JP2008043013A - Motor driving device - Google Patents

Motor driving device Download PDF

Info

Publication number
JP2008043013A
JP2008043013A JP2006212022A JP2006212022A JP2008043013A JP 2008043013 A JP2008043013 A JP 2008043013A JP 2006212022 A JP2006212022 A JP 2006212022A JP 2006212022 A JP2006212022 A JP 2006212022A JP 2008043013 A JP2008043013 A JP 2008043013A
Authority
JP
Japan
Prior art keywords
motor
voltage
average voltage
detection means
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006212022A
Other languages
Japanese (ja)
Inventor
Yoshinori Takeoka
義典 竹岡
Keiji Ogawa
啓司 小川
Hidenao Tanaka
秀尚 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006212022A priority Critical patent/JP2008043013A/en
Publication of JP2008043013A publication Critical patent/JP2008043013A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor driving device capable of satisfying restriction on harmonics by reducing harmonics components of a current waveform of a single phase AC input without using a large-capacity reactor. <P>SOLUTION: The driving device includes a mean voltage acquiring means for acquiring a mean voltage between busbars; and a control means 118 for controlling an inverter 104 by using the mean voltage acquired in the mean voltage acquiring means and the position of a motor 105 detected by a position detecting means 114, and deciding a voltage to be applied to the motor 105. With this configuration, the voltage to be applied to the motor 105 substantially synchronizes with the voltage waveform of a single phase AC power supply 101, and the current waveform of the single phase AC power supply 101 can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和機、冷蔵庫等に設けられた圧縮機あるいは送風機、さらには洗濯機のドラム(洗濯槽)等の駆動源となるモータの駆動方法およびその装置に関するものである。   The present invention relates to a driving method and an apparatus for a motor serving as a driving source for a compressor or a blower provided in an air conditioner, a refrigerator, or the like, and a drum (washing tub) of a washing machine.

従来、この種のモータ駆動装置における従来技術として、単相交流電源を、ダイオードをブリッジ接続した整流回路でリプル成分を含む直流に整流し、容量の大きな平滑用のコンデンサを用いてリプル成分を含む電圧を平滑し、安定してモータを駆動する制御装置が知られている。   Conventionally, as a conventional technique in this type of motor drive device, a single-phase AC power source is rectified to DC including a ripple component by a rectifier circuit in which diodes are bridge-connected, and the ripple component is included using a smoothing capacitor having a large capacity. A control device that smoothes the voltage and stably drives the motor is known.

また、異なる従来技術として、モータ駆動装置の小型・低コスト化を図るために、単相交流電源から整流回路への入力電流波形を改善する方法が提案されている(例えば、特許文献1参照)。   Also, as a different conventional technique, a method for improving the input current waveform from a single-phase AC power supply to the rectifier circuit has been proposed in order to reduce the size and cost of the motor drive device (see, for example, Patent Document 1). .

図10は従来の平滑用のコンデンサを用いていないモータの駆動装置のブロック図である。   FIG. 10 is a block diagram of a conventional motor driving apparatus that does not use a smoothing capacitor.

図10において、交流電源1は整流ダイオード2により脈動を持った直流電力に変換され、インバータ3に入力する。インバータ3は整流された直流電力を交流電力に変換し、ブラシレスモータ4に所望の電圧を印加する。   In FIG. 10, an AC power source 1 is converted into DC power having pulsation by a rectifier diode 2 and input to an inverter 3. The inverter 3 converts the rectified DC power into AC power and applies a desired voltage to the brushless motor 4.

インバータ制御部5は、dq変換部6、d軸PI制御器7、q軸PI制御器8、PWM生成部9を有し、インバータ3への入力電圧と、ブラシレスモータ4に流れるモータ電流と、ブラシレスモータ4に流すべき値を示すモータ電流指令値が入力され、インバータ3への入力電圧値が印加すべき電圧値よりも小さいときに、ブラシレスモータ4への印加電圧の電圧位相を保持して、インバータ3を制御する。   The inverter control unit 5 includes a dq conversion unit 6, a d-axis PI controller 7, a q-axis PI controller 8, and a PWM generation unit 9, and includes an input voltage to the inverter 3, a motor current flowing through the brushless motor 4, and When a motor current command value indicating a value to be supplied to the brushless motor 4 is input and the input voltage value to the inverter 3 is smaller than the voltage value to be applied, the voltage phase of the applied voltage to the brushless motor 4 is maintained. The inverter 3 is controlled.

これにより、インバータ3の直流側電圧が低いときでもブラシレスモータ4への電圧印加を停止させることなく連続的に電圧を印加するようにし、大きく脈動した電圧がインバータ3に入力された場合でも安定した駆動を実現することで、モータ駆動装置の小型化を図っている。
特開2005−20986号公報
Thereby, even when the DC side voltage of the inverter 3 is low, the voltage is continuously applied without stopping the voltage application to the brushless motor 4, and stable even when a large pulsating voltage is input to the inverter 3. By realizing the drive, the motor drive device is miniaturized.
Japanese Patent Laid-Open No. 2005-20986

しかしながら、前者の従来技術は、波形の平滑のために容量の大きなコンデンサを用いているため、整流回路への入力が電圧のピーク付近のみで流れることとなってしまう。   However, since the former prior art uses a capacitor with a large capacity for smoothing the waveform, the input to the rectifier circuit flows only near the peak of the voltage.

そのため高調波規制を満足することがでず、容量の大きなリアクタを用いて対応を行っている。このようなリアクタはサイズ、重量ともに大きくコストアップにつながるという課題を有していた。   For this reason, harmonic regulations cannot be satisfied, and a large capacity reactor is used. Such a reactor has a problem that both size and weight are large, leading to cost increase.

また、後者の従来技術は、平滑用の容量の大きなコンデンサが無いため、単相交流の電圧のピーク付近のみ電流が流れることは無いが、モータへの入力電圧を一定に保つよう制御しているため、単相交流入力の電圧がモータに印加しようとする電圧よりも低下した区間では、回路内のLCの容量により電流を流し続けようとして、電流波形に高調波成分を含んでしまい、印加電圧波形が大きく歪んでしまうという課題を有していた。   In the latter prior art, since there is no capacitor with a large smoothing capacity, current does not flow only near the peak of the single-phase AC voltage, but the input voltage to the motor is controlled to be constant. Therefore, in a section where the voltage of the single-phase AC input is lower than the voltage to be applied to the motor, the current waveform contains harmonic components in an attempt to keep the current flowing due to the capacity of the LC in the circuit. There was a problem that the waveform was greatly distorted.

その結果、前記電流波形の歪が、前記モータ駆動装置を具備した機器と電源を同じとする他の機器に影響を及ぼし、例えば前記他の機器が照明器具の場合では、一時的に照明が暗くなったりし、また前記モータ駆動装置を具備した機器が多くなるにつれて、電柱から家屋に引込まれる引込み線電源(単相交流電源)に与える影響も大きくなるものであった。   As a result, the distortion of the current waveform affects other devices having the same power supply as the device equipped with the motor driving device. For example, when the other device is a lighting fixture, the illumination is temporarily dark. As the number of devices equipped with the motor driving device increases, the influence on the lead-in wire power source (single-phase AC power source) drawn from the utility pole to the house increases.

本発明は、上記従来の課題を解決するもので、大きな容量のリアクタを用いることなく単相交流入力の電流波形の高調波成分を減少させ、高調波規制を満足するモータの駆動装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a motor drive device that satisfies the harmonic regulation by reducing the harmonic component of the current waveform of the single-phase AC input without using a large-capacity reactor. For the purpose.

上記従来の課題を解決するために、本発明のモータの駆動装置は、単相交流電源を整流回路により整流した電圧・電流を直接インバータへの入力とし、モータへの印加電圧の計算に、平均電圧取得手段によって取得した平均電圧を用いるようにしたものである。   In order to solve the above-described conventional problems, the motor driving apparatus of the present invention uses a voltage / current obtained by rectifying a single-phase AC power source by a rectifier circuit as an input directly to an inverter, and calculates an average voltage applied to the motor. The average voltage acquired by the voltage acquisition means is used.

これによって、前記モータへの印加電圧波形が単相交流電源の電圧波形とほぼ同期し、高調波成分を含まないような波形となって単相交流電源(モータへの印加電圧)の電流波形が改善されることとなる。   As a result, the voltage waveform applied to the motor is substantially synchronized with the voltage waveform of the single-phase AC power supply and does not include harmonic components, so that the current waveform of the single-phase AC power supply (voltage applied to the motor) is It will be improved.

本発明のモータの駆動装置は、容量の大きなリアクタ等を用いることなく単純な構成で単相交流入力の電流波形が改善でき、高調波成分による単相交流電源への影響が緩和され、しかも小型・低コストのモータ駆動装置を提供することができる。   The motor drive device of the present invention can improve the current waveform of a single-phase AC input with a simple configuration without using a large-capacity reactor, etc., and the influence on the single-phase AC power source due to harmonic components is mitigated, and it is compact -A low-cost motor drive device can be provided.

請求項1に記載の発明は、単相交流電源と、前記単相交流電源から入力される電流を整流して直流に変換し出力する整流回路と、前記整流回路から出力される直流を入力とするインバータと、前記インバータにより駆動されるモータと、前記整流回路の直流母線間の平均電圧を取得する平均電圧取得手段と、前記モータを構成する回転子の位置を検出する位置検出手段と、前記平均電圧取得手段により取得された平均電圧と前記位置検出手段により検出された検出位置信号を入力信号として前記モータへの印加電圧を決定する制御手段を備え、前記決定された印加電圧が前記モータへ供給されるように前記インバータを制御するものである。   The invention according to claim 1 is a single-phase AC power source, a rectifier circuit that rectifies and converts a current input from the single-phase AC power source into a direct current, and outputs a direct current output from the rectifier circuit. Inverter, a motor driven by the inverter, an average voltage acquisition means for acquiring an average voltage between DC buses of the rectifier circuit, a position detection means for detecting the position of a rotor constituting the motor, Control means for determining an applied voltage to the motor using the average voltage acquired by the average voltage acquiring means and the detected position signal detected by the position detecting means as input signals, and the determined applied voltage is supplied to the motor The inverter is controlled to be supplied.

かかる構成とすることにより、所定範囲(例えば、電源波形における半波区間)の電圧を一定とみなしてモータへの印加電圧を設定することとなり、従来の電圧変動に伴いデューティを連続して可変する制御と異なり、モータへの印加電圧形成に際してのデューティ(率)設定(演算処理)が容易となり、印加電圧供給が速やかに行える。   By adopting such a configuration, the voltage applied to the motor is set assuming that the voltage in a predetermined range (for example, a half-wave section in the power supply waveform) is constant, and the duty is continuously varied according to the conventional voltage fluctuation. Unlike control, duty (rate) setting (calculation processing) when forming an applied voltage to the motor is facilitated, and the applied voltage can be supplied quickly.

請求項2に記載の発明は、前記平均電圧取得手段を、前記直流母線の電圧を検出する電圧検出手段と、前記電圧検出手段が検出した電圧を演算により平均電圧を算出し出力する平均電圧演算手段で構成し、前記位置検出手段を、前記モータの電流を取得する電流検出手段と、前記電流検出手段により検出された電流と前記電圧検出手段により検出された電圧から前記回転子の位置を検出するモータ位相演算手段で構成ものである。   According to a second aspect of the present invention, the average voltage acquisition unit includes: a voltage detection unit that detects the voltage of the DC bus; and an average voltage calculation that calculates and outputs an average voltage by calculating the voltage detected by the voltage detection unit. And the position detection means detects the position of the rotor from the current detected by the current detection means and the voltage detected by the voltage detection means. The motor phase calculation means is configured.

かかる構成とすることにより、モータ位相を精度良く推定するために必要な電圧検出手段の検出値を基に平均電圧を演算処理で設定することができ、また、前記電圧検出手段が平均電圧を検出するための電圧検出手段を兼ねるため、部品数の削減と、低コストで位置検出精度の向上をはかることが可能となる。   With this configuration, the average voltage can be set by calculation processing based on the detection value of the voltage detection means necessary for accurately estimating the motor phase, and the voltage detection means detects the average voltage. Therefore, it is possible to reduce the number of components and improve the position detection accuracy at low cost.

請求項3に記載の発明は、前記決定された印加電圧値と、前記平均電圧取得手段により取得された前記平均電圧値によりデューティを演算処理にて決定し、そのデューティに基づき前記インバータを駆動するものである。   According to a third aspect of the present invention, a duty is determined by arithmetic processing based on the determined applied voltage value and the average voltage value acquired by the average voltage acquisition means, and the inverter is driven based on the duty. Is.

かかる構成とすることにより、一定のデューティ率で前記モータへ給電されるため、前記モータへの印加電圧波形が単相交流電源の電圧波形とほぼ同期し、その結果、前記モータへの印加電圧波形、強いては単相交流電源の電流波形が改善されることとなり、電流波形の高調波成分が改善された小型化・低コストのモータ駆動装置を提供することができる。   With this configuration, since the motor is supplied with a constant duty ratio, the voltage waveform applied to the motor is substantially synchronized with the voltage waveform of the single-phase AC power supply, and as a result, the voltage waveform applied to the motor. Therefore, the current waveform of the single-phase AC power supply is improved, and a miniaturized and low-cost motor drive device in which the harmonic component of the current waveform is improved can be provided.

さらに、前記電流波形の改善に伴い、高調波成分による機器への悪影響が抑制され、前記モータの起動時、再起動時における単相交流電源の急激な電圧変動も緩和される。   Further, along with the improvement of the current waveform, adverse effects on the equipment due to harmonic components are suppressed, and sudden voltage fluctuations of the single-phase AC power supply during startup and restart of the motor are mitigated.

請求項4に記載の発明は、前記平均電圧取得と、前記回転子の位置検出と、これらを用いて所定時間単位での前記印加電圧を決定する演算処理を行うものである。   According to a fourth aspect of the present invention, the average voltage acquisition, the rotor position detection, and the arithmetic processing for determining the applied voltage in predetermined time units using these are performed.

かかることにより、その所定時間ではデューティを変更制御する必要が無く、制御のための演算処理の負荷となることもない。これは、制御プログラムの簡略化につながり、またモータの回転数制御のための演算処理時間も短くなり、モータを俊敏に駆動することが可能となる。   As a result, it is not necessary to change and control the duty for the predetermined time, and there is no load of calculation processing for control. This leads to simplification of the control program, shortens the calculation processing time for controlling the rotational speed of the motor, and allows the motor to be driven quickly.

請求項5に記載の発明は、平均電圧を演算するために前記電圧取得手段が取得する電圧取得時間を、電源周波数における半波の時間の公倍数としたものである。   According to a fifth aspect of the present invention, the voltage acquisition time acquired by the voltage acquisition means for calculating the average voltage is a common multiple of the half-wave time at the power supply frequency.

かかることにより、平均電圧を精度よく演算設定することができ、また、前記公倍数を最小とすることにより、前記モータへの印加電圧供給が速やかとなり、前記電源電圧に対する電流波形の歪みも少なく、安定したモータの駆動が行える。   As a result, the average voltage can be calculated and set accurately, and by minimizing the common multiple, the voltage applied to the motor can be supplied quickly, and there is little distortion of the current waveform with respect to the power supply voltage. The motor can be driven.

請求項6に記載の発明は、前記整流回路の直流母線間に小容量のコンデンサを接続したものである。   In a sixth aspect of the present invention, a small-capacitance capacitor is connected between the DC buses of the rectifier circuit.

かかる構成とすることにより、電圧低下時にモータからの回生エネルギーを蓄え利用することが可能となり、その結果、モータの起動に一層大きなトルクを発生させることが可能となる。   With this configuration, it is possible to store and use regenerative energy from the motor when the voltage drops, and as a result, it is possible to generate a larger torque for starting the motor.

請求項7に記載の発明は、前記モータを、冷凍サイクルを構成する圧縮機の駆動用としたものである。   According to a seventh aspect of the present invention, the motor is used for driving a compressor constituting a refrigeration cycle.

かかることにより、慣性モーメントが大きい圧縮機駆動用モータの場合、電圧変動によるトルク変動の影響を受けることが少なく、より安定した駆動が可能となる。   As a result, in the case of a compressor driving motor having a large moment of inertia, it is less affected by torque fluctuations due to voltage fluctuations and can be driven more stably.

請求項8に記載の発明は、前記圧縮機を、レシプロ型圧縮機としたもので、かかることにより、スクロール型圧縮機やロータリ型圧縮機等よりさらに慣性モーメントが大きくなり、さらに安定した駆動が可能となる。   In the invention described in claim 8, the compressor is a reciprocating compressor, and as a result, the moment of inertia becomes larger than that of a scroll compressor, a rotary compressor, or the like, and further stable driving is achieved. It becomes possible.

請求項9に記載の発明は、前記圧縮機を、冷蔵庫を構成する冷凍サイクルに設けたもので、かかることにより、高調波規制が厳しい冷蔵庫であっても、小型・低コストで高調波規制を満足することができる。   The invention according to claim 9 is the one in which the compressor is provided in a refrigeration cycle that constitutes a refrigerator. Thus, even in a refrigerator in which harmonic regulation is severe, harmonic regulation is achieved at a small size and at low cost. Can be satisfied.

また、小型のモータ駆動装置であるので、庫内容積率が高い冷蔵庫が得られ、従来と同じ外形寸法で収納容量が一層多く、使い勝手の良い冷蔵庫が得られる。   Moreover, since it is a small motor drive device, a refrigerator with a high internal volume ratio can be obtained, and a refrigerator that is easy to use can be obtained with the same external dimensions as the conventional one, with a larger storage capacity.

請求項10に記載の発明は、前記モータを、送風装置を構成するファンの駆動用としたものである。   In a tenth aspect of the present invention, the motor is used for driving a fan constituting a blower.

かかる構成とすることにより、モータ駆動装置の小型軽量化に伴い、送風機自体を従来の送風機に比べて一層小型化および軽量化でき、可搬性の高い送風装置を提供することができる。   By adopting such a configuration, as the motor driving device is reduced in size and weight, the blower itself can be further reduced in size and weight as compared with the conventional blower, and a highly portable blower can be provided.

請求項11に記載の発明は、前記モータを、衣類の汚れ等を洗濯する電気洗濯機のドラムの回転駆動用としたものである。   According to an eleventh aspect of the present invention, the motor is used for rotationally driving a drum of an electric washing machine for washing dirt or the like of clothes.

かかることにより、小型化したモータ制御装置を用いているため、洗濯機のドラムの容積率を高くすることが可能となり、従来の電気洗濯機と同じ外形寸法で洗濯兼脱水槽の大容量化が達成できる。   This makes it possible to increase the volume ratio of the drum of the washing machine because a miniaturized motor control device is used, and increase the capacity of the washing and dewatering tub with the same external dimensions as a conventional electric washing machine. Can be achieved.

請求項12に記載の発明は、前記モータを、湿った衣類等を乾燥する電気乾燥機のドラムの回転駆動用としたもので、かかることにより、小型化したモータ制御装置を用いているため、乾燥機のドラムの容積率を高くすることが可能となり、従来の電気乾燥機と同じ外形寸法でドラムの大容量化が達成できる。   The invention according to claim 12 is used for rotational driving of a drum of an electric dryer for drying wet clothes and the like, and by using such a motor control device that is downsized, The volume ratio of the drum of the dryer can be increased, and a large drum capacity can be achieved with the same external dimensions as those of a conventional electric dryer.

請求項13に記載の発明は、前記モータを、床等のごみを吸引する電気掃除機のファン駆動用としたもので、かかることにより、小型軽量化したモータ制御装置を用いているため、掃除機本体を従来の掃除機に比べて小型化および軽量化が可能となり、可搬性が高くユーザにとってハンドリングが容易な電気掃除機を提供することができる。   In the invention according to claim 13, the motor is used for driving a fan of an electric vacuum cleaner that sucks in garbage such as floors, and thus, a motor control device that is reduced in size and weight is used. The machine body can be made smaller and lighter than conventional vacuum cleaners, and a vacuum cleaner that is highly portable and easy for users to handle can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるモータの駆動装置のブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram of a motor driving apparatus according to Embodiment 1 of the present invention.

図1において、単相交流電源101は商用電源で、日本国内ではAC100V、50Hzまたは60Hzであり、整流回路102に接続している。   In FIG. 1, a single-phase AC power source 101 is a commercial power source, which is 100 VAC, 50 Hz, or 60 Hz in Japan and is connected to a rectifier circuit 102.

整流回路102は、周知の如く4個のダイオードをブリッジ接続した回路で構成されている。   As is well known, the rectifier circuit 102 is configured by a circuit in which four diodes are bridge-connected.

平滑用のコンデンサ103は、整流回路102で全波整流した電圧が入力される。このコンデンサ103の容量は0.2μF/W以下の静電容量を持つコンデンサを使用する。   The smoothing capacitor 103 is supplied with a voltage that has been full-wave rectified by the rectifier circuit 102. The capacitor 103 has a capacitance of 0.2 μF / W or less.

この種の平滑用コンデンサは、一般的にはインバータ104の出力容量(WまたはVA)や駆動装置全体の入力容量(WまたはVA)から、あるいは直流電圧のリプル含有量やリプル電流による平滑用コンデンサの耐リプル電流の特性等からコンデンサの静電容量を決定する。   This type of smoothing capacitor is generally a smoothing capacitor based on the output capacity (W or VA) of the inverter 104 or the input capacity (W or VA) of the entire drive device, or the ripple content or ripple current of the DC voltage. The capacitance of the capacitor is determined from the characteristics of the ripple current resistance.

これらの条件を加味して、一般的には2〜4μF/W程度の容量を確保する。すなわち200Wの出力容量の場合は400〜800μF程度の電解コンデンサを使用していた。   In consideration of these conditions, a capacity of about 2 to 4 μF / W is generally secured. That is, in the case of an output capacity of 200 W, an electrolytic capacitor of about 400 to 800 μF was used.

これに対し、本実施の形態1では、コンデンサ103には0.2μF/W以下の静電容量を持つコンデンサを使用している。すなわち200Wの出力容量の場合は40μF以下のコンデンサを使用することになる。   On the other hand, in the first embodiment, a capacitor having a capacitance of 0.2 μF / W or less is used as the capacitor 103. That is, in the case of an output capacity of 200 W, a capacitor of 40 μF or less is used.

コンデンサ103の種類は、積層セラミックコンデンサやフィルムコンデンサ等を用いることができ、特に積層セラミックコンデンサは、近年高耐圧で大容量のコンデンサがチップで実現できるようになってきており、装置を非常に小型化できるという利点がある。   As the type of the capacitor 103, a multilayer ceramic capacitor, a film capacitor, or the like can be used. In particular, a multilayer ceramic capacitor has recently been able to realize a high-capacitance and large-capacity capacitor on a chip, and the device is very small. There is an advantage that can be made.

本実施の形態1では、上述の如くコンデンサ103に、静電容量が1μFの積層セラミックコンデンサを採用している。   In the first embodiment, a multilayer ceramic capacitor having a capacitance of 1 μF is used for the capacitor 103 as described above.

インバータ104は、スイッチング素子と逆向きに接続されたダイオードをセットにした回路を6回路3相ブリッジ接続している。前記スイッチング素子は、IGBTやバイポーラトランジスタやFET等を用いることができる。本実施の形態1においては、PWM(Pluse Width Moduration)制御によるインバータとして説明する。   Inverter 104 is a six-circuit three-phase bridge connected to a set of diodes connected in the opposite direction to the switching element. An IGBT, a bipolar transistor, an FET, or the like can be used as the switching element. The first embodiment will be described as an inverter by PWM (Plus Width Modulation) control.

ブラシレスDCモータ(以下、単にモータと称す)105は、インバータ104の3相出力により駆動される。モータ105の固定子には、3相スター結線された巻線が施され、この巻き方は集中巻であっても、分布巻であっても構わない。また回転子は、希土類永久磁石を有しており、その配置方法は表面磁石型(SPM)でも磁石埋め込み型(IPM)であっても構わない。また永久磁石はフェライト系磁石でも希土類系磁石でも構わない。   A brushless DC motor (hereinafter simply referred to as a motor) 105 is driven by the three-phase output of the inverter 104. The stator of the motor 105 is provided with a three-phase star-connected winding, and this winding method may be concentrated winding or distributed winding. The rotor has a rare earth permanent magnet, and the arrangement method may be a surface magnet type (SPM) or a magnet embedded type (IPM). The permanent magnet may be a ferrite magnet or a rare earth magnet.

尚、永久磁石を用いる場合は、希土類系磁石を用い、マグネット使用重量をフェライト系磁石と同量とした場合、モータ効率を向上することができ、またフェライト系磁石を用いたモータと同等性能のモータとする場合は、マグネット重量を低減することができるため、モータ重量を軽量化することができる。   When using a permanent magnet, if a rare earth magnet is used and the weight of the magnet used is the same as that of a ferrite magnet, the motor efficiency can be improved and the performance equivalent to that of a motor using a ferrite magnet can be obtained. In the case of a motor, the weight of the magnet can be reduced, so that the weight of the motor can be reduced.

圧縮要素106は、モータ105を構成する回転子の軸に接続され、冷媒ガスを吸入し、圧縮して吐出する。このモータ105と圧縮要素106を同一の密閉容器107に収納し、レシプロ型の圧縮機108を構成する。圧縮機108は、搭載される機器に応じてロータリ型、スクロール型が用いられる。なお、圧縮機108の具体的な構成については、図2を用いて後述する。   The compression element 106 is connected to the shaft of the rotor that constitutes the motor 105, and sucks, compresses and discharges the refrigerant gas. The motor 105 and the compression element 106 are accommodated in the same sealed container 107 to constitute a reciprocating compressor 108. The compressor 108 is a rotary type or a scroll type depending on the equipment to be mounted. The specific configuration of the compressor 108 will be described later with reference to FIG.

圧縮機108は、ここで圧縮し、吐出した冷媒ガスを、凝縮器109、減圧器110、蒸発器111を通って圧縮機108の吸い込みに戻る冷凍空調システム(冷凍サイクル)を構成し、凝縮器109では放熱を、蒸発器111では吸熱を行うので、冷却や加熱を行うことができる。   The compressor 108 forms a refrigeration air-conditioning system (refrigeration cycle) in which the refrigerant gas compressed and discharged here returns to the suction of the compressor 108 through the condenser 109, the decompressor 110, and the evaporator 111. Since heat is dissipated in 109 and heat is absorbed in the evaporator 111, cooling and heating can be performed.

尚、必要に応じて凝縮器109や蒸発器111に送風機等を付加し、熱交換をさらに促進することもある。   If necessary, a fan or the like may be added to the condenser 109 or the evaporator 111 to further promote heat exchange.

また本実施の形態1では、冷凍空調システムを具備した機器として冷蔵庫を例にし、庫内112を蒸発器111により冷却する構成としている。   In the first embodiment, a refrigerator is taken as an example of a device equipped with a refrigeration air conditioning system, and the interior 112 is cooled by the evaporator 111.

電圧検出手段113は、整流回路102の直流母線V1、V2間の電圧を検出し、位置検出手段114と平均電圧演算手段115への入力としている。   The voltage detection means 113 detects the voltage between the DC buses V1 and V2 of the rectifier circuit 102 and uses it as an input to the position detection means 114 and the average voltage calculation means 115.

位置検出手段114は、電流検出手段116とモータ位相演算手段117を具備し、これらの信号を基にしてモータ105を構成する回転子の位置(回転角度)を検出(演算処理)し、その信号を制御手段118への入力としている。   The position detection means 114 includes a current detection means 116 and a motor phase calculation means 117, and detects (calculation processing) the position (rotation angle) of the rotor that constitutes the motor 105 based on these signals. As an input to the control means 118.

電流検出手段116は、モータ105を流れる電流を検出し、その検出した電流値を信号としてモータ位相演算手段117へ入力している。また、電流検出手段116としては、電流センサやシャント抵抗等を用いることができる。前記シャント抵抗は特に小型で低コストであり、実現可能性が高い。   The current detection means 116 detects the current flowing through the motor 105 and inputs the detected current value as a signal to the motor phase calculation means 117. Further, as the current detection means 116, a current sensor, a shunt resistor or the like can be used. The shunt resistor is particularly small and low cost, and is highly feasible.

また、モータ位相演算手段117は、電流検出手段116の出力であるモータ105の電流値と、電圧検出手段113の出力である整流回路102の直流母線V1、V2間の電圧値を入力(信号)とし、これらの信号を演算処理してモータ105の回転子の位置(回転角度)を検出している。そして検出した位置情報を制御手段118への入力(信号)としている。   Further, the motor phase calculation means 117 inputs (signal) the current value of the motor 105 that is the output of the current detection means 116 and the voltage value between the DC buses V1 and V2 of the rectifier circuit 102 that is the output of the voltage detection means 113. The position (rotation angle) of the rotor of the motor 105 is detected by calculating these signals. The detected position information is used as an input (signal) to the control means 118.

平均電圧演算手段115は、電圧検出手段113の出力である整流回路102の直流母線V1、V2間の電圧値を入力として直前の設定時間(本実施の形態1においては、過去50ミリ秒として説明する)に入力された電圧の平均を演算し、制御手段118への入力(信号)とする。   The average voltage calculation means 115 receives the voltage value between the DC buses V1 and V2 of the rectifier circuit 102 that is the output of the voltage detection means 113 as an input, and is described as the previous set time (in the first embodiment, the past 50 milliseconds). The average of the voltages input to the control means 118 is calculated and used as an input (signal) to the control means 118.

本実施の形態1においては、平均電圧を演算する対象期間(直前の設定時間)を過去50ミリ秒とすることで、国内電源周波数である50Hzと60Hzにおける半波の時間の公倍数としたので、単相交流電源101の周波数が50Hzと60Hzのどちらでも安定した平均電圧が算出される。単相交流電源101は、周期関数であるので、平均電圧は次式の通りとなる。   In the first embodiment, since the target period (previous set time) for calculating the average voltage is set to the past 50 milliseconds, the common multiple of the half-wave time at the domestic power supply frequencies of 50 Hz and 60 Hz is obtained. A stable average voltage is calculated regardless of whether the frequency of the single-phase AC power supply 101 is 50 Hz or 60 Hz. Since the single-phase AC power supply 101 is a periodic function, the average voltage is as follows.

Figure 2008043013
Figure 2008043013

かかる式により、平均電圧Vavは実効値Veと比べて約0.9倍となる。したがって、交流100Vの実効値であれば、約90Vの平均電圧となる。   With this formula, the average voltage Vav is about 0.9 times the effective value Ve. Therefore, if it is an effective value of AC 100V, the average voltage is about 90V.

制御手段118では、位置検出手段114の出力であるモータ105の位置情報を入力として、モータ105の印加電圧(モータの所定のトルクを得るための電圧)を決定する。そして、決定された印加電圧と平均電圧演算手段115により演算された平均電圧からPWMデューティ幅を決定し、インバータ104の駆動を行う。   The control means 118 receives the position information of the motor 105, which is the output of the position detection means 114, and determines the applied voltage (voltage for obtaining a predetermined torque of the motor) of the motor 105. Then, the PWM duty width is determined from the determined applied voltage and the average voltage calculated by the average voltage calculation means 115, and the inverter 104 is driven.

このように、モータ105の位置検出に平均電圧ではなく、電圧検出手段113によって検出された直流母線V1、V2間の電圧を用いることで、精度良くモータ105の位置を検出しつつ、デューティの計算には平均電圧を用い、高調波成分を改善することができる。   As described above, the position of the motor 105 is detected using the voltage between the DC buses V1 and V2 detected by the voltage detection means 113 instead of the average voltage, thereby calculating the duty while accurately detecting the position of the motor 105. An average voltage can be used to improve the harmonic component.

また、モータ105の位置検出手段114によるモータ105(回転子)の位置と実際のモータ(回転子)の位置との間に多少のずれや、高トルク運転のための弱め磁束制御等を行ってモータ105からのエネルギーが返ってきたとしても、0.2μF/Wの容量のコンデンサ103を選んでいるため、急峻な電圧変化を吸収し、吸収したエネルギーを利用してモータ105を駆動することができる。   In addition, a slight deviation between the position of the motor 105 (rotor) and the actual position of the motor (rotor) by the position detection means 114 of the motor 105, a weak magnetic flux control for high torque operation, or the like is performed. Even if the energy from the motor 105 is returned, the capacitor 103 having a capacitance of 0.2 μF / W is selected, so that a steep voltage change can be absorbed and the motor 105 can be driven using the absorbed energy. it can.

次に、圧縮機108の構成について図2を参考に説明する。図2は、本実施の形態1における圧縮機の断面図を示している。   Next, the configuration of the compressor 108 will be described with reference to FIG. FIG. 2 shows a cross-sectional view of the compressor in the first embodiment.

図2において、圧縮機108の密閉容器107内には、オイル119を貯溜すると共にR600aの冷媒120が封入され、固定子121と回転子122を主体に構成されたモータ105、およびこれによって駆動される圧縮要素106がスプリング等により弾性的に支持されており、モータ105の回転による振動が圧縮機外部に伝播しにくい構成となっている。   In FIG. 2, oil 119 is stored in an airtight container 107 of the compressor 108 and a refrigerant 120 of R600a is sealed, and the motor 105 mainly composed of a stator 121 and a rotor 122 is driven by this. The compression element 106 is elastically supported by a spring or the like, so that vibration due to rotation of the motor 105 is difficult to propagate outside the compressor.

圧縮要素106は、回転子122が固定された主軸部123および偏芯軸部124から構成されたクランクシャフト125の主軸部123を軸支するとともに圧縮室126を有するシリンダ127と、圧縮室126内で往復運動するピストン128と、偏芯軸部124とピストン128を連結する連結手段129を備え、レシプロ型の圧縮機構を構成している。   The compression element 106 includes a cylinder 127 that supports a main shaft portion 123 of a crankshaft 125 including a main shaft portion 123 to which a rotor 122 is fixed and an eccentric shaft portion 124, and has a compression chamber 126. And a connecting means 129 for connecting the eccentric shaft portion 124 and the piston 128 to form a reciprocating type compression mechanism.

従って、本実施の形態1においては、インバータの入力電圧に大きな脈動を含む場合でも、イナーシャが大きいレシプロ型圧縮機の特徴と構造から、脈動による振動および振動に伴う騒音が圧縮機外部に漏れにくくなっている。   Therefore, in the first embodiment, even when the input voltage of the inverter includes a large pulsation, the vibration due to the pulsation and the noise accompanying the vibration are difficult to leak out of the compressor due to the characteristics and structure of the reciprocating compressor having a large inertia. It has become.

なお本実施の形態1では、R134a冷媒と比較して冷凍能力の低いR600aを用いているので、同等の冷却性能を確保するためにはR134a用圧縮機より圧縮室容積を大きくする必要があり、ピストンが大型化する。従って、モータイナーシャが増大するため、コンデンサ103を非常に小さい容量としても、インバータ入力電圧に大きな脈動を含んだ場合も振動および騒音の影響をさらに受けにくくなる。   In the first embodiment, since R600a having a lower refrigeration capacity than R134a refrigerant is used, it is necessary to make the compression chamber volume larger than the compressor for R134a in order to ensure equivalent cooling performance. The piston becomes larger. Therefore, since the motor inertia is increased, even if the capacitor 103 has a very small capacity, even if the inverter input voltage includes a large pulsation, it is less susceptible to vibration and noise.

なお、電圧検出手段113、位置検出手段114(電流検出手段116、モータ位相演算手段117)、平均電圧演算手段115、制御手段118は、各種信号を演算処理する関係から、周知の如くマイクロコンピュータを中心とする集積回路(LSI)によって構成されている。   The voltage detection means 113, the position detection means 114 (current detection means 116, motor phase calculation means 117), the average voltage calculation means 115, and the control means 118 have a microcomputer as well known because of the calculation processing of various signals. It is composed of a central integrated circuit (LSI).

以上のように構成されたモータの駆動装置について、以下その動作、作用を説明する。   The operation and action of the motor driving apparatus configured as described above will be described below.

まず、図1、図3、図4、図5、図6を用いて従来技術の説明と同様に平均電圧を用いず、直流母線V1、V2の電圧を用いて制御を行った場合について説明する。   First, the case where control is performed using the voltages of the DC buses V1 and V2 without using the average voltage as in the description of the prior art will be described with reference to FIG. 1, FIG. 3, FIG. 4, FIG. .

図3は本実施の形態1であるモータの駆動装置における直流母線電圧の推移の一部(半波)を示す波形図である。図4は従来の制御による直流母線電圧値を用いた時のモータに印加されるキャリア周期毎の平均電圧推移の一部(半波)を示すグラフである。図5は従来の制御による直流母線電圧値を用いた時のキャリア周期毎におけるPWMデューティ率の推移の一部(半波)を示すグラフである。図6は従来の制御による直流母線電圧値を用いた時のモータに流れる電流推移の一部(半波)を示す波形図である。   FIG. 3 is a waveform diagram showing a part (half wave) of the transition of the DC bus voltage in the motor driving apparatus according to the first embodiment. FIG. 4 is a graph showing a part (half wave) of the average voltage transition for each carrier cycle applied to the motor when the DC bus voltage value by the conventional control is used. FIG. 5 is a graph showing a part (half wave) of the transition of the PWM duty ratio in each carrier cycle when the DC bus voltage value by the conventional control is used. FIG. 6 is a waveform diagram showing a part (half wave) of a transition of current flowing in the motor when a DC bus voltage value by conventional control is used.

なお、これらの波形図、グラフは、便宜上波形の1サイクルを20ミリ秒として説明する。   In the waveform diagrams and graphs, one cycle of the waveform is described as 20 milliseconds for convenience.

位置検出手段114によって検出されたモータ105の位置情報を基に制御手段118は、モータ105に印加する電圧を決定する。ここで、モータ105の印加電圧を便宜上64Vと設定して説明を進める。   Based on the position information of the motor 105 detected by the position detection unit 114, the control unit 118 determines a voltage to be applied to the motor 105. Here, the applied voltage of the motor 105 is set to 64 V for convenience, and the description will proceed.

このとき、従来の制御では、直流母線V1、V2間の電圧を用いてPWMデューティを計算するため、図3において直流母線電圧が64V以上あるT1ミリ秒からT2ミリ秒の区間では、PWMデューティ幅を図5のT1ミリ秒からT2ミリ秒間に示すように電圧の上昇に反比例してデューティ率を制御し、これによってT1ミリ秒からT2ミリ秒の区間においてキャリア周期毎の平均電圧が図4に示すように64Vとなるよう制御を行う。   At this time, in the conventional control, since the PWM duty is calculated using the voltage between the DC buses V1 and V2, in the period from T1 milliseconds to T2 milliseconds where the DC bus voltage is 64 V or more in FIG. As shown in FIG. 5 from T1 millisecond to T2 millisecond, the duty ratio is controlled in inverse proportion to the voltage rise, so that the average voltage for each carrier period in the interval from T1 millisecond to T2 millisecond is shown in FIG. As shown, the control is performed to be 64V.

つまり、従来の制御は、キャリア周期毎におけるモータ105への印加電圧を、デューティ率を制御して設定していた。   That is, in the conventional control, the voltage applied to the motor 105 for each carrier cycle is set by controlling the duty ratio.

一方で、直流母線V1、V2間の電圧が64V以下の区間である0ミリ秒からT1ミリ秒、およびT2ミリ秒から10ミリ秒の区間においては、モータ105に最大限に電圧を印加しようとするため、図5の同区間に示すようにデューティ率は100%となる。したがって、モータ105への印加電圧は図4に示すように直流母線の電圧(波形)と等しくなる。   On the other hand, the voltage between the DC buses V1 and V2 is to be applied to the motor 105 to the maximum in the interval from 0 milliseconds to T1 milliseconds, and from T2 milliseconds to 10 milliseconds, where the voltage between the DC buses V1 and V2 is 64 V or less. Therefore, the duty ratio is 100% as shown in the same section of FIG. Therefore, the voltage applied to the motor 105 is equal to the voltage (waveform) of the DC bus as shown in FIG.

その結果、図6に示すようにT1ミリ秒からT2ミリ秒間での電流がほぼ一定となり、T2ミリ秒から10ミリ秒間では電圧が低下しているため、電流を流せなくなり、電流値が減少する。   As a result, as shown in FIG. 6, the current from T1 milliseconds to T2 milliseconds is almost constant, and since the voltage decreases from T2 milliseconds to 10 milliseconds, the current cannot flow and the current value decreases. .

また、電圧が0Vになった場所であっても、単相交流電源101のインダクタ成分等により電流を流し続けようとし、図6の0ミリ秒からT1の区間に相当する0Vからの電圧の立ち上がり区間では、立下りの部分で流し続けようとした電流が流れ、図6のPで示すように電流波形が尖り、高調波成分を含んでしまう。   In addition, even when the voltage is 0 V, the current continues to flow due to the inductor component of the single-phase AC power supply 101 and the voltage rises from 0 V corresponding to the interval from 0 ms to T 1 in FIG. In the section, a current that continues to flow at the falling portion flows, the current waveform is sharp as shown by P in FIG. 6, and includes a harmonic component.

次に、本実施の形態1による制御、すなわち、平均電圧演算手段115が演算した直流母線V1、V2間の電圧の平均電圧を用いて制御手段118がモータ105への印加電圧を計算した場合について、図1、図3、図4、図7、図8、図9を用いて説明する。   Next, the control according to the first embodiment, that is, the case where the control means 118 calculates the applied voltage to the motor 105 using the average voltage between the DC buses V1 and V2 calculated by the average voltage calculation means 115. 1, FIG. 3, FIG. 4, FIG. 7, FIG. 8, and FIG.

また、本実施の形態1においては、電源周波数が50Hzで、平均電圧を算出する時間を前述の如く50ミリ秒とした場合について説明する。したがって、電源周期が安定していることを前提にすれば、50ミリ秒と10ミリ秒の各平均電圧は等しいため、以下の説明では便宜上、10ミリ秒の区間の図を用いて説明する。   In the first embodiment, a case where the power supply frequency is 50 Hz and the time for calculating the average voltage is 50 milliseconds as described above will be described. Therefore, assuming that the power supply cycle is stable, the average voltages of 50 milliseconds and 10 milliseconds are equal, and therefore, in the following description, description will be made with reference to a section of 10 milliseconds for convenience.

ここで、図7は本実施の形態1において平均電圧値を用いた時のキャリア周期毎におけるPWMデューティ率の推移の一部(半波)を示すグラフである。図8は本実施の形態1における平均電圧値を用いた時のモータに印加されるキャリア周期毎の平均電圧推移の一部(半波)を示すグラフである。図9は本実施の形態1における平均電圧値を用いた時のモータに流れる電流推移の一部(半波)を示す波形図である。   FIG. 7 is a graph showing a part (half wave) of the transition of the PWM duty ratio for each carrier cycle when the average voltage value is used in the first embodiment. FIG. 8 is a graph showing a part (half wave) of the average voltage transition for each carrier cycle applied to the motor when the average voltage value in the first embodiment is used. FIG. 9 is a waveform diagram showing a part (half wave) of a transition of current flowing in the motor when the average voltage value in the first embodiment is used.

まず、平均電圧演算手段115によって演算される平均電圧は、前述の数1式から約90Vとなり、モータ105へ64Vを出力するのに必要なデューティは約71%と計算される。従来の如く直流母線間電圧をデューティ演算に用いた場合は、デューティ(率)が図5に示すように変動するが、本実施の形態1においては、平均電圧を演算に用いているため、一キャリア周期におけるデューティ(率)は図7に示すように0ミリ秒から10ミリ秒の区間全てに亘って一定となる。   First, the average voltage calculated by the average voltage calculation means 115 is about 90 V from the above-described equation 1, and the duty required to output 64 V to the motor 105 is calculated to be about 71%. When the DC bus voltage is used for the duty calculation as in the prior art, the duty (rate) fluctuates as shown in FIG. 5, but in the first embodiment, the average voltage is used for the calculation. As shown in FIG. 7, the duty (rate) in the carrier cycle is constant over the entire period from 0 milliseconds to 10 milliseconds.

その結果、モータ105に印加されるキャリア周期毎の平均電圧推移は、図8に示すように、図3に示す直流母線電圧(整流回路102の出力電圧)の推移の値を約0.71倍したものとほぼ一致し、これは整流回路102の入力側である単相交流電源101の電圧推移とも略一致している。   As a result, the average voltage transition for each carrier cycle applied to the motor 105 is about 0.71 times the transition value of the DC bus voltage (output voltage of the rectifier circuit 102) shown in FIG. 3, as shown in FIG. This substantially coincides with the voltage transition of the single-phase AC power supply 101 on the input side of the rectifier circuit 102.

その結果、モータ105に印加される電圧が正弦波状に推移し、モータ105に流れる総電流の推移も図9に示すように正弦波状となり、高調波成分が大きく改善されることとなる。   As a result, the voltage applied to the motor 105 changes in a sine wave shape, and the change in the total current flowing in the motor 105 also becomes a sine wave shape as shown in FIG. 9, so that the harmonic component is greatly improved.

つまり、従来はモータ105への印加電圧を一定にするために、一キャリア周期における母線間電圧とデューティを変化数値として捕らえ、双方を時間経過と共に変化させる制御としていたが、本実施の形態1においては、モータ105への印加電圧を、交流電源(母線間電圧)と同期(変化)させるために、母線間電圧の平均電圧とデューティをそれぞれ一定として制御したものである。そして各種演算処理、出力処理はマイクロコンピュータのプログラム構成によって行われるものである。   That is, conventionally, in order to make the applied voltage to the motor 105 constant, the bus voltage and the duty in one carrier cycle are captured as change numerical values, and both are changed with the passage of time. In this example, in order to synchronize (change) the voltage applied to the motor 105 with the AC power supply (inter-bus voltage), the average voltage and the duty of the inter-bus voltage are controlled to be constant. Various arithmetic processes and output processes are performed by a microcomputer program configuration.

かかる制御は、負荷が軽く、モータ105が低速で運転される場合のように、低い電流値の場合でも高調波が発生しないように制御することができ、その結果、高調波規制がエアコンよりも厳しい冷蔵庫の制御に適したものとなる。   Such control can be performed so that harmonics are not generated even in the case of a low current value, such as when the load is light and the motor 105 is operated at a low speed. Suitable for strict refrigerator control.

なお、前記印加電圧は、位置検出手段114で検出された回転子の位置に応じて都度決定されるもので、必ずしも一定の値(64V)に固定されるものではない。   The applied voltage is determined each time according to the position of the rotor detected by the position detecting means 114, and is not necessarily fixed at a constant value (64V).

以上のように、本実施の形態1においては、単相交流電源101と、単相交流電源101から入力される電流を整流して直流に変換し出力する整流回路102と、整流回路102から出力される直流を入力とするインバータ104と、インバータ104により駆動されるモータ105と、電圧検出手段113と平均電圧演算手段115を具備し、整流回路102の直流母線V1、V2間の平均電圧を取得する平均電圧取得手段と、モータ105の位置を検出する位置検出手段114と、平均電圧演算手段115により取得された平均電圧と位置検出手段114により検出されたモータ105の位置を用いてインバータ104を制御し、モータ105への印加電圧を決定する制御手段118を備えることにより、モータ105への印加電圧形成に際してのデューティ(率)を一定とし、このデューティに基づいてモータ105へ給電するものである。   As described above, in the first embodiment, the single-phase AC power supply 101, the rectifier circuit 102 that rectifies the current input from the single-phase AC power supply 101, converts it to DC, and outputs it, and outputs from the rectifier circuit 102. Inverter 104 having DC input as input, motor 105 driven by inverter 104, voltage detection means 113 and average voltage calculation means 115 are provided, and an average voltage between DC buses V1 and V2 of rectifier circuit 102 is obtained. Using the average voltage acquisition means, the position detection means 114 for detecting the position of the motor 105, the average voltage acquired by the average voltage calculation means 115 and the position of the motor 105 detected by the position detection means 114. By forming a control means 118 that controls and determines the voltage applied to the motor 105, the voltage applied to the motor 105 is formed. Saishi by the duty (the ratio) is constant, is to supply power to the motor 105 based on the duty.

その結果、モータ105への印加電圧が単相交流電源101の電圧波形とほぼ同期し、単相交流電源101の電流波形が改善されることとなり、電流波形が改善された小型化・低コストのモータの駆動装置を提供することができる。   As a result, the voltage applied to the motor 105 is substantially synchronized with the voltage waveform of the single-phase AC power supply 101, and the current waveform of the single-phase AC power supply 101 is improved. A motor driving apparatus can be provided.

また、直流母線V1、V2の電圧を検出する電圧検出手段113と、電圧検出手段113が検出した電圧を演算により平均電圧を算出し、出力する平均電圧演算手段115で電圧取得手段を構成し、位置検出手段114を、モータ105の電流を取得する電流検出手段116と、この電流検出手段116により検出された電流と電圧検出手段113により検出された電圧からモータ105の位置を検出するモータ位相演算手段117で構成していることにより、モータ位相を精度良く推定するために必要な電圧検出と平均電圧を検出するための電圧検出が一つの電圧検出手段113で検出できるため、部品数の削減がはかれ、低コストで位置検出精度の向上が可能となる。   Further, the voltage detection means 113 for detecting the voltages of the DC buses V1 and V2 and the voltage detected by the voltage detection means 113 are used to calculate the average voltage, and the average voltage calculation means 115 for outputting the voltage constitutes the voltage acquisition means. The position detection unit 114 includes a current detection unit 116 that acquires the current of the motor 105, and a motor phase calculation that detects the position of the motor 105 from the current detected by the current detection unit 116 and the voltage detected by the voltage detection unit 113. With the configuration of the means 117, the voltage detection necessary for accurately estimating the motor phase and the voltage detection for detecting the average voltage can be detected by the single voltage detection means 113, so that the number of parts can be reduced. As a result, the position detection accuracy can be improved at low cost.

さらに、整流回路102の直流母線間に小容量のコンデンサ103を接続することにより、電圧低下時にモータ105からの回生エネルギーを蓄え利用することとなり、より大きなトルクを発生させることが可能となる。   Furthermore, by connecting a small-capacitance capacitor 103 between the DC buses of the rectifier circuit 102, the regenerative energy from the motor 105 is stored and used when the voltage drops, and a larger torque can be generated.

また、圧縮機108を駆動するモータ105の場合は、電圧の変動によってモータ105にトルク変動が発生しても、圧縮機108の慣性モーメントが大きいことからモータ105への影響は小さく、その結果、より安定した駆動が可能となる。   In the case of the motor 105 that drives the compressor 108, even if torque fluctuation occurs due to voltage fluctuation, the influence on the motor 105 is small because the moment of inertia of the compressor 108 is large. More stable driving is possible.

さらに、圧縮機108をレシプロ型の圧縮機としているため、構造上、スクロール型圧縮機やロータリ型圧縮機等よりさらに慣性モーメントが大きく、さらに安定した駆動が可能となる。   Furthermore, since the compressor 108 is a reciprocating type compressor, the moment of inertia is larger than that of a scroll type compressor, a rotary type compressor, or the like, and a more stable drive is possible.

また、圧縮機108が圧縮する冷媒をR600aとしているため、冷蔵庫等で一般的に採用されたR134aと比較して冷凍能力が低く、同等の冷凍能力を得るためには、圧縮機108の気筒容積を大きくする必要がある。かかる構成は、慣性モーメントがさらに増加することとなるので、非常に安定した運転を行うことができる。   In addition, since the refrigerant compressed by the compressor 108 is R600a, the refrigeration capacity is lower than that of R134a generally used in refrigerators and the like. Need to be larger. Such a configuration further increases the moment of inertia, so that a very stable operation can be performed.

さらに、モータ駆動装置は、モータ105に印加される電圧波形を正弦波状に推移させるため、モータ105に流れる総電流の推移も高調波成分が改善された正弦波状となる。   Furthermore, since the motor drive device changes the voltage waveform applied to the motor 105 in a sine wave shape, the transition of the total current flowing in the motor 105 also becomes a sine wave shape with improved harmonic components.

したがって、前記モータ駆動装置を具備する圧縮機108を、凝縮器109、減圧器110、蒸発器111等とともに構成される冷凍空調システム(冷凍サイクル)に設け、この冷凍空調システムを冷蔵庫に採用することにより、高調波規制を満足する冷蔵庫が得られる。しかも、前記モータの駆動装置は、小型であるので、冷蔵庫の庫内容積率を高めることができ、従来と同じ外形寸法でより収納容量の多い使い勝手の良い冷蔵庫が提供できることとなる。   Therefore, the compressor 108 provided with the motor drive device is provided in a refrigeration air conditioning system (refrigeration cycle) configured with a condenser 109, a decompressor 110, an evaporator 111, and the like, and this refrigeration air conditioning system is employed in a refrigerator. Thus, a refrigerator that satisfies the harmonic regulations can be obtained. Moreover, since the motor driving device is small, the refrigerator volume ratio can be increased, and a convenient refrigerator with a larger storage capacity and the same outer dimensions as the conventional one can be provided.

また、前記冷凍空調システムを空気調和機に適用することにより、空気調和機の小型化が可能となり、しかも、低コストで高調波を改善した空気調和機が構成できる。そのため、空気調和機における設置スペースの自由度を高めることができる。   In addition, by applying the refrigeration and air conditioning system to an air conditioner, the air conditioner can be downsized, and an air conditioner with improved harmonics can be configured at low cost. Therefore, the freedom degree of the installation space in an air conditioner can be raised.

前記モータの駆動装置は、冷凍空調システム以外にも用途展開が可能で、適用した各種機器に特有の作用効果を奏する。   The motor drive device can be used for applications other than the refrigerating and air-conditioning system, and has effects specific to various devices applied.

以下、前記モータの駆動装置を適用した幾つかの機器を例に説明する。   Hereinafter, several devices to which the motor drive device is applied will be described as an example.

モータ105を、送風装置のファン駆動用として用いた場合、小型軽量化したモータ駆動装置であることに起因して送風装置自体を従来の送風装置に比べて小型化および軽量化でき、可搬性の高い送風装置を提供することができる。   When the motor 105 is used for driving a fan of a blower, the blower itself can be made smaller and lighter than a conventional blower because it is a motor drive device that is smaller and lighter. A high air blower can be provided.

また、モータ105を、衣類の汚れ等を洗濯する電気洗濯機のドラム(洗濯兼脱水槽)の回転駆動用として用いた場合、小型化したモータ駆動装置であることに起因して洗濯機のドラム容積率を高くすることが可能となり、従来の電気洗濯機と同じ外形寸法で洗濯兼脱水槽の大容量化が可能となる。   In addition, when the motor 105 is used for rotational driving of a drum (washing and dewatering tub) of an electric washing machine for washing dirt of clothes, etc., the drum of the washing machine is attributed to the miniaturized motor driving device. The volume ratio can be increased, and the capacity of the washing and dewatering tub can be increased with the same external dimensions as those of the conventional electric washing machine.

同様に、モータ105を、湿った衣類等を乾燥する電気乾燥機の乾燥ドラムの回転駆動用として用いた場合も、小型化したモータ駆動装置であることに起因して乾燥機の乾燥ドラム容積率を高くすることが可能となり、従来の電気乾燥機と同じ外形寸法で乾燥ドラムの大容量化が可能となる。   Similarly, when the motor 105 is used for rotationally driving a drying drum of an electric dryer that dries wet clothes and the like, the drying drum volume ratio of the dryer is attributed to the miniaturized motor driving device. It becomes possible to increase the capacity of the drying drum with the same outer dimensions as those of the conventional electric dryer.

さらに、モータ105を、床等のごみを吸引する電気掃除機のファン駆動用として用いた場合も同様に、小型軽量化したモータ駆動装置であることに起因して掃除機本体を従来の掃除機に比べて小型化および軽量化することができ、その結果、可搬性が高く、ユーザにとってハンドリングが容易な使い勝手のよい電気掃除機を提供することができる。   Further, when the motor 105 is used for driving a fan of an electric vacuum cleaner that sucks in dust such as floors, the vacuum cleaner main body is replaced with a conventional vacuum cleaner due to the fact that the motor drive device is reduced in size and weight. As a result, it is possible to provide a vacuum cleaner that is easy to use and easy to handle for the user.

以上のように、本発明にかかるモータの駆動装置は、小型・低コストで高調波抑制が可能となるので、エアコン等の冷凍空調システム以外にも、AV機器(特に小型機器)等のようにモータが非常に小さくてセンサをつけることが困難な機器や回路を非常に小型化したい場合等の用途にも適用できる。   As described above, the motor driving device according to the present invention can suppress harmonics in a small size and at low cost, so that it can be used for AV equipment (particularly, small equipment) in addition to a refrigerating and air conditioning system such as an air conditioner. The present invention can also be applied to applications such as when it is desired to miniaturize a device or circuit that has a very small motor and is difficult to attach a sensor.

本発明の実施の形態1におけるモータの駆動装置のブロック図1 is a block diagram of a motor drive device according to Embodiment 1 of the present invention. 同実施の形態1における駆動装置によって駆動する圧縮機の断面図Sectional drawing of the compressor driven by the drive device in Embodiment 1 同実施の形態1におけるモータの駆動装置における直流母線電圧の推移の一部(半波)を示す波形図The wave form diagram which shows a part (half wave) of transition of the DC bus voltage in the motor drive apparatus in the first embodiment 従来の制御による直流母線電圧値を用いた時のモータに印加されるキャリア周期毎の平均電圧推移の一部(半波)を示すグラフThe graph which shows a part (half wave) of the average voltage transition for every carrier period applied to the motor when the DC bus voltage value by the conventional control is used 従来の制御による直流母線電圧値を用いた時のキャリア周期毎におけるPWMデューティ率の推移の一部(半波)を示すグラフThe graph which shows a part (half wave) transition of the PWM duty factor for every carrier period when the DC bus voltage value by the conventional control is used 従来の制御による直流母線電圧値を用いた時のモータに流れる電流推移の一部(半波)を示す波形図Waveform diagram showing a part (half wave) of the current transition through the motor when using the DC bus voltage value under conventional control 本発明の実施の形態1における平均電圧値を用いた時のキャリア周期毎におけるPWMデューティ率の推移の一部(半波)を示すグラフThe graph which shows a part (half wave) transition of the PWM duty factor for every carrier period when using the average voltage value in Embodiment 1 of this invention 同実施の形態1における平均電圧値を用いた時のモータに印加されるキャリア周期毎の平均電圧推移の一部(半波)を示すグラフThe graph which shows a part (half wave) of average voltage transition for every carrier period applied to the motor at the time of using the average voltage value in Embodiment 1 同実施の形態1における平均電圧値を用いた時のモータに流れる電流推移の一部(半波)を示す波形図Waveform diagram showing a part (half wave) of a current transition flowing in the motor when using the average voltage value in the first embodiment 従来技術におけるモータの駆動装置のブロック図Block diagram of a motor driving device in the prior art

符号の説明Explanation of symbols

101 単相交流電源
102 整流回路
103 コンデンサ
104 インバータ
105 モータ
106 圧縮要素
107 密閉容器
108 圧縮機
109 凝縮器
110 減圧器
111 蒸発器
112 庫内
113 電圧検出手段
114 位置検出手段
115 平均電圧演算手段
116 電流検出手段
117 モータ位相演算手段
118 制御手段
119 オイル
120 冷媒
121 固定子
122 回転子
123 主軸部
124 偏芯軸部
125 クランクシャフト
126 圧縮室
127 シリンダ
128 ピストン
129 連結手段
DESCRIPTION OF SYMBOLS 101 Single phase alternating current power supply 102 Rectifier circuit 103 Capacitor 104 Inverter 105 Motor 106 Compression element 107 Sealed container 108 Compressor 109 Condenser 110 Decompressor 111 Evaporator 112 Inside 113 Voltage detection means 114 Position detection means 115 Average voltage calculation means 116 Current Detection means 117 Motor phase calculation means 118 Control means 119 Oil 120 Refrigerant 121 Stator 122 Rotor 123 Main shaft part 124 Eccentric shaft part 125 Crankshaft 126 Compression chamber 127 Cylinder 128 Piston 129 Connection means

Claims (13)

単相交流電源と、前記単相交流電源から入力される電流を整流して直流に変換し出力する整流回路と、前記整流回路から出力される直流を入力とするインバータと、前記インバータにより駆動されるモータと、前記整流回路の直流母線間の平均電圧を取得する平均電圧取得手段と、前記モータを構成する回転子の位置を検出する位置検出手段と、前記平均電圧取得手段により取得された平均電圧と前記位置検出手段により検出された検出位置信号を入力信号として前記モータへの印加電圧を決定する制御手段を備え、前記決定された印加電圧が前記モータへ供給されるように前記インバータを制御するモータの駆動装置。   A single-phase AC power source, a rectifier circuit that rectifies and converts a current input from the single-phase AC power source into a direct current, and outputs a direct current output from the rectifier circuit; and an inverter driven by the inverter Motor, average voltage acquisition means for acquiring an average voltage between DC buses of the rectifier circuit, position detection means for detecting the position of a rotor constituting the motor, and average acquired by the average voltage acquisition means Control means for determining an applied voltage to the motor by using a voltage and a detected position signal detected by the position detecting means as an input signal, and controlling the inverter so that the determined applied voltage is supplied to the motor A motor drive device. 前記平均電圧取得手段を、前記直流母線の電圧を検出する電圧検出手段と、前記電圧検出手段が検出した電圧を演算により平均電圧を算出し出力する平均電圧演算手段で構成し、前記位置検出手段を、前記モータの電流を取得する電流検出手段と、前記電流検出手段により検出された電流と前記電圧検出手段により検出された電圧から前記回転子の位置を検出するモータ位相演算手段で構成した請求項1に記載のモータの駆動装置。   The average voltage acquisition means comprises voltage detection means for detecting the voltage of the DC bus, and average voltage calculation means for calculating and outputting an average voltage by calculating the voltage detected by the voltage detection means, and the position detection means Is constituted by current detection means for acquiring the current of the motor, and motor phase calculation means for detecting the position of the rotor from the current detected by the current detection means and the voltage detected by the voltage detection means. Item 2. A motor driving device according to Item 1. 前記決定された印加電圧値と、前記平均電圧取得手段により取得された前記平均電圧値によりデューティを演算し、そのデューティに基づき前記インバータを駆動する請求項1または2に記載のモータの駆動装置。   3. The motor driving device according to claim 1, wherein a duty is calculated based on the determined applied voltage value and the average voltage value acquired by the average voltage acquisition unit, and the inverter is driven based on the duty. 前記平均電圧取得と、前記回転子の位置検出と、これらを用いて所定時間単位での前記印加電圧を決定する演算処理を行う請求項1から3のいずれか一項に記載のモータの駆動装置。   4. The motor driving apparatus according to claim 1, wherein the average voltage acquisition, the rotor position detection, and the calculation process for determining the applied voltage in a predetermined time unit are performed using the average voltage acquisition. 5. . 平均電圧を演算するために前記電圧取得手段が取得する電圧取得時間を、電源周波数における半波の時間の公倍数とした請求項1から4のいずれか一項に記載のモータの駆動装置。   5. The motor driving apparatus according to claim 1, wherein the voltage acquisition time acquired by the voltage acquisition unit to calculate an average voltage is a common multiple of a half-wave time at a power supply frequency. 6. 前記整流回路の直流母線間に小容量のコンデンサを接続した請求項1から5のいずれか一項に記載のモータの駆動装置。   The motor drive device according to any one of claims 1 to 5, wherein a small-capacitance capacitor is connected between the DC buses of the rectifier circuit. 前記モータを、冷凍サイクルを構成する圧縮機の駆動用とした請求項1から6のいずれか一項に記載のモータの駆動装置。   The motor driving device according to any one of claims 1 to 6, wherein the motor is used for driving a compressor constituting a refrigeration cycle. 前記圧縮機を、レシプロ型圧縮機とした請求項7に記載のモータの駆動装置。   The motor driving apparatus according to claim 7, wherein the compressor is a reciprocating compressor. 前記圧縮機を、冷蔵庫を構成する冷凍サイクルに設けた請求項7または8に記載のモータの駆動装置。   The motor driving device according to claim 7 or 8, wherein the compressor is provided in a refrigeration cycle constituting a refrigerator. 前記モータを、送風装置を構成するファンの駆動用とした請求項1から6のいずれか一項に記載のモータの駆動装置。   The motor driving device according to any one of claims 1 to 6, wherein the motor is used for driving a fan constituting a blower. 前記モータを、衣類の汚れ等を洗濯する電気洗濯機のドラムの回転駆動用とした請求項1から6のいずれか一項に記載のモータの駆動装置。   The motor driving device according to any one of claims 1 to 6, wherein the motor is used for rotationally driving a drum of an electric washing machine for washing dirt or the like of clothes. 前記モータを、湿った衣類等を乾燥する電気乾燥機のドラムの回転駆動用とした請求項1から6のいずれか一項に記載のモータの駆動装置。   The motor drive device according to any one of claims 1 to 6, wherein the motor is used for rotationally driving a drum of an electric dryer for drying wet clothes and the like. 前記モータを、床等のごみを吸引する電気掃除機のファン駆動用とした請求項1から6のいずれか一項に記載のモータの駆動装置。   The motor driving device according to any one of claims 1 to 6, wherein the motor is used for driving a fan of an electric vacuum cleaner that sucks dust such as floor.
JP2006212022A 2006-08-03 2006-08-03 Motor driving device Pending JP2008043013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212022A JP2008043013A (en) 2006-08-03 2006-08-03 Motor driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212022A JP2008043013A (en) 2006-08-03 2006-08-03 Motor driving device

Publications (1)

Publication Number Publication Date
JP2008043013A true JP2008043013A (en) 2008-02-21

Family

ID=39177427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212022A Pending JP2008043013A (en) 2006-08-03 2006-08-03 Motor driving device

Country Status (1)

Country Link
JP (1) JP2008043013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672059A1 (en) * 2018-12-21 2020-06-24 Schneider Toshiba Inverter Europe SAS Adapting the deceleration of a motor as a function of an average rectified voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672059A1 (en) * 2018-12-21 2020-06-24 Schneider Toshiba Inverter Europe SAS Adapting the deceleration of a motor as a function of an average rectified voltage
FR3091072A1 (en) * 2018-12-21 2020-06-26 Schneider Toshiba Inverter Europe Sas Adaptation of the deceleration of a motor as a function of an average rectified voltage
US11784603B2 (en) 2018-12-21 2023-10-10 Schneider Toshiba Inverter Europe Sas Adapting the deceleration of a motor as a function of an average rectified voltage

Similar Documents

Publication Publication Date Title
JP4596866B2 (en) Motor drive device
KR101006589B1 (en) Motor control apparatus
WO2017038024A1 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
US7292004B2 (en) Motor driving apparatus
JP4957223B2 (en) Motor starter
JP2005198376A (en) Method of driving brushless dc motor, and its device
JP4416486B2 (en) Motor control device
JP2011010430A (en) Motor drive device
JP2008043012A (en) Motor driving device
JP2011010432A (en) Motor drive device
US9714782B2 (en) Device and method for controlling compressor, and refrigerator including same
JP2008104315A (en) Motor driving device
JP2008043013A (en) Motor driving device
JP2008005639A (en) Method and device for driving brushless dc motor
JP2008109722A (en) Motor drive
JP2008099485A (en) Motor drive device
JP2006109624A (en) Drive device for brushless dc motor
WO2022172419A1 (en) Power conversion device, motor drive device, and air conditioner
JP2008043014A (en) Motor driving device
JP6450939B2 (en) Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator
JP2006050805A (en) Brushless dc motor drive device
JP4606768B2 (en) Motor drive device
JP2007143332A (en) Motor drive device, and freezer provided therewith
JP2006304386A (en) Motor driving unit and refrigerator
JP2004215434A (en) Controller of motor, air conditioner using its controller and refrigerator