepared, and a plurality of the thin plates are sequentially transferred from the thin plate forming substrate to the counter substrate in a vacuum or in an inert gas atmosphere, and laminated by bonding. The manufacturing method of the shaping | molding die of Claim 8. 前記薄板は、機械的加工が困難な硬質材料から形成されてなることを特徴とする請求項8に記載の成形型の製造方法。   The method for manufacturing a mold according to claim 8, wherein the thin plate is formed of a hard material that is difficult to mechanically process. 前記硬質材料は、炭素系材料又はタングステン・カーバイド(WC)であることを特徴とする請求項10に記載の成形型の製造方法。   The method for manufacturing a mold according to claim 10, wherein the hard material is a carbon-based material or tungsten carbide (WC).
JP2006219546A 2006-08-11 2006-08-11 Mold and manufacturing method thereof Expired - Fee Related JP5151089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219546A JP5151089B2 (en) 2006-08-11 2006-08-11 Mold and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219546A JP5151089B2 (en) 2006-08-11 2006-08-11 Mold and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008044144A true JP2008044144A (en) 2008-02-28
JP5151089B2 JP5151089B2 (en) 2013-02-27

Family

ID=39178349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219546A Expired - Fee Related JP5151089B2 (en) 2006-08-11 2006-08-11 Mold and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5151089B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957714A (en) * 1982-09-28 1984-04-03 Isao Kaneoka Apparatus for cooling mold for molding synthetic resin, etc.
JPS62261412A (en) * 1986-05-09 1987-11-13 Nissan Motor Co Ltd Control of mold temperature
JPS6371316A (en) * 1986-09-12 1988-03-31 Matsushita Electric Ind Co Ltd Materials for die for molding plastic optical parts
JPH0223328B2 (en) * 1983-02-10 1990-05-23 Tokyo Shibaura Electric Co
JP2000109984A (en) * 1998-10-02 2000-04-18 Fuji Xerox Co Ltd Method and device for production of micro structure
JP2005199454A (en) * 2004-01-13 2005-07-28 National Institute Of Advanced Industrial & Technology Minute mold and its manufacturing method
JP2006082096A (en) * 2004-09-14 2006-03-30 Tokyo Univ Of Agriculture & Technology Laminated die for injection molding, injection molding method and laminated die for die casting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957714A (en) * 1982-09-28 1984-04-03 Isao Kaneoka Apparatus for cooling mold for molding synthetic resin, etc.
JPH0223328B2 (en) * 1983-02-10 1990-05-23 Tokyo Shibaura Electric Co
JPS62261412A (en) * 1986-05-09 1987-11-13 Nissan Motor Co Ltd Control of mold temperature
JPS6371316A (en) * 1986-09-12 1988-03-31 Matsushita Electric Ind Co Ltd Materials for die for molding plastic optical parts
JP2000109984A (en) * 1998-10-02 2000-04-18 Fuji Xerox Co Ltd Method and device for production of micro structure
JP2005199454A (en) * 2004-01-13 2005-07-28 National Institute Of Advanced Industrial & Technology Minute mold and its manufacturing method
JP2006082096A (en) * 2004-09-14 2006-03-30 Tokyo Univ Of Agriculture & Technology Laminated die for injection molding, injection molding method and laminated die for die casting

Also Published As

Publication number Publication date
JP5151089B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US11560629B2 (en) Methods of preparing articles by electrodeposition and additive manufacturing processes
US7696102B2 (en) Methods for fabrication of three-dimensional structures
KR20090040332A (en) Pvd targets and methods for their manufacture
JP4528488B2 (en) Manufacturing method of laminated structure and laminated structure
JP2005146405A (en) Electrodeposition stacked alloy thin sheet, and its production method
JP2005007529A (en) Micro fluid device and manufacturing method of micro fluid device
JP5151089B2 (en) Mold and manufacturing method thereof
JP4650113B2 (en) Laminated structure, donor substrate, and manufacturing method of laminated structure
JP2011109056A (en) Method of manufacturing ceramic substrate
TW592003B (en) Method for using a printed circuit substrate to manufacture a micro structure
TW201319324A (en) Fabricating method of transfer printing mold, transfer printing mold fabricted with thereof, and components fabricated with the transfer printing mold
JP2008114448A (en) Transfer substrate and transfer method using the same
TWI826497B (en) Template for supporting mask and producing methoe thereof and producing method of mask integrated frame
JP2008208431A (en) Electroforming mold, method of manufacturing electroforming mold and method of manufacturing electroformed component
KR20080066868A (en) Sputtering target and process for producing the same
TW201812977A (en) Laminated top plate of a workpiece carrier in micromechanical and semiconductor processing
KR20110115864A (en) Method of manufacturing micro-parts and micro-mold
JP2009109401A (en) Microflow path device and manufacturing method of same
TWI825541B (en) Electrostatic chuck prepared by additive manufacturing, and related methods and structures
KR100727371B1 (en) Method for manufacturing a metal mask using multilayer photoresist film and a metal mask using the same
JP5050570B2 (en) Manufacturing method of fine channel structure
Arnold et al. Additive processes for metals
JP5493501B2 (en) MICROSTRUCTURE, DOOR SUBSTRATE, AND METHOD FOR MANUFACTURING MICROSTRUCTURE
KR100505534B1 (en) A Machining And Brazing Methood Of Thin Metal Plate With Micro Flow Path And Pattern
JPH11221829A (en) Substrate for forming thin coat and manufacture of microstructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees